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The Stokes drift induced by surface waves distorts turbulence in the wind-driven mixed layer of the
ocean, leading to the development of streamwise vortices, or Langmuir circulations, on a wide range of
scales. We investigate the structure of the resulting Langmuir turbulence, and contrast it with the struc-
ture of shear turbulence, using rapid distortion theory (RDT) and kinematic simulation of turbulence.
Firstly, these linear models show clearly why elongated streamwise vortices are produced in Langmuir
turbulence, when Stokes drift tilts and stretches vertical vorticity into horizontal vorticity, whereas elon-
gated streaky structures in streamwise velocity fluctuations ðuÞ are produced in shear turbulence,
because there is a cancellation in the streamwise vorticity equation and instead it is vertical vorticity that
is amplified. Secondly, we develop scaling arguments, illustrated by analysing data from LES, that indicate
that Langmuir turbulence is generated when the deformation of the turbulence by mean shear is much
weaker than the deformation by the Stokes drift. These scalings motivate a quantitative RDT model of
Langmuir turbulence that accounts for deformation of turbulence by Stokes drift and blocking by the
air–sea interface that is shown to yield profiles of the velocity variances ðu2;v2;w2Þ in good agreement
with LES. The physical picture that emerges, at least in the LES, is as follows. Early in the life cycle of a
Langmuir eddy initial turbulent disturbances of vertical vorticity are amplified algebraically by the Stokes
drift into elongated streamwise vortices, the Langmuir eddies. The turbulence is thus in a near two-com-
ponent state, with u2 suppressed and v2 � w2. Near the surface, over a depth of order the integral length
scale of the turbulence, the vertical velocity ðwÞ is brought to zero by blocking of the air–sea interface.
Since the turbulence is nearly two-component, this vertical energy is transferred into the spanwise fluc-
tuations, considerably enhancing v2 at the interface. After a time of order half the eddy decorrelation time
the nonlinear processes, such as distortion by the strain field of the surrounding eddies, arrest the defor-
mation and the Langmuir eddy decays. Presumably, Langmuir turbulence then consists of a statistically
steady state of such Langmuir eddies. The analysis then provides a dynamical connection between the
flow structures in LES of Langmuir turbulence and the dominant balance between Stokes production
and dissipation in the turbulent kinetic energy budget, found by previous authors.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The velocity field in the surface mixed layer of the ocean is often
dominated by longitudinal vortices, known as Langmuir circula-
tions, which are aligned roughly with the wind, as reviewed by
Leibovich (1983), Garrett (1996) and Thorpe (2004). Direct obser-
vations (Pluddemann et al., 1996; Smith, 1998; D’Asaro, 2001)
and laboratory experiments (Faller and Cartwright, 1983; Nepf
and Monismith, 1991; Melville et al., 1998) have shown that these
circulations play a key role in the transport and mixing of momen-
tum, heat, pollutants and dissolved gases from the surface into the
deeper ocean (Kantha and Clayson, 2004; McWilliams and Sullivan,
ll rights reserved.
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2001), and also in the dispersion of buoyant tracers trapped at the
surface (Faller and Auer, 1988; Thorpe, 2001).

Craik and Leibovich (1976) and later Craik (1977), Leibovich
(1977, 1980), Leibovich and Radhakrishnan (1977) and Leibovich
and Paolucci (1981) developed the established model for growth
of Langmuir circulations from small flow perturbations, namely
an instability of the wind-induced shear current to the Stokes drift
associated with the surface waves. According to this mechanism
(known as CL2) the Stokes drift tilts and amplifies the vertical vor-
ticity associated with any small spanwise variations of the shear
current. This amplified vorticity then further amplifies the pertur-
bation to the wind-induced shear flow, leading to instability. The
Craik–Leibovich analysis, and the body of work that has grown
from it (see Leibovich, 1983; Thorpe, 2004), is concerned with
the initiation of Langmuir circulations within a flow where any
existing turbulence has a purely diffusive effect, and yields the
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spatial structure of the unstable normal modes and the scale and
growth rate of the most unstable mode.

In the ocean mixed layer the flow is usually fully turbulent,
and the Langmuir circulations are best viewed as coherent struc-
tures embedded within the turbulence: the observations of Faller
and Auer (1988), Pluddemann et al. (1996) and Smith (1998)
speak of Langmuir circulations with inherent randomness and
on a whole spectrum of scales. Large eddy simulation (LES) stud-
ies have lent support to this picture. Skyllingstad and Dembo
(1995), McWilliams et al. (1997) (henceforth MSM97), and later
McWilliams and Sullivan (2001) and Skyllingstad (2001), have
simulated Langmuir turbulence using LES of the full Navier–Stokes
equations, with an eddy viscosity to represent the energy lost at
small scales. Following Craik and Leibovich, in all these studies
the effects of the surface waves were represented through the
deformation of the vorticity by the Stokes drift – via the so-called
vortex force. In this sense these simulations are LES of the Craik–
Leibovich equations. Noh et al. (2004) additionally included a
simple representation of wave breaking, and Li et al. (2005) care-
fully investigated the flow regimes between three limit situations,
where the flow is dominated by shear, surface waves, or
convection.

Recent analysis of LES of Langmuir turbulence by Polton and
Belcher (2007) has shown that within the Stokes layer, where the
Stokes drift acts, the dominant balance in the turbulent kinetic en-
ergy (TKE) budget is between Stokes production of TKE and dissi-
pation (at least when wave breaking is absent or unimportant).
Deeper into the layer the budget is dominated by turbulent trans-
port of TKE from the Stokes layer and dissipation, which Polton and
Belcher (2007) attribute to downwelling jets associated with con-
vergence zones between vortices in the Stokes layer. Grant and
Belcher (2009) further analysed the TKE budget and suggested that
it scales on the velocity w�L ¼ ðu2

�US0Þ
1
3 (where u� and US0 are,

respectively, the friction and surface Stokes drift velocities), and
the length h, the depth of the mixed layer – although many alter-
native scalings have been proposed (Pluddemann et al., 1996;
Smith, 1998; D’Asaro, 2001; Harcourt and D’Asaro, 2008). Grant
and Belcher (2009) then showed that, when scaled by these vari-
ables, the profiles of dissipation rate, velocity variances and other
turbulence quantities collapse to single profiles for a variety of
forcing variables. This scaling demonstrates that Langmuir turbu-
lence is an asymptotically distinct state of turbulence that has fun-
damentally different dynamics to a shear driven layer. At this same
time some authors (e.g. Tsai et al., 2005) have computed LES of a
stress driven layer, without wave forcing, and argued that some
of the features usually attributed to Langmuir turbulence are also
present in shear turbulence.

The first aim of the present paper is therefore to analyse the
processes that shape turbulence distorted by Stokes drift and the
contrast with processes that shape turbulence in a shear flow. A
linear rapid distortion theory (hereafter RDT) model is used to illus-
trate these changes.

There are a range of processes acting even within the simplified
system computed by the LES studies: mean shear generates turbu-
lence, the Stokes drift deforms turbulence, and the air–water inter-
face blocks the turbulence. So the second aim of this paper is to
establish the dynamical processes responsible for shaping Lang-
muir turbulence. This is done by building upon the RDT model
for the distortion of turbulence by a travelling surface wave devel-
oped by Teixeira and Belcher (2002) (henceforth TB2002), and
making quantitative comparisons with the results of LES. We will
find that the linearised rapid-distortion approach explains both
qualitative and quantitative features of Langmuir turbulence. In
this sense we seek here to provide a dynamical connection be-
tween the results from the TKE budget and the flow structures ob-
served in Langmuir turbulence.
The remainder of the paper is organised as follows. In Section 2,
we begin by introducing the formulation of the RDT model and
contrasting the flow structure predicted by kinematic simulation
of turbulence (KST) for shear turbulence and turbulence distorted
by a surface wave. In Section 3 we develop scalings for Langmuir
turbulence through examination of the results from the LES of
MSM97. These scalings motivate a specific quantitative compari-
son with RDT and KST. The ensuing results are presented in Sec-
tion 4. Finally, the main conclusions of this study are presented
in Section 5.

