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Abstract

An analytical model is developed for the initial stage of surface wave generation at an air–water interface
by a turbulent shear flow in either the air or in the water. The model treats the problem of wave growth
departing from a flat interface and is relevant for small waves whose forcing is dominated by turbulent
pressure fluctuations. The wave growth is predicted using the linearised and inviscid equations of motion,
essentially following Phillips [Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid
Mech. 2, 417–445], but the pressure fluctuations that generate the waves are treated as unsteady and related
to the turbulent velocity field using the rapid-distortion treatment of Durbin [Durbin, P.A., 1978. Rapid
distortion theory of turbulent flows. PhD thesis, University of Cambridge]. This model, which assumes a
constant mean shear rateΓ , can be viewed as the simplest representation of an oceanic or atmospheric
boundary layer.

For turbulent flows in the air and in the water producing pressure fluctuations of similar magnitude, the
waves generated by turbulence in the water are found to be considerably steeper than those generated by
turbulence in the air. For resonant waves, this is shown to be due to the shorter decorrelation time of turbulent
pressure in the air (estimated as∝ 1/Γ ), because of the higher shear rate existing in the air flow, and due
to the smaller length scale of the turbulence in the water. Non-resonant waves generated by turbulence in
the water, although being somewhat gentler, are still steeper than resonant waves generated by turbulence
in the air. Hence, it is suggested that turbulence in the water may have a more important role than previ-
ously thought in the initiation of the surface waves that are subsequently amplified by feedback instability
mechanisms.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There are many types of interaction between turbulent flows and free surfaces, or at interfaces
between two fluids of very different densities. It is useful to consider these interactions in three
categories:

(1) Turbulent Reynolds stresses act on the mean flow and thence change the interactions of the
mean flow with the interface. The growth of surface waves by wind forcing, for example, is
usually understood in these terms (e.g.Belcher and Hunt, 1998).

(2) The presence of the interface and waves on the interface change the turbulence. For example,
when the Froude number is low, the free surface inhibits vertical motion in the turbulence over
a depth comparable with the integral scale of the turbulence, and redistributes the energy into
horizontal fluctuations (Hunt and Graham, 1978; Magnaudet, 2003; Pan and Banerjee, 1995).
When the free surface also carries a progressive surface wave there is additional distortion
of the turbulence by the periodic straining motion of the wave and, over longer times, by the
rectified straining by the Stokes drift associated with the wave (Teixeira and Belcher, 2002).
This long time straining leads to elongated streamwise vortices, reminiscent of Langmuir
circulations observed in the oceans, as reviewed recently byThorpe (2004). When the waves
become very steep they may break and generate turbulence themselves, as shown by the
detailed measurements ofGemmrich and Farmer (2004).

(3) Thirdly, when the turbulence is more energetic, so that the Froude number is nearer one,
there is the possibility that it will generate waves on the interface. Very energetic motions
churn and possibly break up the interface into drops (Brocchini and Peregrine, 2001). But
weaker turbulent motions can also yield order one deformations. These deformations may
correspond to forced or free waves. Subsurface turbulence manifests itself through forced
(i.e. non-resonant) waves whose elevation can be estimated from the hydrostatic relation
asζ ≈ p/(ρwg), wherep is the magnitude of the associated pressure fluctuations,ρw is the
density of water andg is the acceleration of gravity. ButPhillips (1957)showed that when
pressure fluctuations associated with the turbulence advect along the interface at the phase
speed of free surface waves there is a resonant forcing of free surface modes, which then
grow indefinitely.

In this paper, we consider further the third category, namely waves generated on the interface,
and we focus on the case of weak turbulent fluctuations. This parameter regime is of relevance to
the ocean, where the Froude number of the turbulence is usually low.

Phillips (1957)derived an expression for the wave spectrum resulting from the resonance
process mentioned above as a function of the wavenumber spectrum of the turbulent pressure
fluctuations, and of their integral time scale.Hasselmann (1968)showed how the wave spectrum
can be expressed as a function of the wavenumber-frequency spectrum of the turbulent pressure
fluctuations evaluated at the resonance frequency. At the time of these pioneering investiga-
tions, little was known about turbulent pressure fluctuations. Later,Kitaigorodskii and Lumley
(1983)andSazontov and Shagalov (1984)used dimensional analysis to find consistent forms
for the spectrum of the turbulent pressure fluctuations, and assumed simplified models of their
spatio-temporal structure. This, with Phillips’ theory, allowed calculation of wave spectra, but
these turbulent pressure spectra contained arbitrary constants and were dependent on ambiguous
scalings. In this sense, Phillips’ theory can be considered incomplete.
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Meanwhile, laboratory experiments ofGelci et al. (1985)andGiovanangeli and Memponteil
(1985), which generated vortices in air flow above a water surface, have demonstrated action of
the mechanism qualitatively.Kahma and Donelan (1988)used a homogeneous boundary layer
flow similar to that assumed inPhillips’ (1957)study. They measured the pressure frequency
spectrum, but were also forced to make strong assumptions about the spatio-temporal structure,
and consequently were cautious in commenting on the order-of-magnitude agreement achieved
between the theory and their data.

The main focus of the theoretical treatment given here is therefore the turbulent pressure
fluctuations that drive the surface waves. Now, in practice, the turbulence near the interface is
usually maintained by a sheared mean flow. The turbulence is then distorted by the mean shear,
and eddies that give rise to the surface pressure fluctuations undergo a lifecycle. The resonance
condition that the pressure fluctuation has a length scale and advection speed that matches those
of the free surface mode, is then satisfied for only a finite time, or is not even satisfied, if the flow
speed is sufficiently low.

We illustrate this mechanism quantitatively here by considering turbulence in a mean flow
with constant shear. The evolution of the turbulence is calculated using a linearised rapid distor-
tion framework (hereafter RDT) that captures the early stages of the lifecycle of the turbulent
eddies. RDT considers the distortion of the turbulence by the mean flow, whilst neglecting the
nonlinear interactions of the turbulence with itself (Batchelor and Proudman, 1954). In the case
of shear flows, this condition is satisfied when the shear rate is large compared with the typical
frequency of the turbulent eddies, a situation that occurs in turbulent boundary layers (Lee et
al., 1990). Townsend (1970)showed that RDT captures with good accuracy the spatial correla-
tion of the turbulent velocity in turbulent free shear layers. Subsequently,Lee and Hunt (1989)
andMann (1994)have shown how RDT is useful for evaluating velocity fluctuations in shear
flows near a flat wall;Durbin (1978)calculated turbulent pressure fluctuations in a constant shear
flow near a wall, that show encouraging agreement with measurements. Although a constant
shear is a crude approximation to the mean velocity profile in the boundary layer, this good
agreement may be due to the fact that the main contributions to the pressure at the wall come
from a relatively thin region near the wall (sometimes called the buffer layer, seeChang et al.,
1999).

Phillips’ (1957) theory considers the problem of wave initiation, and the relevant pressure
fluctuations in his analysis are those at a flat air–water interface. The pressure fluctuations at a
shear-driven flat air–water interface are essentially similar to those at a flat wall, since these
two boundaries only differ in the viscous coupling, which affects the pressure little. Here,
then, Durbin’s model of turbulence distorted by a constant shear near a rigid wall is adopted
to calculate the evolution of the pressure fluctuations, which are then used to calculate sur-
face wave generation in the framework of the theory developed byPhillips (1957), but focusing
also on non-resonant waves. The model is used to illustrate: (i) how evolution of the pressure
fluctuations limits their resonant generation of surface waves, (ii) the role of non-resonant pres-
sure fluctuations in generating waves, and (iii) the relative effectiveness in generating waves
of turbulent fluctuations in the air flow above, and in the water flow below, at an air–water
interface.

