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Interaction of turbulence with a free surface

Abstract

Different interactions between turbulence and a free surface are investigated, by considering idealised

problems where the distortion of the turbulence by external forcings can be regarded as rapid.

The viscous coupling and the nonlinear interactions among the turbulence near a flat free surface

are first considered. Calculated profiles of the turbulence dissipation rate show very good agreement

with available numerical simulation data. The dissipation has a minimum at the boundary, promoting

an increase of the turbulent kinetic energy. Nonlinear interactions limit the growth of the viscous

boundary layer, and lead to large net strains at the boundary, associated with zones of impinging and

ejecting flow, which further enhance the turbulent kinetic energy. These interactions produce pressure

fluctuations correlated with the strain rates of the flow, promoting a return to isotropy of the turbulence

everywhere except in zones of impinging flow, near the boundary.

The interaction between turbulence and surface waves is then considered. Wave initiation from a

flat free surface by a turbulent shear flow in the water is found to be much more efficient than wave

initiation by an equivalent flow in the air, because the decorrelation time scale of the pressure fluc-

tuations is longer in the water. Calculated curvature spectra of these waves show a bimodal angular

energy distribution at low wavenumbers, for sufficiently high shears, which is consistent with labora-

tory data. Finally, the distortion of turbulence in the water by much larger waves is examined. The

turbulent velocity fluctuations transverse to the direction of wave propagation are amplified in time,

due to vorticity tilting and stretching by the Stokes drift, and originate intense and elongated stream-

wise vortices akin to Langmuir circulations. The energy transfer to these vortices is associated with

wave decay, and estimated wave attenuation rates are shown to be in order-of-magnitude agreement

with laboratory data.
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CHAPTER 1

Introduction

The interaction of turbulence with a free surface is a complicated physical process, which has impli-

cations for a wide range of fundamental and applied fields of research. These include: turbulence

modelling (Hunt, 1988; Johansson & Hallbäck, 1994), surface wave dynamics (Phillips, 1957, 1959)

and mass transfer at air-water interfaces (Hunt, 1984b; Komori et al., 1989). This thesis addresses a

number of simple model problems where turbulence is explicitly simulated, aiming to clarify different

aspects of the fundamental physics of turbulent flows near free surfaces.

For turbulence modelling purposes, it is important to understand how turbulence is modified by the

presence of a free surface, because numerical models of flows that do not resolve the smallest scales

in the turbulence require closures for the turbulent terms which are not represented explicitly (Salvetti

et al., 1997). These closures have to behave appropriately near boundaries, namely by reproducing as

closely as possible the results of models that resolve the flow entirely. While most turbulence closures

have been developed for flows near walls (Durbin, 1993), the development of closures for flows near

free surfaces is of interest for numerical simulations of, for example, open-channel flows (Pan &

Banerjee, 1995; Komoriet al., 1993; Borueet al., 1995) or atmosphere-ocean interaction (Melville,

1996; Kitaigorodskii, 1997). The development of turbulence closures with a sound physical basis is

only possible by studying the turbulence itself.

One of the important features characterising air-water interfaces are surface waves. The im-

portance of turbulence in the generation and in the decay of these waves has long been recognised

(Phillips, 1957; Kitaigorodskii & Lumley, 1983). Waves at an initially flat free surface are initiated

by turbulent pressure fluctuations being advected in the flow either side of the interface (Phillips,

1957), and it is only later that the instability growth mechanisms relying on the existence of, at least, a

small perturbation (Miles, 1957; Belcher & Hunt, 1993), and the nonlinear interactions among waves

(Hasselmann, 1962) can become active. Furthermore, turbulence contributes to the decay of surface

waves, through the energy transfer that takes place from the waves to turbulence, where the turbu-

lence acts like a damping viscosity (Ölmez & Milgram, 1992). The turbulence also scatters (Phillips,

1959) and distorts the wave field (Longuet-Higgins, 1996). Waves are known to organise the oceanic

turbulence into vortices aligned with their own propagation direction and with the mean wind (Craik

& Leibovich, 1976). These vortices are calledLangmuir circulations. Finally, breaking waves are an

important source of turbulence in the ocean surface layer (Melville, 1996). Clearly then, any treatment

of turbulence near free surfaces must also account for surface waves.

1
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Region ‘0’

Region ‘1’

Region ‘2’

Region ‘3’

Figure 1.1 Reproduction of figure 3 of Brocchini & Peregrine (2000a). The turbulence velocity scaleu is here denoted by

q and the turbulence length scalel is here denoted byL. The dash-dotted lines correspond to the critical Froude and Weber

numbers,Frc andWec. The shaded area represents the region of marginal wave breaking.

Mass transfer at air-water interfaces influences the climate, since it controls the abundance in

the atmosphere of gases like carbon dioxide, which have great meteorological importance (Simpson,

1984). The transfer of gases from the air to the water is controlled by the characteristics of the turbu-

lence in the water (Brumley & Jirka, 1987; Theofanous, 1984), and also by the characteristics of the

wave field at the air-water interface (Kitaigorodskii & Donelan, 1984). Relating the properties of the

gas transfer to the properties of the turbulence and the waves in order to obtain gas-transfer models

requires a good fundamental understanding of the underlying physics of these processes, as noted by

Brocchini & Peregrine (2000a). These applications motivate the developments presented in this thesis.

A free surface bounding a water mass responds to turbulence in the water in a variety of ways.

Brocchini & Peregrine (2000a) distinguish 4 basic regimes, depending on the length scalel and the

velocity scaleu of the turbulence, or equivalently on the value of the Froude numberFr = u/(gl)1/2

and the Weber number of the turbulenceWe = u2l/γ (whereg is the acceleration of gravity andγ
is the surface tension). IfFr andWeare both lower than certain threshold values,Frc andWec, the

turbulence can be classified as weak, and the boundary remains approximately flat (region ‘0’ in figure

1.1). The turbulence is then primarily affected by blocking and viscous effects (Perot & Moin, 1995a;

Walkeret al., 1996). Blocking is a purely kinematic constraint similar to that imposed by a rigid wall.

Viscous effects are obviously different from those imposed by a rigid wall and determine the value of

the viscous stress near the boundary, which influences the shape of the tangential velocity profiles, and

the turbulence dissipation rate. These effects are controlled by the Reynolds number of the turbulence,

Re= ul/ν (whereν is the kinematic viscosity). The Kolmogorov microscale,η, at which most of the

dissipation occurs, isη ≈ lRe−
3
4 (Tennekes & Lumley, 1972). Gas transfer across the free surface is

controlled by how thin the viscous boundary layer remains and how fast the fluid beneath the viscous

boundary layer is renewed by the turbulent motions (Hunt, 1984b). The thickness of the viscous

boundary layer isδ ≈ lRe−
1
2 (Tennekes & Lumley, 1972), while the horizontal divergence of the flow,

2



Chapter 1 Introduction

which is a factor determining surface renewal, receives a dominant contribution from the scales of the

turbulence ofO(η).

When the turbulence is more vigorous (u larger), but the length scale is relatively small (l ≤
17mm), Fr > Frc but We < Wec, and waves dominated by surface tension are present at the free

surface. This corresponds to region ‘1’ in figure 1.1. When the turbulence is more vigorous than

in region ‘0’ but the length scale is relatively large (l ≥ 17mm), Fr < Frc but We > Wec, and

the surface waves are dominated by gravity. This corresponds to region ‘3’ in figure 1.1. Finally,

when the turbulence is more vigorous than in all previous cases,Fr > Frc andWe > Wec. In that

situation, which corresponds to region ‘2’ in figure 1.1, the waves existing at the free surface have

large slope. For sufficiently high values ofFr andWe, the free surface becomes disintegrated, and

there is permanent wave breaking, with the presence of bubbles in the water and spray in the air.

Obviously, a treatment of this last situation is not simple, and requires a reformulation of the

equations of motion (Brocchini & Peregrine, 2000b), in order to make them able to simulate ‘two-

phase’ flows. However, many important interactions between waves and turbulence that do not involve

wave breaking can be understood by considering situations corresponding to regions ‘0’, ‘1’ and ‘3’

in figure 1.1 (whereFr < Frc or We< Wec). In most of the cases, the length scale of the turbulence

is l > 17mm(regions ’0’ and ’3’), so the slope of the waves is small, and the waves may be treated

using linear theory. Examples of interactions which have been treated successfully using linear theory

are wave generation at the initial stage (Phillips, 1957), wave distortion in turbulent zones (Longuet-

Higgins, 1996), and wave scattering by turbulence (Phillips, 1959). In all the problems considered in

this thesis, the turbulence is taken to be weak, so that wave breaking is excluded and surface waves,

when present, can also be treated using linear theory.

Although nonlinear interactions in the turbulence are by definition strong, there are a number of sit-

uations of practical relevance where these interactions are relatively unimportant when compared with

other external forcings. For example, at the initial stage of the development of the viscous boundary

layer in a turbulent flow near a boundary, viscous diffusion dominates the turbulence evolution close

to the boundary. Similarly, in the boundary layer of a turbulent shear flow, if the shear rate is much

higher than the typical frequency of the turbulent eddies, as tends to occur near the boundary, the

shearing of the turbulence by the mean flow is the dominant physical process. Or when a wave coex-

ists with turbulence in the ocean, if the slope and the frequency of the wave are sufficiently high, the

straining imposed by the wave on the turbulence dominates over other physical processes affecting the

turbulence. In all these examples, the equations of motion may be linearised with respect to the turbu-

lent velocity. This linearisation forms the basis of the mathematical method employed throughout this

thesis, which is calledrapid-distortion theory(for a review, see Hunt & Carruthers, 1990).

Formally, the linearisation used in rapid-distortion theory is entirely analogous to that used in the

3
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theory of infinitesimal waves. The difference is that, since the turbulence is never infinitesimal by

definition, greater care needs to be taken to ensure that the linearisation is valid. Quantitatively, the

theory is applicable to situations where both the turbulence intensity and the strain rate associated

with the interaction of the turbulence with itself are much smaller than the mean velocity and the

mean strain rate, or alternatively, if the time since the ‘introduction’ of a distortion is shorter than

one eddy turn-over time. Because the initial state of the turbulence has finite amplitude, it can not be

assumed that a single wavenumber will dominate the response of the turbulence as time progresses.

This requires the turbulence before the distortion to be characterised by a given energy spectrum and

certain symmetry properties (for example, homogeneity and isotropy). It is then possible to determine

statistics of the turbulence after distortion by a boundary or a mean flow, or both (Hunt, 1973).

Rapid-distortion theory was first used by Taylor (1935) to evaluate the changes suffered by turbu-

lence passing through a wind-tunnel contraction. Taylor modelled the mean flow as a uniform strain-

ing flow, and considered only one harmonic of the turbulent velocity. This treatment was extended by

Batchelor & Proudman (1954) to a full energy spectrum, allowing the calculation of turbulence inten-

sities. The axisymmetric straining flow adopted by Taylor (1935) and Batchelor & Proudman (1954)

is also used in chapter 3 of this thesis to model the large scales of shear-free turbulence. Townsend

(1970) investigated the distortion of turbulence in a boundary layer, modelling the mean flow as a

uniform shear. This approach will also be followed in chapter 4 of this thesis, where the generation

of surface waves by turbulence at the initial stage is addressed. Subsequently, Hunt (1973) extended

rapid-distortion theory further to situations where the mean distorting flow is not uniform, and the

resulting turbulence is inhomogeneous (see also Goldstein, 1978). A non-uniform mean flow is also

considered in chapter 5 of this thesis, where the distortion of turbulence by a surface water wave is

addressed. Hunt’s (1973) treatment accounted for the effect of solid boundaries, and this aspect was

explored in more detail in Hunt & Graham (1978), where the boundary condition at a solid wall is

satisfied by adding an irrotational correction to the velocity field. This is also done when address-

ing the effect of boundaries in chapters 2, 3 and 5 of this thesis. Although the flows used in the

model problems to be considered are simplified approximations to real flows, they enable a relatively

straightforward interpretation of the physical processes involved. Since these physical processes are

also important in real flows, the model problems can be seen as building blocks or tools that aid the

understanding of real flows. An overview of the model problems considered in the thesis is presented

next.

1.1 Overview of the thesis

In chapter 2, the linear dynamics of shear-free turbulence near a flat boundary are investigated, fo-

cussing on the viscous boundary layer. Calculated turbulence dissipation profiles are compared with

4



Chapter 1 Introduction

recent direct numerical simulation data (Perot & Moin, 1993, 1995b). Studying the behaviour of tur-

bulence dissipation is important both for developing turbulence closures for numerical models, where

dissipation is parameterised, and for gas transfer across air-water interfaces, because the dissipation

is related to the surface divergence of the flow. In this chapter, the rapid-distortion model of Hunt

& Graham (1978) for the initial distortion of turbulence by a flat boundary is extended to account

fully for viscous processes. Two types of boundary are considered: a solid wall and a free surface

with Fr ¿ 1 andWe¿ 1. The model is used to investigate the differences between the two types of

boundary. Profiles of the turbulent Reynolds stresses and dissipation rates are calculated, and shown to

be in excellent agreement with data for short times, while remaining in good qualitative agreement for

longer times. This is due to the fact that nonlinear processes arrest the growth of the viscous bound-

ary layer at a relatively early stage, preserving the profiles determined by linear processes (blocking

and viscous diffusion). The dissipation is found to be enhanced near a solid wall, due to the no-slip

boundary condition, but reduced near a free-surface, due to the no-stress boundary condition. This

partly explains the large turbulence intensity observed near free surfaces (Perot & Moin, 1995a). The

model shows that the turbulent pressure fluctuations are associated with nonlinear processes. Since

the model is linearised with respect to the turbulent velocity, it does not produce pressure fluctuations,

and would be unable to generate surface waves even if the assumptionsFr ¿ 1 andWe¿ 1 were

relaxed.

Chapter 3 addresses some of the nonlinear processes that occur in shear-free turbulence near a

flat boundary outside the viscous boundary layer, which were neglected in chapter 2. Again, the flat

boundary can be a solid wall or a free surface withFr ¿ 1 andWe¿ 1. Attention is focussed on

the behaviour of turbulence in upwelling and downwelling zones. As noted by Perot & Moin (1995a),

these zones are salient features of turbulence near boundaries and deserve a careful study. Following

Kida & Hunt (1989), an inviscid rapid-distortion model is adopted that treats the large, long-lived

eddies in the turbulence as a mean flow and the smaller eddies as the fluctuating flow. Upwelling or

downwelling zones in the turbulence are modelled as axisymmetric straining flows. It is found that the

turbulence intensity is enhanced near boundaries by the net strain to which upwelling and downwelling

zones subject the smaller scale turbulence, which makes the turbulent kinetic energy increase. This

interaction between the large and the small scales of the flow produces a turbulent pressure field,

which would, in principle, be able to generate waves in the case of a free surface. However, these

are excluded by the assumptionsFr ¿ 1 andWe¿ 1. On the other hand, the added complexity

of the flow (compared with that used in chapter 2) enables the calculation of various inviscid source

terms in the turbulent kinetic energy budget, of which the most important are the pressure-strain terms.

Studying the behaviour of these terms is important for the development of closures for the pressure-

strain correlations in numerical models. It is found that the pressure-strain terms in the turbulent

kinetic energy equation contribute to make the small-scale turbulence more isotropic everywhere in

downwelling zones and also far from the boundary in upwelling zones, but move the turbulence away

5



Chapter 1 Introduction

from isotropy near the boundary in upwelling zones.

In chapter 4, the assumptionsFr ¿ 1 andWe¿ 1 are relaxed, and the initial generation of surface

waves by a turbulent shear flow, departing from a flat free surface, is investigated. This interaction is

considered for times sufficiently short that the waves remain small and have no effect on the mean flow

or on the turbulence. The model is used to assess the relative importance of surface wave generation by

a turbulent shear flow in the water (coupled case) and a turbulent shear flow in the air (uncoupled case).

This problem is important in the context of surface wave dynamics, since the role of turbulence in the

water in wave generation at the initial stage has often been overlooked (Giovanangeli & Memponteil,

1985; Kahma & Donelan, 1988). The original theory of Phillips (1957) is extended by relating the

turbulent pressure fluctuations responsible for generating the waves to the velocity fluctuations in the

turbulence, using the rapid-distortion approach developed by Durbin (1978). In both the coupled

and the uncoupled cases, the mean flow is assumed to have a constant shear rate, and represents

the part of the boundary layer profile that gives the dominant contribution to the surface pressure.

Various statistics of the surface waves generated by the turbulence are calculated, namely their mean-

square slope, curvature spectrum and their angular energy distribution. It is found that, for flows

producing pressure fluctuations of a similar magnitude, turbulence in the water is much more efficient

in generating surface waves than turbulence in the air, essentially because the decorrelation time for

the pressure fluctuations is longer in the water than in the air. In the calculated curvature spectra, a

bimodal angular energy distribution is predicted at the lowest wavenumbers for relatively high shear

rates of the turbulent flow. This behaviour is consistent with the laboratory measurements of Jähne &

Riemer (1990).

Chapter 5 addresses the straining of relatively weak and small-scale turbulence by a fast, progres-

sive, surface wave. This problem can be viewed as complementary to that of chapter 4, because now it

is the wave that controls the behaviour of the turbulence. Attention is focussed on the time evolution

of the turbulence structure, and the effect of the turbulence on the distorting wave. The first aspect is

relevant for pollution dispersion in the ocean, which is controlled by the characteristics of turbulence

in the water, and the second is important for surface wave dynamics, since turbulence is known to be

one of the factors leading to wave attenuation (Phillips, 1959). In the rapid-distortion model employed,

the turbulence is assumed to be shear-free, approximating, for example, turbulence generated by wave

breaking (Melville, 1996). It is found that, over a number of wave cycles, the Reynolds stresses

transverse to the wave propagation direction are amplified, making the turbulence progressively two-

dimensional and dominated by streamwise vortices. The integral length scales of the turbulence show

that these vortices become elongated in the streamwise direction. Their structure resembles that of

the ‘Langmuir turbulence’ produced in the large-eddy-simulation study of McWilliamset al. (1997).

The mechanism for the formation of these streamwise vortices is akin to that proposed by Craik &

Leibovich (Leibovich, 1983) for Langmuir circulations. That is the tilting of the vertical vorticity

6
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present in the water flow by the Stokes drift of the wave, and its amplification as streamwise vorticity.

The turbulent kinetic energy budget is analysed, showing that the energy transfer taking place from

the distorting wave to the turbulence leads to an intensification of the streamwise vortices and a slow

decay of the wave. The wave attenuation rate associated with this process is estimated, and found to

be consistent with existing laboratory data byÖlmez & Milgram (1992).

In chapter 6, the general conclusions of this thesis are presented.

Finally, in an appendix, the problem of surface wave generation by shear-free turbulence is briefly

addressed using a simplified rapid-distortion model. The model follows essentially Fernando & Hunt’s

(1997) treatment of shear-free turbulence and waves near a density interface, but the effect of surface

tension has been added. The model parameterises nonlinear effects in the turbulence by relating the

frequency and the wavenumber of the turbulent eddies using a kind of ‘dispersion relation’. This

assumption, which enables the model to produce a turbulent pressure field and therefore to generate

waves, is found to be formally inconsistent with the equations of motion. That is the reason why this

treatment has not been included in the main body of the thesis. Despite this inconsistency, the model

allows a qualitatively correct interpretation of the mechanism for resonant wave growth.
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CHAPTER 2

Dissipation of shear-free turbulence near boundaries

2.1 Introduction

Turbulence at finite Reynolds number is always subject to dissipation by viscosity. And when a turbu-

lent flow is unforced, it decays in a time that scales on the decorrelation time for the energy-containing

turbulent fluctuations (Batchelor, 1953). Hence the dissipation rate, together with the turbulent kinetic

energy, provide a time scale for the evolution of the turbulent flow. Parameterisation of the dissipation

rate is therefore at the heart of many Reynolds-averaged models of turbulent flows. Nevertheless, there

are at present few calculations of the dissipation rate. In the present chapter an exact calculation of the

dissipation rate in the rapid-distortion limit is developed.

The study of the dissipation rate of turbulence presented here was motivated by a general desire to

understand better turbulence near a free surface, and has practical importance for transfer of sparingly

soluble gases into the liquid that is in turbulent flow (Theofanous, 1984). Now, free surfaces cannot

support mean shear, since by definition a ‘free’ surface must support zero surface stress. Hence,

attention is focussed here on turbulence near a free surface in the absence of mean shear.

Shear-free turbulence near boundaries has been the subject of extensive study following the pio-

neering laboratory measurements of Uzkan & Reynolds (1967) and Thomas & Hancock (1977). The

definitive theoretical study of Hunt & Graham (1978), based on rapid-distortion theory, shows that

the boundary leads to a layer of blocking, where the normal velocity fluctuations are brought to zero,

and to a thinner viscous layer, where the tangential velocity fluctuations adjust to the condition at

the boundary. More recently, Perot & Moin (1995a) and Walkeret al. (1996) have reported direct

numerical simulations of shear-free boundary layers, which provideinter alia data for profiles of the

rate of dissipation of the turbulence and other correlations. These studies reveal significant differences

between shear-free boundary layers near solid walls and free surfaces, such as the higher tangential

Reynolds stress and lower dissipation near a free surface. An objective of the present study has been

to clarify and quantify the mechanisms responsible for these differences.

In this chapter the rapid-distortion model developed by Hunt & Graham (1978) for the initial

response of initially homogeneous turbulence to the sudden imposition of a boundary is further de-

veloped to account fully for the viscous effects of free surfaces and solid walls. The dissipation rate
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of the turbulence is then calculated from the model. There is a significant question over whether or

not rapid-distortion theory (hereafter RDT) can be usefully used to calculate dissipation. The reason

is that the crucial assumption used in RDT of neglecting nonlinear interactions within the turbulence

is usually justified, following the original RDT paper of Batchelor & Proudman (1954), by scaling

estimates based on the dynamics of the energy-containing eddies; dissipation, in contrast, is usually

associated with the smallest eddies, for which nonlinear processes become important at earlier times.

The calculations presented here show how and why RDT can be used to provide useful estimates of

dissipation.

The remainder of the chapter is organised as follows. In§2.2 a scaling analysis of the equations of

motion is presented, which identifies some conditions for the validity of the RDT model. In§2.3 the

response of a single Fourier mode of the turbulence to a solid wall and to a free surface is calculated.

These Fourier modes are integrated over a spectrum in§2.4 to obtain statistics of the flow near the

boundary. In§2.5 results are presented for the Reynolds stresses and dissipation rate and compared

with the DNS data of Perot & Moin (1993, 1995a, 1995b). Finally, in§2.6, conclusions are presented.

2.2 Scaling the equations of motion

Following Hunt & Graham (1978), the following model problem is studied. For timest < 0, there

everywhere exists homogeneous and isotropic turbulence, characterised by an integral length scale,l ,

and a root-mean-square velocity scale,u. At time t = 0, a boundary is introduced atx3 = 0 and the

initial response and subsequent evolution of the turbulence fort > 0+ below the interfacex3 < 0

is investigated. Two types of boundary are considered: a solid wall and a free surface. A solid wall

imposes the condition thatui = u3 = 0 at x3 = 0, whereui (i = 1 or 2) are the tangential velocity

components andu3 is the normal velocity component. The distortion of the turbulence by a free

surface in the limit of very low Froude number,Fr ¿ 1, and very low Weber number,We¿ 1, is

considered, hence the interface remains nearly flat. The free surface then imposes the conditions that

the surface is stress free,τi = µ∂ui/∂x3 = 0 (for i = 1 or 2), and vanishing normal velocity,u3 = 0.

Far below the boundary, the turbulence returns to the homogeneous form it took before insertion of

the boundary.

As shown originally by Hunt & Graham (1978), flow in the vicinity of the boundary has a two-

layer structure. Following Hunt & Graham, the thickest layer is here called thesource layer. This

layer is associated with the kinematic blocking effect of the boundary, wherein irrotational motions

are induced to bring the normal component of the fluid velocity to zero at the boundary. The source

layer responds immediately to the introduction of the boundary and has thickness and velocity scales

l andu, the scales of the turbulence far below the boundary. The thinner inner-most layer, called here

9



Chapter 2 Dissipation of shear-free turbulence near boundaries

theviscous layer, is associated with the viscous effect of the boundary, and is where rotational motions

are induced to adjust the tangential motions to the surface boundary condition: in the case of a solid

wall the tangential velocity is brought to zero, or in the case of a free surface the tangential stress is

brought to zero. The viscous layer is characterised by velocity and length scales determined by its

own internal dynamics, so that immediately after the boundary is introduced the viscous layer has

zero thickness; it then grows with time as momentum is diffused by molecular viscosity away from

the boundary.

For the purposes of scaling the equations of motion, it is useful to split the turbulent velocity field

into three components: the velocity field associated with the homogeneous turbulence in the absence

of the boundary,u(H)
i ; the velocity field induced in the source layer,u(S)

i ; and the velocity field induced

in the viscous layer,u(V)
i ; namely

ui = u(H)
i + u(S)

i + u(V)
i , i = 1, 2, 3. (2.1)

According to the description given above, bothu(H)
i andu(S)

i scale asu and vary over the integral

length scalel . The depth of the viscous layer scales asδ(t) and the velocity there varies parallel

to the flat interface over the scalel . The tangential components of the velocity in the viscous layer,

u(V)
i (i = 1 or 2), have magnitudes that are determined from the additional boundary condition at

the interface. Hence for a solid wall the no-slip boundary condition yieldsu(V)
i = O(u) (i = 1 or

2), so that by continuityu(V)
3 = O(uδ/l). And for a free surface the no-stress boundary condition,

∂ui/∂x3 = 0 (i = 1 or 2), yieldsu(V)
i = O(uδ/l), so that by continuityu(V)

3 = O(uδ2/l2). The free

surface evidently leads to a weaker constraint on the turbulence and hence induces smaller velocities

in the viscous layer.

In order to scale the dynamical equations controlling these velocity components, it is helpful to

define two time scales. The first is the time scale for turbulent velocity fluctuations to decorrelate,

TL = l/u, also called lagrangian time scale or eddy turn-over time. The second is the viscous time

scale, which is a measure of the time it takes for the viscous layer to grow to a thicknessδ, and

is defined asTν = δ2/ν, whereν is the kinematic viscosity. Here the initial development of the

turbulence after insertion of the boundary and hence times such thatTν ¿ TL are considered. This

limit can be expressed in terms of the Reynolds number of the turbulence,ReT = ul/ν, and the ratio

of the thickness of the viscous layer to the integral length scale of the turbulence,δ′ = δ/l , to yield

ReTδ′2 ¿ 1. When the boundary is introduced instantaneously at timet = 0, the viscous layer initially

grows asδ ∼ (νt)
1
2 andTν ∼ t; however, it is useful to retain the designationTν in order to emphasise

that the scalings of the viscous layer depend on the thickness of that layer and not explicitly on time.

On substituting the decomposition of the velocity into components (2.1), and on using their scal-

ings described above, it is found that, in the limit thatTν ¿ TL, flow near either a solid boundary or a
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free surface is described by a simplified form of the vorticity equation, namely,

∂ω(V)
i

∂t
= ν

∂2ω(V)
i

∂x2
3

(2.2)

or

∂
∂t

(
∂u(V)

i

∂x3

)
= ν

∂2

∂x2
3

(
∂u(V)

i

∂x3

)
, i = 1, 2, (2.3)

whereω(V) = ∇ × u(V). The tangential vorticity budget is therefore dominated by changes induced

by viscous diffusion. Inviscid processes, such as vortex stretching, are negligibly small in this limit.

Hence the vorticity changes only in the viscous layer, since this layer is by definition the layer of fluid

affected by viscous diffusion. It is also concluded, as did Hunt & Graham (1978), that in the source

layer the vorticity is unaffected by insertion of the boundary and hence perturbations to the velocity

there,u(S)
i , are irrotational and can be described by a velocity potential, such thatu(S)

i = ∂φ(S)/∂xi .

The physical reason for this is that the blocking effect of the boundary is felt instantaneously, whereas

vorticity generated by inviscid nonlinear processes takes a time of orderTL to become important.

Therefore, whent ¿ TL, the velocity perturbationu(S)
i induced by the boundary is essentially ir-

rotational. Since initiallyTν ∼ t, the scalings presented here show that both the appearance of an

irrotational velocity component in the source layer due to blocking by the boundary and tangential

vorticity generation by viscous processes in the viscous layer are more important than vorticity gen-

eration by inviscid processes in the limitTν ¿ TL. Hence, the criteria for both these approximations

turn out to be the same in practice, although the scaling of the viscous layer is based onTν, whereas

the scaling of the source layer is based explicitly on time.

The tangential momentum equation may be scaled in a similar way and, ifTν ¿ TL, it is found to

take the simplified form

∂u(V)
i

∂t
= ν

∂2u(V)
i

∂x2
3

, i = 1, 2, (2.4)

for a solid wall. So, to this approximation, not only does the inviscid part of the flow,u(H)
i + u(S)

i ,

have constant vorticity but it also has constant velocity. Thus,u(H)
i andu(S)

i are approximately steady

compared with the viscous part of the flow,u(V)
i .

The tangential velocity components,u(V)
i (i = 1 or 2), exist inside the viscous layer so that the

boundary condition on tangential velocity is satisfied. These tangential motions vary along the bound-

ary and generate regions of convergence and divergence and hence a normal velocity component, of

orderu(V)
i δ/l (i = 1 or 2), at the outer edge of the viscous layer. These motions slightly modify the
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flow in the source layer. The corresponding corrections are treated by expanding the solutions foru(S)
i

andu(V)
i in power series of the small parameterδ′ = δ/l , for example

u(S)
1 = u(S0)

1 + u(S1)
1 + u(S2)

1 + ..., u(V)
1 = u(V0)

1 + u(V1)
1 + u(V2)

1 + ..., (2.5)

where the powers ofδ′ have been incorporated into the terms of the series. In the following, the series

for u(V)
i (i = 1 or 2) andu(S)

i will be calculated to second order inδ′ in the case of a solid wall and to

third order inδ′ in the case of a free surface. Higher order terms are affected by nonlinear processes

and have been neglected. A detailed justification of this procedure is presented in§2.4.2. The series

expansion of the normal velocity,u(V)
3 , is truncated at one order higher than those of the tangential

components. This is done so that the series conserve mass exactly, which is important to do if the

Reynolds stresses and the dissipation rates are to have the correct behaviour near the boundary. The

price paid is that the solutions have small errors far from the boundary, but these are deemed less

serious, since it is the near-wall region that is of interest here.

2.3 Distortion of a single Fourier component of velocity fluctuation

The model developed in the previous section, based on the diffusion equations (2.4) and (2.3), is now

solved for the cases of a solid wall and a free surface, respectively. Here the modal solutions are

calculated for the Fourier amplitudes of the flow variables. These modal solutions will be integrated

over the spectrum of the turbulence in§2.4.

2.3.1 Solid wall

First of all, the effects of a solid wall will be considered. If the series (2.5) are substituted into the

tangential momentum equation, then, to the 3 lowest orders inδ′, the equation for velocity in the

viscous layer becomes

∂u(V j)
i

∂t
= ν

∂2u(V j)
i

∂x2
3

, (2.6)

wherei = 1 or 2 and j = 0, 1 or 2. Mass conservation then determines the normal component of

velocity.