2. Rapid distortion and kinematic simulation of Langmuir
turbulence

In RDT, the equations of motion are linearised with respect to
the turbulent quantities (Batchelor and Proudman, 1954). Some
turbulence is assumed to exist initially, which is distorted for a fi-
nite time by an external forcing (e.g. the Stokes drift of a wave)
according to the linear dynamics. A final turbulence state is thus
obtained. This approach has been used previously for shear flows
by Townsend (1970), Lee and Hunt (1989), Lee et al. (1990) and
Mann (1994), and for blocking by rigid boundaries by Hunt and
Graham (1978) and Magnaudet (2003), for example. The limita-
tions and assumptions underlying RDT have been reviewed by
Batchelor and Proudman (1954) and Hunt (1973). Essentially, since
RDT neglects nonlinear interactions in the turbulence, it is approx-
imately valid in situations when the velocity scale and strain rate
of the mean distorting flow are considerably larger than those of
the turbulence (i.e. weak turbulence).

For an incompressible and non-rotating fluid at high Reynolds
number, the linearised momentum and mass conservation equa-
tions may then be written

@u
@t
þ U � $uþ u � $U ¼ 1

q
$p; ð1Þ

$ � u ¼ 0; ð2Þ

where u is the turbulent velocity, p is the turbulent pressure, U is
the mean velocity, q is the density and r is the spatial gradient
operator. Mixing by small-scale eddies could be taken into account
through the inclusion of a constant eddy viscosity in (1), as in Town-
send (1970). However, the results for the large-scale eddies, which
are what concerns us here, would not be appreciably changed,
hence viscosity is ignored.

The evolution of turbulence statistics due to purely external
forcings (in this case the gradients of U, or the effect of boundaries)
is determined by adopting a spectral description of the flow (which
allows elimination of the pressure perturbation) and assuming an
initial energy spectrum for the turbulence. The turbulence is as-
sumed to be locally homogeneous, and the mean velocity gradients
are assumed to be locally uniform (Hunt, 1973; Durbin, 1981; Hunt
et al., 1990).

A spatial scale-separation between the turbulence and the
mean flow quantities is assumed, so that an average over a local
volume VðxÞ can be conceptually defined that yields, for example,
the mean flow (by averaging over the turbulent part):

Uðx; tÞ ¼ 1
VðxÞ

Z Z Z
vðx; tÞdxdydz; ð3Þ

where v is total velocity, including mean and turbulent parts. Then a
local turbulent spectrum can be defined, formed over the same
moving-average volume, with slowly varying wavenumbers
kðx; tÞ ¼ ðk1; k2; k3Þ and Fourier coefficients ûðHÞðk;x; tÞ of the flow:

ûðHÞ ¼ 1

ð2pÞ3
Z Z Z

uðHÞe�ik�x dxdydz: ð4Þ
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In this equation and in (3), the integration is carried out over the
volume V (see Hunt, 1973), and the superscript ðHÞ denotes the flow
away from any boundaries. The corresponding turbulent velocity
may be expressed by the inverse Fourier transform:

uðHÞ ¼
Z Z Z

ûðHÞeik�xdk1dk2dk3: ð5Þ

Note that both ûðHÞ and k are assumed to be slow functions of the
spatial coordinates (changing appreciably only over several wave-
lengths). Additionally, not only is ûðHÞ a function of time, satisfying
an equation that results from (1) in spectral space, but k also
evolves in time, according to the equation (Dubrulle et al., 2004;
Teixeira and Belcher, 2006)

@k
@t
þr k � Uð Þ ¼ 0: ð6Þ

The approach followed here is essentially the same as described in
detail in Teixeira and Belcher (2002).

The presence of a rigid boundary acts to block the turbulence at
the surface, so that the normal component of the fluctuating veloc-
ity ðwÞ is brought to zero at the interface. Following Hunt and Gra-
ham (1978) this process is represented over short times by adding
to the flow within the fluid the irrotational flow induced by image
vortices above the interface, namely

uðt ¼ 0Þ ¼ uðHÞ þ $/ðSÞðt ¼ 0Þ: ð7Þ

Here /ðSÞ is a velocity potential, associated with the image vortices
induced by the interface to ensure no deformation of the interface
by the turbulence. This correction remains irrotational if the distort-
ing flow is irrotational (e.g. a surface wave). If the distorting flow
possesses vorticity (e.g. shear), the correction ceases to be irrota-
tional over time.

KST (see Turfus and Hunt, 1987; Perkins et al., 1990; Fung et al.,
1992) goes one step further beyond RDT by providing actual real-
isations of turbulent flows. This is particularly useful for tracking
the trajectories of tracer particles or calculating Lagrangian statis-
tics. Turbulence is represented as the sum of a discrete set of Fou-
rier modes, with a random phase added to each mode, while at the
same time satisfying a given energy spectrum. The constraint of
incompressibility, (2), is enforced by calculating the velocity field
as the curl of another vector field, so that its divergence is zero.
Hence, for example, the turbulent velocity far from any boundary
is represented as

uðHÞ ¼
X

n

an cosðkn � xÞ þ bn sinðkn � xÞ½ �; ð8Þ

where

an ¼ ân � k̂n; bn ¼ b̂n � k̂n; n ¼ 1;2; . . . ð9Þ

are Fourier amplitudes, kn are wavenumber vectors and n is the
number of the mode. k̂n ¼ kn=jknj are normalised vectors with the
same direction as the wavenumber kn and ân and b̂n are vectors
with the same modulus as an and bn, respectively. The directions
of kn; ân and b̂n are picked from random distributions. Additionally,
the values of ân and b̂n are picked from a Gaussian distribution con-
sistent with the prescribed energy spectrum. In the calculations
that follow, 300 Fourier modes, corresponding to 300 different
wavenumber values and directions will be considered.

The initial state of the turbulence is taken here to be isotropic,
and with the von Kármán energy spectrum,

Eðk0Þ ¼ q2l
g2ðk0lÞ4

ðg1 þ ðk0lÞ2Þ
17
6
; ð10Þ

where k0 is the initial wavenumber magnitude, g1 and g2 are
dimensionless constants, q is the root-mean-square turbulent
velocity and l is the longitudinal length scale of the initial turbu-
lence. In practice, this spectrum is truncated at k0l ¼ 5 in the KST re-
sults of this section in order to realistically eliminate small scales in
the turbulence and reduce noise (this mimics the effect of a finite
Reynolds number – see Teixeira and Belcher, 2000).