The remainder of this paper is organised as follows. In Section2, the theoretical model
for the initiation of surface waves by a turbulent shear flow will be presented. In Sec-
tion 3, some statistics of the generated waves will be shown and their behaviour will
be discussed in detail. Finally, in Section4, the main conclusions of this paper will be
reported.



4 M.A.C. Teixeira, S.E. Belcher / Dynamics of Atmospheres and Oceans 41 (2006) 1–27

Fig. 1. Schematic diagram showing the flow considered for (a) turbulence in the air; (b) turbulence in the water.

2. Theoretical model

Consider two fluids, referred to as air and water, of densitiesρa andρw, with ρa/ρw � 1.
Initially their interface is atx3 = 0. At t = 0, a flow in either the water or the air, is suddenly started
with mean component,�U, with constant shear maintained by some external force parallel to the
interface. Att = 0, there is also a turbulent component to the flow,�u, in either the air or the water
with the mean shear (seeFig. 1). Symbolically, in a frame of reference moving with the mean
velocity at the air–water interface,

�U = (Γx3, 0, 0), �u = (u1, u2, u3), (1)

whereΓ is the mean shear rate. The aim is then to calculate the evolution of the turbulent com-
ponent of the flow. This evolution generates waves on the air–water interface, with an associated
flow field,

�u(W) =
(
u

(W)
1 , u

(W)
2 , u

(W)
3

)
. (2)

Consider evolution at very high Reynolds number, so that viscous stresses can be entirely
neglected. Coupling at the air–water interface is then entirely through the pressure.

Here, the evolution of�u and�u(W) is calculated in the rapid distortion approximation (RDT),
so that the equations of motion are linearised with respect to�u and�u(W), which are assumed to
be formally of the same order of magnitude.

If the velocity and integral length scales of the initial turbulence areu andl, respectively, then
this RDT approximation is valid when

Γl

u
� 1, Γt ≤ 10. (3)

The first condition states that straining of the turbulence by the mean shear is stronger than
the straining of the turbulence by itself (Townsend, 1976). As the distortion acts over time, the
turbulence becomes increasingly anisotropic, and the linearisation ceases to be valid. The second
condition is a limit on this anisotropy (Townsend, 1976).

The equations governing momentum in the turbulent and wave fields are then given by

∂ui

∂t
+ Uj

∂ui

∂xj

+ uj

∂Ui

∂xj

= −1

ρ

∂p

∂xi

, (4)
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∂u
(W)
i

∂t
+ Uj

∂u
(W)
i

∂xj

+ u
(W)
j

∂Ui

∂xj

= −1

ρ

∂p(W)

∂xi

. (5)

The turbulence couples to the wave field through the boundary conditions.
The kinematic boundary condition at the air–water interface requires that the vertical velocity

of the interface equals that of the adjacent fluid. The linearised kinematic boundary condition is

u3 + u
(W)
3 = ∂ζ

∂t
on x3 = 0, (6)

whereζ is the surface elevation. Since this equation is linear it can be satisfied separately by the
turbulence and wave fields

u3 = 0, u
(W)
3 = ∂ζ

∂t
on x3 = 0. (7)

The first relation on the turbulence is just the blocking condition for turbulence near a flat
boundary (Hunt and Graham, 1978; Teixeira and Belcher, 2000). The second relation is the
kinematic boundary condition for infinitesimal waves in the absence of turbulence. The initial
condition is that there is a specified turbulent velocity field in either the air or the water. The
interface and the wave motions are taken to be zero att = 0.

In this way we understand that the wave motion is associated with deformation of the free
surface, and the turbulence with the evolution of the initial random velocity field. Coupling
between these two random velocity fields arises through the final boundary condition, namely
the dynamical boundary condition at the interface. This dynamical boundary condition is that the
discontinuity of the pressure across the interface is due only to surface tension. It is formulated
below.

2.1. Fourier amplitudes

The turbulent flow field that is imposed att = 0 is assumed to be homogeneous and isotropic.
The boundary conditions are homogeneous in horizontal planes, and so is the mean flow. Although,
as shown below, the boundary then makes the turbulence anisotropic in the vertical direction, the
statistics of the flow remain homogeneous in the horizontal. Hence the turbulent velocity and
pressure can be expressed as Fourier integrals along the horizontal directions, namely

ui(�x, t) = ∫∫ ûi(k1, k2, x3, t)ei(k1x1+k2x2) dk1dk2,

p(�x, t) = ∫∫ p̂(k1, k2, x3, t)ei(k1x1+k2x2) dk1dk2,
(8)

whereûi andp̂ are time dependent Fourier amplitudes and (k1, k2) is the horizontal wavenumber
vector. The surface elevation associated with the wave field generated by the turbulence, and the
corresponding orbital velocity and pressure can be expressed similarly,

ζ(x1, x2, t) = ∫∫ ζ̂(k1, k2, t)ei(k1x2+k2x2) dk1dk2,

u
(W)
i (�x, t) = ∫∫ û

(W)
i (k1, k2, x3, t)ei(k1x1+k2x2) dk1dk2,

p(W)(�x, t) = ∫∫ p̂(W)(k1, k2, x3, t)ei(k1x1+k2x2) dk1dk2,

(9)

whereζ̂, û
(W)
i andp̂(W) are time dependent Fourier amplitudes. The turbulent quantities far from

the boundary, being homogeneous also in the vertical, may be expressed as Fourier integrals (with
vertical wavenumberk3) also along that direction.
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The wavenumbers evolve in time under the action of the mean shear according to a ‘conservation
of wave crests’ (Hunt, 1973):

∂�k
∂t

+ ∇(�k · �U) = 0, (10)

where�k = (k1, k2, k3) is the three-dimensional wavenumber vector. The horizontal components
of the wavenumber vector are then not affected by the mean shear, but the vertical component has
a linear dependence on time (Townsend, 1976):

k1(t) = k01, k2(t) = k02 and k3(t) = k03 − k01Γt, (11)

where �k0 = �k(t = 0) = (k01, k02, k03). For simplicity, the shorter notationk1 and k2 will be
retained henceforth instead ofk01 andk02.

2.2. Evolution of the waves and wave velocity

A vorticity equation is obtained by taking the curl of(5). If the curl is then taken of the vorticity
equation we obtain an equation for∇2�u(W). Since there is only a simple shear in the mean flow,
the vertical component of that equation takes a simple form:(

∂

∂t
+ U1(x3)

∂

∂x1

)
(∇2u

(W)
3 ) = 0. (12)

The solution is

∇2u
(W)
3 = G(x1 − U1(x3)t, x2, x3), (13)

whereG is a function determined by initial conditions. Since there are no waves initially,u
(W)
3 (t =

0) = 0, G = 0. Far from the interface the surface wave motion,u
(W)
3 , decays to zero, whereas at

the interface the boundary condition is(7). Using(9), the solution for ˆu
(W)
3 is then

û
(W)
3 = ∂ζ̂

∂t
ek12x3, (14)

wherek12 = (k2
1 + k2

2)
1/2

. The solution for the vertical component of the wave velocity is the
same as for irrotational waves; the solution for the horizontal components may not be.