In the source layer, where as argued aboveu(S)
i = ∂φ(S)/∂xi , mass conservation requires that the
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velocity potentialφ(S) satisfies the Laplace equation, which means that forj = 0, 1 or 2

∇2φ(S j) = 0. (2.7)

The boundary conditions are as follows. The flow tends to the original homogeneous turbulence,

u(H)
i , far below the boundary. Hence bothφ(S j) andu(V j)

i tend to zero far below the boundary. The

normal and tangential velocity components vanish at the boundary. Finally, the initial condition states

that the initial vorticity equals the vorticity in the homogeneous turbulence. Henceu(V)
i vanishes

everywhere att = 0+.

These equations are solved, following Hunt & Graham (1978), by noting firstly that the homoge-

neous turbulent velocityu(H)
i may be expressed as a superposition of Fourier modes,

u(H)
i (x) =

ZZZ
û(H)

i (k) eik·xdk1dk2dk3, i = 1, 2, 3, (2.8)

whereû(H)
i (k) is the Fourier amplitude andk = (k1, k2, k3) is the wavenumber vector. Note secondly

that, due to the geometry of the problem,u(V)
i and u(S)

i (and hence alsoφ(S)) are homogeneous in

the directions tangential to the boundary, and so they can equally be expressed as a superposition of

Fourier modes along those directions:

φ(S)(x, t) =
ZZ

φ̂(S)(k1, k2, x3, t) ei(k1x1+k2x2)dk1dk2

u(V)
i (x, t) =

ZZ
û(V)

i (k1, k2, x3, t) ei(k1x1+k2x2)dk1dk2. (2.9)

Hence, since the equations are linear, the response of one Fourier mode only needs to be considered.

The solution for the Fourier amplitude of the velocity potential in the source layer obtained by

solving (2.7) is found to be

φ̂(S) = −
Z û(H)

3

k12

[
1− δ

π1/2
(ik3 − k12)

(
1 +

δk12

π1/2

)]
ek12x3dk3, (2.10)

wherek12 = (k2
1 + k2

2)
1
2 , and which is correct up to second order inδ′. The zeroth-order part of (2.10)

is the well-known inviscid solution of Hunt & Graham (1978); the corrections ofO(δ′) andO(δ′2) are

new. The components ofu(S)
i are easily calculated from the potentialφ(S).

The viscous solution may be found by solving (2.6) subject to the boundary and initial conditions.
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The Fourier amplitude of the tangential velocity is

û(V)
i = −

Z {
û(H)

i − iki

k12
û(H)

3

[
1− δ

π1/2
(ik3 − k12)

(
1 +

δk12

π1/2

)]}[
erf

(x3

δ

)
+ 1

]
dk3, (2.11)

wherei = 1 or 2 andδ = 2(νt)
1
2 . The corresponding Fourier amplitude of the normal velocity is

û(V)
3 = −

Z
δû(H)

3 (ik3 − k12)
{(

1 +
δk12

π1/2
+

δ2k2
12

π

) [x3

δ

(
erf

(x3

δ

)
+ 1

)

+
1

π1/2
e−x2

3/δ2
]
− δ2k2

12

π3/2

}
dk3. (2.12)

2.3.2 Free surface

The solutions are now calculated for turbulence near a free surface. If in the viscous layer the series

(2.5) are substituted into (2.3) then forj = 0, 1, 2 or 3 the tangential velocity components satisfy

∂
∂t

∂u(V j)
i

∂x3
= ν

∂2

∂x2
3

∂u(V j)
i

∂x3
, (2.13)

wherei = 1 or 2, and, as for the solid wall, the vertical velocity component is obtained from continuity.

In the source layer the velocity potential satisfies the Laplace equation (2.7) as for a solid wall.

The boundary conditions ensure that the turbulent velocity tends to the homogeneous turbulence

far below the boundary, and that at the boundary,x3 = 0, the normal velocity component and the

normal derivative of the tangential velocity components (and hence also the tangential stress) vanish.

The solution for the Fourier amplitude of the velocity potential in the source layer, correct to third

order inδ′, is found to be

φ̂(S) = −
Z û(H)

3

k12

(
1 +

δ2k2

4

)
ek12x3dk3. (2.14)

Again, the zeroth-order part of (2.14) is the well-known inviscid solution of Hunt & Graham (1978)

and is identical to the solution calculated for a solid wall. The corrections, which arise due to vertical

motions induced in the viscous layer, are new and are different from the corrections toφ̂(S) obtained

for a solid wall because the solutions in the viscous layer are different. The velocity in the source layer

is easily calculated from the velocity potentialφ(S).
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The viscous solution for the amplitude of the tangential velocity is

û(V)
i = −

Z
δ
[
ik3û(H)

i − iki û
(H)
3

(
1 +

δ2k2

4

)][
x3

δ

(
erf

(x3

δ

)
+ 1

)
+

1

π1/2
e−x2

3/δ2
]

dk3, (2.15)

wherei = 1 or 2. The corresponding amplitude of the normal velocity is

û(V)
3 =

Z
δ2k2û(H)

3

{(
1 +

δ2k2
12

4

)[
x2

3

2δ2

(
erf

(x3

δ

)
+ 1

)
+

x3

2π1/2δ
e−x2

3/δ2

+
1
4

(
erf

(x3

δ

)
+ 1

)]
− δ2k2

12

16

}
dk3. (2.16)

The differences between the solutions for a solid wall and a free surface will be illustrated later when

statistics of the flow have been calculated.

2.4 Integration of Fourier amplitudes to obtain statistics

In §2.3, solutions were found for how the Fourier amplitudes of the flow variables respond to the

presence of the boundary. These modal solutions are now integrated over a spectrum of wavenumbers

in order to understand the response of turbulence consisting of fluctuations on a wide range of scales.

In this way the turbulence near the boundary is related to the spectrum of the undistorted turbulence

far from the boundary. Firstly, to validate the RDT method used here, profiles of the Reynolds stresses

are calculated and compared with the profiles that Perot & Moin (1993, 1995a) obtained by DNS.

Then rates of turbulence dissipation are calculated using the model, which have not been calculated

hitherto with RDT. Finally, these results are compared with the dissipation rates computed by Perot &

Moin (1993, 1995b).

Statistics of the distorted turbulence are related to statistics of the undistorted turbulence far from

the boundary using the framework developed by Hunt (1973). The solution for a single mode of the

velocity fluctuation is given by the distorted Fourier amplitudeûi(k1, k2, x3, t), which is related to the

complete velocity fieldui(x, t) by

ui(x, t) =
ZZ

ûi(k1, k2, x3, t) ei(k1x1+k2x2)dk1dk2. (2.17)

Since the RDT model is linear, the distorted Fourier amplitude is linearly related to the Fourier ampli-

tude of the undistorted turbulence,û(H)
i , and so can be written

ûi(k1, k2, x3, t) =
Z

Mik(k, x3, t) û(H)
k (k)dk3. (2.18)
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The matrixMik is extracted from the solutions calculated in§2.3 and is listed in the appendix (§2.7).

Statistics of the flow are then calculated on recalling that the Fourier amplitude of the undistorted

turbulence is related to the three-dimensional wavenumber spectrum,Φ(H)
i j , by

û(H)
i (k)û(H)

j (k′) = Φ(H)
i j (k)δ(k− k′), (2.19)

where the overbar denotes ensemble averaging.

Using (2.17), (2.18) and (2.19), the Reynolds stresses can then be written

u2
i (x3, t) =

ZZZ
M∗

ikMil Φ
(H)
kl dk1dk2dk3, (2.20)

where i = 1, 2 or 3. The diagonal elements of the Reynolds stress tensor (the velocity variances)

are the only non-zero components for the initially isotropic shear-free turbulence treated here. Ac-

cordingly, in the dissipation tensor, only the diagonal components are non-zero. They are defined

by

εii (x3, t) = 2ν

[(
∂ui

∂x1

)2

+
(

∂ui

∂x2

)2

+
(

∂ui

∂x3

)2
]

, (2.21)

wherei = 1, 2 or 3. The variances of velocity derivatives along the boundary are calculated from the

undistorted turbulence by

(
∂ui

∂x j

)2

=
ZZZ

k2
j M

∗
ikMil Φ

(H)
kl dk1dk2dk3, (2.22)

wherei = 1, 2 or 3 andj = 1 or 2. The variances of derivatives normal to the boundary are calculated

from the undistorted turbulence by

(
∂ui

∂x3

)2

=
ZZZ ∂M∗

ik

∂x3

∂Mil

∂x3
Φ(H)

kl dk1dk2dk3. (2.23)

Thus, the Reynolds stresses and the components of the dissipation rate tensor are calculated from the

spectrum of the undistorted turbulence.

In order to proceed further, recall that the undistorted turbulence far from the boundary is supposed

to be homogeneous and isotropic. The three-dimensional velocity spectrum is then related to the

energy spectrumE(k) by

Φ(H)
i j =

(
δi j − kik j

k2

)
E(k)
4πk2 , (2.24)
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where the energy spectrum is defined by

1
2

(
u(H)2

1 + u(H)2
2 + u(H)2

3

)
=
Z ∞

0
E(k)dk. (2.25)

Once the form of the energy spectrum is specified, (2.20) and (2.21) can be evaluated to give profiles

of the Reynolds stresses and the dissipation rates. The model for the energy spectrum is considered

next.

2.4.1 The model for the energy spectrum

In their inviscid RDT calculations, Hunt & Graham (1978) used the von Kármán form of the energy

spectrum

E(k) = u2l
g2(kl)4

(g1 + (kl)2)17/6
, (2.26)

whereg1 andg2 are dimensionless constants. This form has an inertial subrange (where the spectrum

decays ask−5/3) that extends tok → ∞, corresponding to infinite Reynolds number. This spectrum is

appropriate for calculating quantities that receive their greatest contribution from the energy containing

part of the spectrum, such as the Reynolds stresses, but it is not appropriate for calculating quantities

that receive a significant contribution from the high wavenumbers, such as the dissipation rate. In fact,

because the von Ḱarmán spectrum does not have a viscous cut off at high wavenumbers, the integrals

that give the dissipation rate, (2.22) and (2.23), diverge. Hence, here it is necessary to use a form for

the energy spectrum that accounts for the viscous processes at high wavenumbers.

According to Tennekes & Lumley (1972, p.269), for large Reynolds number the energy spectrum

at high wavenumbers takes the form

E(k) ∼ αkε2/3k−5/3 exp

[
−3

2
αk(kη)4/3

]
, (2.27)

whereαk is a constant approximately equal to1.5 and the Kolmogorov microscale,η, is given by

η =
(

ν3

ε

)1/4

, (2.28)

whereε = 1/2(ε11 + ε22 + ε33) is the isotropic dissipation rate in the homogeneous turbulence.
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Hence, an obvious extension of (2.26) for finite Reynolds numbers is

E(k) = u2l
g2(kl)4

(g1 + (kl)2)17/6
exp

[
−3

2
αk(kη)4/3

]
. (2.29)

This form must be made to satisfy 3 constraints in order to become completely defined. The first

constraint results from the definition of root mean square velocity,u2 = u(H)2
i , with i = 1, 2 or 3. Since

the total kinetic energy of the homogeneous turbulence is given by the integral over all wavenumbers

of E(k) (see (2.25)), then Z ∞

0
E(k)dk =

3
2

u2. (2.30)

The second constraint is that the length scalel in (2.29) is defined as the longitudinal integral length

scale, so that

l =
R ∞

0 u(H)
1 (x1, x2, x3)u

(H)
1 (x1 + r, x2, x3)dr

u(H)2
1

=
3π
4

R ∞
0 k−1E(k)dkR ∞

0 E(k)dk
. (2.31)

The third constraint is given by the definition of viscous dissipation in homogeneous isotropic turbu-

lence, namely

ε = 2ν
Z ∞

0
k2E(k)dk. (2.32)

If these constraints are cast into dimensionless form they can be used to determine the unknown

coefficients in (2.29).

If the dimensionless wavenumber is defined ask′ = kl then equation (2.28) shows thatη/l is

η
l

= Re−3/4
T

(
εl
u3

)−1/4

= Re−3/4
T ε′−1/4. (2.33)

whereε′ is the dimensionless dissipation rate. The dimensionless energy spectrum, defined asE′(k′) =

E(k)/(u2l), is then

E′(k′) =
g2k′4

(g1 + k′2)17/6
exp

[
−3

2
αkRe−1

T ε′−1/3k′4/3
]
. (2.34)

The three constraints (2.30), (2.31) and (2.32) then take the dimensionless formZ ∞

0
E′(k′)dk′ =

3
2
,
Z ∞

0
k′−1E′(k′)dk′ =

2
π
,
Z ∞

0
k′2E′(k′)dk′ =

1
2

ReT ε′. (2.35)
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Figure 2.1 Dimensionless energy spectrum as a function of the dimensionless wavenumber, atReT = 70. Solid line,

complete spectrum (2.34); dash-dotted line, truncated von Kármán spectrum (2.36).

Hence, for a given value ofαk and a given Reynolds number, the dimensionless spectrum (2.34)

contains 3 unknown parameters:g1, g2 and ε′, which can be determined uniquely by solving the

implicit equation set (2.35).

The numerical evaluation of the integrals that determine the dissipation rate is made simpler if this

form of the spectrum (2.34) is approximated by truncating at a finite wavenumber,kmax, namely

E′(k′) =
g2k′4

(g1 + k′2)17/6
if k′ ≤ k′max

E′(k′) = 0 if k′ > k′max. (2.36)

wherek′max = kmaxl is the dimensionless cutoff wavenumber. Herek′max is determined by requiring that

the dimensionless dissipation rate is correct. In the limit of highReT the high wavenumbers dominate

the dissipation rate, hence the full spectrum (2.34) givesZ ∞

0
k′2E′(k′)dk′ ≈

Z ∞

0
g2k′1/3 exp

[
−3

2
αkRe−1

T ε′−1/3k′4/3
]
dk′ =

g2

2αk
ReT ε′1/3. (2.37)

whereas the truncated spectrum givesZ k′max

0
k′2E′(k′)dk′ ≈

Z k′max

0
g2k′1/3dk′ =

3
4

g2k′4/3
max. (2.38)

So, in this regime, the cutoff wavenumber is obtained by comparing (2.38) and (2.37):

k′max =
(

2
3αk

)3/4

ε′1/4Re3/4
T . (2.39)
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Figure 2.2 Variation of the dimensionless dissipation with the Reynolds number. Solid line, theory using the truncated

spectrum (2.36) andαk = 1.5; dotted line, theory using the complete spectrum (2.34) andαk = 2; squares, data of Jiḿenez

et al. (1993); diamonds, data of Wanget al. (1996).

This procedure yieldskmaxη = [2/(3αk)]3/4 ≈ 0.54, as found by Tennekes and Lumley. Hencekmax

is of order1/η.

Figure 2.1 shows plots of the dimensionless profiles of the truncated spectrum (2.36) and full

spectrum (2.34) forReT = 70 andαk = 1.5. Figure 2.2 displays the dependence of dimensionless

dissipation on the Reynolds number for the complete spectrum and the truncated spectrum, together

with values computed with DNS by Jiḿenezet al. (1993) and Wanget al. (1996). In the complete

spectrum,αk = 2 (chosen so as to optimise the fit), whereas in the truncated spectrum,αk = 1.5,

as suggested by Tennekes and Lumley (1972). While it is clear that the complete spectrum gives

an excellent fit to the data, the truncated spectrum also reproduces the general trend quite well for

ReT > 70. In what follows, all calculations will be performed using the truncated spectrum (with

αk = 1.5), because this considerably shortens the time required for numerical integration.

2.4.2 Validity of the model

There are two conditions that must be satisfied if the current model is to be valid. Firstly, nonlinear

processes in the turbulence have to be negligible compared with the diffusive growth of the viscous

layer. As shown in§2.2, this condition is met providedReT δ′2 ¿ 1. Secondly, the small effect

of viscosity was included by treating it as a small perturbation to the inviscid processes. Hence the

velocity components were expanded as series in (2.5), and these series were truncated after the first

three terms. Now, when statistics are calculated from the modal solutions for velocity, the magnitude

of the neglected terms depends on the distribution of energy within the spectrum. Hence, the condition
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required for these truncated expansions to be valid will now be determined.

The solution forMik given in the appendix (§2.7), which is in the form of a power series inδ,

together with the expression for the Reynolds stresses (2.20) show that, for example, the streamwise

Reynolds stress is also a series inδ, namely

u2
1 =

Z ∞

0
f0(k, x3)E(k)dk + δ

Z ∞

0
f1(k, x3)E(k)dk + δ2

Z ∞

0
f2(k, x3)E(k)dk + ..., (2.40)

where the functionsfn(k, x3) = O(kn). The peak of the spectrum dominates in the first integral of

(2.40), which is therefore independent ofkmax, but the high-wavenumber tail of the spectrum domi-

nates the second and third integrals. Having in mind thatE(k) ∝ k−5/3 at high wavenumbers, these

integrals can be estimated to scale asZ kmax

0
f0(k, x3)E(k)dk = O

(
u2)Z kmax

0
f1(k, x3)E(k)dk = O

(
u2l−2/3

Z kmax

0
kk−5/3dk

)
= O

(
u2l−2/3k1/3

max

)

Z kmax

0
f2(k, x3)E(k)dk = O

(
u2l−2/3

Z kmax

0
k2k−5/3dk

)
= O

(
u2l−2/3k4/3

max

)
. (2.41)

And the series expansion for the Reynolds stress becomes

u2
1/u2 = b0 + b1k′1/3

maxδ′ + b2k′4/3
maxδ′2 + ..., (2.42)

where the coefficientsbn = O(1). This expansion is asymptotic provided

k′maxδ
′ ¿ 1. (2.43)

This condition arises physically from the treatment of the viscous layer as a thin boundary layer, i.e.

the assumption that variations across the viscous layer, normal to the surface, are much more rapid

than variations along the boundary layer, parallel to the surface. The smallest-scale variations in the

source layer just outside the viscous layer are determined by the smallest scale in the turbulence,

namelyη ∼ k−1
max. Hence this boundary layer approximation is valid only when these smallest scales

are much larger than the thickness of the viscous layer.

Since the viscous layer grows initially with time asδ = 2(νt)
1
2 , this condition (2.43) together with

the definitions ofδ′ = δ/l andk′max given in (2.39), give a condition on time, namely

ut
l
¿ CRe−1/2

T (2.44)
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whereC = 1/4(3αk/2)3/2ε′−1/2 ≈ 1 for αk = 1.5. Hence for very large Reynolds numbers, when the

turbulence has very small scales, the model developed here for the dissipation is valid for only short

times. Such a dependence on the Reynolds number in the comparisons between the model and the

DNS has indeed been detected.

If the scaling analysis is carried out again for the velocity fluctuations taking into account the

dependence of their magnitude on the spectrum, as implied by (2.42), then it is found that the terms

retained in the expansions for the velocity fluctuations are larger than the nonlinear terms that were

neglected providedTν ¿ TL, i.e. thatt ¿ l/u. This is the conventional requirement for the validity

of RDT: in the present flow, the particular form of the spectrum apparently does not affect the form of

this approximation.

2.4.3 Truncation errors

Finally, before showing results from the model, a practical aspect of implementing the current solu-

tions in calculating statistics of the turbulence near the boundary should be noted.

The Reynolds stresses are the square of velocity. So, if the power-series solutions for the velocity

are multiplied together, then the highest order terms in this product series, which correspond to the

products of the highest order terms of the velocity series, are of higher order than the truncation error.

Hence these higher-order terms might be considered negligible. However, the original expansions for

the velocity satisfy the boundary conditions atx3 = 0 exactly. Hence, if the high-order products are

neglected, then the resulting statistics become unreliable very close to the boundary. The truncated

and the non-truncated expressions both have the same formal accuracy, since they differ from each

other only by terms of the order the truncation error. Therefore, the full products are prefered here as

they preserve the exact boundary conditions atx3 = 0, and they are adopted everywhere hereafter.

2.5 Results and discussion

In this section, theoretical results obtained with the model developed in the preceding sections will

be compared with the DNS data presented in Perot & Moin (1993) (hereafter referred to as PM93)

and Perot & Moin (1995a, 1995b) (hereafter referred to as PM95a and PM95b, respectively). Two

important preliminary considerations must be made before carrying out such a task.

Firstly, the turbulence length and velocity scales defined by these authors are different from those

used in this chapter until now, and have to be related before any comparison is possible. Perot & Moin

normalise their data by defining a velocity scale,u∗, and length scale,l∗, based on the values of the
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turbulent kinetic energyK and dissipation rateε far from the boundary, i.e.

u∗ = K1/2, l∗ =
K3/2

ε
. (2.45)

They then define a Reynolds number in terms ofl∗ andu∗:

Re∗T =
u∗l∗

ν
=

K2

εν
. (2.46)

Noting that the kinetic energy is defined in the present chapter asK = (3/2)u2, the two sets of length

and velocity scales and Reynolds numbers are found to be related by

u∗ =
(

3
2

)1/2

u, l∗ =
(

3
2

)3/2

ε′−1l , Re∗T =
9
4

ε′−1ReT . (2.47)

Secondly, the flow computed by Perot & Moin is unforced and so the turbulence decays with time.

This decay changes some aspects of the flow, although the main features are the same as if the turbu-

lence were stationary, particularly for short times. In the current model, stationary and homogeneous

turbulence away from the boundary is assumed. Comparison with data obtained where the turbulence

decays might be thought to introduce a new limitation on the time interval over which the model is

valid. This is not so, however. Viscous decay of energy in the bulk of the flow is just a manifestation

of viscous diffusion of momentum or vorticity in the turbulence far from the boundary, a physical

process which was shown to be negligible at early times in the scalings of§2.2.

PM93 used Reynolds numbers ofRe∗T = 54, 134 and 374 in their numerical simulations of a solid

wall and 6.2, 54 and 134 in their simulations of a free surface. The value ofRe∗T = 6.2 is manifestly

too low for the concept of a viscous cutoff to work properly (see§2.4.1), and hence this case is not

considered here. In terms of the velocity and length scales defined by (2.45), the condition (2.44) for

the validity of the analysis of the viscous layer takes the form

u∗t
l∗
¿ 1

4

(
3αk

2

)3/2

Re∗−1/2
T . (2.48)

For Reynolds numbers of 54, 134 and 374 this condition requires thatu∗t/l∗ is smaller than 0.11, 0.07

and 0.04 respectively. Much of the DNS data presented in PM93, PM95a and PM95b are for times

when dissipation and nonlinear processes have become important in the dynamics of the turbulence,

and the earliest time that Perot & Moin show results of isu∗t/l∗ = 0.1. Therefore comparisons with

the theory are made atu∗t/l∗ = 0.1 for the cases whenRe∗T = 54 andRe∗T = 134. Some qualitative

comparisons will be made for later times in§2.5.3.
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Figure 2.3 Reynolds stress profiles near a solid wall atu∗t/l ∗ = 0.1. Solid line, viscous theory; dashed line, inviscid

theory; dotted line, DNS data. (a) tangential component,Re∗T = 54; (b) tangential component,Re∗T = 134; (c) normal

component,Re∗T = 54; (d) normal component,Re∗T = 134.

2.5.1 Profiles of the Reynolds stresses

Figure 2.3 presents profiles of the Reynolds stress for a solid wall and figure 2.4 profiles for a free

surface, at a dimensionless time ofu∗t/l∗ = 0.1 and at Reynolds numbers of 54 and 134. The DNS

data presented in figure 2.3 were taken from figures 15(a, b), 17(a, b) of PM95a and those presented in

figure 2.4 were taken from figures 9(a, b), 12(a, b) of PM95a. The results from the DNS are compared

with the current model accounting for the viscous layer, called here theviscous theory, and with

inviscid model results, which are obtained from the present model when the viscous layer is ignored

(i.e. δ′ = 0), called here theinviscid theory.

Figures 2.3(a, b) show profiles of the tangential Reynolds stress,u2
i (i = 1 or 2), near a solid wall

for Re∗T = 54, 134. The general shape of the DNS curves, as well as the location of their maxima,
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Figure 2.4 Reynolds stress profiles near a free surface atu∗t/l ∗ = 0.1. Solid line, viscous theory; dashed line, inviscid

theory; dotted line, DNS data. (a) tangential component,Re∗T = 54; (b) tangential component,Re∗T = 134; (c) normal

component,Re∗T = 54; (d) normal component,Re∗T = 134.

are well reproduced by the viscous theory. ForRe∗T = 134 the profile from the viscous theory is in

excellent agreement with data, while forRe∗T = 54the theory gives slightly lower values, although the

general agreement remains good. In the inviscid theory the stresses increase monotonically towards

the boundary, however the viscous processes arrest this increase and lead to a reduction of the stresses,

varying approximately as an error function, so that they are zero actually at the surface. Hence there

is a maximum in the tangential Reynolds stress at the thickness of the viscous layer, namely|x3| ≈
3(νt)

1
2 . The maximum value obtained from the model is slightly larger for the larger Reynolds number

because, for a given time, the larger the Reynolds number, the thinner the viscous layer. The DNS

profiles shown in figures 15(a–c) of PM95a show a maximum that increases betweenRe∗T = 134 to

Re∗T = 374, in agreement with this argument. However, in going fromRe∗T = 54 to Re∗T = 134 the

maximum in the DNS profiles actually decreases. This behaviour might be attributed to an imperfect

ensemble average for the case ofRe∗T = 54.
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Figures 2.3(c, d) show profiles of the normal Reynolds stress,u2
3, near a solid wall. In this case,

the magnitude and general behaviour of theory and data agree very well, particularly in figure 2.3(d),

but it is also true that viscous and inviscid theory differ much less. The small differences between the

theory and the DNS data in figure 2.3(c) are attributed to an imperfect ensemble averaging, since they

are due to a lack of smoothness in the DNS curve. The curve from the viscous theory captures quite

well the viscous behaviour in the region immediately adjacent to the boundary, whereu2
3 ∝ x4

3 due to

the no-slip boundary condition.

Figures 2.4(a, b) present profiles of the tangential Reynolds stress near a free surface. For the same

reason as in figures 2.3(a, b), the quantitative agreement between theory and data is considerably better

for a Reynolds number of 134 than for a Reynolds number of 54 (although not as good as in figure

2.3(b)). As the Reynolds number increases, the viscous model shows a slight increase in the maximum

value of the stress, which lies at the free surface. The model shows that this happens because the

viscous layer becomes thinner. Surprisingly, the DNS data shows the opposite trend. The enforcement

of the boundary condition∂u2
i /∂x3 = 0 (i = 1 or 2) is evident in the viscous theory profiles, and this

is clearly an improvement upon the inviscid theory result.

Figures 2.4(c, d) show profiles of the normal Reynolds stress near a free surface. Apart from the

anomalous behaviour of the DNS data between approximately|x3|/l∗ = 0.5 and|x3|/l∗ = 2, which

again may be attributed to an imperfect ensemble averaging, the theoretical and DNS profiles are in

very good agreement. The shape of the viscous theory profile is now even closer to inviscid theory,

because the effect of the viscous layer on normal velocity is very weak.

2.5.2 Profiles of the turbulence dissipation rate

Figures 2.5 and 2.6 present profiles of the turbulence dissipation rate for a solid wall and for a free sur-

face, respectively. In both figures, the dimensionless time isu∗t/l∗ = 0.1 and the Reynolds numbers

are 54 and 134. The DNS data presented in figure 2.5 were taken from figures 3.3.9, 3.3.10, 3.3.18

and 3.3.19 of PM93 and those presented in figure 2.6 were taken from figures 3.2.10, 3.2.11, 3.2.21

and 3.2.22 of PM93.

Figures 2.5(a, b) show profiles of the rate of dissipation of tangential Reynolds stress, normalised

by their value far from the boundary. The agreement of the viscous theory profiles with the DNS data

is very good. Even in the viscous layer adjacent to the boundary, where the profiles display large

variations because the velocity gradients are large there, the theoretical values show good agreement

with the DNS. The inviscid theory, of course, completely fails to model dissipation correctly in this

region, giving values which are much lower than observed.

Figures 2.5(c, d) present profiles of dissipation of normal Reynolds stress near a solid wall. The
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Figure 2.5 Dissipation rate profiles near a solid wall atu∗t/l ∗ = 0.1. Solid line, viscous theory; dashed line, inviscid the-

ory; circles, DNS data. (a) tangential component,Re∗T = 54; (b) tangential component,Re∗T = 134; (c) normal component,

Re∗T = 54; (d) normal component,Re∗T = 134.

agreement of the viscous theory with the DNS data is good, although dissipation given by the model

is slightly smaller in an intermediate region between the boundary and the far-field. Curiously, in this

region, the inviscid theory gives a better approximation to the data, particularly in figure 2.5(c) but, as

would be expected, the inviscid theory behaves much worse than the viscous theory inside the viscous

layer, where the dissipation decreases to zero towards the boundary.

Figures 2.6(a, b) show profiles of the tangential dissipation rate near a free surface. The agreement

of the viscous theory and DNS data is good, although there is an overestimation of the maximum

in dissipation forRe∗T = 54 and a slight overestimation of the viscous layer thickness forRe∗T =

134. Nevertheless, it is clear that the profiles of the viscous theory are much better than those of

the inviscid theory and there are also signs that the ensemble averaging of the DNS data may not

have been perfectly stable. The important finding here, which has implications for the evolution of
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Figure 2.6 Dissipation rate profiles near a free surface atu∗t/l ∗ = 0.1. Solid line, viscous theory; dashed line, inviscid the-

ory; circles, DNS data. (a) tangential component,Re∗T = 54; (b) tangential component,Re∗T = 134; (c) normal component,

Re∗T = 54; (d) normal component,Re∗T = 134.

the tangential Reynolds stress, is that dissipation attains an absolute minimum exactly at the boundary.

This contributes towards an intensification of the turbulence at the free surface, a phenomenon noted by

Hunt (1984a), PM95a and Walkeret al. (1996). Using an inviscid model, Hunt (1984a) attributed this

phenomenon to the distortion of vorticity by the upwelling zones that exist near the boundary. PM95a

subsequently suggested that this effect is linked with the pressure-strain terms in the turbulent kinetic

energy budget near the boundary. While this physical process surely exists, the present model supports

the idea (put forward by PM95a) that the main factor enhancing the tangential Reynolds stresses at

short times is the minimum in tangential dissipation at the boundary: the pressure is intrinsically

nonlinear and so scaling arguments of§2.2 show that it is negligible at short times.

Figures 2.6(c, d) present profiles of the normal dissipation rate near a free surface. The agreement

of viscous theory with DNS data is very good, particularly forRe∗T = 134. Again, a very substantial
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improvement in the results is achieved inside the viscous layer by the viscous theory, as compared

with inviscid theory. In this layer, dissipation is considerably reduced, but not as much as near a solid

wall, and attains a finite value at the free surface.

In all the cases analysed above, the behaviour of the turbulence dissipation profiles can be related

to the behaviour of the corresponding Reynolds stresses. Basically, dissipation is high in the regions

where the velocity gradients are also high. For example, in the viscous layer of a solid wall, the

high tangential dissipation results from the steep gradients in the tangential Reynolds stress which

are required to satisfy the no-slip boundary condition. The fact that normal dissipation is zero at the

boundary can be explained using mass conservation and the no-slip boundary condition: since the

tangential velocityui (i = 1 or 2) is zero at the boundary, its tangential derivatives are zero, hence

by continuity, the normal gradient of the normal velocity is zero. Since the tangential gradients of

the normal velocity are also zero, because the boundary is flat, the normal dissipation has to be zero

according to (2.21) withi = 3.