Two types of distorting mean flow are considered here: firstly a
constant-shear flow aligned in the x-direction,

U ¼ �az; V ¼ 0; ð11Þ

where a is the shear rate and z is the depth. The total distortion, or
total strain, to the turbulence is then characterised by the dimen-
sionless time b ¼ at. Secondly, we consider the distortion due to
the mean velocity that corresponds to an irrotational wave propa-
gating in the x direction, which may be written

U ¼ awkwcwe�kwz cosðkwx� rwtÞ;
W ¼ �awkwcwe�kwz sinðkwx� rwtÞ; ð12Þ

where aw; kw; cw and rw ¼ cwkw are, respectively, the wave ampli-
tude, wavenumber, phase speed and angular frequency. In fact, as
shown by TB2002, what is relevant for the distortion of the turbu-
lence over time intervals longer than a wave period is the vertical gra-
dient of the Stokes drift of the wave, which is steady and given by

aS ¼ �
dUS

dz
¼ 2ðawkwÞ2rwe�2kwz; ð13Þ

and for that reason the total distortion to the turbulence is charac-
terised by the dimensionless time bS ¼ aSt. It can be shown that the
linearised wave-averaged vorticity equation that the turbulent mo-
tion must satisfy in this case is

@x=@t þ US � rx ¼ x � rUS; ð14Þ

where the systematic straining by the Stokes drift has been in-
cluded. x is the turbulent vorticity and US is the Stokes drift veloc-
ity. This equation can be obtained by taking the curl of the
linearised Craik–Leibovich momentum equation containing a vor-
tex-force, and is thus essentially equivalent to it.

The solutions for k and ûðHÞ that result from (6) and from the
equation that is obtained from inserting (5) into (1) are given, for
the shear flow (11) by e.g. Lee et al. (1990) and for the wave flow
(12) by TB2002.

2.1. Shear and wave-distorted turbulence

Before RDT and KST are compared quantitatively with LES of
Langmuir turbulence, the structure of shear turbulence and turbu-
lence distorted by an irrotational surface wave will be contrasted.

Fig. 1 shows cross-sections, at a depth z=l ¼ 10, of the stream-
wise ðuÞ, spanwise ðvÞ and vertical ðwÞ velocity fluctuations for tur-
bulence distorted by the constant-shear flow (11), after being
distorted by this flow for a dimensionless time b ¼ 5. This value
is used for purely illustrative purposes, since it allows a distinctive
turbulence anisotropy to develop, being nevertheless not too dif-
ferent from values of the same parameter used in other RDT stud-
ies (e.g. Lee et al., 1990; Mann, 1994).

An air–water interface is assumed to exist at z ¼ 0 and the Fro-
ude number of the turbulence is assumed to be so low that the tur-
bulence does not deform the interface. The depth chosen is such
that influence from the boundary is insignificant. As can be seen,
v and especially u have large magnitude, while w is considerably
weaker. The ordering of the magnitudes of the velocity fluctuations
is u2 > v2 > w2, and the u velocity fluctuations are also elongated
along x, as is typical of shear-driven boundary layers. This flow
structure is similar to that presented in the RDT study of Lee
et al. (1990) and in the direct numerical simulations (DNS) of Tsai
et al. (2005).
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Fig. 1. Normalised velocity field in turbulence distorted by the shear flow (11) at a depth z=l ¼ 10 for a dimensionless time b ¼ 5. Spatial distances normalised by l and
velocity fluctuations normalised by q. Contour spacing: 1. Solid lines: non-negative values, dashed lines: Negative values. (a) u=q, (b) v=q, (c) w=q.
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Fig. 2 shows cross-sections of the components of the velocity
fluctuations for turbulence distorted by a surface wave, as in
TB2002, (12). In Fig. 2, a wave of slope akkw ¼ 0:2 and a time nor-
malised by the wave period of t=T ¼ 10 has been assumed (as in
TB2002), so that the dimensionless time is bS ¼ 5, similarly to
Fig. 1. kwl has also been assumed to be zero, which ensures that
aS is effectively constant with depth (as a was in Fig. 1). This is
done here to facilitate the comparison, but would correspond in
reality to very long surface waves or very small-scale turbulence.

While, as was seen, the total strain imposed on the turbulence
in Fig. 2 is the same as in Fig. 1, its effects are totally different. In
Fig. 2, the u velocity fluctuations are weak, while the magnitude
of both v and w is large. The appearance of the turbulent velocity
fluctuations is consistent with an ordering of the variances
u2 � v2 � w2 (cf. Li et al., 2005), and the flow structure, particu-
larly that of w, is strongly elongated in the x direction. The behav-
iour of the w velocity field is in qualitative agreement with results
of Skyllingstad and Dembo (1995, plates 3, 6 and 9), MSM97
(Figs. 12, 13 and 22), and Noh et al. (2004, Fig. 1), although stream-
wise mergers, which appear to be intrinsically of nonlinear origin,
are mostly absent. This ability of RDT to produce streamwise vor-
tices in Langmuir turbulence mirrors its ability to produce elon-
gated structures of high u fluctuations (streaky structures) in
turbulence subjected to mean shear (Lee et al., 1990). This suggests
that linear processes are responsible for the appearance of both
structures.
In Fig. 3, the RDT results of TB2002 for the evolution of the
velocity variances as a function of dimensionless time, where the
mean velocity (12) is used, are compared with RDT results where
the rectified Eq. (14) is used instead. As can be seen, the average
evolution is the same, only differing in the superposed oscillations,
associated with distortion of turbulence by the individual wave cy-
cles. For that reason, the second, simpler approach is adopted
throughout the remainder of this paper.

An aspect that was overlooked in the study of TB2002 is how
the turbulence energy is distributed among the different scales of
motion. This question may be addressed by calculating 1D wave-
number spectra of turbulence, which are defined as:
Siiðk1Þ ¼
1

2p

Z
uiðx; y; zÞuiðxþ r1; y; zÞe�ik1r1 dr1;

Siiðk2Þ ¼
1

2p

Z
uiðx; y; zÞuiðx; yþ r2; zÞe�ik2r2 dr2; ði ¼ 1;2;3Þ: ð15Þ

Results from RDT presented in Fig. 4 show that, in shear tur-
bulence the energy of streamwise velocity fluctuations is in-
creased at all scales in the streamwise direction, while a peak
develops at the integral length scale in the spanwise direction.
This is consistent with a ‘streaky structure’ of u. Under a Stokes
distortion, it is the vertical velocity fluctuations that are in-
creased: on a broad range of scales in the streamwise direction,
and with a peak in the spanwise direction. The main difference
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Fig. 2. As Fig. 1, but for turbulence distorted by a surface wave (12) for bS ¼ 5.
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Fig. 3. Normalised velocity variances in turbulence distorted by a surface wave as a
function of bS . Wavy lines: using (12), smooth lines: using (14). Solid lines: u2=q2,
dotted lines: v2=q2, dashed lines: w2=q2.
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between shear and wave-distorted turbulence in the spanwise
fluctuations is that in the shear turbulence the increase in v en-
ergy occurs primarily at small scales, while in wave-distorted
turbulence it occurs at all scales. These results essentially confirm
the interpretation of TB2002 based on the behaviour of the inte-
gral length scales in shear and wave-distorted turbulence.
2.1.1. Blocking effect of the free surface
The Froude number of turbulence in the water is often suffi-

ciently low that the shape of the free surface bounding it above
can be taken as specified and fixed. This shape can either be flat
(in the absence of surface waves, when the distorting flow is a
shear flow) or undulating (when the distorting flow is an irrota-
tional wave). The undulation associated with the wave may be
treated rigorously using curvilinear coordinates (TB2002). How-
ever, when the slope of the distorting wave is small, these coordi-
nates essentially coincide with the Cartesian coordinates, and the
air–water interface is also approximately flat. In either of these
two situations, the presence of the interface acts to block the tur-
bulence at the surface, so that the normal component of the fluctu-
ating vorticity is brought to zero at the interface.