In the case treated byPhillips (1957), when the mean shear and turbulence are in the air, the
wave motion remains irrotational for all time. But when the mean shear and turbulence are in the
water flow, the horizontal components of the wave motion become rotational over time. Hence,
the dynamical boundary condition is here developed more generally. The horizontal divergence
of momentum equation of the wave motion(5) combined with mass conservation yields(

∂

∂t
+ U1

∂

∂x1

)
∂u

(W)
3

∂x3
− Γ

∂u
(W)
3

∂x1
= 1

ρw
∇2

Hp(W), (15)

where∇2
H = ∂/∂x2

1 + ∂/∂x2
2. This equation is evaluated at the interface, whereU1 = 0. It is then

combined with the dynamical boundary condition that the discontinuity of the pressure across the
interface is due only to surface tension. The two cases of turbulence in the water and turbulence
in the air then need to be treated separately.
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2.2.1. Turbulence in the water
Since the waves are forced by the turbulence, but the interface is assumed stress-free, the

turbulent pressure plus the wave-induced pressure at the interface is zero. The pressure in the
linearised boundary condition(15)can be determined by evaluating the momentum equations in
curvilinear coordinates at the interface, which yields

p(W) + p = ρw[gζ − γ∇2
Hζ] at x3 = 0, (16)

whereg = 9.8 m s−2 is the acceleration of gravity andγ = 72.6× 10−6 m3 s−2 is the surface tension,
and the curvature term has been linearised.

Using(16), the dynamical boundary condition atx3 = 0, (15)becomes

∂

∂t

(
∂u

(W)
3

∂x3

)
− Γ

∂u
(W)
3

∂x1
− g∇2

Hζ + γ∇4
Hζ = − 1

ρw
∇2

Hp. (17)

Inserting the definitions ofu(W)
3 , ζ andp given by(9) into (17) and using also(14), it follows

that,

∂2ζ̂

∂t2
− iΓ

k1

k12

∂ζ̂

∂t
+ σ2

0 ζ̂ = k12

ρw
p̂(x3 = 0), (18)

where

σ2
0 = gk12 + γk3

12 (19)

defines the natural angular frequency of surface waves in still water. The solution of(18)subject
to the boundary conditionŝζ(t = 0) = ∂ζ̂/∂t(t = 0) = 0 is

ζ̂(k1, k2, t) = k12

ρwσ1

∫ t

0
p̂(k1, k2, x3 = 0, s)ei(Γk1/2k12)(t−s) sin [σ1(t − s)] ds, (20)

whereσ1 is defined as

σ2
1 = σ2

0

[
1 +

(
Γk1

2k12σ0

)2
]

. (21)

The solution(20) is expressed as a time integral involving the pressure fluctuations at the
air–water interface. The surface elevation is therefore determined at each instant by the history
of these pressure fluctuations since the inception of the turbulent current.

2.2.2. Turbulence in the air
This is the case treated byPhillips (1957), and it is sufficient to note that since the wave motions

begin from rest, they remain irrotational in this infinite Reynolds number limit. Then, the equation
that the amplitude of the surface elevation must satisfy is obtained by simply settingΓ = 0 in (18)
and changing the sign of the turbulent pressure, which arises because the pressure acts on the
other side of the interface. This leads to

∂2ζ̂

∂t2
+ σ2

0 ζ̂ = −k12

ρw
p̂(x3 = 0). (22)
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This is equivalent toPhillips’ (1957) equation (2.12). The solution of(22) for an initially
unperturbed interface, whereζ̂ = ∂ζ̂/∂t = 0 att = 0, is

ζ̂(k1,k2, t) = − k12

ρwσ0

∫ t

0
p̂(k1, k2, x3 = 0, s) sin [σ0(t − s)] ds. (23)

There are two differences between the solution for waves generated by mean shear and turbu-
lence in the water,(20), and the solution for waves generated by mean shear and turbulence in the
air, (23). Firstly, mean shear in the water changes slightly the dispersion relation of the surface
waves, and secondly, the mean shear creates an impedance to surface waves, which yields the
factor of exp [(iΓ k1/2k12)(t–s)] in (20).

2.3. Turbulence in shear flow near a boundary

The expressions for the surface wave fields require the turbulent pressure fluctuations at the
boundary. These are calculated from the turbulent velocity field in the RDT approximation, fol-
lowing Durbin (1978). A situation where the turbulence is below the boundary will be considered
next as an example, but the treatment is analogous if the turbulence is above the boundary.

The linearised momentum equation that governs the turbulence velocity(4) is manipulated as
was the equation for the wave velocity(5) to yield(

∂

∂t
+ U1(x3)

∂

∂x1

)
(∇2u3) = 0. (24)

That equation has the solution

∇2u3 = F (x1 − U1(x3)t, x2, x3), (25)

whereF is an arbitrary function. But the similarities between the wave and turbulent motions end
at this point. While the wave velocity is initially irrotational, the turbulent velocity is by definition
rotational, so the functionF is not zero and is defined instead by the initial condition (cf.Durbin,
1978)

F (t = 0) = ∇2u3(x1, x2, x3, t = 0). (26)

The boundary and initial conditions simplify if it is recalled that the turbulence far from the
boundary is assumed to be homogeneous (Durbin, 1978). Since the shear rateΓ is constant, the
turbulence remains homogeneous at all times. Thus, the turbulent velocity far from the boundary
can be expressed as a three-dimensional Fourier integral,

u
(H)
i (�x, t) =

∫∫∫
û

(H)
i (�k, t)ei�k·�xdk1dk2dk3, (27)

whereû
(H)
i is the Fourier amplitude and, as seen previously, the wavenumber vector�k is time

dependent due to the shear, which makes the turbulence anisotropic over time. Towards the
boundary, the turbulence is made inhomogeneous in thex3 direction by the blocking effect. This
effect can be taken into account by adding tou

(H)
i a blocking correction which enables the flow

to satisfy the boundary condition at the interface (first equation of(7)). Far from the boundary, as
x3 → −∞, this blocking correction decays to zero. FollowingDurbin (1978), the initial condition
states that the blocking correction is initially irrotational. Hence, the solution for the velocity field
at t = 0 is identical to the corresponding solution, allowing for blocking, in the case of shear-free
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turbulence near a wall (Hunt and Graham, 1978). In particular, the Fourier transform of the vertical
velocity component takes the form

û3(k1, k2, x3, t = 0) =
∫

û
(H)
3 (�k0, t = 0)(eik03x3 − ek12x3) dk03. (28)

This expression can be introduced in(26)to obtain the form of the functionF(x1,x2,x3). Replac-
ing the argumentx1 of that function byx1 − U1(x3)t and substituting the resulting expression in
(25)yields an equation foru3 in the general, time-dependent case. This equation is subject to the
same boundary conditions as att = 0.

Accordingly, the time-dependent solution for the Fourier transform of the vertical velocity
component is (Durbin, 1978)

û3(k1, k2, x3, t) =
∫

k2
0

k2 û
(H)
3 (�k0, t = 0)(eik3x3 − ek12x3) dk3, (29)

wherek0 = (k2
1 + k2

2 + k2
03)

1/2
andk = (k2

1 + k2
2 + k2

3(t))
1/2

. For the case of turbulence in the
air, only the sign of the exponent of the second exponential in(29) has to be changed, since the
blocking effect decays exponentially upward instead of downward. The form of the horizontal
velocity componentsu1 andu2 is rather more involved and has been obtained by, for example,
Lee and Hunt (1989)andMann (1994). However, for the problem of surface wave generation,
only the pressure statistics are of interest, and in the RDT approximation these only depend on
the vertical component of the turbulent velocity, as will be seen next.

2.4. Pressure in the RDT approximation

In Section2.2, the wave amplitude was determined as a function of the amplitude of the
turbulent pressure fluctuations at the air–water interface. The turbulent pressure field is now
related to the turbulent velocity field calculated in Section2.3 making use of the simplifying
assumptions of RDT. Again, the case of turbulence in the water is considered as an example, but
the treatment for turbulence in the air is entirely analogous.