In the viscous layer of a free surface, the reduced tangential dissipation is attributed to the no-

stress boundary condition, which imposes a zero normal gradient of the tangential Reynolds stress at

the boundary. The dissipation is not zero at the boundary because there are still tangential gradients of

the tangential velocity. The normal component of dissipation, on the other hand, is finite and non-zero

at the boundary because the no-stress boundary condition permits the existence of normal gradients of

the normal velocity component.

A striking aspect of these comparisons is the success of the RDT model in predicting turbulence

dissipation – a process usually associated with the smallest scales of the turbulence. RDT is justified

by a time-scale analysis based on the energy-containing eddies, and so is expected to fail for small-

scale eddies which evolve on a shorter time scale (Batchelor & Proudman, 1954). However, in the

bounded flows studied here, dissipation near the boundary is dominated by the large gradients of the

velocities associated with the energy-containing eddies in the viscous layer. The small-scale eddies are

of secondary importance in determining the dissipation rate inside the viscous layer. This may explain

in part why the normal dissipation rate profiles in figures 2.5(c, d) agree less well with the DNS data

in an intermediate region between the viscous layer and the far-field. In that region, dissipation has

not yet reached its far-field value, but the large-scale velocity has already much weaker gradients, so

the velocity gradients of the smaller scales have an increased importance and, as a consequence, RDT

is less accurate. In the viscous layer, the role of the smallest scales in the turbulence is primarily that

of limiting the magnitude of dissipation through the viscous cutoff wavenumberkmax, but these small

scales are relatively unimportant for determining the actual shape of the dissipation profiles.
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Figure 2.7 Dissipation rate profiles forRe∗T = 134 at various times. Viscous theory at: solid line,u∗t/l ∗ = 0; dotted

line, u∗t/l ∗ = 0.01; dashed line,u∗t/l ∗ = 0.05; long-dashed line,u∗t/l ∗ = 0.1; dash-dotted line,u∗t/l ∗ = 0.15; circles,

DNS data atu∗t/l ∗ = 2. (a) solid wall, tangential component; (b) solid wall, normal component; (c) free surface, tangential

component; (d) free surface, normal component.

2.5.3 Time evolution of dissipation

Figure 2.7 shows profiles of the tangential and normal dissipation rates near a solid wall and a free

surface, for a Reynolds number of 134, at the timesu∗t/l∗ = 0, 0.01, 0.05, 0.1 and 0.15, as calculated

from viscous theory. The DNS data presented in the same figure were taken from figures 2 and 3 of

PM95b, and refer to the much later timeu∗t/l∗ = 2.

The evolution of the theoretical solutions with time can be seen. Att = 0, the dissipation rates

begin by being equal to the dissipation rates calculated from inviscid theory. At the boundary, the

tangential dissipation component is twice its value in the far-field, and the dissipation smoothly decays

to its far-field value as one moves away from the boundary. The normal dissipation has the same value

at the boundary and in the far-field, with a minimum in between located at about|x3|/l∗ = 0.05.
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As time progresses, the influence of the viscous layer spreads over increasingly larger distances,

and the theoretical profiles come to resemble the DNS profiles much closer, in particular regarding

the location of maxima and minima. The match is not perfect, however, because while the model

gives a reasonable prediction of the thickness of the viscous layer at a model time ofu∗t/l∗ = 0.1 or

u∗t/l∗ = 0.15 (in particular in figures 2.7(b–d)), the DNS curves tend to decay much slower towards

their asymptotic value far from the boundary than the theoretical curves. This behaviour is attributed

here to the additional diffusive effect of the turbulent transport (neglected in the model), which can be

felt far outside the viscous layer.

Near a solid wall, tangential dissipation (figure 2.7(a)) is enhanced inside the viscous layer. As

the viscous layer thickens, the maximum in the dissipation, which occurs at the boundary, is reduced

as the velocity gradients in the viscous layer reduce. A region where dissipation is lower than in

the inviscid profile exists at the edge of the viscous layer. Qualitatively, the DNS profile at the late

time, u∗t/l∗ = 2, displays similar features, as follows. The maximum at the boundary is higher

than would be expected from inviscid theory, consistently with the existence of a viscous boundary

layer. However, the value at the maximum is considerably lower than at early times, and the region of

lowered dissipation noted in the theoretical profiles is more pronounced and spread over a much wider

distance.

The time evolution of the normal dissipation shown in figure 2.7(b) begins with a local maximum

very near the boundary. This maximum is progressively eroded because of the growth of the viscous

layer and the constraint that normal dissipation is zero exactly at the boundary. Nevertheless, a residual

maximum in curvature persists in the theoretical profiles up to the latest time considered, and this

maximum may also be observed in the DNS data. Atu∗t/l∗ = 0.15, the theoretical profile departs

slightly from its correct value far from the boundary, because the truncation error has become too large

due to the power series of the solution becoming nearly non-asymptotic (see§2.4.2).

For a free surface, the tangential dissipation (figure 2.7(c)) begins by having a maximum near the

boundary, and a sharp reduction exactly at the boundary, associated with the no-stress condition. As

time progresses, these features become smoothed. The maximum decreases and moves away from

the boundary and the minimum also decreases slightly, becoming distinctly lower than the dissipa-

tion value far from the boundary. The thickness of the viscous layer, as identified by the dissipation

maximum, is in good agreement with DNS data for a model time ofu∗t/l∗ = 0.15.

The normal dissipation (figure 2.7(d)) initially has a local maximum at the boundary, followed

by a minimum before tending to the far-field value. The maximum is soon eroded as the viscous

layer grows, so that at the latest time considered in the model, dissipation has become approximately

constant in the viscous layer. Again, there is a certain deal of qualitative agreement of the theoretical

profiles atu∗t/l∗ = 0.1 or 0.15with the DNS profile.
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Except for a considerably higher maximum in tangential dissipation at the boundary in the case

of a solid wall, and a generally faster decay of the curves towards their far-field values as one moves

away from the boundary, which it is argued is due to the absence of turbulent transport, the dissipation

profiles presented in figure 2.7 for the viscous theory atu∗t/l∗ = 0.1 or u∗t/l∗ = 0.15 resemble

the profiles obtained from the DNS at the late timeu∗t/l∗ = 2. This happens partly because the

boundary conditions atx3 = 0 are independent of time and also because the viscous layer does not

grow indefinitely, but rather its growth is halted by nonlinear effects whenδ/l ≈ Re−1/2
T (Hunt &

Graham, 1978). The same nonlinear effects are also responsible for the main differences between the

theoretical and DNS profiles, namely the diffusion of relatively sharp features like the minimum in

tangential dissipation in figure 2.7(a).

Nevertheless, the similarities between the RDT and the DNS at late times remain striking, which

suggests the concept of atotal diffusionof the viscous boundary layer, akin to thetotal shearin-

troduced by Townsend (1976), and used more recently by Mann (1994), for matching the results of

RDT and measurements of equilibrium shear-flow turbulence. Qualitatively, equilibrium shear-flow

turbulence and initially isotropic turbulence suddenly distorted by a constant shear are quite different.

In equilibrium turbulence, vorticity tilting and stretching by shear is balanced by turbulent transport

and viscous diffusion. In rapid distortion by shear, the turbulence is non-stationary, and dominated

by vorticity tilting and stretching. Townsend noted that the first kind of turbulence resembled the sec-

ond if, in his rapid-distortion model, the total shear since the beginning of the distortion was chosen

appropriately.

The current model shows that homogeneous decaying turbulence near a solid or free boundary at

relatively long times qualitatively resembles turbulence distorted by the same boundary at a given total

diffusion of the viscous boundary layer. This total diffusion corresponds to a timeTν when the model

breaks down due to the growing relevance of neglected physical processes, such as turbulent transport.

The main effect of these processes seems to be to arrest the fast evolution of the turbulence at an early

distortion stage, changing it only slowly at subsequent times.

2.6 Conclusions

The rapid-distortion model of Hunt & Graham (1978) has been extended to treat the early development

of shear-free turbulence near a suddenly introduced solid wall or free surface, taking full account of

viscous processes, including the dynamics of the viscous boundary layer. The model is linear and

assumes the turbulence to be initially homogeneous and isotropic everywhere, and to remain so far

from the boundary. The turbulent velocity field is expressed as a superposition of Fourier modes and

then statistics of the velocity field are obtained, given the energy spectrum of the turbulence far from
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the boundary. The velocity components induced by the boundary are expanded in power series of a

small parameter, and terms in the series are considered up to the point where they become comparable

with the neglected nonlinear effects. The model is formally valid at short times when (i) the nonlinear

terms in the equations of motion are negligible and (ii) the power series of the solution for the turbulent

velocity are asymptotic. Condition (i), which is well known from other rapid distortion studies, ensures

in this particular case that viscous diffusion dominates over turbulent transport in the dynamics of the

viscous layer. Condition (ii), on the other hand, ensures that the viscous layer can be treated as a thin

boundary layer, and requires it to be much thinner than the smallest scales in the turbulence. The model

makes use of a turbulence spectrum with a viscous cutoff in order to be dynamically consistent. This

spectrum was found to lead to a correct dependence of the dimensionless dissipation on the Reynolds

number, as compared with recent DNS data.

Reynolds stress and turbulence dissipation profiles were then calculated. The model was able

to reproduce the essential observed differences between a solid wall and a free surface. Regarding

dissipation, these differences are: dissipation of the tangential Reynolds stress is enhanced near a solid

wall, while it is reduced near a free surface; dissipation of the normal Reynolds stress tends to zero

near a solid wall, while it is slightly reduced to a non-zero value near a free surface. Results at short

times were seen to be in good quantitative agreement with available DNS data, and also to reproduce

the qualitative features of DNS data (namely the location of maxima and minima in the profiles) at

later times, provided that the time used in the model was appropriately chosen. This suggests that

the structure of the turbulence statistics and their differences for each type of boundary are essentially

determined by the linear dynamics of the viscous boundary layer.

This study clarifies why the inviscid Hunt & Graham theory can be applied, with relative success,

to the prediction of the Reynolds stress profiles near free surfaces at relatively long times (cf. Brumley

and Jirka, 1987; Perot & Moin, 1995a; Walkeret al., 1996). On the one hand, a free surface introduces

a relatively weak viscous correction to the essentially inviscid flow associated with the blocking effect

of the boundary. That correction reduces only slightly the tangential Reynolds stresses at the boundary

so that the boundary condition can be enforced. On the other hand, the tangential dissipation at the free

surface is lower than in the bulk of the flow, as referred above, and this leads to a slow enhancement

over time of the tangential Reynolds stresses which counteracts the reduction associated with the

boundary condition. Because of these two opposing effects, the inviscid solution remains valid for

times longer than expected.

Ultimately, the viscous layer stops growing, and the effect of dissipation supersedes that of the

boundary condition, leading to the tangential Reynolds stresses at the free surface becoming greater

than those predicted from inviscid theory. Alternative explanations for this phenomenon have been

suggested, involving energy transfer from the normal to the tangential velocity components by the

pressure-strain terms in the turbulent kinetic energy equation. These will be discussed in chapter
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3. However, the present model supports the idea, put forward by PM95a, that the minimum in the

dissipation profile at the surface plays a crucial role in this phenomenon, at least at the initial stages,

because pressure is an intrinsically nonlinear quantity which was seen to be negligible at short times.

Turbulence dissipation also has implications for air-water gas transfer. The speed at which gases

are transported across an air-water interface where the water is in turbulent motion is determined by:

how thin the viscous boundary layer is forced to remain by the turbulence and how fast the turbulent

motions replace old fluid near the surface by new fluid (Theofanous, 1984). This surface renewal is

determined by the velocity and length scales of the turbulence, and also by the divergence of the flow

at the surface, particularly at high Reynolds numbers (Hunt, 1984b). Indirectly, the dissipation profile

near a free surface promotes surface renewal by increasing the value of the turbulence velocity scale

there. At the same time, the dissipation rate of the normal Reynolds stress,ε33, is linked with the

surface divergence, through definition (2.21) withi = 3, because atx3 = 0 the tangential derivatives

of the normal velocity are zero and the normal derivative of the vertical velocity can be related, using

continuity, to the horizontal divergence. The normal dissipation rate is thus proportional to the mean-

square surface divergence, and so its behaviour influences surface renewal.

Some more general conclusions are now presented. One of the main findings of this study is that

dissipation near a shear-free boundary is primarily determined by the velocity gradients corresponding

to the rapid variation across the viscous boundary layer of the energy containing eddies. The small

scales in the turbulence were seen to be important mainly for limiting the magnitude of dissipation, but

not for determining the shape of the dissipation profiles. Therefore, the reason why rapid-distortion

theory is in this case appropriate for calculating dissipation is because the boundary introduces a strong

inhomogeneity in the flow.

Another key conclusion is that the shape of the dissipation profiles in turbulence near a solid wall

or a free surface is essentially determined by the linear dynamics of the viscous boundary layer, even at

late times. The effect of nonlinear processes seems to be primarily to arrest the growth of the viscous

boundary layer on the one hand and to slightly diffuse the features in the profiles on the other.

2.7 Appendix. Expressions of the functionsMik

2.7.1 Solid wall

For a solid wall, the functionsMik(k, x3, t) are defined as follows:

Mii = eik3x3 −
[
erf

(x3

δ

)
+ 1

]
, i = 1, 2
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Mi3 = − iki

k12

[
1− δ

π1/2

(
1 +

δk12

π1/2

)
(ik3 − k12)

] [
ek12x3 −

(
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(x3

δ

)
+ 1

)]
,

M33 = eik3x3 − ek12x3 +
δ

π1/2

(
1 +

δk12

π1/2

)
(ik3 − k12)

(
ek12x3 − 1

)

−(ik3 − k12)
(

1 +
δk12

π1/2
+

δ2k2
12

π

)
δ
[

x3

δ

(
erf

(x3

δ

)
+ 1

)
+

1

π1/2

(
e−x2

3/δ2 − 1
)]

.

The remaining elements of theMik matrix are zero.

Using (2.20), the Reynolds stresses may be expressed in terms of the undistorted turbulence spec-

trum Φ(H)
i j and using (2.21), (2.22) and (2.23), the dissipation rates may be expressed in terms of the

undistorted turbulence spectrum.

The resulting expressions may be further simplified by expressing the integrals involved in spheri-

cal polar coordinates and using (2.24). This enables analytical integration in one of the axial variables

and the triple integrals become double integrals. That is the simplest form they can take before nu-

merical evaluation, which is carried out using NAG subroutines.

2.7.2 Free surface

For a free surface, the non-zero components of theMik(k, x3, t) tensor can be written as follows:

Mii = eik3x3 − ik3δ
[

x3

δ

(
erf

(x3

δ

)
+ 1

)
+

1

π1/2
e−x2

3/δ2
]

, i = 1, 2

Mi3 = − iki

k12

(
1 +

δ2k2

4

){
ek12x3 − k12δ

[
x3

δ

(
erf

(x3

δ

)
+ 1

)
+

1

π1/2
e−x2

3/δ2
]}

,

M33 = eik3x3 − ek12x3 +
δ2k2

4

(
1− ek12x3

)
+

(
1 +

δ2k2
12

4

)
δ2k2

×
[

x2
3

2δ2

(
erf

(x3

δ

)
+ 1

)
+

x3

2π1/2δ
e−x2

3/δ2
+

1
4

erf
(x3

δ

)]
.

Again, using (2.20), (2.21), (2.22) and (2.23), the Reynolds stresses and the dissipation rates may

be expressed in terms of the undistorted turbulence spectrumΦ(H)
i j .

The integrals contained in those expressions may then be expressed in spherical polar coordinates

and integrated analytically over one of the axial variables, becoming double integrals, and then evalu-

ated numerically.
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CHAPTER 3

Nonlinear interactions in shear-free turbulence near boundaries

3.1 Introduction

Shear-free turbulence near flat boundaries constitutes a useful first approximation to many naturally

occurring flows, such as convection in weak winds in the atmosphere surface layer (Hunt, 1984a) or

the equivalent situation in the ocean, and turbulence produced by bottom friction that reaches the free

surface, in channels or rivers (Borueet al., 1995). Data on shear-free turbulence near flat boundaries

are mostly available from numerical (Biringen & Reynolds, 1981; Perot & Moin, 1995a, 1995b) and

experimental wind tunnel studies (Thomas & Hancock, 1977; Aronsonet al., 1997), because in these

studies it is easier to control the conditions used in the experiments, hence it is possible to isolate more

effectively the physical processes specific to this kind of turbulence.

As was seen in chapter 2, shear-free turbulence is affected by a flat boundary through blocking and

viscous coupling from very early times. Blocking was treated by introducing an irrotational correction

to the velocity that enables the flow to satisfy the boundary conditionu3 = 0 at x3 = 0. As shown

by Perot & Moin (1995a), this irrotational correction is only strictly valid if the boundary is inserted

instantaneously at the initial time. In numerical simulations, the condition of instantaneous boundary

insertion is easily implemented numerically, and in wind tunnel experiments, the boundary is generally

a moving belt with an upstream edge not far away from the points where measurements are taken. So,

in either case, the turbulence is distorted by the boundary very rapidly, and the initial changes to

the free-stream turbulence must be approximately irrotational. This explains the very good agreement

observed between theory and data at early times (Hunt & Graham, 1978). On the time scale of an eddy

turn-over time or more, the turbulence also evolves due to the nonlinear interactions among eddies of

different sizes and due to dissipation outside the viscous boundary layer. Although the model adopted

in chapter 2 allowed to calculate profiles of the viscous dissipation, and thus to predict the likely future

evolution of the Reynolds stresses, the model dynamics were totally linear, and nothing could be said

about intrinsically nonlinear processes such as those involving pressure.

It was found that the dissipation profile near a free surface displays a minimum at the bound-

ary, promoting a (relative) enhancement of the tangential Reynolds stresses over time in that region,

which brings the value of the turbulent kinetic energy (TKE) to levels above those predicted by the

theory of Hunt & Graham (1978). This enhancement has been observed both in laboratory experi-
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ments (Brumley & Jirka, 1987) and direct numerical simulations (Perot & Moin, 1995a; Walker et

al., 1996). However, a similar increase in the tangential Reynolds stresses has also been found near

solid walls, despite the fact that the dissipation profile has no minimum there. This phenomenon has

been attributed to residual shear or frictional heating in the early measurements of Thomas & Han-

cock (1977), but in a recent paper, Aronsonet al. (1997) have taken particular care to eliminate any

such effect, and they still obtain an enhancement of the tangential Reynolds stresses in the region

immediately outside the viscous boundary layer (see their figure 9). For flows of a relatively large

scale, such as those associated with atmospheric convection (Hunt, 1984a) or large-eddy simulations

(Biringen & Reynolds, 1981), the viscous boundary layer is in fact extremely thin compared with the

integral length scale of the turbulence, and it is evident that the shape of the dissipation profiles or any

other viscous process cannot be responsible for the observed enhancement of the turbulent velocity

fluctuations near the boundary.

Hunt (1984a) has attributed this enhancement to nonlinear processes, namely the vorticity stretch-

ing that occurs in zones where the flow impinges upon the boundary. But he estimated this effect by

adapting the result of a model by Durbin (1981) for the flow at the stagnation point of a sphere. While

this flow resembles to a certain extent the downwelling zones of turbulence in the atmosphere surface

layer, or the upwelling zones of turbulence in the ocean surface layer, the distortion suffered by the

turbulence at the stagnation point is infinite (which is certainly not the case in shear free-turbulence),

and this makes the tangential Reynolds stress diverge at the boundary (see equation (2.20b) of Hunt,

1984a). On the other hand, Hunt’s solution only applies to impinging flow, whereas turbulence near

a boundary contains both upwelling and downwelling zones. Although Hunt argues that zones of im-

pinging flow are more important for turbulence intensification, this has not been shown in practice.

To clarify this issue, an inviscid rapid-distortion (RDT) model is used in this chapter to study the

dynamics of upwelling and downwelling zones in shear-free turbulence near a flat boundary.

Besides helping to understand how turbulence intensifies near the boundary by nonlinear pro-

cesses, the study of upwelling and downwelling zones is also interesting from a fundamental fluid

dynamical point of view, since these zones (called ‘splats’ and ‘anti-splats’ in Perot & Moin, 1995a)

are salient features in turbulent flows near boundaries. While in most experiments or numerical sim-

ulations (e.g. Perot & Moin, 1995a), the profiles of the turbulent statistics are averaged over whole

planes parallel to the boundary and therefore do not distinguish between upwelling and downwelling

zones existing across those planes, it will be seen later that the way in which the turbulent velocity

and pressure fluctuations are affected by these two types of flow is far from symmetrical. This has

important implications for the parameterisation of subgrid-scale terms in models that, for example,

resolve the upwelling/downwelling zones but not the smaller-scale turbulence.

The remainder of this chapter is organised as follows. In§3.2, a simple theoretical model of

turbulence in an upwelling or downwelling zone is developed. In§3.3, model results are presented
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for the time evolution of the Reynolds stresses, and the terms in the TKE budget are evaluated. The

structure of the strain field near the boundary is analysed. In§3.4, the model is modified to account for

the variation of the strain field with distance from the boundary and comparisons with data are carried

out. Finally, in§3.5, the main conclusions are presented.

3.2 Theoretical model

Consider shear-free turbulence beneath a horizontal solid wall atx3 = 0 or a flat free surface (where

the Froude numberFr and the Weber numberWeare sufficiently low that there is not appreciable

surface wave generation). The turbulence consists of large eddies and small eddies. The large eddies

are distorted by the boundary (so as to satisfy the boundary condition) over a distance of the order

of their own size (Hunt & Graham, 1978) and they are longer lived than the small eddies. From the

viewpoint of the small eddies in the turbulence, the large eddies appear near the boundary as flattened

structures often resembling upwelling and downwelling zones, which are roughly axisymmetric (Perot

& Moin, 1995a) and slowly evolving in time.

In this chapter, the situation described above is approximated as follows. The shear-free turbu-

lence is taken as a superposition of a deterministic large-scale flow, which represents the upwelling or

downwelling zones, and a random small-scale flow representing the smaller eddies in the turbulence.

The large-scale flow takes the form of a steady, axisymmetric, irrotational straining flow aligned with

the boundary (cf. Kida & Hunt, 1989). The large-scale velocityUi is defined as

Ui = αixi , i = 1, 2, 3, (3.1)

whereαi are the strain rates. For an axisymmetric straining flow,α1 = α2 = −(1/2)α3 = α. This

is the simplest possible flow possessing the basic characteristics described above for the upwelling or

downwelling zones.

The small-scale flow takes the form of a random and time-evolving velocity field, which is as-

sumed to be statistically homogeneous and isotropic far from the boundary at the initial timet = 0.

Since the large-scale flow (3.1) has a constant strain rate, the small-scale flow remains homogeneous

throughout its distortion.

Assume now that the large-scale flow is characterised by a length scaleL and velocity scaleU =

αL, and that the small-scale flow is characterised by a length scalel and a velocity scaleu. If the

velocity scale and the strain rate of the large-scale flow are much larger than those corresponding to
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the small-scale flow, that is, if

α À u
l
, U À u, (3.2)

the equations of motion may be linearised with respect to the small-scale flow, and the rapid-distortion

approximation is valid.

Assuming additionally that the Reynolds number of the flowRe= UL/ν (whereν is the kinematic

viscosity) is high enough, the vorticity equation takes the linearised and inviscid form

∂ωi

∂t
+ U j

∂ωi

∂x j
= ω j

∂Ui

∂x j
, (3.3)

whereω = ∇× u is the vorticity of the small-scale flow. In the derivation of (3.3), the irrotationality

of the large-scale flow (3.1) was taken into account.

An additional condition is necessary for the rapid-distortion approximation to remain valid. This

results from the fact that nonlinear effects become more important when the degree of anisotropy of

the small-scale flow due to distortion by the large-scale flow is very large. Assuming initially isotropic

small-scale turbulence, this condition places an upper limit on the parameterαt, which ensures that

the turbulence does not become unrealistically anisotropic.

The model is then solved for the small-scale turbulent velocityui and used to estimate the nonlin-

ear interactions in the turbulence, regarded here as the distortion of the small-scales by the straining

flow representing the upwelling or downwelling zone. This is done in the same way as in Kida &

Hunt (1989) and Kevlahan & Hunt (1997), but the blocking effect of the boundary on the small-scale

turbulence is also taken into account.

For the conditions (3.2) to be satisfied, a large separation has to exist between the velocity and the

length scales of the assumed two components of the flow. In real turbulence, there is no clean-cut sep-

aration between the scales of the large and small eddies, since the turbulence spectrum is continuous.

It may be argued, however, that the greatest contributions to the distortion of the small eddies come

from the large eddies satisfying the conditions (3.2). Furthermore, the studies of Kida & Hunt (1989)

and Kevlahan & Hunt (1997) have shown that models using the rapid-distortion approximation yield

results that are useful for a fundamental understanding of the nonlinear interactions in the turbulence.

Obviously, since the upwelling and downwelling zones are treated as uniform straining flows,

this model is only valid near the boundary but not at distances|x3| ≈ L of the order of the size of

the large eddies or greater, because over those distances the strain rate of the flow can no longer be

realistically considered uniform. The aim of the model is to see what features of shear-free turbulence

near boundaries can be attributed simply to the distortion by a large-scale uniform straining flow and
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the blocking effect.

3.2.1 Mathematical formulation

Subject to the conditions specified in the preceding subsection, the RDT model consists of the lin-

earised vorticity equation (3.3), together with the large-scale straining flow (3.1). At sufficiently large

distances from the boundary, the small-scale turbulence is homogeneous in the 3 spatial directions, al-

though it becomes anisotropic due to distortion by the straining flow (Batchelor & Proudman, 1954).

In that region, it is therefore possible to express both the velocity and the vorticity of the small-scale

turbulence,u(H)
i andω(H)

i , as three-dimensional Fourier integrals,

u(H)
i (x, t) =

ZZZ
û(H)

i (k, t)eik·xdk1dk2dk3,

ω(H)
i (x, t) =

ZZZ
ω̂(H)

i (k, t)eik·xdk1dk2dk3, (3.4)

wherek(t) = (k1, k2, k3) is a time-dependent wavenumber vector which takes into account the distor-

tion by the straining flow. Using (3.4), the definition of vorticity yields algebraic equations that relate

the Fourier amplitudes of the small-scale turbulent velocity and vorticity, namely

ω̂(H)
i = εi jk ik j û

(H)
k ⇒ û(H)

i = εi jk i
k j

k2 ω̂(H)
k , (3.5)

wherek = (k2
1 + k2

2 + k2
3)

1
2 is the wavenumber magnitude. Making use of (3.4), the vorticity equation

(3.3) can be expressed in the spectral domain, and is found to be equivalent to a system of two equa-

tions that give the time evolution of the Fourier amplitude of the vorticity, and of the corresponding

wavenumber. When,Ui is defined as in (3.1), these equations take the particularly simple form

dω̂(H)
i

dt
= αiω̂

(H)
i ,

dki

dt
= −αiki , (3.6)

and have the solutions (cf. Kevlahan & Hunt, 1997)

ω̂(H)
i (k, t) = ω̂(H)

i (k0, 0)eαit , ki(t) = k0ie
−αit , (3.7)

where the initial wavenumber vector has been defined ask0i = ki(t = 0). The first equation of (3.7)

can be reformulated in terms of the Fourier amplitudes of the velocity by using (3.5) at the initial and

final times, yielding

û(H)
i (k, t) = −εi jkεklm

k jk0l

k2 eαkt û(H)
m (k0, 0). (3.8)
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This expression relates the small-scale turbulent velocity at the final time to the small-scale turbulent

velocity at the initial time for turbulence distorted by a homogeneous straining flow, exactly as in

Batchelor & Proudman (1954) or Kida & Hunt (1989).

3.2.2 Blocking by the boundary

At distances from the boundary ofO(l) or smaller, the small-scale turbulence is affected not only

by the large-scale upwelling/downwelling flow but also by the boundary itself. Outside the viscous

boundary layer, where the present inviscid model is applicable, the effect of the boundary is primarily

blocking. This is valid for a solid wall (exactly) or for a free surface with very low Froude and

Weber numbers (approximately). In either case, the normal velocity component is forced to decay

to zero towards the boundary. As discussed before, if the boundary insertion can be approximated

as instantaneous, the correction to the velocity field due to blocking is initially irrotational (Hunt &

Graham, 1978). This correction remains approximately irrotational at later times, according to (3.3),

because the time variation of the vorticity of the small-scale turbulence only depends, in that equation,

on the large-scale flow and on the rotational part of the turbulence.

Therefore, in order to account for the boundary, the velocity field corresponding to the small-scale

turbulence is expressed as

ui = u(H)
i +

∂φ(S)

∂xi
, (3.9)

whereφ(S) is the potential of the velocity correction due to blocking, which satisfies

∇2φ(S) = 0 (3.10)

by continuity. Since the boundary is assumed to be atx3 = 0 and the turbulent fluid exists in the

semi-infinite region below (x3 < 0), the velocity potential has to satisfy the boundary conditions

∂φ(S)

∂x3
(x3 = 0) = −u(H)

3 (x3 = 0), φ(S)(x3 → −∞) → 0, (3.11)

which ensure that no fluid passes through the planex3 = 0 and that the blocking effect is not felt far

from the boundary.

The small-scale turbulence is inhomogeneous in the vertical direction due to blocking by the

boundary, but remains homogeneous along the other two directions. The velocity potentialφ(S) and
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the total small-scale turbulent velocityui may thus be expressed as two-dimensional Fourier integrals,

φ(S)(x, t) =
ZZ

φ̂(S)(k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2,

ui(x, t) =
ZZ

ûi(k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2. (3.12)

The first expression may be introduced in (3.10), which then becomes an ordinary differential equation

and is easily solved, using the boundary conditions (3.11). The solution for the Fourier amplitude of

φ(S) is

φ̂(S)(k1, k2, x3, t) = −
Z û(H)

3 (k, t)
k12

ek12x3dk3, (3.13)

wherek12 = (k2
1 + k2

2)
1
2 . This expression is formally identical to that obtained by Hunt & Graham

(1978), with the difference that̂u(H)
3 andk now depend on time. This happens because the input to

Hunt & Graham’s inviscid model is totally undistorted turbulence, whereas in the present case, the

input is turbulence already distorted by the large-scale straining flow corresponding to the upwelling

or downwelling zone.

Inserting (3.13) into (3.9) and taking into account (3.12), it is found that the Fourier amplitude of

the total small-scale turbulent velocity distorted by the boundary is

ûi(k1, k2, x3, t) =
Z (

û(H)
i (k, t)eik3x3 − û(H)

3 (k, t)i
ki

k12
ek12x3

)
dk3, i = 1, 2,

û3(k1, k2, x3, t) =
Z

û(H)
3 (k, t)

(
eik3x3 − ek12x3

)
dk3. (3.14)

Equation (3.14) shows that the Fourier amplitude of the turbulent velocity in the presence of the

boundary is related to the Fourier amplitude of the turbulent velocity in the absence of (or far from)

the boundary through an expression of the form

ûi(k1, k2, x3, t) =
Z

Bi j (k, x3, t)û
(H)
j (k, t)dk3, (3.15)

where

Bii = eik3x3, Bi3 = −i
ki

k12
ek12x3, i = 1, 2,

B33 = eik3x3 − ek12x3. (3.16)

and the remaining elements of theBi j matrix are zero. On the other hand, (3.8) can also be expressed
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more compactly as

û(H)
i (k, t) = Wi j (k, t)û(H)

j (k0, 0), (3.17)

where

Wim = −εi jkεklm
k jk0l

k2 ek, (3.18)

andek = eαkt is the flow extension along thexk direction. Together, (3.15) and (3.17) imply that the

Fourier amplitude of the distorted small-scale turbulent velocity is related to the Fourier amplitude of

the undistorted turbulence through the product of the matricesBi j andWi j , the first accounting for the

blocking effect of the boundary and the second accounting for the distortion by the large-scale flow,

namely

ûi(k1, k2, t) =
Z

Mik(k, x3, t)û
(H)
k (k, 0)dk3, (3.19)

whereMik = Bi jWjk. This totally defines the solution to the problem, in a form analogous to that used

by Townsend (1980) for unbounded turbulence.