The effect of blocking on isotropic turbulence is well-known
(Hunt and Graham, 1978; Hunt, 1984), resulting (in the RDT
approximation) in an amplification of the tangential velocity com-
ponents of the turbulence at the surface by a factor of 1.5, while the
normal component tends to zero. For a constant-shear flow, Fig. 5
shows that the blocking effect suppresses almost completely the
streaky structures at the surface, making the u and v field appear
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almost isotropic along x and y (cf. Lee and Hunt, 1989; Mann,
1994). This phenomenon, which is related to the generation of vor-
ticity in the blocking velocity correction (see Gartshore et al.,
1983), would have important consequences for surface transport
if true in realistic conditions. However, it is not supported by the
DNS results of Tsai et al. (2005), where streaky structures are seen
to exist up to the surface. There are a number of possible reasons
for this disagreement. The assumption of initial irrotationality of
the blocking correction, or of a unique, constant, shear rate and
length scale, may not be appropriate, since in the DNS of Tsai
et al. (2005) the turbulence spreads from the free surface (through
a surface stress) instead of impacting on the interface from below,
as implied by RDT.
In Fig. 6, the velocity field at the surface in turbulence distorted
by a surface wave is displayed. Here, both u and v are somewhat
larger than in the bulk of the fluid, but behave in qualitatively
the same way, with v being much larger than u, and showing a
structure elongated in the x direction. Obviously, this has impor-
tant consequences for transport at the surface, as will be seen next.
By Hunt and Graham’s (1978) results (which hold in the present
case), the TKE must be the same in the bulk of the fluid and at
the surface. Thus, for turbulence distorted by a surface wave, v is
amplified by a factor larger than 1:5ð� 2Þ due to blocking, since u
is relatively small in the bulk of the fluid, but w must decay to zero
at the surface, transferring the whole of its energy to v in the
process.
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Fig. 5. Normalised velocity field in turbulence distorted by shear (11) at the surface for b ¼ 5. Spatial distances normalised by l and velocity fluctuations normalised by q.
Contour spacing: 1. Solid lines: non-negative values, dashed lines: negative values. (a) u=q, (b) v=q.
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Fig. 6. As Fig. 5, but for turbulence distorted by a surface wave (12) for bS ¼ 5.
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2.2. Surface transport of tracer particles

Fig. 7 shows the locations of 10,000 tracer particles released
randomly at the surface for each of the flows considered. Fig. 7a
displays the initial particle positions. Fig. 7b and c display the par-
ticle spatial distributions after an advection time qt=l ¼ 1 (corre-
sponding to one eddy turn-over time of the initial turbulence),
respectively for shear turbulence and turbulence distorted by a
wave. It can be seen that the tracer particles tend to accumulate
in convergence zones of the surface velocity field, forming rows.
For turbulence distorted by a wave the particles accumulate in
well-defined rows clearly aligned in the streamwise direction. Gi-
ven the nature and intensity of v in this last case (see Fig. 6b), that
behaviour is not surprising, and is clearly in qualitative agreement
with that observed in the LES of Skyllingstad and Dembo (1995,
plate 6), MSM97 (Fig. 10), McWilliams and Sullivan (2001, Fig. 2)
and Skyllingstad (2001, Figs. 2 and 3). It also resembles the behav-
iour of surface tracers in the experimental studies of Faller and
Cartwright (1983), Nepf et al. (1995) and Melville et al. (1998).
Taking as an example for comparison Fig. 10 of MSM97, the time
indicated in that figure is t ¼ 1440 s. If the value of the integral
length scale found later in Section 3.4 is adopted, l ¼ 7:5 m, and
the normalised shear stress is calculated using RDT for bS ¼ 5
(the dimensionless time used to compute the velocity field that
advects the tracer in Fig. 7), this gives uw=q2 ¼ �0:7. Then
q ¼ 1:2u� (where u� is the friction velocity), and using the value
u� ¼ 6:1� 10�3 m s�1 given by MSM97, in Fig. 10 of MSM97 the
advection time is qt=l ¼ 1:4. Despite the many differences between
the two models, it is reassuring that this is at least of the same or-
der of magnitude as the advection time adopted in Fig. 7.

In the case of shear turbulence (Fig. 7b), the tracer rows are not
so well defined as in Fig. 7a, and have a more isotropic distribution,
although there is the hint of alignment in the streamwise direction.
This is due to the weakness of the associated advecting velocity
field, mentioned above. The DNS of shear turbulence near an inter-
face computed by Tsai et al. (2005) does have streaky structures at
the surface and their tracer particles tend to form much clearer
rows in the streamwise direction than in Fig. 7b. However, even
if such streaks do exist, a flow whose dominant velocity fluctuation
is u with an elongated structure along x is, at least intuitively, less
effective in creating streamwise tracer rows than a flow with con-
vergence zones along x in the v velocity field. Fig. 8 shows schemat-
ically the different mechanisms for the formation of tracer rows.
While in shear flow these rows occur due to the confluence of v
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at the entrance of the jet of high u, in a flow with streamwise vor-
tices the tracer rows are formed by the lines of strong convergence
of the v velocity field.

It has additionally been noted by Craik and Leibovich (1976),
Leibovich (1983), Cox and Leibovich (1993) and Thorpe (2004) that
particles in these streamwise rows of tracer travel in the direction
of the mean flow faster than the air–water interface itself, on aver-
age. In the context of turbulence, this is easily explained by the
existence of a shear stress. Since the tracer accumulates above
zones where the flow descends, in order to have a negative shear
stress near the surface, the u velocity perturbation must be positive
there. This argument, which also applies to shear turbulence, ex-
plains the analogous behaviour of tracers in the DNS of Tsai et al.
(2005). In the case of wave-distorted turbulence, the tracer parti-
cles in our KST moved in the direction of the wave propagation
(or of the Stokes drift) with a velocity exceeding the average inter-
face velocity by 0:45q, a rather significant value.

These results illustrate the differences between turbulence in a
shear flow and turbulence distorted by a wave. A simple explana-
tion of the differences in terms of the dynamics of the vorticity is
described in Appendix A. The results of this section show that at
least the qualitative aspects are captured by the linear RDT and
KST models. In the next two sections quantitative comparisons
are made between these models and LES of Langmuir turbulence.
3. Scaling the large-scale structure of Langmuir turbulence

Polton and Belcher (2007) investigate the TKE budget of their
LES of Langmuir turbulence and show that in an upper Stokes layer,
whose depth scales on the depth of the Stokes drift, the dominant
balance is between production of TKE by the Stokes production,
and dissipation (in the absence of wave breaking). Below this re-
gion turbulent transport carries TKE downwards deep into the
mixed layer. They then suggest a schematic where, within the
Stokes layer, the Stokes drift tilts and stretches vertical vorticity
into the horizontal. This generates convergence zones, which then
leads to downwelling jets that penetrate deep into the mixed layer
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(and transport TKE through turbulent transport). We consider now
whether or not the linear RDT model can capture quantitatively the
structure of Langmuir turbulence computed in the LES, particularly
in the Stokes layer.

Grant and Belcher (2009) have used the TKE budget to develop a
scaling for the resulting Langmuir turbulence, arguing that the
appropriate velocity scale is w�L ¼ ðu2

�US0Þ
1
3 (see also Harcourt and

D’Asaro, 2008) and the appropriate length scale is h, the depth of
the mixed layer. They show that profiles of the turbulent velocity
variances from a wide range of simulations, when scaled by w2

�L
and h, collapse onto single profiles. It is then sufficient to consider
results from a single simulation, and the focus here is on the shape
of the profiles of the velocity variances.