Taking the divergence of(4), it follows that

∇2p = −2ρΓ
∂u3

∂x1
. (30)

To obtain the turbulent pressure field everywhere, this equation has to be solved subject to the
boundary conditions

p(x3 → −∞) = p(H) and
∂p

∂x3
(x3 = 0) = 0, (31)

wherep(H)(�x, t) is the pressure field associated with the turbulence far from the boundary, and
where the boundary condition atx3 = 0 was obtained from the vertical component of the momentum
equation(4), taking into account the first equation of(7) (blocking condition).p(H) is defined as
the solution of

∇2p(H) = −2ρΓ
∂u

(H)
3

∂x1
. (32)
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Using(8), the Poisson Eq.(30)may be simplified, becoming an ordinary differential equation
for the Fourier amplitudes of the pressure and velocity:

∂2p̂

∂x2
3

− k2
12p̂ = −2ρΓ ik1û3. (33)

The solution for the Fourier transform of the turbulent velocity(29)may then be used, and the
boundary conditions(31)applied.

After some algebra, the solution for the Fourier amplitude of the pressure is found to be

p̂ = 2iρΓk1

∫
k2

0

k2 û
(H)
3

[
1

k2 eik3x3 +
(

x3

2k12
− 1

2k2
12

− ik3

k12k2

)
ek12x3

]
dk3, (34)

which at the boundary takes the simplified form

p̂(k1, k2, x3 = 0, t) = iρΓ
k1

k2
12

∫
k2

0

(ik3 + k12)2
û

(H)
3 (k0, t = 0) dk3, (35)

almost exactly as obtained byDurbin (1978). For turbulence in the water,(35) may be used
directly, withρ replaced byρw. For turbulence in the air, it is only necessary to change the sign
of k3 in (35) (because the pressure acts on the other side of the interface) and to replaceρ by the
density of air,ρa.

Since the turbulent pressure that drives the waves is now known, it remains to substitute the
pressure amplitude (35) in (20) or its equivalent for turbulence in the air in(23) to obtain the
resulting wave field as a function of the turbulent velocity field. It is then possible to calculate
statistics of the waves.

2.5. Statistics of the flow

Since the present model is linear, the turbulent velocity and pressure, and the surface elevation
can be related to the undistorted, initial, turbulence. Hence,

ui(�x, t) = ∫∫∫ Mij(�k, x3, t)û
(H)
j (�k0, t = 0)ei(k1x1+k2x2) dk1 dk2 dk3,

p(�x, t) = ∫∫∫ Qj(�k, x3, t)û
(H)
j (�k0, t = 0)ei(k1x1+k2x2) dk1 dk2 dk3,

ζ(x1, x2, t) = ∫∫∫ Sj(�k, x3, t)û
(H)
j (�k0, t = 0)ei(k1x1+k2x2) dk1 dk2 dk3,

(36)

where the matrixMij and the vectorsQj for turbulence in the water and alsoSj are given in
Appendix A. A matrix akin toMij was derived in the study ofMann (1994)where, however, there
is a minor mistake which has been corrected inAppendix A. The vectorQj may be obtained from
(35). Finally,Sj can be determined after substituting(35) into (20)or its equivalent for turbulence
in the air into(23).

This paper focuses primarily on the statistics of the wave field induced by the turbulence. The
two-dimensional wavenumber spectrum of the air–water interface elevation is defined as

Ψ (k1, k2, t) = 1

(2π)2

∫∫
ζ(x1, x2, t)ζ(x1 + r1, x2 + r2, t) e−i(k1r1+k2r2) dr1 dr2, (37)

where the overbar denotes ensemble averaging. Taking into account(36), this spectrum can
be expressed as a function of the three-dimensional wavenumber spectrum of the undistorted
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turbulent velocity,Φ(H)
ij , in the following way (cf.Hunt, 1973),

Ψ (k1, k2, t) =
∫

S∗
k SmΦ

(H)
km (�k0)dk3, (38)

where the asterisk denotes complex conjugate. The spectrum of the undistorted turbulent velocity
can be related to the corresponding Fourier amplitudes, ˆu

(H)
i , using

û
∗(H)
i (�k0)û(H)

j (�k′
0) = Φ

(H)
ij (�k0)δ(�k0 − �k′

0). (39)

If the undistorted turbulence is isotropic, this spectrum takes the form

Φ
(H)
ij (�k0) =

(
δij − k0ik0j

k2
0

)
E (k0)

4πk2
0

, (40)

whereE(k0) is the energy spectrum of the undistorted turbulence. FollowingHunt and Graham
(1978)andDurbin (1978), the well known von Ḱarmán form of the energy spectrum, which has
proved to be appropriate for inviscid calculations, is adopted here, namely

E(k0) = u2l
g2(k0l)4

(g1 + (k0l)2)
17/6 , (41)

whereg1 = 0.558 andg2 = 1.196 are dimensionless constants.u and l, the velocity and length
scales of the turbulence used in(41), are defined, respectively, as the initial root-mean-square
(rms) velocity and longitudinal integral length scale of the turbulence far from the boundary.

The surface elevation spectrum(38) is found to have a relatively simple explicit form, due to
the fact that it only depends on the vertical component of the turbulent velocity. From(38), (40)
andAppendix A, this spectrum may be written

Ψ (k1, k2, t) = 1

4π

ρ2
a

ρ2
w

Γ 2 k2
1

σ2
0

∫
E(k0)

∣∣∣∣
∫ t

0

sin(σ0(t − s))

(k12 + ik3(s))2
ds

∣∣∣∣
2

dk03, (42)

for turbulence in the air, while for turbulence in the water, it has the form

Ψ (k1, k2, t) = 1

4π
Γ 2 k2

1

σ2
1

∫
E(k0)

∣∣∣∣
∫ t

0

ei(Γk1/2k12)s

(k12 − ik3(s))2
sin (σ1(t − s)) ds

∣∣∣∣
2

dk03. (43)

The expressions between brackets in(42)and(43)can be expanded into an oscillating part and
a growing part (seeAppendix B). The oscillating part, although formally accurate, corresponds
to the addition of an oscillatory function of time and wavenumber to the spectra, which prevents
the statistics from being smooth. For that reason, in the following numerical calculations, only
the growing part of the solution will be considered. This is approximately equivalent to time
averaging the spectra over an interval sufficiently long to filter the oscillations, but shorter than
the time scale relevant for wave growth. This filteringdoes not correspond to a neglect of the
non-resonant waves. It is also found that the time integrals in the expressions between brackets
can be written explicitly in terms of exponential integral functions of a complex argument. The
final form taken by these expressions is rather lengthy, so it has been left forAppendix C.

It can be seen from(42) and (43) that the integrals between brackets are somewhat akin
to a Fourier transformation in the time domain. Over a sufficiently long interval, the factors
sin (σ0(t − s)) and exp [(iΓ k1/2k12)s] sin (σ1(t − s)) select frequencies of the forcing which are
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close to the resonance frequency, thus making the surface wave spectrum grow preferentially for
the combination of frequency and wavenumber that corresponds to freely-propagating waves (if
a pressure forcing exists at that frequency). The time-dependent expression in the denominator,
however, increases in time and limits this growth. Physically, this increase is associated with
the progressive elongation of the streaky structures in the turbulence (Lee et al., 1990) as the
total distortion imposed on the turbulence by the shear becomes larger. Ultimately, this distor-
tion is limited by the second condition of(3), when the boundary layer reaches an equilibrium
state.