3.2.3 The turbulent pressure fluctuations

The pressure field associated with the turbulent flow already defined can now be derived. In order to do

that, it should be noted that the momentum equation consistent with the linearised vorticity equation

(3.3) is

∂ui

∂t
+ U j

∂ui

∂x j
+ u j

∂Ui

∂x j
= −1

ρ
∂p
∂xi

, (3.20)

whereρ is the density of the turbulent fluid andp is the pressure. Taking the divergence of (3.20)

yields

∇2p = −2ρ
∂Ui

∂x j

∂u j

∂xi
, (3.21)

which shows that, in the linear approximation, the turbulent pressure is determined by the interaction

between the large-scale straining flow and the small-scale turbulence. For the particular flow described

by (3.1), this equation simplifies further to

∇2p = −2ραi
∂ui

∂xi
. (3.22)
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The boundary conditions that are necessary to solve (3.22) state that the vertical pressure gradient

at the boundary is zero (this results from (3.20) withi = 3, applied atx3 = 0 and the boundary

conditionu3 = 0 at x3 = 0), and that the pressure infinitely far from the boundary is that induced by

the velocity field at infinity, namely

∂p
∂x3

(x3 = 0) = 0, p(x3 → −∞) → p(H), (3.23)

wherep(H) is defined implicitly as the solution of

∇2p(H) = −2ραi
∂u(H)

i

∂xi
. (3.24)

Being statistically homogeneous in all directions,p(H) can be expressed as a three-dimensional

Fourier integral, and (3.24) becomes an easily solvable algebraic equation for its Fourier ampli-

tude. On the other hand,p, because it is affected by the boundary, can only be expressed as a two-

dimensional Fourier integral in the form

p(x, t) =
ZZ

p̂(k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2. (3.25)

Substituting (3.25) into (3.22) yields an ordinary differential equation for the Fourier amplitude of

the turbulent pressurêp. After some lengthy algebraic manipulations, it is found that this amplitude,

which is affected by both the distortion of the small-scale turbulence by the large-scale flow and by the

blocking effect of the boundary, can be related to the Fourier amplitude of the undistorted turbulent

velocity through

p̂(k1, k2, x3, t) =
Z

Qi(k, x3, t)û
(H)
i (k, 0)dk3, (3.26)

where expressions for theQi components are given in the appendix (§3.6).

3.2.4 Turbulence statistics

The simplest statistics that characterise the turbulent velocity fluctuations are the Reynolds stresses.

In shear-free turbulence, only the diagonal components of the Reynolds stress tensor (the velocity

variances,u2
i ) are appreciable (Thomas & Hancock, 1977). In fact, in the present model, due to

the assumption of initial isotropy and due to the type of large-scale distorting flow, the off-diagonal

components of the Reynolds stress tensor associated with the small-scale turbulence are zero. For

that reason, all future references to ‘Reynolds stresses’ will be synonymous with ‘velocity variances’,
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as in chapter 2. An equation giving the time evolution of the Reynolds stresses can be obtained by

multiplying the momentum equation (3.20) byui , then taking the ensemble average and rearranging.

If the large-scale velocity is also substituted according to (3.1), the following equation results,

∂
∂t

(
u2

i

)
= −U3

∂
∂x3

(
u2

i

)
− 2αiu2

i +
2
ρ

p
∂ui

∂xi
− δi3

2
ρ

∂
∂xi

(pui) , (3.27)

where the overbar denotes ensemble averaging. The term on the left-hand side is the tendency of

the Reynolds stress. The terms on the right-hand side are, respectively, the advection, production,

pressure-strain and pressure-flux terms. The advection and production terms appear as separated in

(3.27) because the flow was artificially split into a large-scale and a small-scale part. In the case where

the turbulence is taken as a whole, both of these terms are incorporated in the so-called turbulent

transport term (Perot & Moin, 1993). Since the flow is statistically homogeneous in the directions

parallel to the boundary, all the spatial derivatives of correlations along those directions are zero. That

is why only the vertical components of the advection and the pressure-flux terms appear in (3.27).

The various terms of (3.27) will be evaluated in§3.3 in order to determine the physical mechanisms

responsible for the time evolution of the Reynolds stresses, following the procedure developed by

Maxey (1982) for an unbounded shear flow.

These terms may be related to the statistics of the undistorted turbulence as follows. If the three-

dimensional spectrum of the velocity fluctuations of the undistorted small-scale turbulence,Φ(H)
i j , is

defined as

û(H)∗
i (k0)û

(H)
j (k′0) = Φ(H)

i j (k0)δ(k0 − k′0), (3.28)

(where the asterisk denotes complex conjugation), then (3.19) and (3.26) may be used, in conjunction

with (3.12) and (3.25), to obtain expressions for all the terms in (3.27) as functions ofΦ(H)
i j , Mi j and

Qi . For example, the Reynolds stresses are given by

u2
i =

ZZZ
M∗

ikMil Φ
(H)
kl dk1dk2dk3 (3.29)

while the pressure-strain terms are

p
∂ui

∂xi
= Re

{ZZZ
ikiQ

∗
kMil Φ

(H)
kl dk1dk2dk3

}
, i = 1, 2,

p
∂u3

∂x3
= Re

{ZZZ
Q∗

k
∂M3l

∂x3
Φ(H)

kl dk1dk2dk3

}
. (3.30)

45



Chapter 3 Nonlinear interactions in shear-free turbulence near boundaries

The pressure-velocity correlation (necessary for determining the pressure-flux term) is

pui = Re

{ZZZ
Q∗

kMil Φ
(H)
kl dk1dk2dk3

}
. (3.31)

Since the initial undistorted small-scale turbulence is assumed to be homogeneous and isotropic,

its three-dimensional velocity spectrum can be related to the energy spectrumE(k0) through

Φ(H)
i j (k0) =

(
δi j − k0ik0 j

k2
0

)
E(k0)
4πk2

0

, (3.32)

wherek0 = (k2
01 + k2

02 + k2
03)

1
2 is the initial wavenumber magnitude. The energy spectrum of the

undistorted small-scale turbulence is assumed to take the form attributed to von Kármán (also used,

for example, in Hunt & Graham, 1978)

E(k0) = u2l
g2(k0l)4

(g1 + (k0l)2)
17
6

(3.33)

whereg1 = 0.558andg2 = 1.196are dimensionless constants. At high wavenumbers, this spectrum

reproduces the well-knownk−5/3
0 power law behaviour corresponding to an inertial subrange.

3.3 Results

3.3.1 Axisymmetric straining flow

In the results that will be presented next, it is assumed that the large-scale flow (3.1) is an axisymmetric

straining flow, since this seems to be the most natural form taken by an upwelling or downwelling zone

in shear-free turbulence (Perot & Moin, 1995a). It must be recalled that (3.1) then becomes

U1 = αx1, U2 = αx2, U3 = −2αx3. (3.34)

Sinceα is the single parameter specifying the strain rate for this kind of flow, there is also a single

parameter specifying the total strain suffered by the small-scale turbulence. This will be calledc,

following Batchelor & Proudman (1954), and its definition is

c = e3 =
1

e1e2
= e−2αt . (3.35)

The statistics of vector quantities tangential to the boundary will only be presented for the com-

46



Chapter 3 Nonlinear interactions in shear-free turbulence near boundaries

0 1 2 3
|x3|/l

0.0

0.5

1.0

1.5

2.0

u 12 /u
2 , u

32 /u
2

(a)

10
−1

10
0

10
1

c

10
−2

10
−1

10
0

10
1

u 12 /u
2 , u

32 /u
2

(b)

Figure 3.1 (a) Profiles of the Reynolds stresses. Thin lines:u2
1, thick lines: u2

3. Solid lines:c = 1 (undistorted), dotted

lines: c = 0.5 (upwelling zone), dashed lines:c = 2 (downwelling zone). (b) Reynolds stresses as a function ofc. Solid

line: tangential Reynolds stress far from boundary, dotted line: tangential Reynolds stress atx3 = 0, dashed line: normal

Reynolds stress far from boundary.

ponent along thex1 direction since, due to the initial isotropy of the small-scale turbulence and the

symmetry of the flow (3.34), these statistics are equal for the components along any other tangential

direction.

3.3.2 The Reynolds stresses

In the present model, the Reynolds stresses depend only on the distance from the boundary and on time

(of which an appropriate dimensionless measure is the total strainc), so only these two parameters will

be varied in the results that follow.

Figure 3.1(a) shows profiles of the tangential and normal components of the Reynolds stress for

different values ofc, as a function of distance from the boundary normalised by the integral length

scale of the small-scale turbulencel . Whenc = 1, the turbulence is not distorted by the large-scale

flow, and behaves in a way similar to that predicted by Hunt & Graham (1978). The Reynolds stresses

tend to a normalised value of 1 far from the boundary. The tangential stress rises to 1.5 at the boundary

and the normal stress tends to zero at the boundary, due to blocking. Whenc = 0.5 (upwelling zone),

the tangential Reynolds stress decreases slightly far from the boundary and increases slightly at the

boundary. The normal stress increases everywhere. Whenc = 2 (downwelling zone), the tangential

Reynolds stress increases everywhere, but more so far from the boundary, and the normal Reynolds

stress decreases everywhere.

The behaviour of the Reynolds stresses (and, for that matter, other statistics) far from the boundary
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and exactly at the boundary does not depend on the form of the energy spectrum adopted. It is only in

the intermediate region, where the statistics change from their far-field value to their boundary value,

that such spectral form is relevant. Figure 3.1(b) shows plots of the tangential Reynolds stresses far

from the boundary and at the boundary and of the normal Reynolds stress far from the boundary,

as functions ofc. The values far from the boundary reproduce the classical results of Batchelor &

Proudman (1954). When there is no distortion (c = 1), the results of Hunt & Graham (1978) are

recovered.

Whenc < 1 (upwelling zone), the tangential Reynolds stress far from the boundary first decreases

with c, while the tangential Reynolds stress at the boundary increases slowly, consistent with figure

3.1(a). For smaller values ofc, both tangential Reynolds stresses increase at a rate which approaches

asymptotically∝ c−1/2. The normal Reynolds stress also increases at the same rate. Forc ¿ 1, the

tangential Reynolds stress far from the boundary becomes half of both the tangential Reynolds stress

at the boundary and the normal Reynolds stress far from the boundary.

Whenc > 1 (downwelling zone), the tangential Reynolds stress both far from the boundary and

at the boundary increases at a rate which becomes asymptotically∝ c for large values ofc and the

normal Reynolds stress decreases at a rate which becomes asymptotically∝ log(c)/c2 (cf. Batchelor

& Proudman, 1954). The normal Reynolds stress becomes much smaller than the tangential Reynolds

stress and the small-scale turbulence becomes approximately two-dimensional. Furthermore, the tan-

gential Reynolds stresses far from the boundary and at the boundary become equal, which is a conse-

quence of the normal velocity fluctuations approaching zero: if there are virtually no normal velocity

fluctuations, the blocking effect is unable to transfer energy from the normal to the tangential motions.

3.3.3 Physical interpretation

The behaviour of the Reynolds stresses in figures 3.1(a, b) can be understood with the aid of the

schematic diagrams of figures 3.2(a, b). Figure 3.2(a) shows that, in an upwelling zone, the horizontal

vorticity is stretched and the vertical vorticity is compressed. This implies that the horizontal vorticity

is amplified, whereas the vertical vorticity is attenuated. Since the horizontal vorticity receives contri-

butions from the horizontal and vertical velocities, its amplification contributes to an increase of both

the tangential and the normal Reynolds stresses. The vertical vorticity receives contributions only

from the horizontal velocity, so its weakening contributes to a decrease of the tangential Reynolds

stress. Apparently, this decrease is initially sufficient, far from the boundary, to counteract the in-

crease induced by the stretching of horizontal vorticity, but the latter effect soon becomes dominant,

leading to the observed increase of all the components of the Reynolds stress for moderate or large

distortions. The downwelling zone can be understood by reversing the orientation of the arrows in the

schematic of figure 3.2(a). As the flow evolves, the horizontal vorticity is compressed, and therefore
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Figure 3.2 (a) Schematic diagram showing the vorticity distortion in an upwelling zone. (b) Schematic diagram showing

the vortex tubes in isotropic turbulence and their images so that the blocking boundary condition is satisfied.

decreases in magnitude, and the vertical vorticity is stretched, and therefore increases in magnitude.

The weakening of the horizontal vorticity leads to a decrease of the normal Reynolds stress and a

negative contribution to the tangential Reynolds stress, but this tendency is counteracted by the faster

increase of the tangential Reynolds stress, both at the boundary and far from the boundary, which is

induced by the amplification of the vertical vorticity.

The relative magnitude of the components of the Reynolds stress far from the boundary and at the

boundary can be understood with the aid of figure 3.2(b). In that figure, isotropic turbulence below

the boundary is represented by 3 vortex tubes of similar intensity, oriented along the 3 coordinate

directions. The blocking effect of the boundary is represented by the 3 image vortex tubes placed

symmetrically above the boundary. The sign of the vorticity in the image vortex tubes is such that

the vertical vorticity is extended symmetrically across the boundary and the horizontal vorticity is ex-

tended anti-symmetrically, so that the no-flux boundary condition is satisfied (Durbin & Hunt, 1980).

The blocking effect of the boundary when there is no additional distortion by the large-scale flow

(c = 1) can be understood in the following way. Each vortex tube gives an equal contribution to

the turbulent velocity, and hence to the Reynolds stress along the directions perpendicular to its axis.

Suppose that the value of that contribution (which is here defined arbitrarily and is only important in

relative terms) is 1/2. Then the vortex tube alongx1 gives a 1/2 contribution to the Reynolds stresses

alongx2 andx3, the vortex tube alongx2 gives a 1/2 contribution to the Reynolds stresses alongx1 and

x3 and the vortex tube alongx3 gives a 1/2 contribution to the Reynolds stresses alongx2 andx3. All

these contributions add up to Reynolds stresses of 1 along the 3 principal directions, corresponding to

isotropic turbulence. Consider now the effect of the image vortex tubes at the boundary. The image

vortex tube alongx1 gives a contribution−1/2 to the Reynolds stress alongx3 (in order to enforce the

boundary condition), but a contribution1/2 to the Reynolds stress alongx2. Analogously, the image

vortex tube alongx2 gives a contribution−1/2 to the Reynolds stress alongx3, but a contribution1/2
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to the Reynolds stress alongx1. Finally, the image vortex tube alongx3 is the same vortex tube that

would exist if the boundary was not there, and it adds a zero contribution to the Reynolds stresses

alongx1 andx2. Adding up all the contributions, it is concluded that the Reynolds stresses at the

boundary alongx1 andx2 have a value of 1.5 in the arbitrary units defined before, and the normal

Reynolds stress is of course zero. This explains the well-known result of Hunt & Graham (1978), that

the tangential stresses at the boundary in shear-free turbulence amplify by a factor of 1.5.

Whenc ¿ 1 in an upwelling zone, the vertical vorticity becomes virtually zero and ceases to

contribute to the Reynolds stresses. Then, it is only the vortex tubes alongx1 andx2 that contribute

to the Reynolds stresses. Far from the boundary, the effect of the image vortex tubes is not felt, and

the vortex tube alongx1 contributes 1/2 to the Reynolds stress alongx2 and 1/2 to the Reynolds stress

alongx3 (keeping the same units as before, for simplicity). On the other hand, the vortex tube along

x2 contributes 1/2 to the Reynolds stress alongx1 and 1/2 to the Reynolds stress alongx3. Adding all

the contributions, the Reynolds stresses alongx1, x2 andx3 have relative magnitudes of 1/2, 1/2 and 1,

respectively. This explains why the tangential Reynolds stress becomes half of the normal Reynolds

stress for low values ofc (see figure 3.1(b)). When the boundary is approached, the horizontal image

vortex tubes are necessary to satisfy the boundary condition. The image vortex tube alongx1 gives a

1/2 contribution to the Reynolds stress alongx2 and a -1/2 contribution to the Reynolds stress along

x3, and the image vortex tube alongx2 gives a 1/2 contribution to the Reynolds stress alongx1 and

a -1/2 contribution to the Reynolds stress alongx3. Adding all the contributions, it is concluded that

the magnitude of the tangential Reynolds stresses atx3 = 0 is 1, equal to that of the normal Reynolds

stress far from the boundary, and twice the tangential Reynolds stress far from the boundary. This is

in agreement with the ratios observed in figure 3.1(b) for low c.

WhencÀ 1 in a downwelling zone, the horizontal vorticity is virtually zero and all the contribu-

tions to the Reynolds stresses come from the vertical vorticity. Since the vertical velocity fluctuations

are associated with the horizontal vorticity, this means that the normal Reynolds stress is very small,

which is indeed confirmed by figure 3.1(b). On the other hand, near the boundary, the image vortex

tube alongx3 is simply an extension of the vertical vortex tube across the boundary, exactly as if the

boundary did not exist. So the contribution of the vertical vorticity to the Reynolds stresses does not

change as the boundary is approached. In other words, the tangential Reynolds stress maintains a

constant magnitude throughout the turbulent fluid. This is consistent with figure 3.1(b), which shows

that the tangential Reynolds stresses at the boundary and far from the boundary tend to the same value,

whenc is high.
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Figure 3.3 Profiles of the terms in the tangential Reynolds stress equation. Dotted line: advection, dashed line: production,

dash-dotted line: pressure-strain, solid line: tendency (sum of previous terms). (a) c = 1, α > 0 (upwelling flow, before

distortion). (b) c = 0.5, α > 0 (upwelling flow, after distortion). (c) c = 2, α < 0 (downwelling flow, after distortion).

3.3.4 Analysis of the TKE budget

In order to investigate what physical processes are responsible for the observed time evolution of the

Reynolds stresses, the various terms in the Reynolds stress equation (3.27) will be evaluated. The

sum of all components of the Reynolds stress equation (fori = 1, 2 and 3) yields an equation for the

evolution of the turbulent kinetic energy,TKE = (1/2)(u2
1 + u2

2 + u2
3).

Figure 3.3(a) shows profiles of the advection, production and pressure-strain terms, respectively

defined as

Aii = 2αx3
∂

∂x3

(
u2

i

)
, P11 = −2αu2

1, Πii =
2
ρ

p
∂ui

∂xi
, (3.36)
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in the tangential Reynolds stress equation, for an upwelling zone, atc = 1 (undistorted flow). The

tendency of the Reynolds stress, which results from the sum of these 3 terms is also shown. The

advection term is zero far from the boundary, because the Reynolds stress is homogeneous there,

and at the boundary, because the normal component of the large-scale upwelling flow vanishes there.

Overall, the advection term is small and slightly negative at0 < |x3| < l due to the fact that the

impinging flow brings fluid with a smaller Reynolds stress towards the boundary. The production

term is much larger in magnitude and negative everywhere (consistent with the vorticity arguments

presented above), but more so at the boundary due to reinforcing by the image vortex tubes. Finally,

the pressure-strain term is positive everywhere, with smaller magnitude than the production term far

from the boundary and the same magnitude at the boundary. The tendency of the tangential Reynolds

stress is negative far from the boundary and zero atx3 = 0.

At a later stage in the development of the distortion, for a total strainc = 0.5 (figure 3.3(b)), the

advection term has increased slightly in magnitude, but remains relatively small and negative, tending

to zero far from and at the boundary. The production term remains negative and has increased slightly

in magnitude at the boundary, while decreasing far from the boundary, and the pressure-strain term

has increased and become more positive everywhere. Crucially, the balance between the terms is now

different, because the pressure-strain term has become considerably larger than the production term,

and the tendency of the tangential Reynolds stress is now positive everywhere, but especially so at

the boundary, consistent with figures 3.1(a, b). Since the tangential Reynolds stress is now smaller

than the normal Reynolds stress far from the boundary, but the normal Reynolds stress is always zero

at the boundary, the pressure-strain term, which is positive, is promoting a return to isotropy of the

small-scale turbulence far from the boundary, but contributing to a greater anisotropy at the boundary.

In the case of a downwelling zone, whenc = 1, the various terms in the tangential Reynolds stress

equation have the same magnitude as those presented in figure 3.3(a), but the opposite sign. Therefore,

the advection term is small and positive, vanishing far from the boundary and at the boundary, the

production term is positive, with a maximum at the boundary, and the pressure-strain term is negative

and of larger magnitude than the production term, except at the boundary, where they balance each

other. Accordingly, the time variation of the tangential Reynolds stress is positive everywhere except

at the boundary, where it is zero.

At a later stage in the development of the downwelling flow, for a total strainc = 2 (figure

3.3(c)), this symmetry of behaviour has been lost. The advection term has decreased to become

insignificant, the production term has increased in magnitude, especially far from the boundary, and

the pressure strain-term has remained negative, while decreasing in magnitude. Since in this case the

tangential Reynolds stress is everywhere larger than the normal Reynolds stress, the pressure-strain

term contributes to a return to isotropy of the turbulence everywhere, particularly at the boundary. The

energy budget is dominated by the production term, which imposes a steady increase of the tangential
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Figure 3.4 Profiles of the terms in the normal Reynolds stress equation. Dotted line: advection, dashed line: production,

dash-dotted line: pressure-strain, long-dashed line: pressure flux, solid line: tendency (sum of previous terms). (a) c = 1,

α > 0 (upwelling flow, before distortion). (b) c = 0.5, α > 0 (upwelling flow, after distortion). (c) c = 2, α < 0

(downwelling flow, after distortion).

Reynolds stress.

Figure 3.4(a) presents profiles of the various terms in the normal Reynolds stress equation, for an

upwelling zone, atc = 1. The symbols not already defined in (3.36) are

P33 = 4αu2
3, Q33 = −2

ρ
∂

∂x3
(pu3) , (3.37)

and represent the production and the pressure-flux terms, respectively. The advection term is small and

positive because the upwelling zone brings fluid to the boundary which originally had a larger normal

Reynolds stress. For the same reasons as before, this term vanishes both far from the boundary and

at the boundary. The production term is positive everywhere, due to horizontal vorticity stretching,
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Figure 3.5 Absolute value of terms in the Reynolds stress equations as a function ofc. (a) Tangential component. Solid

line: production far from boundary, dotted line: production atx3 = 0, dashed line: pressure-strain far from boundary,

dash-dotted line: pressure-strain atx3 = 0. (b) Normal component. Solid line: production far from boundary, dotted line:

pressure-strain far from boundary, dashed line: pressure-strain and pressure flux atx3 = 0.

except at the boundary, where it is zero, because the normal velocity is also zero there. The pressure-

strain term is negative, with a maximum in magnitude at the boundary, and the pressure flux term

has a positive maximum at the boundary, equal in magnitude to the minimum of the pressure-strain,

but becomes slightly negative in an intermediate region and decays to zero far from the boundary.

The pressure-strain term equals minus twice the pressure-strain term in the tangential Reynolds stress

equation, due to continuity and the axial symmetry of the large-scale flow. At the boundary, the

pressure-flux term exactly balances the pressure-strain term, since all other terms are zero. The ten-

dency of the normal Reynolds stress is positive everywhere, except obviously at the boundary, where it

is zero. This picture is not substantially changed when the upwelling flow evolves untilc = 0.5 (figure

3.4(b)). The advection, production, pressure-strain and pressure-flux terms all increase somewhat in

magnitude, but their qualitative behaviour remains the same.

In the case of a downwelling zone, atc = 1, the terms in the normal Reynolds stress equation are

equal to those presented in figure 3.4(a) with the sign reversed. Hence, the advection term is small

and negative, the production term is negative, except at the boundary, where it is zero, the pressure-

strain term is positive, with a maximum at the boundary, and the pressure-flux term is negative, with

the same magnitude as the pressure-strain term at the boundary, and decaying to zero far from the

boundary. After the flow has evolved until the distortion isc = 2 (figure 3.4(c)), all these 4 terms have

become smaller in magnitude, but their qualitative behaviour has not changed appreciably.

Figure 3.5(a) shows the absolute value of some of the terms in the tangential Reynolds stress

equation, far from the boundary and atx3 = 0, as a function ofc. The production term is proportional

to the Reynolds stress itself (as implied by (3.36)), increasing asymptotically asc−1/2 whencdecreases
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much below 1 and increasing asymptotically∝ c whenc À 1. The pressure-strain term, both at the

boundary and far from the boundary, is of the same order of magnitude, and behaves asymptotically

in the same way as the production term (∝ c−1/2) whenc < 1, but whenc > 1 decays asymptotically

like c−2 far from the boundary and likelog(c)/c2 at x3 = 0. Therefore, as the turbulence becomes

progressively two dimensional in a downwelling zone, the relative importance of the pressure-strain

term in the evolution of the Reynolds stresses decreases.

Figure 3.5(b) shows the same as figure 3.5(a), but for the terms in the normal Reynolds stress

equation. The production term far from the boundary is again proportional to the Reynolds stress,

consistently with (3.37), and the pressure-strain term and pressure-flux terms are of the same order

of magnitude and have the same asymptotic behaviour (∝ c−1/2) as the production term whenc < 1.

WhencÀ 1, the pressure-strain term far from the boundary decays asc−2 (faster than the production

term) but the pressure-strain and pressure-flux terms atx3 = 0 show the same order of magnitude and

asymptotic behaviour as the production term (∝ log(c)/c2). However, the absolute values of all these

terms become insignificant at highc.

3.3.5 Discussion

In general, the ‘driving force’ behind the time evolution of the Reynolds stresses is the production

term in the Reynolds stress equation. This term is responsible for moving the small-scale turbulence

away from isotropy initially. The pressure-strain term always tends to oppose the production term.

Far from the boundary (in the region where the Batchelor & Proudman (1954) theory can be applied),

this always corresponds to a tendency towards isotropy. However, near the boundary, the pressure-

strain term only contributes to make the small-scale turbulence isotropic in the case of a downwelling

zone, whereas it tends to move the small-scale turbulence away from isotropy in an upwelling zone.

This result ought to be taken into account in near-wall closures of the pressure-strain term for use in

numerical models. Until now, in the studies where RDT is used to guide the development of such

closures, the effect of boundaries is often not accounted for (Maxey, 1982; Johansson & Hallbäck,

1994). As the present results show, that may lead to the neglect of important physical processes. In

the numerical simulations of Perot & Moin (1993) and Walkeret al. (1996) (where there are both

upwelling and downwelling zones near the boundary) the pressure-strain term in the TKE equation is

identified as always contributing to the anisotropy of the turbulence near the boundary. The present

results suggest that this happens because the magnitude of the pressure-strain term is considerably

larger in an upwelling zone than in a downwelling zone, hence the contributions from the upwelling

zones to this term tend to dominate. Although the pressure-strain terms always promote a return to

isotropy of the small-scale turbulence in a downwelling zone, they become very inefficient in doing

so at high values ofc and have in fact vanishing importance in the TKE budget in the limit of two-

dimensional turbulence.
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An interesting question regarding the Reynolds stress budget is whether the sign of the tendency

of the Reynolds stresses is determined primarily by the production term or by any other term in the

corresponding equations. In the case of a downwelling zone or in the case of the normal Reynolds

stress in an upwelling zone, the pressure strain term is of smaller magnitude than the production term,

and the tendency of the Reynolds stress has the same sign as the production term. In the case of the

tangential Reynolds stress in an upwelling zone, however, the tendency has the opposite sign to the

production term and the same sign as the pressure-strain term (except for values ofc near 1, far from

the boundary). The tangential Reynolds stress evolution is thus driven by the energy imparted from

the normal Reynolds stress through the pressure-strain correlations. That is why, in an upwelling zone,

both the tangential and the normal Reynolds stresses increase in time.

3.3.6 The structure of the strain field

It is clear from figure 3.1(b) that the TKE increases with increasing distortion both in an upwelling

zone (c < 1) and in a downwelling zone (c > 1). This is consistent with the enhanced turbulence

intensity which is observed in experiments or numerical simulations of shear-free turbulence near

boundaries at late times (Thomas & Hancock, 1977; Biringen & Reynolds, 1981). Although Hunt

(1984a) argued that upwelling zones are more important in promoting this enhancement than down-

welling zones, figure 3.1(b) shows that the TKE increases faster for a downwelling zone (∝ c) than

for an upwelling zone (∝ c−1/2). Hence both types of flow are important.

Most experiments or numerical simulations of shear-free turbulence consider stationary (Brumley

& Jirka, 1987) or decaying turbulence (Perot & Moin, 1995a). The enhanced turbulence intensity

near the boundary is detected either by the ratio between the TKE at the boundary and far from the

boundary rising above 1, or equivalently by the ratio between the tangential Reynolds stress at the

boundary and far from the boundary becoming larger than the value of 1.5 predicted by the theory of

Hunt & Graham (1978). The second result follows from the first if the turbulence is isotropic away

from the boundary, which is generally the case (Aronsonet al., 1997). Although the present model

predicts that the ratio between the tangential Reynolds stress atx3 = 0 and far from the boundary

exceeds 1.5 in an upwelling zone, that behaviour is not linked with any relative increase of the TKE

at the boundary, but is simply a manifestation that the turbulence has become anisotropic far from the

boundary.

In fact, for the upwelling and the downwelling flows under consideration, the result of Hunt &

Graham (1978)

(
u2

1 + u2
2

)
(x3 = 0) =

(
u2

1 + u2
2 + u2

3

)
(x3 → −∞) (3.38)
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remains valid, as can be confirmed in figures 3.1(a, b), since the solutions for the small-scale tur-

bulence are obtained by directly applying Hunt & Graham’s blocking correction to the small-scale

turbulence already distorted by the straining flow. The reason why (3.38) holds in the model is be-

cause a uniform strain rate is assumed throughout the flow, and that strain is irrotational, allowing a

decoupling of the effects of the large-scale flow and of blocking. It will be shown next that, when the

non-uniformity of the large-scales in the turbulence is taken into account, the relative increase in TKE

near the boundary results from the effect of blocking on the large-scale strain field.

Consider the structure of shear-free turbulence. On the scale of a small eddy, the large eddies in

the turbulence can be viewed as deterministic and locally uniform flow structures, as considered in the

present model. However, over scales much larger than their own, the large eddies behave in much the

same way as the small eddies (Townsend, 1976) and tend to be statistically isotropic and homogeneous

far from the boundary. Hence a possible way of modelling the structure of the large-scale strain field

is by studying the strain field associated with the small eddies, and then extrapolating the results to the

large eddies. In what follows, the present model forc = 1 (which is equivalent to Hunt & Graham’s

(1978) model), will be used to do just that.c = 1 is assumed, because the large eddies themselves are

not subjected to any appreciable organised strain in shear-free turbulence.