We focus on the LES run E/0.3 of Langmuir turbulence com-
puted by MSM97. Subsequent investigations (Li et al., 2005) have
suggested that the value of the turbulent Langmuir number used
by MSM97 in this experiment is fairly typical of ocean conditions.
MSM97 consider a monochromatic wave of amplitude aw ¼ 0:8 m
and wavenumber kw ¼ 2p=60 rad m�1, so that the wave slope is
awkw ¼ 0:084, and the angular frequency, obtained using the linear
dispersion relation of surface water waves, is rw ¼ 1:0 rad s�1. In
addition, they specified a surface wind stress with an associated
friction velocity in the water of u� ¼ 6:1� 10�3 m s�1, and a ther-
mocline at h ¼ 33 m. These values will be used here. For this sim-
ulation the Stokes layer occupies the region 0 < z=h < 0:4, a
substantial fraction of the mixed layer (Grant and Belcher, 2009).

3.1. Deformation by shear and Stokes drift

Turbulence in the LES simulations of the wind-driven mixed
layer is subjected to straining from three sources: the presence
of the air-sea interface; the mean shear in the wind-driven current;
and the Stokes drift associated with the surface wave. Consider
first the competing strains of the mean shear and the Stokes drift,
which can be measured by the parameter R, defined by

R ¼ aS

a
: ð16Þ

This parameter gives the ratio of the production of TKE by the
Stokes drift and by shear, according to Eq. (5.1) of MSM97. The var-
iation of this parameter is calculated next using results from the LES
of MSM97.

Fig. 9a shows the variation with depth of the strain rate associ-
ated with the Stokes drift of the wave (dashed line), derived from
the parameters given by MSM97. Also shown in Fig. 9a is the shear
rate through the wind-driven mixed layer derived from the mean
velocity profiles computed by MSM97 for simulations with and
without Stokes drift. Both cases are driven by a surface wind stress,
with an associated friction velocity (in the water) equal to
u� ¼ 6:1� 10�3 m s�1. The case without Stokes drift, S=1 (dotted
line), shows a shear rate that closely follows the form a ¼ u�=jz ex-
pected for a logarithmic surface layer with the appropriate friction
velocity. The shear rate in the case with Stokes drift, E/0.3 (solid
line), perhaps surprisingly, also approximately follows the form ex-
pected for a logarithmic surface layer, but this time with a much
reduced friction velocity of 0:61� 10�3 m s�1 (see Fig. 9a). The rea-
son is the following: once Langmuir turbulence is initiated, mixing
is promoted by the Langmuir circulations themselves reducing the
mean shear, perhaps augmented by the effects of the Coriolis force
turning the mean flow and reducing shear in the wave direction
(see Polton et al., 2005; Polton and Belcher, 2007). The assumption
of a logarithmic mean velocity profile, employed above, is an
approximation primarily valid near the surface, since, for example,
Fig. 3a of MSM97 shows that the shear stress in the x direction is
not constant, but decreases with depth. However, as the following
scalings rely primarily on the flow parameters near the surface, say
for z < 0:4h, where the mean transport gradients are sufficiently
strong, this approximation is accurate enough for our purposes.

With these observations the parameter R for a single wave can
be written

R ¼ 2ðawkwÞ2rwe�2kwz

u�s=jz
; ð17Þ

where u�s is an effective friction velocity associated with the near-
surface shear. Fig. 9b shows the variation of R�1 with depth for
run E/0.3, when u�s ¼ 0:61� 10�3 m s�1 (solid line), together with
values obtained from the LES profiles (symbols). Also shown is
the profile obtained using the full friction velocity, u� ¼ 6:1�
10�3 m s�1 (dotted line). When the mean shear is correctly param-
eterised using u�s, then R�1 � 1 through most depths, implying the
strain by Stokes drift is greater than the strain by mean shear. To-
wards the bottom of the wind-driven layer, 0:8 < z=h < 1; R < 1
but at these depths strains by both Stokes drift and shear are weak,
and the turbulence is likely to be dominated by entrainment at the
thermocline.

We conclude that in the presence of Stokes drift the turbulence
is largely distorted by Stokes drift because this situation is self-sus-
tained by intense vertical mixing. While turbulence can mix down
momentum, it has no impact on the Stokes drift gradient. The
deformation by mean shear on the turbulence can therefore be
neglected.
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3.2. Integral properties of Langmuir turbulence

The next step is to evaluate two integral properties of Langmuir
turbulence, which will then enable scaling arguments. Firstly, an
estimate of the integral length scale of the Langmuir turbulence
computed by MSM97 is evaluated using the approximation used
in the K � e turbulence closure (although we note that this is only
strictly valid for homogeneous and isotropic turbulence), namely

l / K
3
2

e
) l

h
¼ c1

ðK=u2
� Þ

3
2

eh=u3
�
; ð18Þ

where K is the TKE, e is the rate of viscous dissipation and c1 is a
dimensionless constant of Oð1Þ. For homogeneous turbulence, the
relation between the dissipation rate e, the turbulent root-mean
square velocity q and the longitudinal length scale e / q3=l has been
found by various authors (Pearson et al., 2002; Kaneda et al., 2003)
to have a proportionality constant approximately between 0.5 and
1. In terms of (18), this would mean that c1 should be between
0.27 and 0.54. Here we choose c1 ¼ 0:387, which gives optimal
agreement between the RDT calculations and the LES data, as will
be seen below.

Figs. 4 and 5 of MSM97 present profiles of the normalised TKE,
K=u2

� , and of the normalised dissipation rate eh=u3
� . Fig. 10a shows a

profile of l=h, as defined in (18), derived from these LES data. It can
be seen that the integral length scale of the turbulence increases
approximately linearly away from the boundary. The dashed line
in Fig. 10a represents a linear fit to the LES data, namely
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Fig. 10. Profiles of the normalised integral length scale and eddy turn-over time
derived from the data of MSM97. (a) Integral length scale. Dotted line: LES data,
dashed line: linear fit between z=h ¼ 0:1 and z=h ¼ 0:8, solid line: z=l ¼ 1. (b) Eddy
turn-over time. Dotted line: LES data, solid line: linear fit between z=h ¼ 0:1 and
z=h ¼ 0:8.
l=h ¼ cðzþ dlÞ=h: ð19Þ

The best fit yields a slope c � 0:35 and a value at the surface, akin to
the displacement height of a logarithmic layer, dl=h � 0:42. A linear
variation in the integral length scale is a characteristic of either a
shear-free turbulent layer near an interface, which has c � 1 (Hunt,
1984), or a constant-stress logarithmic boundary layer, which has
c ¼ j � 0:4, the von Kármán constant (Tennekes and Lumley,
1972). The latter value is surprisingly close to the value of c ob-
tained here for the Langmuir turbulence.

We note that the value of the displacement height obtained
from the LES may be an artifact of the way the LES resolves the
interface. Nevertheless a non-zero value is probably realistic be-
cause the turbulence length scale is determined by non-local fac-
tors. So it does not tend to zero at the surface, because eddies of
finite size approach the surface where they are blocked by the
air-water interface (Hunt, 1984). We note that the value of c de-
rived by Grant and Belcher (2009) in their Fig. 6 is considerably lar-
ger that the value found here. But they force their linear fit to
intercept the origin, making their value larger. A consistency check
to our choice of c1 is that if the integral length scale is everywhere
smaller than l=h ¼ 1, then l=h should grow linearly until very close
to z=h ¼ 1, instead of tending to a constant value, as in Grant and
Belcher (2009). This is indeed confirmed by Fig. 10.