This situation differs from that considered byPhillips (1957)in that the statistics of the turbulent
pressure are not stationary. If the initial phase of surface wave growth happens over a reasonably
short time scale (as seems to be supported by experiment), the air or water boundary layer does not
have the time to achieve a steady state from the inception of the flow to the instant when feedback
wave amplification mechanisms become dominant. So, the type of unsteadiness considered in the
present model, with departure of the turbulence from an isotropic initial state, and its subsequent
distortion by a constant mean shear may be regarded as a reasonable leading-order approximation
to a developing boundary layer.

2.6. Dimensionless parameters

In order to avoid redundancy, it is convenient to reduce the number of input variables of the
model to a minimum. This can be done by making all quantities dimensionless, usingl andu
(e.g.Γ ′ = Γ l/u), except for the dimensionless time, which is defined ast′ = Γ t. Dimensionless
variables are hereafter denoted by a prime.

It can be shown that the parameters controlling the dimensionless wave elevation spectrumΨ
′

and other related quantities, arek′
12, t′ and the Froude and Weber numbers of the turbulence,

Fr = u

(gl)1/2 , We = lu2

γ
. (44)

Fr andWe estimate the relative importance of the forcing at the interface due to the turbulence
and the restoring forces due to gravity and surface tension, respectively. The larger these two
numbers are, the easier it becomes for the interface to be deformed by the turbulence (Brocchini
and Peregrine, 2001).

Sinceg andγ are fixed physical constants,(44) implies thatFr andWe are uniquely related to
l andu and either pair of variables may be used interchangeably. As inBrocchini and Peregrine
(2001), l andu will be adopted instead ofFr andWe as direct input parameters to the present surface
wave model, because physically plausible values are more readily found for these dimensional
quantities. The use ofFr andWe would perhaps be more appropriate in situations where the fluids
under consideration are not, specifically, air and water.

3. Results

Results are now presented for turbulence in either the water or air. First the magnitude of the
pressure fluctuations needs to be decided. Since the pressure variance in boundary layer flows is
proportional to the shear stress (Bull, 1996) and the shear stress is continuous across the interface
in coupled air–water flows (Kondo, 1976), it will be assumed in what follows that the pressure
fluctuations for turbulence in the water and turbulence in the air have the same magnitude. As
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mentioned above, the input parameters of the present model arel, u, t′ andΓ ′. The relation between
these parameters that ensures that this condition is satisfied is defined next.

The pressure variance at the interface can be obtained by squaring the second equation of
(36) and taking the ensemble average, using the expressions forQi available inAppendix A
(or the equivalent expressions for turbulence in the air) and also(40). After some algebra, the
dimensionless pressure variance is found to be:

p′2(x′
3 = 0, t′) = 1

4π

∫∫∫
k′2

1

k′2
12

E′(k′
0)

k′2
12k

′4(t′)
dk′

1 dk′
2 dk′

3, (45)

where

p′ = p

ρΓul
. (46)

By inspection of(45), it is clear that the dimensionless pressure variance at the interface is
only a function oft′. Hence, for a givent′, the dimensional pressure variance is proportional to
(ρΓ ul)2. This reasoning is valid both for turbulence in the water and for turbulence in the air. So,
in order to have pressure fluctuations of a similar magnitude in both cases, the productΓ ul must
be larger in the air than in the water by a factorρw/ρa. In the following treatment,ρw/ρa = 103

is assumed and, to satisfy the above constraint in a very simple way,Γ , u andl are each taken
to be larger in the air than in the water by a factor of 10. Although rough, this estimate is in
qualitative agreement with experiment: it is well known that shear is more intense and turbulence
more vigorous and characterised by larger eddies in the atmosphere than in the ocean (Donelan,
1990). The values ofu andl used in the model for turbulence in the water, of the order of a few
centimetres per second and centimetres, respectively, seem reasonable for oceanic turbulence (cf.
Fig. 4 of Caulliez et al., 1998, andKitaigorodskii and Lumley, 1983). The dimensionless shear
rate is taken to be 10, a value which is supported by numerical experiments of flows, albeit at
relatively low Reynolds numbers (Lee et al., 1990, cf. their Fig. 1). Additionally, noting that the
dominant contributions to the pressure at a flat boundary come from within the so-called buffer
layer, at a distance from the boundaryx3 ≈ 20ν/u* (Chang et al., 1999), the shear rate may be
estimated at that distance, asΓ ≈ u2∗/(20κν), based on a logarithmic profile. Using typical values
for turbulence in the water, such asu* = 2.0 cm s−1 andν = 1.0× 10−6 m2 s−1 yieldsΓ = 10 s−1,
which for the values ofu andl quoted above also corresponds toΓ ′ ≈ 10.

3.1. Mean square slope of the waves

The mean square slope (MSS) of the surface waves generated at the air–water interface will be
determined first, because it gives a single measure of the waves and also of their likeliness to be
affected by the feedback generation mechanisms – the pressure fluctuations associated with these
mechanisms are proportional to the wave slope (Belcher and Hunt, 1993). It should be emphasised
that, since both gravity and surface tension were taken into account in the treatment of Section
2, the surface waves under consideration are gravity-capillary waves. The MSS can be found by
integrating the surface elevation spectrum multiplied byk2

12 over all wavenumbers:

(∇ζ)2 =
(

∂ζ

∂x1

)2

+
(

∂ζ

∂x2

)2

=
∫∫

k2
12Ψ (k1, k2, t) dk1 dk2. (47)

Fig. 2shows the evolution of the MSS of the surface waves predicted by the model for turbulence
in the water as a function of dimensionless timet′. In Fig. 2a, the sensitivity of the MSS toΓ ′,
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Fig. 2. Time evolution of mean square slope of the waves for turbulence in the water. (a)l = 5 cm,u = 5 cm s−1. Solid line:
Γ ′ = 5, dotted line:Γ ′ = 10, dashed line:Γ ′ = 20, long-dashed line:Γ ′ = 50. (b)l = 5 cm,Γ ′ = 10. Solid line:u = 3 cm s−1,
dotted line:u = 5 cm s−1, dashed line:u = 7 cm s−1, long-dashed line:u = 9 cm s−1. (c) u = 5 cm s−1, Γ ′ = 10. Solid line:
l = 1 cm, dotted line:l = 2 cm, dashed line:l = 5 cm, long-dashed line:l = 10 cm.
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keepingl andu constant, is tested. It can be seen that the wave growth is faster and more sustained
for higher values ofΓ ′. This was to be expected since, as was shown in the previous subsection,
the pressure fluctuations that generate the waves are proportional toΓ .

In Fig. 2b, the MSS is plotted for different values ofu, keepingΓ ′ andl constant. It is observed
that the waves grow faster whenu is higher. This is not surprising either, since the pressure fluctu-
ations that drive the waves are proportional tou. There is an indirect effect which further promotes
wave growth: whenΓ ′ is kept constant andu is increased,Γ also increases proportionally. Because
of this, the MSS is very sensitive tou.

Finally, Fig. 2c displays the variation of the MSS growth withl, keepingΓ ′ andu constant.
It can be seen that the waves grow faster for lower values ofl. While the pressure fluctuations
that generate the waves are proportional tol, Γ decreases asl increases whenΓ ′ is kept constant
and the two effects cancel. However, since the dominant wavelength of the generated waves is
approximately equal to the length scale of the turbulencel, waves of a given amplitude tend to be
steeper for smallerl.