According to (3.12) and (3.19), the strain rates of the turbulent velocity are defined as

αi j =
∂ui

∂x j
=
ZZZ

ik jMikû(H)
k ei(k1x1+k2x2)dk1dk2dk3, j = 1, 2,

αi3 =
∂ui

∂x3
=
ZZZ ∂Mik

∂x3
û(H)

k ei(k1x1+k2x2)dk1dk2dk3. (3.39)

By analogy with (3.29), and using (3.28), the variances of these strain rates, which give an estimate of

their magnitude, take the form

α2
i j =

ZZZ
k2

j M
∗
ikMil Φ

(H)
kl dk1dk2dk3, j = 1, 2,

α2
i3 =

ZZZ ∂M∗
ik

∂x3

∂Mil

∂x3
Φ(H)

kl dk1dk2dk3. (3.40)

At arbitrary distances from the boundary, the expressions of these variances are rather complex. But

they are much simpler far from the boundary and at the boundary, where they are independent of the

form of the energy spectrumE(k0). In those regions, theα2
i j only depend on the initial value of the

dissipation rate far from the boundary,ε, which is defined as

ε = 2ν
Z ∞

0
k2

0E(k0)dk0. (3.41)
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For c = 1, the expressions of the components of theα2
i j matrix atx3 = 0 and asx3 → −∞ are

found to be

α2
ii =

1
15

ε
ν
, α2

i j =
2
15

ε
ν
, i = 1, 2, 3, i 6= j, as x3 → −∞,

α2
11 = α2

12 = α2
21 = α2

22 =
1
6

ε
ν
, α2

i3 =
1
3

ε
ν
, α2

31 = α2
32 = 0, at x3 = 0. (3.42)

From (3.42), it is clear that, far from the boundary, the strain rates are statistically isotropic, like the

velocity field itself, but near the boundary, the strain rates are modified by the blocking effect in two

ways: (i) they increase in magnitude and (ii) they become anisotropic, adopting orientations compati-

ble with the blocking boundary condition. Since strains with an isotropic distribution are more prone

to cancellation than strains subject to a directional constraint, the second effect reinforces the first.

Both these effects, which exist in real turbulence, lead to the small-scale turbulence being subjected to

a substantially larger net straining rate at the boundary. Since the straining of the turbulence leads to

an increase of its TKE, as seen before, this explains why the TKE atx3 = 0 is larger than the TKE far

from the boundary.

The axisymmetric straining flow used in the present model to represent the large scales in the

turbulence represents the anisotropy of those scales due to the boundary in way that is approximated

but qualitatively correct, simply by being aligned with the boundary. But by being uniform, this

straining flow obviously fails to account for the weakening of the strain field and for its transition

from anisotropic to isotropic as one moves away from the boundary (which is implied by (3.42)).

A modification to the present model which incorporates these effects in a heuristic manner is

presented next.

3.4 Modifications to the model and comparison with data

3.4.1 A spatially limited upwelling/downwelling zone

The inhomogeneity of the strain field which was seen to exist in shear free turbulence can be incorpo-

rated in the present model by redefining the large-scale flow as

U1 = αx1emx3, U2 = αx2emx3, U3 = −2α
m

(emx3 − 1) , (3.43)

where1/m is a positive distance. This flow approximates the previously used straining flow (3.34) at

the boundary, but decays exponentially to zero far from the boundary, asx3 → −∞. The treatment in

§3.3.6 showed that the strain rate far from the boundary is not zero, but simply smaller and isotropic,
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whereas the strain rate near the boundary is larger and anisotropic. Obviously, that situation is much

more complex than that modelled here, but a connection may be established in the following way.

In real turbulence, an equilibrium is reached between the distortion of the small scales by the large

scales, which leads to an increase of the TKE, and the dissipation of the small scales, which leads to

a decrease of the TKE. The equilibrium strain of the turbulence in a region with a larger strain rate

is higher than the equilibrium strain in a region with a smaller strain rate (this effect is included, for

example, in Maxey’s (1982) equation (3.3)). Hence, to compare the results of the present model with

data, it is more useful to think in terms of total strains than in terms of strain rates. Use of the large-

scale flow (3.43) allows the equilibrium state of the small-scale turbulence far from the boundary to

be arbitrarily defined as undistorted, and the more distorted equilibrium state existing at the boundary

(due to the larger strain rate there) to be matched through the parameterc.

In the model used by Hunt (1984a) to estimate the nonlinear effects in shear-free turbulence,

the flow in an upwelling zone is approximated as potential flow around a sphere. This flow has the

advantage of possessing a strain that naturally tends to zero far from the boundary. However, since

the flow is assumed to be stationary, and the turbulence is assumed to be homogeneous far from the

sphere, the value of the total strain at the boundary is infinite. This leads to an infinite Reynolds stress

at the boundary (cf. equation (2.20b) of Hunt, 1984a), which is not realistic. Since upwelling and

downwelling zones are not steady but transient flow structures, the present time-dependent model is

deemed more appropriate to treat them.

The new large-scale flow (3.43) satisfies mass conservation exactly, but not irrotationality, and has

an associated vorticity ofO(mU). This flow can still be considered approximately irrotational if its

vorticity is much smaller than its strain rate. Since the strain rate is ofO(U/L), approximate irrota-

tionality holds ifmL¿ 1. On the other hand, sincel ¿ L, the conditionmL¿ 1 implies thatml ¿ 1,

and this means that the small-scale turbulence can still be considered locally homogeneous over the

distance1/m. Hence the theoretical framework developed for a flow with a constant strain rate con-

tinues to be valid (as in Hunt (1973), for sufficiently small-scale turbulence), and the large-scale flow

(3.43) can just be substituted in the original model, withm appearing as a parameter. Subject to these

conditions, when (3.43) is used, the statistics of the small-scale turbulence will behave near the bound-

ary exactly as for a constant strain rate, with the TKE becoming larger asc becomes larger or smaller

than one. Over a distancel from the boundary, the statistics will change from their values modified by

blocking to their values influenced only by the straining flow. Finally, over a larger distance from the

boundary ofO(1/m), the statistics will decay towards their totally undistorted values.

Since the exponential factor in (3.43) aims to account for the effect of the boundary on the strain

rate, and this effect is felt over a distance from the boundary of the order of the length scale of the

large eddies,L, m should in fact be ofO(1/L). Furthermore, there is not, in real turbulence, a clear

separation between the length scaleL of a large-scale flow and that of the small-scale turbulence
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distorted by that flow,l . Although this choice disrespects both the condition for the irrotationality of

the large-scale flow and the condition for local homogeneity of the turbulence, it will be assumed in

the following calculations that1/m = L = l , because the agreement with data is optimised in that

way.

3.4.2 The Reynolds stress profiles

Before comparing results from the modified model of the previous subsection with data, an additional

aspect needs to be noted. In real shear-free turbulence, there are both upwelling and downwelling

zones near the boundary. The statistics of this turbulence averaged over a whole plane parallel to the

boundary should therefore be a mixture of the statistics in the upwelling zones and in the downwelling

zones. Neglecting effects associated with the finite size of these zones, their only relevant parameter

is their mass flux. Due to mass conservation, the total mass flux towards the boundary associated with

the upwelling zones has to be the same as the total mass flux away from the boundary associated with

the downwelling zones. In the present model, the mass flux towards the boundary is proportional to

the strain rate of the large-scale flow. Hence, the global effect of all the upwelling zones and all the

downwelling zones can taken into account by considering only one ‘global’ upwelling zone and one

‘global’ downwelling zone, with strain ratesα, and−α respectively, representative of the total mass

flux towards the boundary and the total mass flux away from the boundary. If, at a given time, the

‘global’ upwelling zone has a total strainc, the corresponding ‘global’ downwelling zone must have a

total strain1/c, by continuity.

Figure 3.6(a) shows model results for the Reynolds stresses, for ‘global’ downwelling and up-

welling zones withc = 2.3 andc = 1/2.3 = 0.435, respectively, compared with data from Thomas &

Hancock (1977) for a shorter distance and a longer distance from the upstream end of the wind tunnel.

The data at the upstream location are in quite good agreement with the theory of Hunt & Graham

(1978) (present model withc = 1), because nonlinear effects are unimportant. Further downstream,

however, the tangential Reynolds stress is larger and falls in between the theoretical lines calculated

for the upwelling and the downwelling zones.

This suggests that the Reynolds stresses averaged over a plane parallel to the boundary can be de-

termined simply by taking the average of the Reynolds stressesu(U)2
i , associated with the ‘global’ up-

welling zone and the Reynolds stressesu(D)2
i , associated with the ‘global’ downwelling zone, namely

u2
i =

1
2

(
u(U)2

i + u(D)2
i

)
. (3.44)

This approach is adopted in the theoretical results presented in figure 3.6(b), where some numerical

model data from Biringen & Reynolds (1981), for an earlier and a later time, are also shown. The
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Figure 3.6 (a) Reynolds stress profiles for the large-scale flow (3.43). Solid lines:c = 1 (undistorted), dotted lines:

c = 2.3 (downwelling zone), dashed lines:c = 0.435 (upwelling zone), triangles: data of Thomas & Hancock (1977) at

upstream position, squares: data of Thomas & Hancock further downstream. (b) Average of the Reynolds stress profiles for

upwelling and downwelling zones with the same intensity. Solid lines:c = 1; dotted lines: average ofc = 2.5 andc = 0.4;

dashed lines: average ofc = 3.2 andc = 0.3125; circles: data of Biringen & Reynolds (1981) at earlier time; triangles: data

of Biringen & Reynolds at later time.

values ofc have been chosen so as to fit the data in the best possible way. Given the considerable

scatter of the data, which is due to the relatively small ensemble used in the averaging process, the

model does a very reasonable job in fitting the data.

3.4.3 The turbulent pressure field

A variable which is intrinsically related to the nonlinear interactions in the turbulence is the so-called

‘slow’ pressure. Kim (1989) presented results from numerical simulations of channel-flow on vari-

ances, correlations and spectra of both the fast pressure, which results from the interaction between

the turbulence and the mean flow, and the slow pressure, which results from the interaction of the tur-

bulence with itself. Perhaps the most striking aspect in Kim’s plots of the pressure spectra (his figure

9) is that the slope of the spectra at high wavenumbers is steeper than predicted by theory, particularly

near the channel wall, and does not differ appreciably between the fast and the slow pressures. Theo-

retical predictions indicate that the slope of the fast pressure should be−11/3 (Durbin, 1978) and the

slope of the slow pressure should be−7/3 at high wavenumbers (Funget al., 1992).

Here, an attempt to explain these results is presented, based on the idea that the slow pressure

results from the interaction of the small eddies in the turbulence with the large eddies, and that these

large eddies can be represented by a uniform straining flow. This is equivalent to assuming that the

slow pressure is in fact a fast pressure where the turbulence is replaced by the small-scale turbulence

61



Chapter 3 Nonlinear interactions in shear-free turbulence near boundaries

and the mean flow is replaced by the large-scale turbulence.

In the present linear model, the pressure field is produced by the interaction between the small-

scale turbulence and the large-scale velocity gradients. That interaction happens everywhere, but if

the large-scale flow used in the previous subsection is adopted, the model will produce no pressure

fluctuations far from the boundary (since the large-scale flow tends to zero there). Hence, the straining

flow used originally (3.34) will be adopted instead. It will be shown that the observed differences

between the magnitude of pressure at the boundary and in the bulk of the flow can be explained

simply in terms of the blocking effect of the boundary, and that the variation of the strain rate does not

seem to be important in this case.

Making use of (3.25) and (3.26), the pressure variance is found to be

p2 =
ZZZ

Q∗
kQl Φ

(H)
kl dk1dk2dk3, (3.45)

and the one-dimensional pressure spectrum, whose definition is

Π1(k1, x3, t) =
1
2π

Z
p(x1, x2, x3, t)p(x1 + r1, x2, x3, t)e−ik1r1dr1, (3.46)

can also be expressed as

Π1 =
ZZ

Q∗
kQl Φ

(H)
kl dk2dk3. (3.47)

Figure 3.7(a) shows profiles of the pressure variance for undistorted turbulence and for an up-

welling and a downwelling zone after some distortion has taken place. The first interesting feature

is that the pressure variance increases towards the boundary, where it attains a maximum. This is

caused by the contributions to the pressure associated with the image velocity field that is necessary

to satisfy the blocking boundary condition. Regarding this feature, figure 3.7(a) resembles figures 2

and 3 of Kim (1989), where profiles of the root-mean-square pressure are presented. In these figures,

the slow pressure also increases towards the boundary, but decreases slightly very near the boundary.

The latter effect is probably due to the viscous boundary layer, and cannot be captured in the present

inviscid model. The other interesting feature of figure 3.7(a) is that the pressure fluctuations associ-

ated with an upwelling zone are more intense than those associated with a downwelling zone (this is

consistent with the trends of the pressure-strain terms verified in figure 3.5). Hence upwelling zones

in shear-free turbulence beneath a free surface should be more important for surface wave generation

than downwelling zones.

Figure 3.7(b) presents plots of the pressure spectrum predicted by the model, calculated forc = 1,
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Figure 3.7 (a) Profiles of the pressure variance. Solid line:c = 1 (undistorted), dotted line:c = 2 (downwelling zone),

dashed line:c = 0.5 (upwelling zone). (b) One-dimensional spectrum of the turbulent pressure fluctuations. Solid line:

model, far from the boundary, dotted line: model, atx3 = 0, dashed line: data of Kim (1989), far from the boundary,

dash-dotted line: data of Kim, atx3 = 0.

at the boundary and far from the boundary, compared with the numerical simulation data of Kim

(1989). These data have been renormalised so as to be fitted by the theoretical curves in an optimal

way, since it was impossible to find a relation between the normalisation used by Kim and that used in

this chapter (the vertical scales of the graphs presented in figure 9 of Kim’s paper have no label). Both

the theoretical spectra and the data have larger magnitude at the boundary than far from the boundary.

All the curves have a plateau and then a breakpoint and a sloping portion with negative slope at higher

wavenumbers. The theoretical curves both have a slope of−11/3 at high wavenumbers, which is also

the slope predicted by RDT for the fast pressure. The curves of the numerical data have a steeper

slope at high wavenumbers, especially at the boundary. While this slope is higher than that predicted

by the model, it is closer to that predicted by the model than to−7/3. On the other hand, this slope

is approximately equal to the slope of the spectra of the fast pressure (not shown). This aspect is

consistent with the model. At dimensionless wavenumbersk1l not much greater than 1, the model

results fit the data quite reasonably. One of the possible reasons for the observed discrepancies is that

the slow pressure of Kim (1989) may be affected indirectly by the shear in the channel flow, which is

not taken into account in the model.

3.5 Conclusions

An inviscid rapid-distortion model has been developed for studying the interaction between the large

and small scales in shear-free turbulence beneath a flat boundary. The large-scale turbulence is treated

as a steady, axisymmetric straining flow, while the small-scale turbulence is assumed to be homo-
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geneous and initially isotropic far from the boundary. Subject to the condition that the small-scale

turbulence has a velocity scale and a strain rate which are much smaller than those imposed by the

large-scale flow, the model is linearised and solved in the spectral domain for the small-scale turbu-

lence. Turbulence statistics, such as the Reynolds stresses and various inviscid source terms in the

TKE budget are calculated, assuming that the undistorted small-scale turbulence is characterised by a

prescribed energy spectrum.

The distortion of the small-scale turbulence by upwelling and downwelling zones existing in the

turbulence is addressed by considering straining flows that transport fluid towards the boundary and

away from the boundary, respectively. It is found that these two types of flow affect the small-scale

turbulence in quite different ways. While the upwelling zone induces an increase of both the tangential

and the normal Reynolds stresses of the small-scale turbulence, the downwelling zone induces an

increase of the tangential Reynolds stress but a decrease of the normal Reynolds stress, rendering

the turbulence almost two-dimensional for sufficiently large distortions. The ratio of the tangential

Reynolds stress at the boundary and far from the boundary rises above 1.5 in the upwelling zone,

approaching asymptotically 2 for large distortions, while it decreases below 1.5 in the downwelling

zone, approaching asymptotically 1 for large distortions.

The TKE budget is analysed in detail. It is found that the evolution of the Reynolds stresses in

time is determined primarily by the production term in the Reynolds stress equations in the case of a

downwelling zone and for the normal component of the Reynolds stress in the case of an upwelling

zone, but the evolution of the tangential component of the Reynolds stress in an upwelling zone is

determined by the pressure-strain term. The pressure-strain terms act to move the turbulence towards

isotropy everywhere in a downwelling zone, and in the bulk of the flow in an upwelling zone, but away

from isotropy near the boundary, in an upwelling zone. The TKE of the small-scale turbulence rises

with increasing distortion both in an upwelling zone and in a downwelling zone, and this rise occurs

at the same rate at the boundary and far from the boundary, for a flow with a uniform strain, so that

the value of the TKE remains equal in those two regions. However, observations show that the TKE

tends to be larger near the boundary.

Such behaviour is due to the fact that the strain rate of upwelling and downwelling zones in fact

varies with distance from the boundary. The characteristics of the strain field associated with the

small-scale turbulence are investigated, and these characteristics are extrapolated to the large-scale

flow, assuming scale invariance. It is found that the strain rates are stronger and more anisotropic

near the boundary while they remain smaller and isotropic far from the boundary. This causes a larger

net effective strain at the boundary and explains the larger TKE levels that are observed there. An

approximate model is developed to address this aspect, where the strain rate decays exponentially to

zero away from the boundary. The model is only formally valid when the distance over which the

strain rate decays is much larger than the integral length scale of the small-scale turbulence, but in
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practice the Reynolds stress predictions are best when the two scales are equal. This reflects the lack

of a scale separation in the turbulence with which the model output is compared.

The pressure field associated with the distortion of the small-scale turbulence by an upwelling or

downwelling zone with a uniform strain rate has been calculated. It is found that the pressure variance

intensifies at the boundary, due to the image velocity necessary to satisfy the boundary condition,

and that the wavenumber spectra of the slow pressure, at the boundary and far from the boundary,

exhibit a -11/3 power law behaviour at high wavenumbers, which is the same that RDT would predict

for the fast pressure. Both the relative pressure magnitude and the power law behaviour of the spectra

showed some qualitative agreement with direct numerical simulation data of the slow pressure by Kim

(1989). This suggests that the increase in pressure magnitude at the boundary can be explained simply

by the blocking effect, and that the high wavenumber behaviour of the pressure spectra in shear-free

turbulence are determined primarily by the interaction between the large scales and the small scales in

the turbulence.

3.6 Appendix. Expressions ofQi

The components of theQi vector, introduced in (3.26), are defined as follows:
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CHAPTER 4

The initial generation of surface waves by turbulent shear flow

4.1 Introduction

The question of how wind blowing over a water mass generates surface waves has received consider-

able attention since the classical review of Ursell (1956). Miles (1957) and Phillips (1957) presented

the first two systematic treatments of this problem, suggesting two complementary wave generation

mechanisms, which are presently widely accepted. Phillips’ theory deals with the initiation of the wave

field by a resonance of the pressure fluctuations contained in the turbulent air flow with the air-water

interface, leading to a linear growth of the waves. Miles’ theory addresses the subsequent amplifica-

tion of the waves by a feedback, shear instability mechanism, and leads to exponential growth. More

recently, the sheltering wave growth mechanism first proposed by Jeffreys (1925) was also shown to be

important, and quantified in detail by van Duin & Janssen (1992) and Belcher & Hunt (1993). Both the

shear instability and the sheltering mechanisms belong to the category of feedback instability mech-

anisms, leading to exponential growth, and corresponding to source terms in the wave energy budget

roughly with the same form. The resonance mechanism and the feedback instability mechanisms have

been included in various wave prediction numerical models (Hasselmann, 1988).

Ultimately, all wave growth is caused by travelling stress fluctuations applied at the air-water

interface. When waves exist already, part of this stress is associated with the perturbation of the air or

water flows by the wave field. This part of the stress is dominant for waves of sufficient amplitude,

and has been the subject of the studies of Townsend (1972), Jacobs (1987), van Duin & Janssen (1992)

and Belcher & Hunt (1993). At the initial stage of wave growth, the stress fluctuations associated only

with the turbulence, which would exist even if the air-water interface was perfectly flat, determine the

wave growth. These stresses, in particular their inviscid part (the pressure), are central to the theory

developed by Phillips (1957)

Phillips (1957) found that the air-water interface responds to the turbulent pressure fluctuations

in the airflow as a forced harmonic oscillator. Among all turbulent pressure fluctuations, the most

efficient in generating waves are those advected by the wind at a velocity that matches the phase

speed of waves having a similar length scale. These pressure fluctuations can interact resonantly

with the air-water interface and make the waves grow fastest. Phillips derived an expression for the

wave spectrum resulting from this resonant process as a function of the spectrum of the pressure
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fluctuations present in the airflow. Subsequent theoretical investigations on this subject resulted in

only minor additions to Phillips’ theory. Krasitskiy (1980) considered the effect of the viscous stresses

on the initiation of surface waves, while Kitaigorodskii & Lumley (1983) and Sazontov & Shagalov

(1984) used dimensional analysis to obtain crude definitions for the spectrum of the turbulent pressure

fluctuations.

Only a few numerical and experimental studies have focussed on the initiation of surface waves.

Gelci et al. (1985) and Giovanangeli & Memponteil (1985) used discrete vortices in the airflow to

initiate the waves, but did not evaluate the pressure field. Their results were consistent with the exis-

tence of resonant wave growth, but were unable to demonstrate the quantitative accuracy of Phillips’

theory. Kahma & Donelan (1988) used a homogeneous boundary layer flow similar to that implied

in Phillips’ (1957) paper, but were forced to assume rather strong approximations about the spatio-

temporal structure of the pressure fluctuations, and consequently were very cautious when comment-

ing on the order-of-magnitude agreement achieved between the theory and their data. Recently, the

studies of Mellvilleet al. (1998) and Caulliezet al. (1998) have led to renewed interest in this subject.

One key problem in validating Phillips’ theory using experimental data is related to the difficulty

of measuring the turbulent pressure spectrum at the air-water interface in the absence of waves. After

a turbulent wind starts blowing over a water mass, the waves generated as a result very soon begin to

contaminate the pressure measurements through their feedback on the mean flow (Kahma & Donelan,

1988). On the other hand, the measurement of very small waves, which are those likely to be dom-

inated by Phillips’ mechanism, is itself technically complicated and requires great accuracy. These

problems might be avoided through the use of numerical modelling, but numerical simulations of

flows with a mobile free surface have only become available recently (Borueet al., 1995; Tsai, 1998)

due to the complexity of the boundary condition at the interface, which is generally linearised.

For all these reasons, the analytical model of Phillips (1957) remains at present a very useful tool

to understand the initial stage of surface wave generation. If an actual wave spectrum is to be calcu-

lated from this model, however, some assumption about the form of the turbulent pressure spectrum is

required. Kitaigorodskii & Lumley (1983) and Sazontov & Shagalov (1984) assumed in their theoret-

ical studies that the pressure spectrum has a functional form suggested by dimensional analysis and a

simplified spatio-temporal structure. However, since the spatio-temporal structure of the turbulence is

crucial for determining the growth rate of the waves (Phillips, 1957), it would be preferable to model

the pressure spectrum in a way that accounts for the detailed dynamics of the turbulence. That will be

done in this chapter by using rapid distortion theory (RDT).

Being a linearised theory of turbulence, RDT is applicable to situations where the distortion of the

turbulence by itself is negligible compared with the distortion of the turbulence by external forcings

(Batchelor & Proudman, 1954). In the case of shear flows, this condition is satisfied where the shear
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rate is large compared with the typical frequency of the turbulent eddies, a situation that occurs in

boundary layers (Leeet al., 1990). RDT was first applied successfully to boundary layer flow by

Townsend (1970), who was able to predict with good accuracy the spatial correlation functions of the

turbulent velocity. Subsequently, the theory was generalised by Durbin (1978), Lee & Hunt (1989) and

Mann (1994) to shear flows near a flat wall. While the studies of Lee & Hunt and Mann focussed on the

turbulent velocity statistics, Durbin’s study included calculations of the turbulent pressure fluctuations.

Through the linear approximation, RDT enables the turbulent pressure field to be straightforwardly

related to the turbulent velocity field, of which more details are known and better measurements can

be made. Durbin’s (1978) results for the correlations and spectra of the pressure at the boundary

showed qualitative agreement with data.

Now, according to Phillips (1957), the turbulent pressure fluctuations at a flat boundary are exactly

those responsible for the initiation of surface waves. Therefore, in this chapter, Durbin’s (1978) RDT

model is coupled with the wave generation model of Phillips (1957) and the complete model thus

obtained is used to predict the initial growth of surface waves at an air-water interface. Through RDT,

the surface wave spectrum is obtained as a function of the spectrum of the initial turbulent velocity, and

the spectrum of the turbulent pressure does not need to be parameterised. Phillips (1957) addressed

explicitly only the case where the pressure fluctuations responsible for generating the surface waves

originate in the airflow. But the dominance of these over the pressure fluctuations in the water flow is

not at all obvious. As noted by Belcheret al. (1994), the wind induces a shear current in the water

which is characterised by a friction velocityu∗w ≈ (ρa/ρw)
1
2 u∗a, whereρa andρw are, respectively,

the densities of air and water, andu∗a is the friction velocity in the air. If the turbulent pressure

fluctuations in the air and in the water are estimated, respectively, asρau2∗a andρwu2∗w, their magnitude

is similar, and both pressure fluctuations should have the same relevance for wave growth.

However, it will be found that the decorrelation time for the turbulent pressure fluctuations in the

airflow is much shorter than that in the water flow, making the turbulence in the water, according to the

model, more effective for generating waves than turbulence in the air. This is consistent with the recent

measurements of Caulliezet al. (1998) and Melvilleet al. (1998), which show that the appearance of

the first visible waves generally follows the establishment of a turbulent shear current in the water.

The remainder of this chapter is organised as follows. In§4.2, the theoretical model for the initia-

tion of surface waves by a turbulent shear flow will be presented. In§4.3, some statistics of the waves

generated will be shown and their behaviour will be discussed in detail. Finally, in§4.4, the main

conclusions of this chapter will be reported.
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Figure 4.1 Schematic diagram showing the flow considered in (a) the uncoupled case and (b) the coupled case.

4.2 Theoretical model

Consider a situation where the air and the water are initially at rest and the interface that separates the

two fluids coincides with the planex3 = 0. Assume now that, att = 0, a horizontally homogeneous

turbulent wind starts blowing over the water in the regionx3 > 0 (this will be called theuncoupled

case) or that a horizontally homogeneous turbulent current starts flowing beneath the water surface

in the regionx3 < 0 (this will be called thecoupled case) (see figure 4.1) The turbulent wind or

the turbulent current are associated with turbulent pressure fluctuations that will first initiate and then

amplify surface waves at the air-water interface. The characteristics of such waves, when they have

relatively low slope, and when the turbulence that generates them is relatively weak, constitute the

main topic of this chapter. To tackle this problem, an inviscid RDT model of turbulent shear flow

near a flat boundary similar to those used by Durbin (1978), Lee & Hunt (1989) and Mann (1994), is

coupled with a wave generation model which essentially follows Phillips (1957).

The case of a mean flow with a linear shear profile of constant shear rateΓ and initially ho-

mogeneous and isotropic turbulence far from the boundary is considered for simplicity, since these

approximations yielded satisfactory predictions of various turbulent velocity and pressure statistics

in the RDT studies mentioned above. In this model, the presence of the boundary is taken into ac-

count by simply adding an initially irrotational correction to the velocity field, so that the boundary

condition is satisfied (Durbin, 1978). Although this assumption would only be strictly valid if the

boundary was suddenly introduced (Hunt & Graham, 1978), it is observed in measurements of shear-

free turbulence (which is the type of turbulence that would exist before distortion by a wind or current)

that the kinematic correction to the velocity due to the boundary is indeed approximately irrotational

(Hunt, 1984a). This is inferred, for example, from the fact that the dissipationε ≈ ν|ω|2 remains

approximately uniform near the boundary, hence the vorticity level(|ω|2) 1
2 is approximately constant

throughout the fluid. However, unlike in the cases treated in chapters 2 and 3, the velocity correction
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due to the boundary becomes rotational due to the mean shear fort > 0.

The conditions necessary for the model to be valid are now quantified and discussed. The total

velocity fieldUi consists in this problem of 3 components: a mean componentUi , which corresponds

to the mean wind or current, a turbulent componentui , and a component associated with the orbital

motions of the generated surface wavesu(W)
i . The pressureP can likewise be decomposed into a

mean, a turbulent, and a wave-related part. Hence

Ui = Ui + ui + u(W)
i , i = 1, 2, 3.

P = P + p + p(W). (4.1)

Consider the momentum equation,

∂Ui

∂t
+ U j

∂Ui

∂x j
= −1

ρ
∂P
∂xi

+ ν
∂2Ui

∂x2
k

, (4.2)

whereρ is the density andν is the kinematic viscosity of the fluid under consideration. The decompo-

sition (4.1) enables this equation to be expanded into a rather lengthy expression where each term can

be separately scaled.

If L andU are the typical length and velocity scales of the mean flow andl andu are the typical

length and velocity scales of the turbulence, the wavelength of the waves generated by the turbulence

will also scale likel and the associated orbital velocities will be initially small, because they are

proportional to the wave slope. Hence, as long asu(W)
i ≤ ui , the scaling of the componentsui and

u(W)
i may be lumped together. Provided that the Reynolds numberRe = UL/ν is sufficiently large,

the viscous terms in (4.2) can be neglected. On the other hand, assuming thatu¿ U , u/l ¿ U/L and

u(W)
i ≤ ui , the leading order form of the momentum equation, involving only the mean variables, is

∂Ui

∂t
+ U j

∂Ui

∂x j
= −1

ρ
∂P
∂xi

. (4.3)

This equation may be subtracted from (4.2) and the nonlinear terms involving products ofui or u(W)
i

can be shown to be negligible compared with the remaining terms (Hunt, 1973). In that case, separate

linear equations for the turbulent and wave motions can be obtained:

∂ui

∂t
+ U j

∂ui

∂x j
+ u j

∂Ui

∂x j
= −1

ρ
∂p
∂xi

,

∂u(W)
i

∂t
+ U j

∂u(W)
i

∂x j
+ u(W)

j
∂Ui

∂x j
= −1

ρ
∂p(W)

∂xi
. (4.4)

Since the mean shear rate isΓ, thenU/L = Γ, and the conditionU/L À u/l is equivalent toΓ À u/l .
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Since the wave orbital velocity isu(W)
i = O(awkwcw), wherecw is the corresponding phase speed and

awkw is the wave slope, the conditionu(W)
i ≤ ui implies thatawkw ≤ u/cw. For a typical value of, for

example,u/cw = 0.1, this condition is satisfied forawkw ≤ 0.1, which is always true initially. When

a random wave field is considered instead of a monochromatic surface wave,awkw may be replaced

by the mean-square slope of the waves, MSS, and the phase speedcw may be replaced by the phase

speed of the dominant wavescw. An additional constraint on the model results from the fact that the

shear tends to make the turbulence progressively more anisotropic, and when the degree of anisotropy

reached is high enough, the nonlinear processes in the turbulence become more efficient in reducing

the anisotropy than estimated above. This places a limit on the total distortion that the turbulence is

allowed to undergo,Γt, which can be estimated from the study of Leeet al. (1990) to be around 10

(although in fact it depends on the shear rate).