Secondly, the decorrelation time scale, or eddy turn-over time
of the turbulence, Te, is estimated by analogy with the integral
length scale, namely

Te /
K
e
) Teu�

h
¼ K=u2

�
eh=u3

�
: ð20Þ

Note that in (20), and in contrast to (18), we have not included a
constant of proportionality, because the eddy turn-over time is gen-
erally not as precisely defined in terms of the other quantities as the
integral length scale, and also because it is the form of its depen-
dence on depth that will be of primary interest for the RDT and
KST calculations.

Fig. 10b shows the variation of u�Te=h with depth computed
from the LES data of MSM97. The decorrelation time increases
approximately linearly with distance from the boundary, and can
be fitted to

u�Te

h
¼ dðzþ dTÞ=h; ð21Þ

with slope d � 1:0 and displacement height dT=h � 0:08. This fit is
shown as the solid line in Fig. 10b. A linear increase in Te with dis-
tance from a boundary is also a characteristic of shear-free turbu-
lence near a boundary, where d � 1, and a constant-stress
logarithmic boundary layer, where d ¼ j (Tennekes and Lumley,
1972). The variation of the decorrelation time scale in Langmuir tur-
bulence is therefore similar to the variation in wall-bounded shear-
free turbulence.

In the simulations of MSM97 u� ¼ 6:1� 10�3 m s�1, whence the
decorrelation time scale at the interface is Te0 ¼ ddT=u� � 430 s,
which is again non-zero because Te receives contributions from ed-
dies of finite size that reach the surface from some distance below.

These two measures of the turbulence both increase away from
the boundary and so indicate the importance of the air–water
interface in blocking the turbulence. The behaviour of the integral
length and time scales will prove useful in estimating the nonlinear
processes in the Langmuir turbulence, which is done next.

3.3. Scaling the distortion of the turbulence

Consider now the velocity fluctuations in the Langmuir turbu-
lence, q, which scale on the friction velocity, u� (MSM97). The
velocity associated with the deformation of the turbulence is the
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Stokes drift, US ¼ ðawkwÞ2cwe�2kwz. At the air–sea interface the ratio
of these terms is

US=q 	 ðawkwÞ2cw=u�: ð22Þ

For the parameters of run E/0.3 in MSM97, this ratio is approxi-
mately equal to 11 – a large number. Similarly, the fluctuating
strain rate associated with the turbulence can be estimated to be
q=l which scales as T�1

e , whereas the strain rate associated with
the Stokes drift is aS. Using the expression obtained from the LES
in Section 3.2 for Te, the ratio of these terms is

aS

T�1
e

	 2
cw

u�
ðawkwÞ2dkwðzþ dTÞe�2kwz: ð23Þ

The maximum value of this ratio occurs at 2kwðzþ dTÞ ¼ 1, when it
takes the value

aS

T�1
e

jmax 	
cw

u�
ðawkwÞ2d expð2kwdT � 1Þ; ð24Þ

which, for case E/0.3 of MSM97, equals about 7 – again a relatively
large number. Hence for this case at least the fluctuating turbulent
velocity and strain rates are much smaller than the velocity and
strain rate associated with the deformation due to the Stokes drift.
This proves to be a key in justifying a linearised RDT model for
Langmuir turbulence in the Stokes layer.

Finally, we note that the Froude number associated with the
turbulent motions is large, so that, as assumed in the LES, the tur-
bulence does not appreciably deform the interface, i.e.

aw 
 q2=g; ð25Þ

where g is the acceleration of gravity. Hence the interface remains
dominated by the driving wave (cf. Brocchini and Peregrine, 2001).

3.4. Estimating the parameters of the RDT model

RDT is, mathematically, an initial-value problem and so requires
specification of the initial turbulence, and then specification of the
integration time of the distortion (or equivalently the total strain
by the mean flow).

The initial turbulence is represented by the spectrum (10),
which requires specification of the integral length scale, l, and tur-
bulent intensity, q. Here, we will not need to specify q because
velocity variances will be normalised on q. Turbulence statistics
will be shown here as a function of normalised distance from the
boundary, z=l, but the results of MSM97 are plotted as a function
of z=h. Hence we require a relation between l and h. Within the
RDT model the principal effect of the integral length scale is to
determine the depth of the blocking effect of the air-sea interface
on the turbulence, and hence we relate l and h here to match this
blocking depth. The variation in l with z obtained in Section 3.2
from the LES data shows that far from the interface l < z, and hence
the turbulence at these depths is unaffected by the boundary,
whereas near the interface l > z, and so the turbulence there is di-
rectly affected by the blocking of the boundary. Hence in the RDT
model we use the value of the l obtained from the LES at the depth
where l ¼ z, i.e. the intersection between the line y ¼ lðzÞ in Fig. 10a
and the line y ¼ z. The turbulence is then subjected to blocking
over the correct distance from the boundary. For the parameters
of the MSM97 simulations, this procedure yields l=h ¼ 0:23, so that
l ¼ 7:5 m.

Now we turn to the distortion time. As stated above, if the
linearisation assumption in the RDT model is to be self-consis-
tent, the distortion time Td must be a fraction of the eddy
turn-over time Te. Hence it seems natural to assume a simple
proportionality

TdðzÞ ¼ lTeðzÞ; ð26Þ
where l is a constant of Oð1Þ. We conceive that the Stokes drift de-
forms the turbulence over some fraction of the decorrelation time
and then nonlinear processes arrest the deformation. A statistically
steady state is achieved with eddies born, distorted by the Stokes
drift over a fraction of their lifetime and then dying. Since the dec-
orrelation time scale increases with depth, so then does the time
over which the Stokes drift deforms the turbulence. The value of
l is determined by comparison between the RDT model and the
LES data (Fig. 12 in Section 4), yielding a value of l ¼ 0:43, which
is of Oð1Þ, as expected. The use of a depth-dependent time is in a
sense analogous to the approach employed in Mann’s (1994) RDT
study of boundary-layer turbulence, where the model time is
scale-dependent.

Eq. (26) gives a dimensional time. To obtain the corresponding
dimensionless time bS; TdðzÞmust of be multiplied by aSðzÞ, consis-
tent with the values of the wave parameters of MSM97, namely

bS ¼ 2ðawkwÞ2rwe�2kwzlTeðzÞ: ð27Þ

The variation of bS given by (27) is shown in Fig. 11 as the solid line.
Notice that the distortion is largest within the Stokes layer
ð0 < z=h < 0:4Þ. The dimensionless distortion time attains a maxi-
mum slightly above 3 near the surface, but decays to zero with
the Stokes drift as depth increases. This is roughly consistent with
the values of approximately 2–3 assumed in numerous RDT studies
(e.g. Townsend, 1970; Mann, 1994). Also shown in Fig. 11 is the
dimensionless time that would be obtained if the eddy turn-over
time had its surface value Teðz ¼ 0Þ everywhere. In this case bS is
smaller, and exactly proportional to the Stokes drift strain rate.