With the physically reasonable values ofu, l andΓ ′ chosen, the model is able to produce
waves with a RMS slope ofO(0.1) in the time interval considered. For example, whenl = 5 cm,
u = 5 cm s−1 andΓ ′ = 10 (i.e.Γ = 10 s−1), the MSS takes a value of 0.002 att′ = 3 (which is within
the range of total distortions used byTownsend, 1976or Lee et al., 1990). This means that the
root-mean-square (RMS) slope takes a value of≈0.05 at 0.3 s. Having in mind the value ofl, this
corresponds to waves of≈2.5 mm amplitude, which are of the same order of magnitude as the
first ‘visible’ waves measured byCaulliez et al. (1998).

Fig. 3shows plots of the MSS as a function oft′ for the case of turbulence in the air, for values
of Γ ′, u andl 10 times larger than those used inFig. 2, so as to produce pressure fluctuations of
the same magnitude. Two differences immediately stand out betweenFigs. 2 and 3. Firstly, for
turbulence in the air, the values of MSS attained are much lower than for turbulence in the water,
despite the turbulent pressure fluctuations being of the same magnitude. In all the three plots in
Fig. 3a–c, the MSS barely reaches 1× 10−6, which corresponds to a RMS slope of 1× 10−3. In
real situations, waves with such a slope would be invisible to the naked eye and they appear too
small to be amplified by feedback mechanisms in a reasonable time interval. This suggests that
turbulence in the water may have a much more important role in the initial generation of surface
waves than is generally believed.

Secondly, although the trends in the behaviour of wave growth with the parametersΓ ′, u and
l are in the same sense as for turbulence in the water, the sensitivity to the shear rateΓ ′ is much
reduced (seeFig. 3a. Both these aspects are linked with the decorrelation process of the turbulent
pressure fluctuations over time, and will be explained in the next subsection.

The general appearance of the MSS curves inFigs. 2 and 3is quite similar. In both cases
the MSS initially increases at a fast rate, but later increases progressively more slowly, reaching
an approximate plateau. This behaviour is in contrast with the prediction of linear growth by
Phillips (1957), and is a consequence of the fact that here the evolution of the turbulent pressure
fluctuations is modelled explicitly. This aspect will also be analysed in more detail in the next
subsection.

3.2. Decorrelation of the pressure fluctuations

To understand why the waves generated by turbulence in the air are much gentler than those
generated by turbulence in the water despite the fact that the magnitude of the forcing pressure
fluctuations is the same, recall that the spatio-temporal structure of these pressure fluctuations
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Fig. 3. Time evolution of mean square slope of the waves for turbulence in the air. (a)l = 0.5 m,u = 0.5 m s−1. Solid
line: Γ ′ = 50, dotted line:Γ ′ = 100, dashed line:Γ ′ = 200, long-dashed line:Γ ′ = 500. (b)l = 0.5 m,Γ ′ = 100. Solid line:
u = 0.3 m s−1, dotted line:u = 0.5 m s−1, dashed line:u = 0.7 m s−1, long-dashed line:u = 0.9 m s−1. (c) u = 0.5 m s−1,
Γ ′ = 100. Solid line:l = 0.1 m, dotted line:l = 0.2 m, dashed line:l = 0.5 m, long-dashed line:l = 1 m.
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is also crucial for wave growth.Phillips (1957)pointed out that resonant wave growth occurs
when pressure fluctuations advected over the air–water interface match both the wavenumber and
the frequency of free surface waves. This resonance process would be maximised if the pressure
fluctuations with the appropriate ‘dispersion relation’ were rigidly advected, following the waves
with which they are able to resonate. But such perfect resonance never happens in turbulent flows.
The interactions between the mean flow and the turbulence, or the turbulence with itself, mean that
pressure patterns with given initial length and time scales are distorted by the velocity field, and are
only capable of interacting resonantly with a wave for a finite time. That time is the decorrelation
time of pressure, which Phillips callsθ. Here, we have calculated explicitly the decorrelation of
pressure as the turbulence interacts with the mean shear flow. This is sometimes called the ‘fast’
part of the turbulent pressure. Decorrelation through this mechanism is particularly clear: shear is
responsible for the variation of velocity with distance from the boundary, so that different sources
of the pressure travel at different speeds and thus lose coherence.

A function that contains useful information about the decorrelation time of pressure is the tem-
poral covariance function of the turbulent pressure fluctuations. That function can be determined
at the air–water interface by multiplying the second equation of(8) at x3 = 0 and at timet by the
same expression at timet + �t (where�t is a time lag), using the expressions ofQj in Appendix
A and ensemble averaging. The resulting expression can then be made dimensionless, yielding

p′(t′)p′(t′ + �t′) = 1

4π

∫∫∫
k′2

1

k′2
12

E′(k′
0)

(k′
12 − ik′

3(t′))2(k′
12 + ik′

3(t′ + �t′))2
dk′

1 dk′
2 dk′

3,

(48)

where�t′ =Γ�t is the dimensionless time lag. The dimensionless pressure covariance only
depends ont′ and�t′. If this covariance is divided by the dimensionless pressure variance(45),
the pressure correlation function is obtained. The pressure correlation has been plotted inFig. 4
for t′ = 0, 3 and 5, as a function of�t′. It can be seen that the dependence of the correlation
function ont′ is relatively weak. Concerning the dependence on�t′, the pressure correlation has
a maximum at the origin, then becomes slightly negative, and for large values of�t′ decays to
zero. The point where this function intercepts the horizontal axis remains approximately the same
for everyt′. Now, the location of this intercept can be understood as giving a possible definition for

Fig. 4. Temporal correlation of the turbulent pressure fluctuations. Solid line:t′ = 0, dotted line:t′ = 3, dashed line:t′ = 5.
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the decorrelation time of pressure. InFig. 4, the intercept corresponds to a value of�t′ ≈ 1.5. So,
it can be concluded that the dimensional decorrelation time for pressure is�tD ≈ 1.5/Γ . Hence,
the turbulent pressure fluctuations remain coherent for a shorter time as the shear rate increases,
which seems intuitive.

Since the shear rate is higher in the air than in the water, the decorrelation time of the turbulent
pressure fluctuations is shorter in the air than in the water. For wave generation purposes, this
effect counteracts the proportionality of the pressure to the shear rate which was seen to exist at the
beginning of Section3. For, even if the pressure fluctuations in the air have the same magnitude
as those in the water, they are considerably less coherent, and that is one of the reasons for the
reduced growth of the MSS for turbulence in the air (Fig. 3).

The reason why the wave growth depends very weakly onΓ ′ in the case of turbulence in the air
(Fig. 3a) is that the opposing effects of increasingΓ on the magnitude of the pressure fluctuations
and on their decorrelation time almost offset each other for high values ofΓ ′. This cancellation
does not occur for turbulence in the water (Fig. 2a) because at the lowest values ofΓ employed
in that case there is no resonant growth, and the coherence of the pressure fluctuations (reflected
in the integral time scale) is only important for resonant wave growth.

That the lowest curves inFig. 2a correspond to non-resonant waves is shown by the fact that
the MSS stabilizes to a constant value very early. This may also be noted inFig. 2b for the lowest
values ofu and inFig. 2c for the highest values ofl. In contrast, for turbulence in the air (Fig. 3)
the slope of all the curves decreases ast′ increases but never quite becomes zero. Non-resonant
waves generated by turbulence in the water, corresponding to the lowest curves inFig. 2, although
distinctly gentler than resonant waves generated by turbulence in the water, are still considerably
steeper than resonant waves generated by turbulence in the air. This result further supports the
view that turbulence in the water is important in wave growth.

While a constant-shear flow such as that employed in the present study would, in principle,
always be able to generate resonant waves, because its mean velocity increases without bound
away from the boundary, in the cases mentioned above the shear rateΓ is sufficiently small that
the flow velocity only reaches the minimum phase speed of surface waves at a distance from the
boundary for which it gives a very small contribution to the surface pressure. This explains the
observed disappearance of resonant waves at lowΓ .