Summarising, the conditions for the proposed model to be valid are

u
U
¿ 1,

Γl
u
À 1, ReÀ 1, MSS

1
2
cw

u
≤ 1, Γt ≤ 10. (4.5)

Of course, as the boundary atx3 = 0 is approached, the scaling of the viscous terms changes

and these terms become important at a distance from the boundary of the order of the viscous bound-

ary layer thickness,δ ≈ (νl/U)
1
2 (Sternberg, 1962). For purposes of wave generation, viscosity is

important not only for energy dissipation but also because it is associated with viscous stress fluctu-

ations which contribute to wave growth alongside with the pressure fluctuations. The viscous stress

fluctuations, which are appreciable only inside the viscous boundary layer can be estimated as

τ1 = µ
∂u1

∂x3
= O(ρνu/δ) = O(ρν

1
2 uU

1
2 l−

1
2 ). (4.6)

while the pressure fluctuations are seen from the first equation of (4.4) and the previous scalings to be

p = O(ρUu). The ratio of the viscous stress and pressure fluctuations is therefore

τ1

p
= O

(
ρν 1

2 uU
1
2 l−

1
2

ρUu

)
= O(Re−

1
2 (L/l)

1
2 ), (4.7)

and it can be concluded that the viscous stresses are negligible provided thatReis sufficiently large.

The above scaling arguments justify the use of a generic linear and inviscid model for predicting

the initial growth of surface waves by turbulence. The reasons why that model can be a combination

of Phillips’ (1957) wave growth model and Durbin’s (1978) model of a turbulent shear flow bounded

by a plane wall, are presented next.

According to Phillips’ theory, the pressure fluctuations relevant for wave generation at the initial
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stage are those that exist at a flat air-water interface. Now, a flat free surface and a flat solid wall affect

a turbulent flow primarily through blocking and viscous effects. The kinematic blocking effect is the

same in the two types of boundary, but the viscous coupling with the adjacent fluid is different (see

chapter 2), inducing different velocity profiles. Differences directly due to viscosity are confined to

the region inside the viscous boundary layer. In this region, the source terms in the equation that gives

the pressure are small (Kim, 1989), so the pressure is transmitted almost unchanged across the viscous

boundary layer. Therefore, for the purpose of calculating the pressure field at the boundary, what is

important is to model the flow outside the viscous boundary layer correctly (Durbin & Hunt, 1980).

The pressure field at the boundary is relatively insensitive to the type of viscous coupling of the fluid

with the boundary and can be modelled to a good approximation using the inviscid theory of Durbin

(1978), developed for a wall.

As mentioned before, Durbin’s model considers a mean flow with a constant shear rate. Because

the pressure fluctuations responsible for generating the waves receive their greatest contributions from

the flow very near the boundary, where the shear rate is particularly large, this assumption is probably

accurate enough for this purpose (Durbin, 1978).

Throughout this chapter, the turbulent shear flow will be assumed to exist in the air but not in

the water in the uncoupled case and in the water but not in the air in the coupled case. Since a wind

necessarily induces a shear current in the water, real situations are a mixture between the coupled and

the uncoupled cases, but for the purpose of comparing the relative importance of the flow in the air

and in the water for generating surface waves, an analysis of these idealised cases seems justified.

4.2.1 Wave generation by turbulence

Because of the high density difference between air and water, the wave orbital motions in the air are

not dynamically significant and the air-water interface can be treated approximately as a stress-free

boundary, apart from the forcing induced by the turbulence (Phillips, 1957). In the uncoupled case,

the distortion of the waves by the mean shear in the air is insignificant, and the waves are only affected

by the pressure fluctuations induced at the boundary by the interaction of the turbulence with the

shear flow. In the coupled case, the mean shear in the water not only interacts with the turbulence,

generating the pressure fluctuations that drive the waves, but also distorts the waves, slightly altering

their dispersion relation. Since the orbital motion of the waves generated initially does not penetrate

to a depth greater thanl , these waves are unlikely to be much affected by the variation of shear with

depth. Thus, the approximation of a constant shear rate in the coupled case is probably also a good

one for the wave distortion.

Both the turbulence and the surface waves are statistically horizontally homogeneous, but not
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stationary. The turbulence is inhomogeneous in the vertical direction, because of the blocking effect

of the boundary. The turbulent velocity and pressure can thus be expressed as Fourier integrals along

the horizontal directions, namely

ui(x, t) =
ZZ

ûi(k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2,

p(x, t) =
ZZ

p̂(k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2, (4.8)

where ûi and p̂ are time dependent Fourier amplitudes and(k1, k2) is the horizontal wavenumber

vector. The surface elevationζ associated with the wave field generated by the turbulence, and the

corresponding orbital velocity and pressure can be expressed in a formally similar way,

ζ(x1, x2, t) =
ZZ

ζ̂(k1, k2, t)ei(k1x2+k2x2)dk1dk2,

u(W)
i (x, t) =

ZZ
û(W)

i (k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2,

p(W)(x, t) =
ZZ

p̂(W)(k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2, (4.9)

whereζ̂, û(W)
i and p̂(W) are time dependent Fourier amplitudes.

The linearised kinematic boundary condition at the air-water interface requires that the vertical

velocity of the interface equals that of the adjacent fluid. In a frame of reference moving with the

mean velocity at the air-water interface, this means

u3(x3 = 0) + u(W)
3 (x3 = 0) =

∂ζ
∂t

. (4.10)

Since this equation is linear it can be satisfied if

u3(x3 = 0) = 0,

u(W)
3 (x3 = 0) =

∂ζ
∂t

, (4.11)

where the first equation is just the blocking condition for turbulence near a boundary without waves

and the second is the well-known kinematic boundary condition for infinitesimal waves in the absence

of turbulence. Using (4.9), the second equation of (4.11) can be expressed in terms of the Fourier

amplitudes of the surface elevation and the orbital velocity as

û(W)
3 (x3 = 0) =

∂ζ̂
∂t

. (4.12)

The dynamical boundary condition is obtained from the momentum equation for the orbital veloc-
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ity, and is different in the coupled and in the uncoupled cases. The coupled case will be treated first,

since it is more complicated, and the uncoupled case will be obtained next as a special case.

4.2.2 Coupled case

In the coupled case, the mean velocity field is given by

Ui = δi1Γx3 if x3 < 0,

Ui = 0 if x3 > 0. (4.13)

The wave motion, which is primarily determined by what happens in the water, is appreciably affected

by the shear so, for the mean flow given by (4.13), the second equation of (4.4) takes the form

∂u(W)
i

∂t
+ U1

∂u(W)
i

∂x1
+ u(W)

3 δi1
dU1

dx3
= − 1

ρw

∂p(W)

∂xi
, (4.14)

whereρw is the density of the water. Taking the curl of this equation, a vorticity equation is obtained.

If the vertical component of the vorticity equation is differentiated with respect tox2 and subtracted

from the derivative with respect tox3 of the spanwise component of the vorticity equation, it follows

that

∂
∂t

(
∂2u(W)

3

∂x2
1

+
∂2u(W)

3

∂x2
2

+
∂2u(W)

3

∂x2
3

)
+ U1(x3)

∂
∂x1

(
∂2u(W)

3

∂x2
1

+
∂2u(W)

3

∂x2
2

+
∂2u(W)

3

∂x2
3

)
= 0. (4.15)

This simplifies the problem considerably, since the only unknown wave quantity becomes the vertical

orbital velocityu(W)
3 . Equation (4.15) has the general solution

∇2u(W)
3 = F(x1 −U1(x3)t, x2, x3), (4.16)

whereF is an arbitrary function. If the wave motion is initially irrotational, thenF = 0 at t = 0 and

remains zero for all time, so

∇2u(W)
3 = 0. (4.17)

The dynamical boundary condition is obtained by differentiating (4.14) fori = 1 with respect to

x1, adding it to the derivative of (4.14) fori = 2 with respect tox2 and using continuity. This gives an
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equation for the horizontal divergence,

∂
∂t

(
∂u(W)

3

∂x3

)
+ U1

∂
∂x1

(
∂u(W)

3

∂x3

)
− dU1

dx3

∂u(W)
3

∂x1
=

1
ρw

(
∂2p(W)

∂x2
1

+
∂2p(W)

∂x2
2

)
, (4.18)

which must be imposed atx3 = 0. Since the waves are forced by the turbulence, the pressure at

the interface is equal to the turbulent pressurep. In the linearised boundary condition (4.18),p(W) is

evaluated atx3 = 0 and results from 3 contributions: a turbulent part, a hydrostatic part, due to the

weight of water associated with the surface elevation, and a part due to surface tension, which involves

the curvature of the interface, namely

p(W) = p + ρw

[
gζ− γ

(
∂2ζ
∂x2

1

+
∂2ζ
∂x2

2

)]
, (4.19)

whereg = 9.8m s−2 is the acceleration of gravity andγ = 72.6× 10−6m3 s−2 is the surface tension,

and the curvature term has been linearised. Using this definition and (4.13), the dynamical boundary

condition atx3 = 0, (4.18), becomes

∂
∂t

(
∂u(W)

3

∂x3

)
− Γ

∂u(W)
3

∂x1
− g

(
∂2ζ
∂x2

1

+
∂2ζ
∂x2

2

)
+ γ

(
∂2

∂x2
1

+
∂2

∂x2
2

)2

ζ =
1

ρw

(
∂2p

∂x2
1

+
∂2p

∂x2
2

)
. (4.20)

To further simplify this equation, it is necessary to use (4.8) and (4.9), which will be done next.

Since the wave orbital motion has to decay to zero as the depth increases,

u(W)
3 (x3 → −∞) → 0, (4.21)

hence ifu(W)
3 satisfies (4.17) and is expressed as in (4.9), the corresponding Fourier amplitude takes

the form

û(W)
3 = û(W)

3 (x3 = 0)ek12x3, (4.22)

wherek12 = (k2
1 + k2

2)
1
2 . Inserting the definitions ofu(W)

3 , ζ andp given by (4.8) and (4.9) into (4.20)

and using also (4.22), it follows that, atx3 = 0,

∂û(W)
3

∂t
− iΓ

k1

k12
û(W)

3 +
(
gk12 + γk3

12

)
ζ̂ = −k12

ρw
p̂. (4.23)

Finally, substitutingû(W)
3 according to (4.12), an equation for the Fourier amplitude of the surface
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elevation results:

∂2ζ̂
∂t2 − iΓ

k1

k12

∂ζ̂
∂t

+ σ2
0ζ̂ = −k12

ρw
p̂(x3 = 0), (4.24)

where

σ2
0 = gk12 + γk3

12 (4.25)

defines the natural angular frequency of surface waves in quiescent water. The solution of (4.24)

subject to the boundary conditionsζ̂(t = 0) = ∂ζ̂/∂t(t = 0) = 0 is

ζ̂(k1, k2, t) = − k12

ρwσ1

Z t

0
p̂(k1, k2, x3 = 0, s)ei Γk1

2k12
(t−s) sin[σ1(t − s)]ds, (4.26)

whereσ1 is defined as

σ2
1 = σ2

0

[
1 +

(
Γk1

2k12σ0

)2
]

. (4.27)

The solution (4.26) is expressed as a time integral involving the pressure fluctuations at the air-water

interface. The surface elevation is therefore determined at each instant by the history of these pressure

fluctuations since the inception of the turbulent current.

4.2.3 Waves in a laminar shear current

The role of the mean shear in distorting the waves can be understood more clearly by setting the

turbulence to zero (ui = 0), so that the turbulent pressurep vanishes. From (4.24), the equation

governing the dynamics of the interface becomes

∂2ζ̂
∂t2 − iΓ

k1

k12

∂ζ̂
∂t

+ σ2
0ζ̂ = 0, (4.28)

and, since this equation has no forcing, the behaviour of the wave variables becomes statistically

stationary. The amplitude of the surface elevationζ̂ can then be considered as the superposition of

many components oscillating sinusoidally in time. Consider one of these components,

ζ̂(k1, k2, t) = ˆ̂ζ(k1, k2, σ)e−iσt , (4.29)
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Figure 4.2 Phase speed of gravity-capillary waves in a linear shear current, along the direction of the current, forΓ =

10s−1. Solid line: no shear, dotted line: with shear, waves propagating in the direction of the current; dashed line: with

shear, waves propagating against the current.

where ˆ̂ζ is an amplitude not dependent on time. On substituting (4.29) in (4.28), the amplitudeˆ̂ζ
cancels out and an equation that gives the dispersion relation of the waves is obtained:

σ2 + Γ
k1

k12
σ− σ2

0 = 0, (4.30)

whereσ is the angular frequency. The solution to (4.30) is

σ = −Γ
k1

2k12
±

((
Γ

k1

2k12

)2

+ σ2
0

) 1
2

(4.31)

and shows that the wave propagation is made anisotropic by the shear, with a maximum in anisotropy

occurring along the streamwise (x1) direction. In that direction, the phase velocity iscw = σ/k12 and

given by

cw = − Γ
2k12

±
((

Γ
2k12

)2

+ c2
0

) 1
2

, (4.32)

wherec0 = σ0/k12. This solution is well-known and was found, for example, as a leading order

approximation in the treatment of waves on shear currents by Shrira (1993).

The effect of shear is to decrease the phase speed of waves propagating in the positivex1 direction

and to increase the phase speed of waves propagating in the negative direction. Equation (4.32) shows

that this effect is especially important at low wavenumbers (see figure 4.2). Since the waves with the

lowest wavenumbers (highest wavelengths) are those whose orbital motions penetrate more deeply,
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physically it is as if the fluid below the surface is ‘carrying’ the longer waves with its own motion

(which is in the negativex1 direction), while the shorter waves are only affected by the motion very

near the surface, which is approximately zero. As (4.31) shows, this effect decreases likecosθ = k1
k12

as the direction of propagationθ changes from0 (parallel to the current) toπ/2 (perpendicular to the

current). For waves perpendicular to the current, the mean shear does not affect the dispersion relation.

Since the existence of shear in the water changes the dispersion relation of freely propagating

surface waves, it affects the resonance condition in the wave generation process by slightly modifying

the velocity at which turbulent pressure fluctuations of a given scale have to be advected for resonant

growth to occur.

4.2.4 Uncoupled case

For an interface forced by pressure fluctuations driven by a turbulent shear flow in the air and un-

sheared water flow, the mean velocity field takes the form

Ui = δi1Γx3 if x3 > 0,

Ui = 0 if x3 < 0. (4.33)

In that case, the wave motion is not appreciably distorted by the mean shear (which has an effect

O(ρa/ρw) weaker than in the coupled case) and so, from the point of view of the waves, it is as if

there was no shear at all. Then, the equation that the amplitude of the surface elevation must satisfy is

obtained by simply settingΓ = 0 in (4.24), which gives

∂2ζ̂
∂t2 + σ2

0ζ̂ = −k12

ρw
p̂(x3 = 0). (4.34)

This is equivalent to Phillips’ (1957) equation (2.12). The solution of (4.34) for an initially unper-

turbed interface, wherêζ = ∂ζ̂/∂t = 0 at t = 0, is

ζ̂(k1, k2, t) = − k12

ρwσ0

Z t

0
p̂(k1, k2, x3 = 0, s) sin[σ0(t − s)]ds. (4.35)

In order to proceed further from (4.26) or (4.35), it is necessary to specify the turbulent pressure

field. In the RDT approximation, the turbulent pressure fluctuations are linearly related to the turbu-

lent velocity fluctuations. Since the pressure at a given point (and therefore also at the boundary) is

determined by contributions of the velocity field coming from the whole domain (due to the elliptic

nature of equation that gives the pressure), it is convenient to specify first the turbulent velocity field

and only then calculate expressions for the pressure. This will be done in the next two subsections.
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4.2.5 Turbulent shear flow near a boundary

The turbulent velocity field will now be determined in the RDT approximation, following Durbin

(1978). A situation where the turbulence is below the boundary (coupled case), will be considered

next as an example, but the treatment is analogous if the turbulence is above the boundary. Consider

the first equation of (4.4) which, for a mean shear flowUi = δi1Γx3, can be written

∂ui

∂t
+ U1

∂ui

∂x1
+ u3δi1

dU1

dx3
= −1

ρ
∂p
∂xi

. (4.36)

Taking the curl of this equation, a vorticity equation is obtained. If the vertical component of the

vorticity equation is differentiated with respect tox2 and subtracted from the derivative with respect

to x3 of the spanwise component of the vorticity equation, as was done in§4.2.2 for the wave orbital

velocity, then an equation foru3 formally analogous to (4.15) is obtained:

∂
∂t

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3

)
+ U1(x3)

∂
∂x1

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3

)
= 0. (4.37)

That equation has the solution

∇2u3 = G(x1 −U1(x3)t, x2, x3), (4.38)

whereG is an arbitrary function. But the similarities between the wave and turbulent motions end

at this point. While the wave velocity is initially irrotational, the turbulent velocity is by definition

rotational, so the functionG is not zero and is defined instead by the initial condition (cf. Durbin,

1978)

G(x1, x2, x3) = ∇2u3(x1, x2, x3, t = 0). (4.39)

The boundary and initial conditions of the problem become much simplified if it is recalled now

that the turbulence far from the boundary is assumed to be homogeneous (Durbin, 1978). Since the

shear rateΓ is constant, the turbulence remains homogeneous at all times. Thus, the turbulent velocity

far from the boundary can be expressed as a three-dimensional Fourier integral,

u(H)
i (x, t) =

ZZZ
û(H)

i (k, t)eik·xdk1dk2dk3, (4.40)

whereû(H)
i is the Fourier amplitude, and the wavenumber vectork = (k1, k2, k3) is time dependent due

to the shear, which makes the turbulence anisotropic over time. Towards the boundary, the turbulence

is made inhomogeneous in thex3 direction by the blocking effect. This effect can be taken into
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account by adding tou(H)
i a correction which enables the flow to satisfy the boundary condition at the

interface (first equation of (4.11)). The other boundary condition states that this correction decays to

zero far from the boundary, asx3 → −∞. Following Durbin (1978), the initial condition states that

the correction is initially irrotational. The solution to the problem att = 0 is then identical to that

corresponding to shear-free turbulence near a wall (Hunt & Graham, 1978). In particular, the vertical

velocity component takes the form

u3(x, t = 0) =
ZZZ

û(H)
3 (k0, t = 0)

(
eik03x3 − ek012x3

)
ei(k01x+k02y)dk01dk02dk03, (4.41)

wherek0 = (k01, k02, k03) = k(t = 0) is the initial wavenumber vector andk012 = (k2
01 + k02)

1
2 . This

expression can be introduced in (4.39) to obtain the form of the functionG(x1, x2, x3). Replacing the

argumentx1 of that function byx1−U1(x3)t and substituting the resulting expression in (4.38) yields

an equation foru3 in the general, time-dependent case. This equation is again subject to the same

boundary conditions as att = 0.

It is found that the horizontal components of the wavenumber vector are not affected by the mean

shear, and thereforek1(t) = k01, k2(t) = k02 andk12 = k012, but the vertical component has a linear

dependence on time (Townsend, 1976):k3(t) = k03− k01Γt. For simplicity, the shorter notationk1,

k2 andk12 will be adopted henceforth instead ofk01, k02 andk012. Accordingly, the time-dependent

solution for the vertical velocity component is (Durbin, 1978)

u3(x, t) =
ZZZ

k2
0

k2 û(H)
3 (k0, t = 0)

(
eik3x3 − ek12x3

)
ei(k1x1+k2x2)dk1dk2dk3, (4.42)

wherek0 = (k2
1 + k2

2 + k2
03)

1
2 and k = (k2

1 + k2
2 + k2

3(t))
1
2 . The form of the horizontal velocity

componentsu1 andu2 is rather more involved and has been obtained, for example, by Lee & Hunt

(1989) and Mann (1994). However, for the problem of surface wave generation, only the pressure

statistics are of interest, and in the RDT approximation these only depend on the vertical component

of the turbulent velocity, as will be seen next.

4.2.6 Pressure in the RDT approximation

In §4.2.2 and§4.2.4, the wave amplitude was determined as a function of the amplitude of the turbulent

pressure fluctuations at the air-water interface. The turbulent pressure field will now be related to the

turbulent velocity field calculated in§4.2.5 making use of the simplifying assumptions of RDT. Again,

the coupled case will be considered as an example, but the treatment for the uncoupled case is entirely

analogous.
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Taking the divergence of (4.36), it follows that

∇2p = −2ρ
dU1

dx3

∂u3

∂x1
. (4.43)

To obtain the turbulent pressure field everywhere, this equation has to be solved, subject to the bound-

ary conditions

p(x3 → −∞) = p(H) and
∂p
∂x3

(x3 = 0) = 0, (4.44)

wherep(H)(x, t) is the pressure field associated with the turbulence far from the boundary, and where

the boundary condition atx3 = 0was obtained from the vertical component of the momentum equation

(4.36), taking into account the first equation of (4.11) (blocking condition).p(H) is defined as the

solution of

∇2p(H) = −2ρ
dU1

dx3

∂u(H)
3

∂x1
. (4.45)

Using (4.8), the Poisson equation (4.43) may be simplified, becoming an ordinary differential equation

for the Fourier amplitudes of the pressure and velocity:

∂2p̂

∂x2
3

− k2
12p̂ = −2ρΓik1û3. (4.46)

The solution for the turbulent velocity (4.42), together with (4.8), may then be used, and the boundary

conditions (4.44) applied.

After some algebra, the solution for the Fourier amplitude of the pressure is found to be

p̂ = 2iρΓ
Z

k1
k2

0

k2 û(H)
3

[
1
k2eik3x3 +

(
x3

2k12
− 1

2k2
12

− ik3

k12k2

)
ek12x3

]
dk3, (4.47)

which at the boundary takes the simplified form

p̂(k1, k2, x3 = 0, t) = iρΓ
k1

k2
12

Z
k2

0

(ik3 + k12)2 û(H)
3 (k0, t = 0)dk3, (4.48)

as obtained by Durbin (1978). This form is independent of whether the turbulent fluid is above or

below the boundary, and so gives the pressure fluctuations induced by the turbulence in the coupled or

in the uncoupled case, if the density in (4.48) is replaced by the density of water or by the density of

air, respectively.

Since the turbulent pressure that drives the waves is now known, it remains to substitute the pres-
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sure amplitude (4.48) in (4.26) and (4.35) to obtain the resulting wave field as a function of the turbu-

lent velocity field. It is then possible to calculate statistics of the waves.

4.2.7 Statistics of the flow

Like turbulence itself, the waves generated by a turbulent shear flow must be characterised by a range

of statistics, namely covariances, spectra and variances. Previous RDT studies have concentrated

on the statistics of the turbulent velocity and pressure fields. This chapter focusses primarily on the

statistics of the wave field induced by the turbulence.

First of all, it should be noted that, since the model is linear, the turbulent velocity and pressure, and

the surface elevation at any point in space and at any time can always be related to the ‘unperturbed’

or ‘undistorted’ turbulence which is assumed to exist far from the boundary at the initial time. Hence,

ui(x, t) =
ZZZ

Mi j (k, x3, t)û
(H)
j (k0, t = 0)ei(k1x1+k2x2)dk1dk2dk3,

p(x, t) =
ZZZ

Q j(k, x3, t)û
(H)
j (k0, t = 0)ei(k1x1+k2x2)dk1dk2dk3,

ζ(x1, x2, t) =
ZZZ

Sj(k, x3, t)û
(H)
j (k0, t = 0)ei(k1x1+k2x2)dk1dk2dk3, (4.49)

where the matrixMi j and the vectorsQ j andSj are given in appendix 1 (§4.5) for the flow under

consideration. The matrixMi j may be extracted from the expressions contained in the study of Mann

(1994), where, however, there is a minor mistake which has been corrected in appendix 1. The vector

Q j may be obtained from the expressions in Durbin’s (1978) study or (4.47) of this chapter. Finally,

Sj can be determined after substituting (4.48) into (4.26) or (4.35).

Since the boundary atx3 = 0 makes the turbulence inhomogeneous in thex3 direction, it only

makes sense to calculate spatial covariances and spectra along thex1 and x2 directions. The two-

dimensional spectra corresponding to the variables in (4.49) are defined as

Θi j (k1, k2, x3, t) =
1

(2π)2

ZZ
ui(x, t)u j(x1 + r1, x2 + r2, x3, t)e−i(k1r1+k2r2)dr1dr2,

Π(k1, k2, x3, t) =
1

(2π)2

ZZ
p(x, t)p(x1 + r1, x2 + r2, x3, t)e−i(k1r1+k2r2)dr1dr2,

Ψ(k1, k2, t) =
1

(2π)2

ZZ
ζ(x1, x2, t)ζ(x1 + r1, x2 + r2, t)e−i(k1r1+k2r2)dr1dr2, (4.50)

where the overbar denotes ensemble averaging, and whereΘi j is the velocity spectrum,Π is the

pressure spectrum andΨ is the surface elevation spectrum. Taking into account (4.49), these spectra

can be expressed as functions of the corresponding undistorted Fourier amplitudes in the following
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simplified way (cf. Hunt, 1973),

Θi j (k1, k2, x3, t) =
Z

MikM jmΦ(H)
km (k0)dk3,

Π(k1, k2, x3, t) =
Z

QkQmΦ(H)
km (k0)dk3,

Ψ(k1, k2, t) =
Z

SkSmΦ(H)
km (k0)dk3, (4.51)

where the three-dimensional wavenumber spectrum of the undistorted turbulent velocityΦ(H)
km can be

related to the corresponding Fourier amplitude using

û(H)
i (k0)û

(H)
j (k′0) = Φ(H)

i j (k0)δ(k0 − k′0). (4.52)

If the undistorted turbulence is isotropic, this spectrum takes the form

Φ(H)
i j (k0) =

(
δi j − k0ik0 j

k2
0

)
E(k0)
4πk2

0

, (4.53)

whereE(k0) is the energy spectrum of the undistorted turbulence. Following Hunt & Graham (1978)

and Durbin (1978), the well known von Kármán form of the energy spectrum, which has proved to be

appropriate for inviscid calculations, is adopted here,

E(k0) = u2l
g2(k0l)4

(g1 + (k0l)2)
17
6

, (4.54)

whereg1 = 0.558 andg2 = 1.196 are dimensionless constants.u and l , the velocity and length

scales of the turbulence used in (4.54), are defined, respectively, as the initial root-mean-square (RMS)

turbulent velocity and integral length scale far from the boundary.

The two-dimensional spectra of (4.51) are functions of the horizontal wavenumbersk1 andk2. To

obtain one-dimensional spectra, the expressions of these spectra have to be integrated overk1 or k2.

To obtain covariances or variances of the velocity, pressure, or surface elevation, the expressions must

be integrated simultaneously overk1 andk2.

Of particular interest in this chapter are the surface elevation statistics, which have a relatively

simple explicit form, due to the fact that they only depend on the vertical component of the turbulent

velocity. From (4.51) and appendix 1, the surface wave spectrum in the uncoupled case may be written

Ψ(k1, k2, t) =
1
4π

ρ2
a

ρ2
w

Γ2 k2
1

σ2
0

Z
E(k0)

∣∣∣∣
Z t

0

sin(σ0(t − s))
(−ik3(s) + k12)2ds

∣∣∣∣
2

dk03, (4.55)
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while in the coupled case, it has the form

Ψ(k1, k2, t) =
1
4π

Γ2 k2
1

σ2
1

Z
E(k0)

∣∣∣∣∣∣

Z t

0

ei Γk1
2k12

s

(−ik3(s) + k12)2 sin(σ1(t − s))ds

∣∣∣∣∣∣

2

dk03. (4.56)

The expressions between brackets in (4.55) and (4.56) can be expanded into an oscillating part and

a growing part (see appendix 2,§4.6). The oscillating part, although formally accurate, corresponds

to the addition of an oscillatory function of time and wavenumber to the spectra, which introduces

undesired noise in the calculated statistics. For that reason, in the following numerical calculations,

only the growing part of the solution will be considered. This is approximately equivalent to time

averaging the spectra over an interval sufficiently long to filter the oscillations, but shorter than the

time scale relevant for wave growth. It is also found that the time integrals in the expressions between

brackets can be written explicitly in terms of exponential integral functions of a complex argument.

The final form taken by these expressions is rather lengthy, so it has been left for appendix 3 (§4.7).

It can be seen from (4.55) and (4.56) that the integrals between brackets are somewhat akin to a

Fourier transformation in the time domain. Over a sufficiently long interval, the factorssin(σ0(t − s))

andexp[(iΓk1/2k12)s] sin(σ1(t − s)) select frequencies of the forcing which are close to the reso-

nance frequency, thus making the surface wave spectrum grow preferentially for the combination of

frequency and wavenumber that corresponds to freely-propagating waves. The time-dependent ex-

pression in the denominator, however, increases in time and limits this growth.

4.2.8 Dimensionless parameters

In order to avoid redundancy when testing the model, it is convenient to reduce the number of input

variables of the model to a minimum. This can be done by making the expressions of the surface wave

spectrum dimensionless.Ψ(k1, k2, t) has dimensions oflength4, hence (4.55) and (4.56) should be

divided byl4 to become dimensionless. The result is

Ψ′(k′1, k′2, t
′) =

1
4π

ρ2
a

ρ2
w

k′21
σ′20

Z
E′(k′0)

∣∣∣∣
Z t ′

0

sin(σ′0/Γ′(t ′ − s))
(k′12− ik′3(s))2 ds

∣∣∣∣
2

dk′03 (4.57)

in the uncoupled case and

Ψ′(k′1, k′2, t
′) =

1
4π

k′21
σ′21

Z
E′(k′0)

∣∣∣∣∣∣∣

Z t ′

0

e
i

k′1
2k′12

s

(k′12− ik′3(s))2 sin(σ′1/Γ′(t ′ − s))ds

∣∣∣∣∣∣∣

2

dk′03 (4.58)
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in the coupled case, where the primed variables which appear in both equations have been made

dimensionless usingl andu (e.g. Γ′ = Γl/u), except for the dimensionless time, which is defined as

t ′ = Γt. It can be seen from (4.57) and (4.58) that, apart fromk′1 andk′2, the dimensionless surface

wave spectrum depends onσ′1, t ′ andΓ′ in the coupled case andσ′0, t ′, Γ′ andρa/ρw in the uncoupled

case. The density ratio considered will always be that of the air to the water, soρa/ρw can be taken as

a constant. On the other hand, using the definition ofσ1 (4.27), it follows that

σ′21 = σ′20

[
1 +

(
Γ′k′1

2k′12σ′0

)2
]

, (4.59)

henceσ′1 is a function ofσ′0 andΓ′ (apart fromk′1 andk′2), and the parameters relevant for the coupled

case are the same as those relevant for the uncoupled case.

Now, from (4.25) it can be deduced that

σ′20 = Fr−2k′12 + We−1k′312, (4.60)

where

Fr =
u

(gl)
1
2

, We=
lu2

γ
(4.61)

are the Froude number and the Weber number, respectively. So the dimensionless natural frequency

σ′0 depends onFr, Weandk′12. From all these results, it can be concluded that the dimensionless

parameters controllingΨ′ areFr, We, t ′ andΓ′. As (4.60) shows,Fr andWeonly enter in the equation

for Ψ′ indirectly, throughσ′0. The Froude and the Weber numbers estimate the relative importance of

the forcing at the interface due to the turbulence and the restoring forces due to gravity and surface

tension, respectively. The larger these two numbers are, the easier it becomes for the interface to be

deformed by the turbulence (see chapter 1).