A final comment is due. The LES of MSM97 use horizontal grid
spacings of Dx ¼ 3 m and Dx ¼ 4:7 m in experiments S=1 and
E=0:3, respectively, and a vertical grid spacing of Dz ¼ 0:6 m. This
effectively limits the wavenumbers that may be present in the LES
turbulence spectrum. In particular, for the quoted cases, the dimen-
sionless wavenumber in (10) is smaller than k0l ¼ 7:8 or k0l ¼ 5:0 in
the horizontal, respectively, while the vertical wavenumber is smal-
ler than k0l ¼ 39:4. This anisotropy is not taken into account in the
spectral approach of RDT and KST so, since we are going to focus pri-
marily on Langmuir turbulence (experiment E=0:3) the spectrum
(10) is truncated at k0l ¼ 5 in the calculations that follow, as was
done in Section 2 without the present justifications.
4. Comparison between RDT and LES results

Results calculated with RDT and KST using the previously esti-
mated parameters are now compared with those computed by
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MSM97 in their LES. Firstly statistics of the distorted turbulence
are calculated to show how the profiles are shaped by the combi-
nation of Stokes drift, blocking by the interface, and variation of
the turbulence scale with distance from the interface, modelled
here by allowing Te to vary with depth. Secondly, a realisation of
the turbulent flow similar to that presented in Section 2, but for
the specific conditions considered in MSM97 is calculated using
KST.
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Fig. 12. Profiles of the normalised turbulent velocity variances. Symbols: data from
MSM97, lines: RDT of turbulence distorted by a surface wave. Solid lines and
circles: u2=ð2=3KÞ, dotted lines and squares: v2=ð2=3KÞ, dashed lines and diamonds:
w2=ð2=3KÞ. (a) Depth-dependent eddy turn-over time. (b) Constant eddy turn-over
time. (c) Only with blocking effect (note that the solid and dotted lines are
superimposed).
4.1. Profiles of the turbulent velocity variances

Fig. 12a shows the turbulent velocity variances normalised on
TKE, u2

i =
2
3 K , calculated from RDT and comparisons with the LES

data presented in Fig. 6 of MSM97 for run E/0.3. Note that RDT is
an initial-value problem, so it is appropriate to compare the ratios
of the turbulence intensities, but not their actual values, since
these are dependent on the initial conditions.

The RDT results in Fig. 12a agree remarkably well with the LES
data, particularly in the Stokes layer 0 < z=h < 0:4. Deep in the
mixed layer, for z=h larger than about 0.7 the variances are approx-
imately isotropic (when the normalised variance is 1 by definition).
(w2= 2

3 K is slightly smaller – probably a consequence of the thermo-
cline at z=h ¼ 1 in the LES.) Nearer the surface, in 0:2 < z=h < 0:7,
the streamwise variance, u2= 2

3 K , decreases, while v2= 2
3 K and

w2= 2
3 K both increase towards the interface. By z=h ¼ 0:2; v2= 2

3 K
and w2= 2

3 K are considerably larger than u2= 2
3 K . This behaviour is

consistent with the generation of streamwise vortices by the tilting
and stretching of vertical vorticity into the streamwise direction by
the Stokes drift (TB2002). In the region 0 < z=h < 0:2; v2= 2

3 K and
u2= 2

3 K increase towards the interface, while w2= 2
3 K is forced to de-

crease to zero. This region corresponds to z=l < 1 and so is caused
by the blocking effect of the interface on the turbulence distorted
by the Stokes drift.

Consider now how different parts of the RDT solution give dif-
ferent parts of the response. Fig. 12b presents profiles of the turbu-
lent velocity variances for the same conditions as in Fig. 12a,
except that the deformation is allowed for the same time through
the whole depth of the layer (dotted line in Fig. 11). Hence the
model is truncated after a dimensionless distortion time bS corre-
sponding to the eddy turn-over time valid at the surface through
all depths. Although the RDT values near the surface are close to
the data, the anisotropy due to distortion by the wave motion de-
cays too fast away from the interface, because the distortion by the
Stokes drift at large depths is not allowed to act for a sufficiently
long interval of time.

If, on the other hand, the Stokes drift distortion is neglected
altogether and only the blocking effect of the interface is taken into
account then RDT yields the results shown in Fig. 12c. Both u2= 2

3 K
and v2= 2

3 K now increase towards the interface (by the same
amount since the deformation is now isotropic in the horizontal)
and w2= 2

3 K decreases by the blocking mechanism towards the
interface. But the amplification of v2= 2

3 K and w2= 2
3 K and the atten-

uation of u2= 2
3 K farther from the interface is not produced.

The agreement between the RDT model and the LES data is bet-
ter in the upper layer, 0 < z=h < 0:4, which corresponds to the
Stokes layer. This is consistent with the findings of Polton and Bel-
cher (2007) and Grant and Belcher (2009) that within this upper
Stokes layer the dominant balance in the TKE budget is between
Stokes production and dissipation, whereas deeper in the layer tur-
bulent transport (which is nonlinear and so not captured in RDT) is
a dominant term in the TKE budget. Finally, we recall that defor-
mation by shear would produce a completely different structure
with u2 > v2 > w2, as was shown earlier in this paper, and also
in TB2002. We conclude that linear processes to a large extent
shape the anisotropy of the turbulence.
4.2. The turbulent velocity field

KST is now used to compute a realisation of the turbulent flow
consistent with the velocity variances displayed in Fig. 12. Cross-
sections of the resulting velocity field may be compared with the
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Fig. 13. Velocity fluctuations in turbulence distorted by a surface wave at z=l ¼ 0:40 from KST for the conditions of experiment E/0.3 of MSM97. Dark shading: positive values,
light shading: negative values. Contour spacings are equivalent to those used in MSM97: u� ð�0:41;�1:03;�1:55Þ; v � ð�0:62;�1:55;�2:59Þ;w� ð�0:52;�1:03;�1:55Þ (see
text for details). (a) u=q field, (b) v=q field, (c) w=q field.
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corresponding LES results of MSM97, displayed in their Fig. 12. In
this calculation, as in Section 2, 300 Fourier modes were employed.
All other parameters were kept the same as in the previous section.

Fig. 13 shows horizontal cross-sections of the instantaneous
turbulent velocity field at a depth z=l ¼ 0:40, corresponding to
the dimensional depth z ¼ 3 m used in Fig. 12 of MSM97. Distances
are normalised by the initial integral length scale of the turbulence
l, but the domain has been scaled and the spacing of the contours
has been chosen so as to give an appearance as close as possible to
that of Fig. 12 of MSM97. The limits of normalised x and y, 40, cor-
respond to a dimensional distance of 301 m, very close to that
shown in Fig. 12 of MSM97.

Positive values of the velocity perturbation correspond to dark
shaded contours and negative values to light shaded contours.
The contour spacings in Fig. 13 were objectively made equivalent
to those of MSM97 in the following way. The value of each contour
used by MSM97 was divided by the square root of the TKE (taken
from their Fig. 4) at the appropriate depth z ¼ 3 m. Then this was
multiplied by K1=2=q given by RDT at the same depth. This provided
velocity contours normalised by q, which have the same scaling as
the velocity fields provided by KST. The values of these contours
are used in Fig. 13.

It can be seen that the u velocity fluctuations are relatively weak
and decorrelate over a large distance. The v and the w velocity fluc-
tuations are more intense and the spatial structure of the w veloc-
ity fluctuations reveals a compression in the y direction and an
elongation in the x direction. As noted in Fig. 2, this spatial struc-
ture is the signature of intense and elongated streamwise vortices
akin to Langmuir circulations. There is a striking similarity be-
tween Figs. 13 and 12 of MSM97, especially for the w fluctuations,
but also somewhat for the u field. The agreement of v is a little
worse, with the present calculations not producing sufficient
streamwise elongation. Anyway, it is surprising that KST, with its
linearising assumptions, is able to reproduce so many features of
this fully nonlinear turbulent flow.