A qualitative feature ofFigs. 2 and 3that was noted in Section3.1 is the slowing down in
the growth rate of the MSS as time progresses, even in conditions thought to be resonant. That
feature can be understood by analysing the time evolution of the turbulent pressure fluctuation
statistics. The one-dimensional wavenumber spectrum of the pressure in the streamwise direction
at the interface can be shown to have the form

Π1(k1, x3 = 0, t) =
∫∫

Q∗
kQm(x3 = 0)Φ(H)

km (�k0) dk2 dk3. (49)

Using the expressions forQk from Appendix Aand also(40), (49)can be simplified and made
dimensionless, yielding

Π ′
1(k′

1, x
′
3 = 0, t′) = 1

4π

∫∫
k′2

1

k′2
12

E′(k′
0)

k′4(t′)
dk′

2 dk′
3, (50)

whereΠ ′
1 =Π1/(ρ2Γ 2u2l3). The dimensionless pressure spectrum only depends onk′

1 and t′
and is plotted inFig. 5 for different values oft′. As time advances, the peak in the spectrum
moves towards lower wavenumbers and the energy at high wavenumbers decreases. This process
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Fig. 5. Dimensionless wavenumber spectrum of the turbulent pressure fluctuations along the flow direction. Solid line:
t′ = 0, dotted line:t′ = 3, dashed line:t′ = 5.

corresponds to the elongation of the turbulent eddies in the streamwise direction as the total shear
imposed on the turbulence increases, forming streaky structures. Such streaky structures have
been observed, for example, in the numerical simulations ofLee et al. (1990)and in the wave
initiation experiments ofCaulliez et al. (1998).

Therefore, the pressure forcing at the interface moves towards larger scales. These scales are less
susceptible to excitation and also contribute less to the surface wave slope, making the slope grow
progressively more slowly. Although, in real cases, after some time the turbulence presumably
reaches some type of equilibrium at an elongated ‘streaky’ state, the present results suggest that
these streaks are considerably less efficient in generating waves than the more isotropic turbulence
existing initially.

3.3. Surface wave spectra

Since the present model supports the idea that turbulence in the water is important in initially
driving the surface waves, more detailed statistics of these waves are now presented.

The curvature spectrum of the surface waves is defined as

B(k1, k2, t) = k4
12Ψ (k1, k2, t). (51)

This spectrum is dimensionless by definition, and will be plotted next in the functional form
B(k12, θ, t′), whereθ is the angle of the wavenumber vector with the direction of the current.

Fig. 6 shows the sensitivity of the predicted curvature spectrum to the input variablesΓ ′, l
andu, for an angleθ = 0 and a dimensionless timet′ = 5. This time was chosen because, on the
one hand, it is within the range of realistic total distortions (see last equation of(3)) and on the
other corresponds approximately to the end of the stage of fastest MSS growth (seeFig. 2). The
spectrum does not change appreciably fort′ > 5, increasing only slightly at low wavenumbers. The
spectrum is plotted as a function of the dimensional wavenumber rather than of the dimensionless
wavenumber, because this bears out more clearly the important wavenumberkmin = 367 m−1. This
wavenumber corresponds to the transition between the gravity and the capillary wave regimes,
where the phase speed of surface waves is a minimum,cmin ≈ 23 cm s−1.
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Fig. 6. Curvature spectra of the surface waves along the flow direction, for turbulence in the water, at dimensionless
time t′ = 5. (a) l = 5 cm, u = 5 cm s−1. Solid line: Γ ′ = 5, dotted line:Γ ′ = 10, dashed line:Γ ′ = 20, long-dashed line:
Γ ′ = 50. (b) l = 5 cm,Γ ′ = 10. Solid line:u = 3 cm s−1, dotted line:u = 5 cm s−1, dashed line:u = 7 cm s−1, long-dashed
line: u = 9 cm s−1. (c) u = 5 cm s−1, Γ ′ = 10. Solid line:l = 1 cm, dotted line:l = 2 cm, dashed line:l = 5 cm, long-dashed
line: l = 10 cm.
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The first aspect which stands out inFig. 6a–c is that the curvature spectra of the waves are
sharply peaked. The peak occurs roughly at the wavenumberk12≈ 2π/l. Some departure from
this value towards lower wavenumbers can be attributed to the elongation that the turbulent eddies
have suffered in the streamwise direction fort′ ≤ 5 (cf. Fig. 5). Away from the peak, the spectra
appear to vary proportionally to powers of the wavenumber, as shown by the straight portions of
the curves. These power laws result directly from the assumed spectrum of the turbulent velocity.
There is a breakpoint in the wave spectra at the wavenumberkmin.

In Fig. 6a, it can be seen that, asΓ ′ increases, the level ofB(k12, 0) generally increases, in
accordance withFig. 2. The peak of the spectrum moves to the right, towardskmin, and the zone
to the left of the peak lowers slightly, while the zone to the right rises. This happens because, for
a higherΓ , the pressure decorrelation time is shorter, and hence the turbulence is only able to
interact appreciably with the resonant waves of higherσ0, and thus of higherk12.

Fig. 6b presents the dependence of the curvature spectrum on the turbulence RMS velocityu.
The spectral density increases withu everywhere, but more so at the peak and to the right of the
peak. There is a slight drift of the peak towards higher wavenumbers asu increases, but much less
pronounced than inFig. 6a.

Finally, Fig. 6c shows the dependence ofB(k12, 0) on the turbulence length scalel. There
is a general decrease on the values of the spectrum as the length scale increases, in accordance
with the MSS results. The spectral peak moves towards lower wavenumbers whenl increases, as
expected.

3.4. Angular energy distribution

The curvature spectrum contains information about the angular distribution of the wave energy,
which is analysed next.

Fig. 7displays plots ofB(k12, θ), for various values ofk12, as a function ofθ, at a dimensionless
timet′ = 5. InFig. 7a, the spectral density distribution varies with the angle approximately as cos2θ,
because of the factork2

1 present in the expression of the wave spectrum(43). This is a type of
dependence often assumed in surface wave spectrum models (Phillips, 1985) because it roughly
fits observations. However, at the lowest wavenumber considered a slight broadening of the angular
distribution can be noticed. InFig. 7b, where the shear rate has been increased, a different kind of
behaviour can be observed. While at the highest wavenumber, the spectral density distribution is
still peaked atθ = 0, at lower wavenumbers the distribution becomes flattened and at even lower
wavenumbers bimodal, with two peaks symmetrically placed aboutθ = 0.

This broadening of the spectrum occurs in the present model because the pressure fluctuations
at the interface move at different speeds according to their scale. As noted byDurbin (1978),
large-scale pressure fluctuations are induced by large turbulent eddies which exist at a relatively
large distance from the interface, and which are advected at relatively high speed. Hence, these
pressure fluctuations are also advected at relatively high speed (higher thancmin in this case)
and generate resonant waves propagating at an angle to the mean flow. The small-scale pressure
fluctuations, on the contrary, are induced by small turbulent eddies at short distances from the
interface, which all have a low advection velocity. Hence, these pressure fluctuations also move
slowly (more slowly thancmin) and are unable to generate resonant waves. But the direction where
the resonant condition is closest to being satisfied is that of the mean flow (θ = 0).