Sinceg andγ are fixed physical constants, definition (4.61) implies thatFr andWeare uniquely

related tol andu and either pair of variables may be used interchangeably. As in Brocchini & Pere-

grine (2000a), l andu will be adopted instead ofFr andWeas direct input parameters to the present

surface wave model, because physically plausible values are more readily found for these dimensional

quantities.
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4.3 Results

Results will now be presented for the coupled and uncoupled cases. In the uncoupled case, the values

of the turbulence intensity and the shear rate for the flow in the air are higher than the corresponding

values in the water for the coupled case. This is done in a way that guarantees a similar magnitude

for the pressure fluctuations in both cases. The scaling of the pressure fluctuations presented in§4.1

in fact suggests that this approximation may be reasonably realistic in air-water coupled flows. The

idea is to show how the temporal structure of the turbulent pressure (not only its intensity) is important

in the evolution of the wave field. As mentioned above, the input parameters arel , u, t ′ andΓ′. The

relation between these parameters that ensures a similar pressure intensity in the coupled and in the

uncoupled cases will be defined next.

The pressure variance at the interface induced by a turbulent shear flow existing in the air or in

the water can be obtained by integrating the two-dimensional pressure spectrumΠ in (4.51) over

k1 andk2, making use of the expressions forQi available in appendix 1 (§4.5) and also (4.53). After

some algebra, and using the dimensionless variables introduced in (4.57) and (4.58), the dimensionless

pressure, which is defined as

p′ =
p

ρΓul
, (4.62)

is found to have the variance

p′2(x′3 = 0, t ′) =
1
4π

ZZZ
k′21
k′212

1
k′4(t ′)

E′(k′0)dk′1dk′2dk′3. (4.63)

By inspection of (4.63), it is clear that the dimensionless pressure variance at the interface is only a

function of t ′. Hence, for a givent ′, the dimensional pressure variance is proportional to(ρΓul)2.

This reasoning is valid both for turbulence in the water (coupled case) and for turbulence in the air

(uncoupled case). So, in order to have pressure fluctuations of a similar magnitude in the coupled and

uncoupled cases, the productΓul has to be greater in the air than in the water by a factorρw/ρa. In

the following treatment,ρw/ρa = 103 is taken and, to satisfy the above constraint in a very simple

way,Γ, u andl are each assumed to be greater in the air than in the water by a factor of 10. Although

rough, this estimate is in clear qualitative agreement with experiment: it is well known that shear is

more intense and turbulence more vigorous and characterised by larger eddies in the atmosphere than

in the ocean (Donelan, 1990).
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4.3.1 Mean square slope of the waves

The mean square slope (MSS) of the surface waves generated at the air-water interface will be deter-

mined first, because it gives a gross measure of the size of the waves. It should be emphasised that,

since both gravity and surface tension were taken into account in the treatment of§4.2, the surface

waves under consideration are gravity-capillary waves. The MSS can be found by integrating the

surface elevation spectrum multiplied byk2
12 over all wavenumbers:

MSS=
(

∂ζ
∂x1

)2

+
(

∂ζ
∂x2

)2

=
ZZ

k2
12Ψ(k1, k2, t)dk1dk2. (4.64)

Figure 4.3 shows the evolution of the MSS of the surface waves predicted by the model for the

coupled case as a function of dimensionless timet ′. In figure 4.3(a), the sensitivity of the MSS toΓ′,
keepingl andu constant, is tested. It can be seen that the wave growth is faster and more sustained for

higher values ofΓ′. This was to be expected since, as shown in the previous subsection, the pressure

fluctuations that generate the waves are proportional toΓ.

In figure 4.3(b), the MSS is plotted for different values ofu, keepingΓ′ and l constant. It is

observed that the waves grow faster and for a longer time whenu is higher. This is not surprising either,

since the pressure fluctuations that drive the waves are proportional tou. There is an indirect effect

which further promotes wave growth: whenΓ′ is kept constant andu is increased,Γ also increases

proportionally. Because of this, the MSS is very sensitive tou.

Finally, figure 4.3(c) displays the variation of the MSS growth withl , keepingΓ′ andu constant.

It can be seen that the waves grow faster for lower values ofl . While the pressure fluctuations that

generate the waves are proportional tol , Γ decreases asl increases whenΓ′ is kept constant and the

two effects cancel. However, since the dominant wavelength of the waves is approximately equal to

the length scale of the turbulencel , waves of a given amplitude tend to be steeper for smallerl . Other

qualitative aspects of these curves will be discussed in§4.3.2.

Quantitatively, for example whenl = 5cm, u = 5cm s−1 andΓ′ = 10 (i.e. Γ = 10s−1), the MSS

takes a value of0.002at t ′ = 3. This means that the root-mean-square (RMS) slope takes a value of

≈ 0.05 at 0.3 s. Having in mind the value ofl , this corresponds to waves of≈ 2.5mm amplitude,

which are necessarily visible. The chief criterion used in choosing the values ofΓ′, u and l used in

figure 4.3 has been the ability of the model to produce waves with a RMS slope ofO(0.1) in the

time interval considered. The values adopted foru, l andΓ′ are also found to be of the same order

of magnitude as those which can be inferred by inspection from the laboratory data of Melvilleet al.

(1998), or Magnaudet & Thais (1995) (slightly higher than observed in the case ofu). The value of

t ′, on the other hand, is within the range of total distortions used by Townsend (1976) or Leeet al.
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Figure 4.3 Time evolution of mean square slope of the waves in the coupled case. (a) l = 5cm, u = 5cm s−1. Solid

line: Γ′ = 5, dotted line:Γ′ = 10, dashed line:Γ′ = 20, long-dashed line:Γ′ = 50. (b) l = 5cm, Γ′ = 10. Solid line:

u = 3cm s−1, dotted line:u = 5cm s−1, dashed line:u = 7cm s−1, long-dashed line:u = 9cm s−1. (c) u = 5cm s−1, Γ′ = 10.

Solid line: l = 1cm, dotted line:l = 2cm, dashed line:l = 5cm, long-dashed line:l = 10cm.

(1990). Hence, these are reasonably realistic values.

Figure 4.4 shows plots of the MSS as a function oft ′ in the uncoupled case for values ofΓ′,
u and l ten times larger than those used in figure 4.3, so as to produce pressure fluctuations of the

same magnitude. Two differences immediately stand out between figures 4.3 and 4.4. Firstly, in the

uncoupled case the MSS values attained are much lower than in the coupled case, despite the turbulent

pressure fluctuations being of the same magnitude. In all the three plots in figures 4.4(a–c), the MSS

barely reaches1× 10−6, which corresponds to a RMS slope of1× 10−3. In a real situation, waves

with such a slope would be invisible to the naked eye. Secondly, although the trends in the behaviour

of wave growth with the parametersΓ′, u and l are in the same sense as in the coupled case, the

sensitivity to the shear rateΓ′ is much reduced (see figure 4.4(a)). Both these aspects are linked with

the decorrelation process of the turbulent pressure fluctuations over time, and will be explained in the
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Figure 4.4 Time evolution of mean square slope of the waves in the uncoupled case. (a) l = 0.5m, u = 0.5m s−1. Solid

line: Γ′ = 50, dotted line:Γ′ = 100, dashed line:Γ′ = 200, long-dashed line:Γ′ = 500. (b) l = 0.5m, Γ′ = 100. Solid line:

u = 0.3m s−1, dotted line:u = 0.5m s−1, dashed line:u = 0.7m s−1, long-dashed line:u = 0.9m s−1. (c) u = 0.5m s−1,

Γ′ = 100. Solid line: l = 0.1m, dotted line:l = 0.2m, dashed line:l = 0.5m, long-dashed line:l = 1m.

next subsection.

There is a considerable resemblance between the MSS curves presented in figure 4.3 of this chapter

and those presented in figure 3 of Cox (1958). Qualitatively, in both cases the MSS initially increases

at a fast rate, but later increases progressively slower, reaching an approximate plateau. This feature is

also related to the time evolution of the pressure fluctuations, which will be addressed in the next sub-

section. Quantitatively, the time interval over which the waves grow rapidly (which can be evaluated

visually from Cox’s figure 3) is≈ 0.5s, not very different from the value extracted previously from

figure 4.3 of this chapter (0.3 s). The MSS values of figure 4.3 are smaller than those of Cox by less

than an order of magnitude, while the values of figure 4.4 are insignificantly small by comparison. It

thus seems that the coupled case explains Cox’s results better than the uncoupled case, which leads to

the conclusion that the initial wave growth observed in Cox’s experiments may be driven by turbulence

in the water rather than by turbulence in the air.
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In Cox’s figure 3, the fetch at which waves are initiated is progressively translated upstream as

the windspeed increases, but is always greater than approximately 1m, for the range of windspeeds he

considered. This also supports the idea that it is the turbulence in the water that generates the waves,

because it is only after the wind has blown for some distance over the water that a shear current appears

in the water and becomes turbulent (Caulliezet al., 1998).

4.3.2 Decorrelation of the pressure fluctuations

To understand why the waves generated in the uncoupled case are much smaller than those generated

in the coupled case despite the fact that the magnitude of the forcing pressure fluctuations is the same,

recall that the spatio-temporal structure of these pressure fluctuations is also crucial for wave growth.

Phillips (1957) pointed out that resonant wave growth occurs when pressure fluctuations advected over

the air-water interface match both the wavenumber and the frequency or phase speed of free surface

waves. The resonance process would be maximised if the pressure fluctuations with the appropriate

‘dispersion relation’ were rigidly advected, following the waves with which they are able to resonate.

But such perfect resonance never happens in turbulent flows. Due to the interaction between the mean

flow and the turbulence or the turbulence with itself, pressure patterns with given initial length and time

scales lose coherence as they are transported by the velocity field, and are only capable of interacting

resonantly with a wave for a finite time. That time is the decorrelation time of pressure, which Phillips

calls θ in his theory. Corcos (1964) has suggested that, in a boundary layer flow, ‘the dispersion of

the sources of pressure by the mean stream may well be the dominant mechanism responsible for the

convective lack of coherence of pressure’. In other words: the mean shearing of the turbulence may

be the primary cause for the decorrelation of the pressure fluctuations. In the present RDT model, the

mean shear is not the dominant mechanism for the decorrelation of the pressure fluctuations, but the

only mechanism, since the turbulence does not interact with itself.

A function which contains useful information about the decorrelation time of pressure is the tem-

poral covariance function of the turbulent pressure fluctuations. That function can be determined at

the air-water interface by multiplying (4.48) at timet by the same expression at timet + ∆t (where∆t

is a time lag), then using (4.8) and ensemble averaging. The resulting expression can then be made

dimensionless, yielding

p′(t ′)p′(t ′ + ∆t ′) =
1
4π

ZZZ
k′21
k′212

E′(k′0)
(k′12− ik′3(t ′))2(k′12 + ik′3(t ′ + ∆t ′))2dk′1dk′2dk′3, (4.65)

where∆t ′ = Γ∆t is the dimensionless time lag. The dimensionless pressure covariance only depends

on t ′ and∆t ′. If this covariance is divided by the dimensionless pressure variance (4.63), the pressure

correlation function is obtained. The pressure correlation has been plotted in figure 4.5 fort ′ = 0,
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Figure 4.5 Temporal correlation of the pressure. Solid line:t ′ = 0, dotted line:t ′ = 3, dashed line:t ′ = 5.

3 and 5, as a function of∆t ′. The dependence of this function ont ′ is relatively weak. Concerning

the dependence on∆t ′, the pressure correlation has a maximum at the origin, then becomes slightly

negative, and for large values of∆t ′ decays to zero. The point where this function intercepts the

horizontal axis remains approximately the same for everyt ′. Now, the location of this intercept can

be understood as giving one of the possible definitions of decorrelation time for pressure. In figure

4.5, the intercept corresponds to a value of∆t ′ ≈ 1.5. So, it can be concluded that the dimensional

decorrelation time for pressure is∆t ≈ 1.5/Γ. Hence the turbulent pressure fluctuations remain

coherent for a shorter time as the shear rate increases.

Since the shear rate is higher in the air than in the water, the decorrelation time for the turbulent

pressure fluctuations is shorter in the air than in the water. This effect counteracts the proportionality

of the pressure to the shear rate which was seen to exist at the beginning of§4.3. So, even if the pres-

sure fluctuations in the air have the same magnitude as those in the water, they are considerably less

coherent, and that is the reason for the reduced wave growth in the uncoupled case. The dimensionless

number which best describes this effect is

σ′0
Γ′

=
σ0

Γ
, (4.66)

which appears in the argument of the sine function in the nondimensional solution for the wave spec-

trum (4.57), and also, more indirectly, in (4.58). When (4.66) is larger than 1, the turbulent pressure

fluctuations decorrelate over a time longer than one period of the free surface waves and considerable

resonant or near-resonant growth may be expected. Conversely, when (4.66) is smaller than 1, the

pressure fluctuations decorrelate over a time shorter than one period of the free surface waves, and

sustained growth is highly inhibited.
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Figure 4.6 Dimensionless wavenumber spectrum of the pressure along the direction of the current. Solid line:t ′ = 0,

dotted line:t ′ = 3, dashed line:t ′ = 5.

σ0 depends onk12 and so is a function of the length of the surface waves. Since for turbulence

with an integral length scalel , the dominant waves generated have a wavenumberk12 ≈ 2π/l , the

‘dominant’ angular frequencyσ0 = σ0(k12 = 2π/l) is more useful thanσ0 for evaluating the overall

effect of the pressure decorrelation of the wave field. The dimensionless quantity which controls wave

growth then becomes (4.66) withσ0 replaced byσ0. The ratioσ0/Γ is typically≈ 4 in the coupled

case and≈ 0.1 in the uncoupled case so, according to the above remarks, wave growth is favoured

in the first case and highly inhibited in the second. This is in agreement with the actual numerical

results. Interestingly, an increase in eitherΓ or l contributes to a decrease inσ0/Γ. In the case ofΓ,

this happens for obvious reasons; in the case ofl , through the decrease of the wavenumber at which

the wave spectrum peaks, which results in a decrease ofσ0.

The reason why the wave growth depends very weakly onΓ′ in the uncoupled case (figure 4.4(a)) is

that the effects of increasingΓ on the magnitude of the pressure fluctuations and on their decorrelation

time almost offset each other for high values ofΓ′.

A qualitative feature of figures 4.3 and 4.4 that was noted in§4.3.1 is the slowing down in the

growth rate of the MSS as time progresses. That feature is related to the time evolution of the turbu-

lent pressure fluctuations that force the waves as the turbulence is subjected to an increasingly large

total distortion in the RDT model. It can be understood by plotting the time evolution of the one-

dimensional pressure spectrum at the interface. That spectrum, which is seen from (4.51) to be

Π1(k1, x3 = 0, t) =
ZZ

QkQmΦ(H)
km (k0)dk2dk3, (4.67)

can be determined using the expressions forQk from appendix 1 (§4.5) and also (4.53), to yield, in
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dimensionless form,

Π′
1(k

′
1, x′3 = 0, t ′) =

1
4π

ZZ
k′21
k′212

1
k′4(t ′)

E′(k′0)dk′2dk′3, (4.68)

whereΠ′
1 = Π1/(ρ2Γ2u2l3). The dimensionless pressure spectrum only depends onk′1 and t ′ and

is plotted in figure 4.6 for different values oft ′. As time advances, the peak in the spectrum moves

towards lower wavenumbers and the energy at high wavenumbers decreases. Therefore, the pressure

forcing at the interface moves towards larger scales and these scales contribute less and less to the

surface wave slope, making the slope grow progressively slower. This process corresponds to the

elongation of the turbulent eddies in the streamwise direction, as observed, for example, in the numer-

ical simulations of Leeet al. (1990). In this light, the initial, relatively fast, rise of the MSS curves in

figure 3 of Cox (1958) may be interpreted as corresponding to the inception of turbulence in the water,

and the levelling out of the curves as being due to the subsequent stretching of the turbulent eddies by

shear in the boundary layer of the water flow.

4.3.3 Surface wave spectra

Despite its limitations, the model seems to indicate quite firmly that it is the turbulence in the water

that initially drives the surface waves. Therefore, more detailed statistics of these waves will now be

presented for the coupled case.

The curvature or saturation spectrum of the surface waves is defined as

B(k1, k2, t) = k4
12Ψ(k1, k2, t). (4.69)

This spectrum is dimensionless by definition, and will be plotted next in the functional form

B(k12, θ, t ′), whereθ = arctan(k2/k1) is the angle of the wavenumber vector with the direction of

the current.

Figure 4.7 shows the sensitivity of the predicted curvature spectrum to the input variablesΓ′, l and

u, for an angleθ = 0 and a dimensionless timet ′ = 5. This time was chosen because, on the one

hand, it is within the range of realistic total distortions (see last equation of (4.5)) and on the other

corresponds to a stage where the MSS has almost stopped growing (see figure 4.3). The spectrum

is plotted as a function of the dimensional wavenumber and not as a function of the dimensionless

wavenumber, because the former variable is more frequently used in measurements of wave spectra

and also because it bears out more clearly the important wavenumberkmin = 367m−1. This wavenum-

ber corresponds to the transition between the gravity and the capillary wave regimes, where the phase

speed of surface waves is a minimum. The first aspect which stands out in figures 4.7(a–c) is that
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Figure 4.7 Curvature spectra of the waves along the direction of the current, in the coupled case, at dimensionless time

t ′ = 5. (a) l = 5cm, u = 5cm s−1. Solid line:Γ′ = 5, dotted line:Γ′ = 10, dashed line:Γ′ = 20, long-dashed line:Γ′ = 50.

(b) l = 5cm, Γ′ = 10. Solid line: u = 3cm s−1, dotted line:u = 5cm s−1, dashed line:u = 7cm s−1, long-dashed line:

u = 9cm s−1. (c) u = 5cm s−1, Γ′ = 10. Solid line: l = 1cm, dotted line:l = 2cm, dashed line:l = 5cm, long-dashed line:

l = 10cm.

the curvature spectra of the waves are sharply peaked. The peak occurs roughly at the wavenumber

k12 ≈ 2π/l , as predicted before. Some departure from this value towards lower wavenumbers can be

attributed to the elongation that the turbulent eddies have suffered in the streamwise direction att ′ = 5

(cf. figure 4.6).

In figure 4.7(a), it can be seen that, asΓ′ increases, the level ofB(k12, 0) generally increases, in

agreement with figure 4.3. The peak of the spectrum moves to the right, towardskmin, and the zone

to the left of the peak lowers slightly, while the zone to the right rises. This happens because, for a

higherΓ, the ratio (4.66) is only larger than 1 (favouring wave growth) for a higherσ0, and therefore

for a higherk12. The value of the spectrum at the peak varies between≈ 8× 10−5 and≈ 9× 10−4.

Figure 4.7(b) presents the dependence of the curvature spectrum on the turbulence RMS velocityu.
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The spectral density increases withu everywhere, but more so at the peak and to the right of the peak.

There is a drift of the peak towards higher wavenumbers asu increases, but much less pronounced

than in figure 4.7(a). Maximum values of the spectrum vary between≈ 5× 10−5 and≈ 2× 10−3.

Finally, figure 4.7(c) shows the dependence ofB(k12, 0) on the turbulence length scalel . There is

a general decrease on the values of the spectrum as the length scale increases, in agreement with the

MSS results. The spectral peak moves towards lower wavenumbers whenl increases, as expected. In

that process, the energy to the left of the peak increases, while that to the right decreases. Maximum

values range from≈ 9× 10−5 to≈ 2× 10−3.

Some of the features just described can also be found in the laboratory data of Jähne & Riemer

(1990) and Hwanget al. (1993) despite the fact that their wave spectra were measured at fetches

of 90m and 16m, respectively, where certainly many effects not considered in the present model,

such as nonlinear wave interactions, growth by feedback instability and wave breaking must have

come into play. In figure 6(a) of Hwanget al. (1993), it is particularly significant that the curvature

spectrum of the waves is sharply peaked, and that the peak tends to become centred aroundkmin as

the wind-friction velocity increases (see also Jähne & Riemer (1990)). In figure 9 of Jähne & Riemer,

the high-wavenumber part of the spectrum tends to rise relative to the low-wavenumber part of the

spectrum as the windspeed increases, and that is also observed in the present model when eitherΓ′ or

u increases.

Since the wave field is always initiated by turbulent pressure fluctuations, and the feedback insta-

bility mechanisms that later become dominant, as well as the nonlinear wave interactions, can only

modify the wave spectrum, it is perhaps to be expected that some of the features of the spectrum at the

inception of the waves will be preserved. This may account for the similarities encountered between

the model results and the data.

4.3.4 Angular energy distribution

The curvature spectrum contains information about the angular distribution of the wave energy, which

will be analysed next.

Figure 8 of J̈ahne and Riemer (1990) shows that the energy distribution inB(k12, θ) for the mea-

sured waves is relatively narrow for the whole range of wavenumbers considered at relatively low

windspeeds, but broadens, especially at low wavenumbers when the windspeed increases. For wind-

speeds greater than≈ 5.4m s−1, the spectrum has a bimodal distribution at low wavenumbers, with

peaks centred at some particular angle symmetrical aboutθ = 0. The theoretical wave model of

Kudryavtsevet al. (1999) also incorporates a broadening of the spectrum with decreasing wavenum-

ber and increasing windspeed (see their figure 6).
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Figure 4.8 Variation of the curvature spectrum with direction, in the coupled case, forl = 5cm, u = 5cm s−1 andt ′ = 5.

Solid line: k12 = 20m−1, dotted line: k12 = 50m−1, dashed line:k12 = 100m−1, long-dashed line:k12 = 200m−1,

dash-dotted line:k12 = 500m−1. (a) lower shear rate,Γ′ = 10. (b) higher shear rate,Γ′ = 50.

Figure 4.8 displays plots ofB(k12, θ), for various values ofk12, as a function ofθ, at a dimension-

less timet ′ = 5. In figure 4.8(a), the spectral density distribution varies with the angle approximately

ascos2 θ, because of the factork2
1 present in the expression of the wave spectrum (4.56). Only at

the lowest wavenumber considered can a slight broadening be noticed. In figure 4.8(b), however,

where the shear rate has been increased, a different behaviour can be observed. While at the high-

est wavenumber, the spectral density distribution is still peaked atθ = 0, at lower wavenumbers the

distribution becomes flattened and then bimodal, emulating qualitatively the experimental data. The

wavenumbers for which this bimodal behaviour occurs (k12 ≤ 100m−1) roughly agree with those in

figure 8(d) of Jähne & Riemer (1990), which corresponds to a windspeed of7.3m s−1.

Physically, the broadening of the spectrum occurs in the model because the pressure fluctuations

at the interface move at different speeds according to their scale. Large-scale pressure fluctuations

are induced by large turbulent eddies (Durbin, 1978) existing at a wide range of distances from the

interface, and advected at a wide range of velocities. Hence, these pressure fluctuations are also

advected at a wide range of velocities. The small-scale pressure fluctuations, on the other hand,

are induced by small turbulent eddies at short distances from the interface, which all have a low

advection velocity. Hence, these pressure fluctuations also move slowly. Since resonance requires that

the pressure fluctuations follow the surface waves, short waves, which are generated by small-scale

pressure fluctuations, choose preferentially the direction that minimises the difference between their

phase speed and the small advection velocity of the pressure fluctuations that generate them. That

direction corresponds to the angleθ = 0. Longer waves, on the other hand, are generated by large-

scale pressure fluctuations, which move faster, so the waves can satisfy resonance or near-resonance

for various values ofθ. That is why the curvature spectrum broadens ask12 decreases. The spectrum

also broadens asΓ′ increases, because a higher shear rate promotes a wider range of eddy advection
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velocities in the vicinity of the interface, thereby widening the range ofθ at which resonance can

occur.

In qualitative terms, the bimodal distribution of the wave spectrum could have been predicted from

Phillips’ (1957) theory on the basis of resonance arguments. However, the fact that the wave spectrum

broadens as the wavenumber decreases is a result of the relation derived here between the turbulent

pressure field and the turbulent velocity field. That relation has enabled the calculation of a precise

form for the spectrum of the surface waves, which was beyond the possibilities of Phillips’ theory.

In figure 3 of Phillips (1957), the angular energy distribution of the wave spectrum always peaks at a

certain ‘critical’ angle that depends on the wind velocity, and is zero for larger angles to the wind. By

contrast, the present model is able to produce angular energy distributions that peak in the direction

of the current, and also bimodal distributions that decay smoothly to zero after the peaks, clearly in

better agreement with data.

4.3.5 Discussion

The present model probably underestimates wave growth for three reasons, all of them related to

the linear approximation of RDT. Firstly, the model does not take into account the nonlinear part of

the pressure, associated with the interaction of the turbulence with itself. The numerical simulations

of Kim (1989) have shown that, in a turbulent channel flow, the linear and nonlinear parts of the

pressure can have about the same magnitude, even at the channel wall. Secondly, the decorrelation

time of the turbulent pressure fluctuations seems to be underestimated by RDT (see figure 15 of Corcos

(1964), where the temporal pressure correlation is plotted for the total and linear parts of the pressure).

This again inhibits wave growth, for the reasons pointed out in§4.3.2. Thirdly, the rendering of the

turbulence anisotropic by shear is overestimated by RDT, since the neglected nonlinear processes

tend to oppose this anisotropy. Because the increase in anisotropy is associated with the migration of

the peak in the pressure spectrum to lower wavenumbers (see§4.3.2), the slowing down of the MSS

growth rate observed in figure 4.3 is probably overestimated.

However, there is one aspect of the model which may lead to an overestimation of the pressure.

That is the assumption of a constant shear rate throughout the domain. Since the pressure field is pro-

portional in a nonlocal way to the shear rate, this approximation should overestimate the contributions

to the surface pressure originating from some distance from the boundary, where the shear rate is in

reality much lower than assumed. Nevertheless, the pressure has a much stronger dependence on the

velocity field in the vicinity of the boundary (Kim, 1989), so this overestimation is probably moderate.

An important issue in the present model is how to determine the value of the shear rateΓ to use

as an input variable. For all the runs carried out in this chapter, this was done in a rough way by
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direct inspection of the figure 4.7 of Melvilleet al. (1998). The shear rate in the top 1 or 2cm of the

water flow was estimated as ofO(10s−1), and this order of magnitude was confirmed in the studies

of shear currents of McLeish & Putland (1975) and of Tsai (1998). While the value of the shear rate

immediately outside the viscous boundary layer is probably the most important for determining the

pressure fluctuations, it is clear that some sort of average must be carried out over a certain distance

from the boundary, because of the nonlocality of the contributions to the pressure. How that averaging

may be done in an objective way is a problem that remains open.

4.4 Conclusions

A theoretical model has been developed for the initial stage of surface wave generation at an air-water

interface by a turbulent shear flow. The problem of the onset of a turbulent wind and the problem of the

onset of a turbulent shear current have been addressed separately by assuming that the turbulent shear

flow exists in the air or in the water, respectively. Although the existence of winds in the atmosphere

and currents in the ocean is closely linked because of the viscous coupling between the air and the

water, the two processes are separated in this model, in order to assess the importance of each one of

them. The case of a turbulent current is called the coupled case and the case of a turbulent wind is

called the uncoupled case.

The model can be viewed as a combination between the wave generation model of Phillips (1957)

and the turbulence rapid-distortion model of Durbin (1978). The air-water interface is assumed to be

initially flat and at rest. Surface waves subsequently grow as a response to the pressure fluctuations

induced at the interface by the turbulent shear flow. The pressure field at the interface is linearly

related to the turbulent velocity field. This pressure results from the interaction taking place in the

turbulent fluid between the mean shear and the turbulence. The turbulence is assumed to be statistically

homogeneous in the horizontal directions, and isotropic far from the boundary at the initial time. The

mean velocity is assumed to vary linearly with height or depth. Both the turbulent and wave velocity

components are assumed to be weak, in the sense of being unable to self-interact or interact with one

another, being affected only by the mean flow.

The mean-square-slope of the surface waves is calculated as a function of time in the coupled and

in the uncoupled cases. It is found that the MSS increases faster for higher values of the dimensionless

shear rateΓ′, initial RMS turbulent velocityu and lower values of the initial integral length scale of

the turbulencel . This is explained by the proportionality of the pressure applied at the interface toΓ
andu, and by the inverse proportionality of the wave slope tol .

For pressure fluctuations of similar magnitude, the waves generated in the uncoupled case are

much smaller than the waves generated in the coupled case. This behaviour is attributed primarily to
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differences in the ratioσ0/Γ between the decorrelation time scale for pressure (which is∝ 1/Γ) and

the period of the dominant waves (∝ 1/σ0). In the coupled case,Γ is smaller andσ0 larger (because

the length scale of the dominant wavesl is smaller), leading to a value of the ratioσ0/Γ larger than

1. This allows the turbulence and the waves to interact for more than one wave period before the

turbulent pressure fluctuations lose their coherence. In the uncoupled case, by contrast,Γ is larger and

σ0 smaller (because the length scale of the dominant wavesl is larger), resulting in a value of the ratio

σ0/Γ lower than 1. This means that the turbulent pressure fluctuations can not interact appreciably

with the surface waves before decorrelating, and wave growth is strongly inhibited.

In the coupled case, plots illustrating the MSS time evolution are found to have a shape and

magnitude consistent with plots of the same quantity derived from measurements by Cox (1958). The

MSS initially increases in time relatively fast, but after a certain time slows down and reaches an

approximate plateau. This phenomenon is attributed to the progressive elongation of the turbulent

eddies in the streamwise direction by the shear, which causes the turbulent pressure fluctuations to

force the air-water interface at progressively lower wavenumbers.

Wave curvature spectra are calculated in the coupled case, and plotted as a function of the

wavenumber. These spectra are found to have a maximum roughly at the wavenumberk12 ≈ 2π/l ,

and to satisfy power laws at higher and lower wavenumbers that result directly from the correspond-

ing power laws of the turbulence spectrum. The wave curvature spectra are also plotted for discrete

wavenumbers, as a function of the angle of propagation with the direction of the current,θ. The spectra

are found to peak likecos2 θ at θ = 0 for all wavenumbers at low shear rates, but to peak atθ = 0 for

higher shear rates only at high wavenumbers, having a broader distribution at lower wavenumbers and

a bimodal distribution at even lower wavenumbers. This scale dependent behaviour, which is consis-

tent with spectra measured by Jähne & Riemer (1990), is found to be linked with the spatio-temporal

structure of the pressure fluctuations, as modelled by RDT. Longer waves are excited by pressure fluc-

tuations associated with larger and faster-moving turbulent eddies being advected at some distance

from the boundary, while shorter waves grow due to the pressure fluctuations associated with smaller

and slower-moving eddies, which exist closer to the boundary.

4.5 Appendix 1. Expressions ofMi j , Q j and Sj

In the coupled case, theMi j matrix can be written

M11 = eik3x3,

M12 = 0,

M13 = eik3x3

{(
k1k30

k2
12

− k1k3

k2
12

k2
0

k2

)
− k2

2k2
0

k1k3
12

{
arctan

(
k30

k12

)
− arctan

(
k3

k12

)
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+
1
2i

[
e2k12x3 [E1((k12 + ik30)x3)− E1((k12 + ik3)x3) + πi (sign(k3)− sign(k30))]

− [E1((−k12 + ik30)x3)− E1((−k12 + ik3)x3)]]}} − iek12x3
k1k2

0

k12k2 ,

M21 = 0,

M22 = eik3x3,

M23 = eik3x3

{(
k2k30

k2
12

− k2k3

k2
12

k2
0

k2

)
+

k2k2
0

k3
12

{
arctan

(
k30

k12

)
− arctan

(
k3

k12

)

+
1
2i

[
e2k12x3 [E1((k12 + ik30)x3)− E1((k12 + ik3)x3) + πi (sign(k3)− sign(k30))]

− [E1((−k12 + ik30)x3)− E1((−k12 + ik3)x3)]]}} − iek12x3
k2k2

0

k12k2 ,

M31 = M32 = 0,

M33 =
k2

0

k2

(
eik3x3 − ek12x3

)
, (4.70)

where ‘sign’ denotes the sign function andE1 denotes the exponential integral function of order one.