5. Conclusions

The linearised dynamics encapsulated in rapid distortion theory
and kinematic simulation of turbulence were used to understand
differences between shear turbulence and Langmuir turbulence
in the ocean mixed layer. In the case of turbulence distorted by a
mean shear, there is a cancellation in the linearised dynamics be-
tween distortion of the turbulent vorticity by the mean flow and
distortion of the mean vorticity by the turbulent flow. Conse-
quently streamwise vorticity is not produced by mean shear. In-
stead the main effect is a generation of vertical vorticity that
leads to the streaky structures that are widely observed in shear



118 M.A.C. Teixeira, S.E. Belcher / Ocean Modelling 31 (2010) 105–119
flows. The velocity variances are then ordered as u2 > v2 > w2. In
the case of turbulence distorted by Stokes drift the cancellation
no longer occurs, because the Stokes drift does not have mean vor-
ticity. The result is that vertical vorticity is tilted into the horizon-
tal to form streamwise vortices. The velocity variances are then
ordered as u2 � v2 � w2. These qualitative results suggested that
the important processes in Langmuir turbulence are controlled
by linear dynamics.

These qualitative findings motivated a quantitative model for
the turbulence velocity variances computed in Langmuir turbu-
lence based on linearised RDT. Since Grant and Belcher (2009)
have demonstrated that, when appropriately scaled, the profiles
of turbulence variances collapse onto a single profile, it is suffi-
cient for the RDT model to be compared with a single case of
the LES model. Consequently, we used the data from an LES run
by MSM97 to demonstrate that the formal approximations made
in the linearised RDT model are satisfied in the LES. In particular
the scalings demonstrate that in Langmuir turbulence the Stokes
drift is a more potent force for distortion of turbulence than is
either the mean shear or the turbulent velocity fluctuations them-
selves. The reason presumably is that the enhanced vertical mix-
ing by the Langmuir circulation mixes out the mean shear, but
leaves the Stokes drift unaffected. Consequently we developed
here a quantitative linearised RDT model for Langmuir turbulence
that includes (i) deformation of turbulent vorticity by the Stokes
drift, (ii) blocking of vertical velocity fluctuations by the air–sea
interface and (iii) a distortion time that increases with depth
reflecting the increase of the eddy decorrelation time with depth
found in LES data.

Vertical profiles of the turbulent velocity variances calculated
with the linear RDT model are found to be in good agreement with
the fully nonlinear LES of MSM97 particularly in the Stokes layer,
which in this case occupies 0 < z=h < 0:4 (Grant and Belcher,
2009). The physical picture that emerges, at least in the LES, is as
follows. Early in the life cycle of a Langmuir eddy initial turbulent
disturbances of vertical vorticity are amplified algebraically by
the Stokes drift into elongated streamwise vortices, the Langmuir
eddies. The turbulence is thus in a near two-component state, with
u2 suppressed and v2 � w2. Near the surface, over a depth of order
the integral length scale of the turbulence, the vertical velocity is
brought to zero, by blocking of the air–sea interface. Since, the tur-
bulence is nearly two-component the energy has to go into the
spanwise fluctuations, enhancing v2 at the interface. After a time
of order half the eddy decorrelation time the nonlinear processes,
such as distortion by the strain field of the surrounding eddies, ar-
rest the deformation and the Langmuir eddy decays. The Langmuir
turbulence then consists of a statistically steady state of such Lang-
muir eddies.

The RDT model therefore throws light upon the dynamics with-
in the Stokes layer of the ocean mixed layer, where the Stokes drift
operates and the production of TKE by Stokes production balances
dissipation. Deeper into the mixed layer turbulent transport of TKE
balances dissipation, which Polton and Belcher (2007) suggest is
mediated by downwelling jets originating in the convergence
zones within the Stokes layer. Although turbulent transport is a
nonlinear process, and therefore not captured in the RDT model,
the flux of TKE comes from the Stokes layer, which is well mod-
elled by RDT, and so it may well be that RDT estimates can be used
to parameterise this flux.
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Appendix A. Discussion of the vorticity dynamics

We return now to the vorticity equations to help understand
the large differences between turbulence distorted rapidly by shear
and by Stokes drift, and consider further the relationship to the
Craik–Leibovich model of Langmuir circulation. In the presence
of shear and Stokes drift the vorticity equations become
Dxx

Dt
¼ xzðaS þ aÞ þ a

@u
@y
¼ xzaS þ a

@v
@x

; ðA:1Þ

Dxy

Dt
¼ a

@v
@y

; ðA:2Þ

Dxz

Dt
¼ a

@w
@y
¼ a xx þ

@v
@z

� �
: ðA:3Þ

In each case D=Dt ¼ @=@t þ ðU þ USÞ@=@x. The first term on the right
of (A.1) for the streamwise vorticity is the vortex stretching term by
the mean Eulerian and Stokes drift shear xzðaþ aSÞ. The last term
on the right hand side arises through deformation of the vorticity
in the mean shear flow by the turbulence. These two terms have
been rewritten as a vorticity component and a gradient of the span-
wise velocity, v. The Eulerian shear part in the first term is partially
cancelled by the deformation of the mean vorticity by the turbulent
velocity ða@u=@yÞ, leaving only a@v=@x. This cancellation is the key
aspect determining differences between shear and wave-distorted
turbulence (see also Fig. 15 of TB2002).

The vertical vorticity equation has a vortex stretching term
resulting from interaction of the turbulent velocity with the mean
vorticity ða@w=@yÞ. This term is written as a sum of axx and
a@v=@z. The equation for xy also contains a term involving v, cor-
responding physically to stretching of the mean spanwise vorticity
by the turbulence.

From energy arguments, it can be shown that the variance of v
is not directly affected by energy production terms, but only by the
redistribution of the turbulence energy through the pressure. For
that reason, all terms involving v in (A.1)–(A.3) will not be consid-
ered in the following schematic argument (they are retained in the
full RDT calculations).

Eqs. (A.1)–(A.3) then show in a simplified way how the coupling
between the components of the vorticity is different in the three
cases of distortion by mean shear, Stokes drift and both mean shear
and Stokes drift.

When the deformation is by mean shear only, the essential pro-
cess acting is the conversion of streamwise into vertical vorticity
by the term axx in the xz budget. This causes the dominance of
the u and v velocity fluctuations in shear turbulence. (Although this
is not the whole story. If only xz increased, u and v should tend to
have the same intensity in highly sheared turbulence, which is
known not to be the case (e.g. Lee et al., 1990). In fact, other com-
ponents of vorticity, generated by the processes associated with
the v-terms, must play a role in producing the approximately 1D
structure that highly sheared turbulence has).

When deformation is by the Stokes drift only, the situation is
considerably simpler: xy and xz do not vary much, but xx strongly
increases due to tilting and stretching of xz by the Stokes drift
shear, as pointed out by TB2002. This situation, which corresponds
to the dominance of v and w velocity fluctuations of approximately
similar intensity, is consistent with streamwise rolls, or Langmuir
circulations.

Finally, when both shear and the Stokes drift are present, if the
terms involving v are again ignored, (A.1)–(A.3) give a coupled dif-
ferential equation set for xx and xz, from which separate equa-
tions for each of these quantities can be isolated. It then results
that both xx and xz grow exponentially in time, with a growth rate
proportional to ðaaSÞ1=2. This growth rate is typical of Langmuir cir-
culations in a neutrally stratified ocean, as shown by Leibovich
(1977).
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