The spectrum also broadens asΓ ′ increases, because a higher shear rate promotes larger
advection velocities in the vicinity of the interface, thereby widening the range ofθ at which
resonance can occur. Note how the curves for the lower shear rate inFig. 7a correspond to a
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Fig. 7. Variation of the curvature spectrum with direction, for turbulence in the water, forl = 5 cm, u = 5 cm s−1 and
t′ = 5. Solid line:k12 = 20 m−1, dotted line:k12 = 50 m−1, dashed line:k12 = 100 m−1, long-dashed line:k12 = 200 m−1,
dash-dotted line:k12 = 500 m−1. (a) Lower shear rate,Γ ′ = 10. (b) Higher shear rate,Γ ′ = 50.

MSS that stabilizes approximately inFig. 2a while the curves for the higher shear rate inFig. 7b
correspond to a MSS that keeps on growing, although slowing down somewhat. This shows that
both the absence of sustained growth and an angular energy distribution that strongly peaks at
θ = 0 identify non-resonant waves.

In qualitative terms, the bimodal distribution of the wave spectrum for the case presented in
Fig. 7b could have been predicted fromPhillips’ (1957)theory on the basis of these resonance
arguments. However, the quantitative way in which the wave spectrum broadens as the wavenum-
ber decreases is a result of the turbulence model adopted here for relating the turbulent pressure
field and the turbulent velocity field. The existence of waves for wind speeds belowcmin and
angles larger than the resonance angle would not be predicted by Phillips’ theory. But, as seen
before, these forced, or non-resonant, waves may be relevant in real situations.

4. Conclusions

A theoretical study has been conducted about the initial stage of surface wave generation at
an air–water interface by a weakly-turbulent constant-shear flow. The problems of turbulence
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in the air and of turbulence in the water have been addressed separately, so as to isolate the
corresponding dynamical processes. Unlike previous studies, both resonant and non-resonant
waves have been considered. The model developed in this study can be viewed as a combination
between the wave generation theory ofPhillips (1957)and the RDT analysis ofDurbin (1978).
It thus represents the early time evolution of the turbulent pressure fluctuations that generate the
waves in a dynamically consistent way, enabling a calculation of the statistics of the turbulent
pressure necessary in Phillips theory from simple parameters of the turbulent velocity field.

The mean-square-slope and the curvature spectrum of the surface waves are calculated as a
function of time for turbulent pressure fluctuations of similar magnitude driven by turbulence
in the water and in the air. It is found that the MSS increases faster for higher values of the
dimensionless shear rateΓ ′ and initial RMS turbulent velocityu and lower values of the initial
integral length scale of the turbulencel. This is explained by the proportionality of the pressure
applied at the interface toΓ andu, and by the inverse proportionality of the wave slope tol. For
resonant waves, the MSS growth rate does not depend appreciably onΓ ′, because the effect that
the integral time scale of the turbulence is inversely proportional toΓ cancels with the effect that
the pressure magnitude is proportional toΓ .

The waves generated by turbulence in the air are much gentler than the waves generated by
turbulence in the water. This difference is particularly marked for resonant conditions, where this
behaviour is attributed primarily to the fact that the integral time scale of turbulence in the water
is larger and the length scale of that turbulence is smaller than that of turbulence in the air. For
non-resonant waves, the integral time scale of the turbulence ceases to be a relevant parameter,
and the magnitude of the MSS decreases by an order of magnitude approximately. However, the
results suggest that even in that case the effect of turbulence in the water in the generation of
surface waves may be dominant.

Wave curvature spectra are plotted for discrete wavenumbers, as a function of the angle between
the direction of wave propagation and the direction of the mean flow,θ. The spectra are found
to peak like cos2 θ at θ = 0 for all wavenumbers at low shear rates, but to peak atθ = 0 for higher
shear rates only at high wavenumbers, having a broader or even bimodal distribution at lower
wavenumbers. This behaviour is found to be linked with the spatio-temporal structure of the pres-
sure fluctuations, as modelled by RDT. Longer, resonant waves are excited by pressure fluctuations
associated with larger and faster-moving turbulent eddies being advected at some distance from
the boundary, while shorter waves grow due to the pressure fluctuations associated with smaller
and slower-moving eddies, which exist closer to the boundary.

The main conclusion from this study is that turbulence in the water may be much more important
for the initiation of surface waves than previously expected, because the associated pressure
fluctuations are more efficient. The model suggests that the key stage in surface wave initiation
may be that immediately following laminar–turbulent transition of the flow, when the turbulence
has not become too anisotropic. The subsequent formation of streaky structures due to shear
distortion considerably slows down the wave growth, since the turbulent pressure forces the
waves at progressively lower wavenumbers. These results are consistent with recent laboratory
experiments byCaulliez et al. (1998)which support the idea of an explosive wave growth after
the transition to turbulence of the shear current induced by the wind, and report the formation of
turbulent streaks in that current.

It might be argued that the waves that are amplified by feedback instability mechanisms must
be free waves, while the waves generated by a Phillips-type mechanism due to turbulence in
the water are almost invariably forced waves, because the velocity of the shear current is almost
always lower than the minimum phase speed of free waves. But these forced waves may establish
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the initial conditions for the existence of free waves of similar amplitude and wavelength, some of
which may propagate approximately along the wind direction, and thus be in suitable conditions
for being amplified by the feedback mechanisms investigated byMiles (1957)andBelcher and
Hunt (1993).
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Appendix A. Expressions of Mij, Qj and Sj

For turbulence in the water, theMij matrix can be written

M11 = eik3x3,

M12 = 0,

M13 = eik3x3
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(A.1)

where ‘sign’ denotes the sign function andE1 denotes the exponential integral function of order
one. TheQj vector is given by

Q1 = Q2 = 0,

Q3 = 2iρΓk1
k2

0

k2

[
1

k2 eik3x3 +
(

x3

2k12
− 1

2k2
12

− ik3

k12k2

)
ek12x3

]
.

(A.2)

The corresponding expressions for turbulence in the air can be obtained by simply reflecting
these expressions about the planex3 = 0: replacingk3 with −k3, k03 with −k03 andx3 with −x3.
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TheSj vector is defined as

S1 = S2 = 0,

S3 = −i
ρa

ρw

Γ

σ0

k1

k12
k2

0

∫ t

0

1

(k12 − ik3)2
sin (σ0(t − s)) ds

(A.3)

for turbulence in the air and

S1 = S2 = 0,

S3 = −i
Γ

σ1

k1

k12
k2

0

∫ t

0

ei(Γk1/2k12)(t−s)

(k12 + ik3)2
sin (σ1(t − s)) ds

(A.4)

for turbulence in the water.

Appendix B. Growing and oscillating parts of Ψ

In (42)and(43), the terms between brackets can be expanded into a growing and an oscillating
part. Expressions for these parts are presented next for turbulence in the water. The expressions
for turbulence in the air may then be found by a slight modification.

After expressing the sine function in(43) in complex form, moving the factors explicitly
dependent on time outside the integrals and rearranging, the term between brackets in(43) can
be written

∣∣∣∣
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The third term on the right oscillates in time and was neglected in the numerical calculations,
for reasons explained in Section2.5. By makingσ1 = σ0 andΓ = 0 in (B.1)only in the numerator
of the fractions (i.e., not ink3) and changing the sign ofk3, the expression applicable to the case
of turbulence in the air,(42) is found:
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Appendix C. Solution in terms of exponential integrals

The product of complex conjugate time integrals in(42) and(43) was seen inAppendix Bto
be approximately equal to the first two terms on the right of(B.1) and(B.2), due to the fact that
the third terms are oscillatory. Thus, the approximate solution for the wave growth only requires
a calculation of the time integrals in the non-oscillatory terms. For turbulence in the water, these
are ∫ t

0
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and for turbulence in the air∫ t
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whereH is the Heaviside function.
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