TheQ j vector is given by

Q1 = Q2 = 0,

Q3 = 2iρΓk1
k2

0

k2

[
1
k2eik3x3 +

(
x3

2k12
− 1

2k2
12

− ik3

k12k2

)
ek12x3

]
. (4.71)

The corresponding expressions for the uncoupled case can be obtained by simply reflecting these

expressions about the planex3 = 0, by replacingk3 with −k3, k03 with −k03 andx3 with −x3.

TheSj vector is defined as

S1 = S2 = 0,

S3 = −2i
ρa

ρw

Γ
σ0

k1

2k12
k2

0

Z t

0

1
(k12 + ik3)2 sin(σ0(t − s))ds (4.72)

in the uncoupled case and

S1 = S2 = 0,

S3 = −2i
Γ
σ1

k1

2k12
k2

0

Z t

0

ei Γk1
2k12

(t−s)

(k12 + ik3)2 sin(σ1(t − s))ds (4.73)

in the coupled case.
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4.6 Appendix 2. Growing and oscillating parts ofΨ

In (4.55) and (4.56), the terms between brackets can be expanded into a growing and an oscillating

part. Expressions for these parts will be presented next in the coupled case. The expressions for the

uncoupled case may then be found as a particular case.

After expressing the sine function in (4.56) in complex form, moving the factors explicitly de-

pendent on time outside the integrals and rearranging, the term between brackets in (4.56) can be

written

∣∣∣∣∣∣

Z t

0

ei Γk1
2k12

s sin(σ1(t − s))
(k12− ik3(s))2 ds

∣∣∣∣∣∣

2

=
1
4

∣∣∣∣∣∣

Z t

0

ei( Γk1
2k12

−σ1)s

(k12− ik3(s))2ds

∣∣∣∣∣∣

2

+
1
4

∣∣∣∣∣∣

Z t

0

ei( Γk1
2k12

+σ1)s

(k12− ik3(s))2ds

∣∣∣∣∣∣

2

−Re





1
4

e2iσ1t
Z t

0

ei( Γk1
2k12

−σ1)s

(k12− ik3(s))2ds
Z t

0

ei( Γk1
2k12

+σ1)s

(k12 + ik3(s))2ds



 . (4.74)

The third term on the right oscillates in time and was neglected in the numerical calculations, for

reasons explained in§4.2.7. By makingσ1 = σ0 andΓ = 0 in (4.74) only in the numerator of the

fractions (i.e., not ink3), the expression applicable to the uncoupled case, (4.55), is found:

∣∣∣∣
Z t

0

sin(σ0(t − s))
(k12− ik3(s))2ds

∣∣∣∣
2

=
1
4

∣∣∣∣
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1
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0
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0

eiσ0s

(k12 + ik3(s))2ds

}
. (4.75)

4.7 Appendix 3. Solution in terms of exponential integrals

The product of complex conjugate time integrals in (4.55) and (4.56) was seen in appendix 2 to be

approximately equal to the first two terms on the right of (4.74) and (4.75), due to the fact that the third

terms are oscillatory. Thus, the approximate solution for the wave growth only requires a calculation

of the time integrals in the non-oscillatory terms. In the coupled case, these are

Z t

0

ei( Γk1
2k12±σ1)s

(k12− ik3(s))2ds = − 1
k1Γ


 ei( Γk1

2k12±σ1)t

k3(t) + ik12
− 1

k03 + ik12




+i
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k2
1Γ2

e−
Γk1
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±σ1
k1Γ (k12−ik03)

{
E1

(
−

Γk1
2k12

± σ1

k1Γ
(k12− ik3)

)

−E1

(
−

Γk1
2k12

± σ1

k1Γ
(k12− ik03)

)
+ πiH

( Γk1
2k12

± σ1

k1Γ
k12

)[
sign

( Γk1
2k12

± σ1
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)
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−sign

( Γk1
2k12

± σ1

k1Γ
k03

)]}
, (4.76)

and in the uncoupled caseZ t

0
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(
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k1Γ
k03
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, (4.77)

whereH is the Heaviside function.
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CHAPTER 5

The distortion of turbulence by a progressive surface wave

5.1 Introduction

Turbulence and surface waves in the ocean can interact in a variety of ways. As mentioned in the

previous chapter, turbulent pressure fluctuations and turbulent shear stresses are responsible for both

the initiation of surface waves (Phillips, 1957) and their amplification by a sheltering mechanism

(Belcher & Hunt, 1993). Surface waves can also be scattered (Phillips, 1959), distorted (Longuet-

Higgins, 1996) and dissipated by turbulence existing in the water (Kitaigorodskii & Lumley, 1983).

Conversely, breaking waves (Melville, 1996), shear currents induced by the wind and thermal

convection generate turbulence in the ocean surface layer, which is subsequently distorted by the wave

orbital motions (Thais & Magnaudet, 1996). This distortion is of two types: on the one hand, there is

the direct effect of the orbital motions, of first order in the wave slope, which has a straining rate of

O(awkwσw), whereaw, kw andσw are, respectively, the amplitude, wavenumber and angular frequency

of the waves. This effect is relatively weak, because the wave motions are periodic and the total strain

never exceedsO(awkw), which is small. On the other hand, there is the effect of the Stokes drift, of

second order in the wave slope, whose straining rate can be estimated asO(a2
wk2

wσw). Although this

straining rate is even smaller, its effect is cumulative, and the total strain is ofO(a2
wk2

wσwt), wheret is

time. So, this second order effect is bound to affect turbulence appreciably after a sufficient number

of wave cycles.

The distorting effect of the Stokes drift is at the basis of the explanation commonly accepted at

present for the existence of Langmuir circulations in the ocean (Leibovich, 1983). Langmuir circu-

lations are intense, elongated vortices, with their axes of rotation aligned with the wind and with the

dominant surface waves. In the instability mechanism proposed by Craik & Leibovich (1976), these

circulations result from the tilting and amplification, by the Stokes drift of the waves, of the vertical

vorticity associated with an infinitesimal perturbation to the wind-induced shear current. Although the

treatment of Craik and Leibovich addresses this interaction in a deterministic framework, considering

the flow as laminar, the flow in the ocean surface layer is almost invariably turbulent. Field observa-

tions (Faller & Auer, 1988) and numerical simulations (McWilliamset al., 1997) of the ocean surface

layer in fact show that the streamwise vortices identified as Langmuir circulations have themselves

a wide range of scales, and can therefore be seen as turbulence. They have been calledLangmuir
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turbulenceby McWilliams et al. (1997). Hence it is likely that turbulence plays an important role in

the development of Langmuir circulations.

When turbulence coexists with waves and a shear current in the ocean surface layer, the inter-

actions between these 3 flow components are necessarily complex, and probably best understood in

isolation. Both the turbulence and the shear current are rotational, and their vorticity can be tilted and

amplified by the Stokes drift of the wave. Only the shear current and the waves have been taken into

account in the early theoretical studies of Langmuir circulations (Leibovich, 1983). The interaction

between the turbulence and the shear current, which is akin to the mean flow–turbulence interaction

occurring in numerous boundary layer flows (Leeet al., 1990), has received some attention in the

context of Langmuir circulations in McWilliamset al. (1997).

The interaction between the waves and the turbulence has been investigated experimentally by

Greenet al. (1972),Ölmez & Milgram (1992), Nepf & Monismith (1995) and Thais & Magnaudet

(1996), but a systematic theoretical treatment of this situation has been lacking. The primary aim

of this chapter is to examine the interaction between shear-free turbulence and a surface wave when

the turbulence can be considered weak and slow compared with the wave. This is done by treating

the wave as prescribed and deterministic, and the turbulence as a random velocity field, of which

statistics can be calculated. Attention is focussed on the time evolution of the statistics of the velocity

fluctuations, and also on their spatial structure. Turbulence distortion by a wave is briefly compared

with turbulence distortion by a shear current using the model of chapter 4 for a turbulent flow with

a constant shear rate. The energetics of the turbulence are analysed by scaling the turbulent kinetic

energy (TKE) equation, and the consequences of the wave-turbulence interaction for the wave are

investigated by scaling an equation for the wave energy.

The remainder of this chapter is organised as follows: in§5.2, the theoretical model of wave-

turbulence interaction is presented. In§5.3, the results obtained from the model are analysed in detail.

These concentrate on the time evolution of the Reynolds stresses and the integral length scales, over

one wave cycle and over several wave cycles. These results are compared with those obtained for

turbulence distorted by a shear current. The consequences of the energy transfer taking place between

the turbulence and the wave are then analysed. The chapter ends with the main conclusions, in§5.4.

5.2 Theoretical model

Consider an infinite water mass bounded above by a free surface on which a progressive, monochro-

matic, surface wave is propagating. The wave is irrotational and has relatively low slope. It will be

analysed here how turbulence beneath the free surface is distorted by the orbital motions associated

with the wave. To tackle this idealised problem, the rapid distortion theory (RDT) of Hunt (1973) will
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be used.

The total velocity fieldUi is split into a mean part,Ui , and a turbulent part,ui , namely

Ui = Ui(x) + ui(x, t), i = 1, 2, 3, (5.1)

The mean velocity corresponds to the wave orbital motion expressed in a coordinate system travelling

with the wave crests. HenceUi is stationary. The wave is taken to propagate in the positivex1 direction

and, since the wave is also monochromatic,Ui is slab-symmetric and does not depend onx2. The

turbulence is assumed to be statistically stationary, homogeneous and isotropic far from the surface.

At the initial time, the turbulence is assumed to be homogeneous and isotropic throughout the depth

of the water column at a particular point of the wave phase. The turbulence is also assumed to be of a

much smaller scale than the wave, so that the initial integral length scale of the turbulencel satisfies

l ¿ λw, whereλw is the wavelength of the wave. The idea is then to analyse the evolution of the

turbulence statistics following a water parcel as the wave propagates over the turbulence.

This idealised model approximates two physical situations: the first is a laboratory arrangement

where mechanically generated surface waves propagate over a turbulent region created by an oscil-

lating grid, as in the experiments ofÖlmez and Milgram (1992) and Milgram (1998). The second

situation is where turbulence is injected into the water by breaking surface waves at a particular time

and location, being then distorted by subsequent waves. Of course, in the second case, the initial

turbulence is not homogeneous and isotropic, but it is usually reasonably isotropic (Rapp & Melville,

1990) and its integral length scale is generally considerably smaller than the wavelength, since wave

breaking is a highly localised process. Hence the conditionl ¿ λw is approximately satisfied.

In the formulation adopted by Hunt (1973), RDT is based on the linearised inviscid equations of

motion. For example, the linearised vorticity equation can be written

∂ωi

∂t
+ U j

∂ωi

∂x j
+ u j

∂Ωi

∂x j
= Ω j

∂ui

∂x j
+ ω j

∂Ui

∂x j
, (5.2)

whereΩ = ∇×U is the vorticity of the mean flow andω = ∇× u is the vorticity of the turbulence.

In the present case,Ui is the velocity associated with an irrotational surface wave, soΩi = 0. If u

is defined as the initial root-mean-square (RMS) velocity of the turbulence,U as the typical velocity

scale of the mean flow andL as the typical length scale over which the mean flow varies, the conditions

for the validity of (5.2) are that the turbulent velocity is sufficiently weak compared with the mean

velocity, u ¿ U , and that the strain rate of the mean flow is higher than that associated with the

interaction of the turbulence with itself,u/l ¿ U/L. The first condition is immediately satisfied if,

additionally to the second,l ¿ L is also satisfied. It will be seen later that this last condition on

the length scales is convenient if the equations of motion are to be simplified by being expressed in
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a curvilinear coordinate system aligned with the mean flow (Durbin & Hunt, 1980), because in that

case the curvature terms in the equations are ofO(l/L) and can be neglected, i.e. the equations take at

leading order the same form as in a cartesian coordinate system.

In the particular flow under consideration, the length scale of the mean flow is the wavelength of

the waveλw and the strain rate associated with the wave is ofO(awkwσw), so the conditions for which

the linear RDT model is valid are

l ¿ λw, awkw À u
lσw

. (5.3)

Hence, the turbulence has to be of relatively small scale and the steepness of the wave cannot be too

small.

Turbulence generated by a grid (Brumley and Jirka, 1989) or associated with a wind-induced shear

current (Melvilleet al., 1998) generally has an integral length scale ofO(1cm) or larger and turbulence

generated by breaking waves is certainly not likely to be smaller than this (see table V of Kitaigorodskii

et al., 1983). Since the transition between the gravity and capillary regimes of surface waves occurs

at a wavelength≈ 1.7cm, the first condition of (5.3) is only satisfied if the wave that distorts the

turbulence is a gravity wave. Then, if it is noted that, in the gravity regime,σw = (2πg/λw)
1
2 , the

second equation of (5.3) may also be expressed as a condition on the wavelength, and (5.3) takes the

more compact form

l ¿ λw ¿ 2πg

(
l
u

awkw

)2

. (5.4)

Taking the reasonable valuesl = 5cm, u = 1cm s−1, awkw = 0.1, andg = 9.8m s−1, the following

estimate for the range of applicability of the model is obtained:

5cm¿ λw ¿ 15.4m. (5.5)

This condition is easily satisfied for laboratory waves, and for an important fraction of the gravity

waves existing in the ocean.

5.2.1 Mathematical formulation

For applying RDT to mean flows as complex as that associated with a progressive surface wave, it is

convenient to express the vorticity equation (5.2) in the intrinsically lagrangian form due to Cauchy
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(Batchelor & Proudman, 1954),

ωi(x, t) =
∂xi

∂a j
ω j(a, 0), (5.6)

where

xi(a, t) = ai +
Z t

0
Ui(x, t ′)dt ′ (5.7)

is the position at timet of a fluid parcel with initial positionai . ∂xi/∂a j is the strain tensor, which gives

the ratio of the separations, along the 3 coordinate directions, of two infinitesimally distant material

particles at a given time, following the fluid motion, and at the initial time. It should be noted that

(5.6) is already a linearisation, like (5.2), and thatΩi = 0 has been assumed. If the mean flow was not

irrotational, (5.6) would have to includeΩi as well, and the strain tensor would include the distortion

of the mean vorticity by the turbulent velocity, as pointed out recently by Nazarenkoet al. (1999).

This would make the calculations much more complicated.

Given the initial turbulent velocity fieldui(a, 0), the initial turbulent vorticityω = ∇ × u is

easily obtained by taking the curl and, once the strain tensor is known, the final velocity field may be

recovered from the final vorticity obtained from (5.6) by solving the equation

∇2u = −∇× ω, (5.8)

which results from taking the curl of the definition of turbulent vorticity. The remaining problem,

therefore, is determining∂xi/∂a j as a function of the mean velocity field.

Durbin (1978) noted that the form taken by the strain tensor was considerably simplified if the

RDT problem was formulated in a streamline coordinate system. In fact, such formulation is not only

advantageous for simplifying the form taken by the equations of motion but also for simplifying the

boundary conditions, which would otherwise be awkward to impose. Therefore, in the present model,

a curvilinear coordinate system is adopted, wherex1 (the direction along which the wave propagates)

is replaced byφ, the velocity potential of the wave motion,x2 remains as the cross-stream horizontal

coordinate andx3 (the vertical coordinate) is replaced byψ, the streamfunction. The new curvilinear

coordinates are defined by the relations

U1 =
∂φ
∂x1

=
∂ψ
∂x3

, U3 =
∂φ
∂x3

= − ∂ψ
∂x1

. (5.9)

The spatial coordinates and components of vectors in the new curvilinear system retain the sub-

scripts 1, 2 and 3, respectively, for the direction along the streamlines, horizontally across the stream-
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x3

x1

2aw

=const.ψ

φ =const.

x1

x3

~

~

wλ

Figure 5.1 Schematic diagram of the model problem in a frame of reference moving with the wave, showing the streamlines

(solid) and lines of constant potential (dotted), and the cartesian and curvilinear coordinate systems.

lines and along lines of constant potential, but are distinguished from their cartesian counterparts

by a tilde. The infinitesimal length element in the direction along the streamlines isŨ−1
1 dφ, where

Ũ1 = (U2
1 + U2

3 )
1
2 and the length element along the lines of constant potential isŨ−1

1 dψ. The spatial

derivatives along the 3 coordinate directions are defined as

∂
∂x̃1

= Ũ1
∂

∂φ
,

∂
∂x̃2

=
∂

∂x2
,

∂
∂x̃3

= Ũ1
∂

∂ψ
. (5.10)

The flow configuration and coordinate systems for a surface wave propagating in the positivex1 direc-

tion is presented schematically in figure 5.1. Note that the orientation of the curvilinear coordinates is

approximately opposite to that of the cartesian coordinates (except forx̃2), with x̃1 pointing to the left

andx̃3 pointing downwards.

In the curvilinear coordinate system, Cauchy’s equation takes an exact form analogous to (5.6),

but the strain tensor is considerably simpler than when expressed in a cartesian coordinate system,

namely

∂x̃
∂ã

=




Ũ1
Ũ10

0 Ũ1
∂τ0
∂ã3
− Ũ10

∂τ
∂x̃3

0 1 0

0 0 Ũ10
Ũ1


 , (5.11)

where the subscript 0 denotes variables evaluated at the initial time, before any turbulence distortion

has taken place, andτ is thetravel timeof a fluid parcel, defined as

τ =
Z φ dφ′

Ũ2
1

. (5.12)
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For turbulence flowing around a bluff body (Hunt, 1973; Durbin, 1981), the ‘initial position’ used

in the model, where the turbulence is undistorted, is infinitely upstream of the body, soU10 is the

free-stream velocity, which is assumed constant. As a consequence∂τ0/∂ã3 = 0 and (5.11) simplifies

further. If the mean flow is a periodic wave, however, there is no obvious choice for the initial position,

which has to be imposed rather arbitrarily.Ũ10 and∂τ0/∂ã3 then depend on the location of the initial

position relative to the phase of the wave and must be retained in (5.11). This dependence of the model

on the initial position will be explored in§5.3. In the case of turbulence generated by a breaking wave,

it is perhaps to be expected that the turbulence is injected at the forward slope of the wave (Rapp

& Melville, 1990), and as a result, most of the calculations presented in§5.3 use this as the initial

position.

5.2.2 The mean velocity field

The mean velocity field considered in the present model is that associated with a relatively small-

amplitude, monochromatic surface wave, expressed in a frame of reference travelling with the phase

velocity of the wavecw = σw/kw. Following Longuet-Higgins (1984), the wave motion is expressed

here as a function of the curvilinear coordinatesφ andψ, but only the first term in the corresponding

series expansion (his equation (4.4)) is considered. This is a good approximation for low wave slopes.

The horizontal and vertical velocity components are

U1 = cw

(
awkwe−kwψ/cw cos(kwφ/cw)− 1

)

U3 = −cwawkwe−kwψ/cw sin(kwφ/cw), (5.13)

which satisfy continuity and irrotationality, and lead to

Ũ1 = cw

(
1 + a2

wk2
we−2kwψ/cw − 2awkwe−kwψ/cw cos(kwφ/cw)

) 1
2
. (5.14)

The advantage of this peculiar formulation of the wave motion is that it enables an easy analytical

evaluation of the travel time functionτ. On performing the integration overφ′ in (5.12), the result is

τ(φ, ψ) =
2

cwkw

1

1− a2
wk2

we−2kwψ/cw

[
arctan

(
1 + awkwe−kwψ/cw

1− awkwe−kwψ/cw
tan

(
kwφ
2cw

))

+πInt

(
kwφ/cw + π

2π

)]
+ f (ψ), (5.15)

where f is an arbitrary function and Int denotes ‘integer part’. The second term between square

brackets has to be introduced in order forτ to be a monotonically increasing function of the velocity

potential, because thearctanfunction is limited to take values in the interval(−π/2, π/2).
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From (5.11), (5.14) and (5.15), it follows that the strain tensor is specified completely as a function

of φ andψ, φ0 andψ0. Therefore, to obtain the evolution of the turbulence along the wave profile,

values forφ0 andψ0 must be chosen to specify the initial position, and then the relevant turbulent

quantities may be calculated along a streamline (ψ = ψ0), for different values ofφ. However, it would

be convenient to express the results as a function of more physically significant variables like time or

space. A rigorous relation between the cartesian and the curvilinear coordinates requires the numerical

resolution of complicated equations, but a very simple approximation, valid for low wave slopes, is

readily available. Equations (5.9) and (5.13) show that, to zeroth order in the wave slope,φ ≈ −cwx1

andφ0 ≈ −cwa1. Now, to the same order of approximation, it follows from (5.7) thatx1 ≈ a1 − cwt.

Then, subtracting the initial from the final potential,φ− φ0 = −cw(x1 − a1) = c2
wt, so that finally

t ≈ (φ− φ0)/c2
w. (5.16)

This shows that the time can be approximately related to the potential function. When the turbulence

statistics are plotted as a function of time, in§5.3, t will always be defined according to (5.16), so it

must be recalled, when interpreting the results, that (5.16) is only an approximate equality.

5.2.3 Fourier analysis of the turbulence

Far from the free surface, the turbulence is not affected by the wave nor directly by the boundary,

and remains homogeneous, isotropic and stationary. Since the scale over which the motion associated

with the wave varies is much larger than the initial integral length scale of the turbulence (see the

first equation of (5.3)), at distances from the free surface in the rangel < x̃3 < λw, the turbulence is

distorted by the wave motion (which penetrates to a depth ofO(λw)), but not directly by the boundary.

In this region, the turbulence is still locally homogeneous, in the sense that it varies over a length

scale much larger than its own. So, for depths greater thanl , it is justified to represent the turbulent

velocity as a three-dimensional Fourier integral, with space and time dependent wavenumbers, in order

to account for the slight inhomogeneity of the mean flow. This is theslow-variation approximation,

also used by Durbin (1981). In the curvilinear coordinate system, the turbulent velocity is thus

ũ(H)
i (x̃, t) =

ZZZ
ˆ̃u
(H)
i (k̃, x̃, t)eik̃·x̃dk̃1dk̃2dk̃3, (5.17)

wherek̃(x̃, t) = (k̃1, k̃2, k̃3) is the wavenumber vector, and the spatial coordinates in the plane of the

wave motion can be approximated locally asx̃1 = φ/Ũ1, x̃3 = ψ/Ũ1. The vorticity of the turbulence

may be expressed in a formally similar way:

ω̃(H)
i (x̃, t) =

ZZZ
ˆ̃ω(H)

i (k̃, x̃, t)eik̃·x̃dk̃1dk̃2dk̃3. (5.18)
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Invoking the slow-variation approximation, it is now possible to relate the Fourier amplitudes of the

turbulent velocity and of the turbulent vorticity through an algebraic relation, in exactly the same way

as in a cartesian coordinate system, namely

ˆ̃ω(H)
i = εi jk ik̃ j ˆ̃u

(H)
k , (5.19)

where terms of higher order in the parameter(l/λw) have been ignored. Taking the external product

of the wavenumber vector with this expression, an equation equivalent to (5.8) in the spectral domain

is obtained,

ˆ̃u
(H)
i = εi jk i

k̃ j

k2
ˆ̃ω(H)

k , (5.20)

wherek = (k̃2
1 + k̃2

2 + k̃2
3)

1
2 is the wavenumber magnitude.

The Cauchy equation can be expressed in terms of Fourier amplitudes by using (5.6) (with tildes,

in the curvilinear coordinate system) and (5.18), yielding

ˆ̃ω(H)
i (k̃, x̃, t) =

∂x̃i

∂ã j
ei(k̃0·ã−k̃·x̃) ˆ̃ω(H)

j (k̃0, ã, 0),

k̃i(x̃, t) =
∂ã j

∂x̃i
k̃0 j , (5.21)

wherek̃0 = (k̃01, k̃02, k̃03) = k̃(ã, 0) is the wavenumber vector at the initial time. Applying (5.19) to

obtain the initial vorticity amplitude in (5.21) as a function of the velocity amplitude and inserting the

final vorticity amplitude given by (5.21) into (5.20) yields

ˆ̃u
(H)
i (k̃, x̃, t) = −εi jkεlmn

k̃ j k̃0m

k2

∂x̃k

∂ãl
ei(k̃0·ã−k̃·x̃) ˆ̃u

(H)
n (k̃0, ã, 0), (5.22)

which, together with the second equation of (5.21) and (5.17), completely defines the final distorted

turbulent velocity field as a function of the initial undistorted turbulent velocity field.

5.2.4 Blocking effect of the boundary

At distances from the free surface ofO(l) or shorter, the turbulence is no longer locally homogeneous,

since it is forced to adjust to the boundary condition in the direction normal to the boundary. For

turbulence with sufficiently low Froude and Weber numbers (see chapter 1), the effect of the boundary

is primarily blocking. This effect can be included in the model in a very simple way by adding an

irrotational correction to the velocity field such that the normal velocity component of the turbulence
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vanishes at the boundary (Hunt & Graham, 1978). Equation (5.2) ensures that, for an irrotational

mean flow, if an irrotational correction to the turbulent velocity exists initially, that correction remains

irrotational at all subsequent times. The total velocity field thus becomes

ũi = ũ(H)
i +

∂φ(S)

∂x̃i
, i = 1, 2, 3, (5.23)

whereφ(S)(x̃, t) is a velocity potential satisfying

∇2φ(S) = 0, (5.24)

subject to the boundary conditions

∂φ(S)

∂x̃3
(x̃3 = 0) = −ũ(H)

3 (x̃3 = 0) and φ(S)(x̃3 → ∞) = 0. (5.25)

Since the velocity potentialφ(S) decays rapidly to zero for̃x3 > l , but remains locally homoge-

neous along the other two coordinate directions, it can be expressed as a two-dimensional Fourier

integral as follows:

φ(S)(x̃, t) =
ZZ

φ̂(S)(k̃1, k̃2, x̃, t)ei(k̃1x̃1+k̃2x̃2)dk̃1dk̃2. (5.26)

Invoking again the slow-variation approximation, the solution of (5.24) which can be expressed in the

form (5.26) and satisfies the boundary conditions (5.25), is formally identical to that found by Hunt &

Graham (1978) for turbulence near a flat wall, namely

φ̂(S)(k̃1, k̃2, x̃, t) =
Z ˆ̃u

(H)
3 (k̃, x̃, t)

k̃12
e−k̃12x̃3dk̃3, (5.27)

wherek̃12 = (k̃2
1+k̃2

2)
1
2 . This expression only differs from that of Hunt & Graham in that the turbulence

is not perfectly homogeneous along thex̃1 andx̃2 directions, due to the wave motion, so that both the

wavenumber̃k and ˆ̃u
(H)
3 vary slowly in space and time.

From (5.17), (5.23) and (5.26), it follows that the total turbulent velocity field must be given by a

two-dimensional Fourier integral in the form

ũi(x̃, t) =
ZZ

ˆ̃ui(k̃1, k̃2, x̃, t)ei(k̃1x̃1+k̃2x̃2)dk̃1dk̃2, (5.28)
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where the Fourier amplitude is defined as

ˆ̃ui =
Z

ˆ̃u
(H)
i eik̃3x̃3dk̃3 + ik̃i φ̂(S), i = 1, 2

ˆ̃u3 =
Z

ˆ̃u
(H)
3 eik̃3x̃3dk̃3 +

∂φ̂(S)

∂x̃3
. (5.29)

Taking into account (5.22), (5.27) and (5.29), the Fourier amplitude of the total distorted turbulent

velocity (including the effects of distortion by the wave and by the boundary) may be related to the

initial undistorted amplitude through

ˆ̃ui(k̃1, k̃2, x̃, t) =
Z

M̃i j (k̃, x̃, t) ˆ̃u
(H)
j (k̃0, ã, 0)dk̃3, (5.30)

where the elements of the matrix̃Mi j can be seen as ‘transfer functions’. Since, as was just seen, the

effect of the boundary may be taken into account by simply applying the changes due to blocking to

the turbulence already distorted by the wave, the functionsM̃i j may be decomposed as

M̃i j (k̃, x̃, t) = B̃ik(k̃, x̃, t)W̃k j(k̃, x̃, t), (5.31)

where the matrix̃Bik accounts for blocking and the matrix̃Wik accounts for distortion by the wave (cf.

chapter 3). The effect of the wave is deduced from (5.22), and leads to

W̃in = −εi jkεlmn
k̃ j k̃0m

k2

∂x̃k

∂ãl
ei(k̃0·ã−k̃·x̃), (5.32)

while the effect of blocking is deduced from (5.27) and (5.29), yielding

B̃ii = eik̃3x̃3

B̃i3 = i
k̃i

k̃12
e−k̃12x̃3, i = 1, 2

B̃33 = eik̃3x̃3 − e−k̃12x̃3, (5.33)

with the remaining elements of̃Bi j being equal to zero.

The turbulent velocity distorted by both the wave orbital motion and by the boundary is thus

completely defined as a function of the undistorted turbulent velocity. It remains to prescribe the

characteristics of the undistorted turbulence and to calculate statistics of the turbulence at various

stages of distortion.
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5.2.5 Statistics of the turbulent velocity field

In order to analyse the structure of the turbulence, statistics of the turbulent velocity field are required.

The intensity and correlation of the velocity fluctuations is characterised by the Reynolds stresses.

These may be calculated from the Fourier amplitudes of the turbulent velocity using

ũi ũ j =
ZZZZ

ˆ̃u
∗
i (k̃1, k̃2) ˆ̃u j(k̃′1, k̃′2)dk̃1dk̃2dk̃′1dk̃′2, (5.34)

where the asterisk denotes complex conjugation and the overbar denotes ensemble averaging. Equa-

tion (5.30) implies that

ˆ̃u
∗
i (k̃1, k̃2) ˆ̃u j(k̃′1, k̃′2) =

ZZ
M̃∗

ik(k̃)M̃ jl (k̃′) ˆ̃u
(H)∗
k (k̃0) ˆ̃u

(H)
l (k̃′0)dk̃3dk̃′3. (5.35)

Now, the three-dimensional spectrum of the initial undistorted turbulent velocityΦ̃(H)
i j is defined as

ˆ̃u
(H)∗
i (k̃0) ˆ̃u

(H)
j (k̃′0) = Φ̃(H)

i j (k̃0)δ(k̃0 − k̃′0), (5.36)

hence (5.34) and (5.35) can be used to obtain a simplified expression for the Reynolds stresses:

ũi ũ j =
ZZZ

M̃ikM̃ jl Φ̃
(H)
kl dk̃1dk̃2dk̃3. (5.37)

The spatial structure of the velocity fluctuations in the turbulence is characterised by the integral

length scales of the turbulence. For the velocity fluctuationsũi andũ j and along the directioñxl these

are defined by

L̃(l)
i j = π

Θ̃(l)
i j (k̃l = 0)

ũi ũ j
, (5.38)

whereΘ̃(l)
i j is the one-dimensional wavenumber spectrum, along thex̃l direction, of the velocity fluc-

tuationsũi andũ j . The one-dimensional spectrum alongx̃1 is defined in terms of̃Φ(H)
kl as

Θ̃(1)
i j (k̃1, x̃3, t) =

ZZ
M̃ikM̃ jl Φ̃

(H)
kl dk̃2dk̃3, (5.39)

and an analogous definition is valid for the spectrum alongx̃2.

The undistorted turbulence is assumed to be isotropic, so its three-dimensional spectrum is related
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to the energy spectrum in the following way:

Φ̃(H)
i j (k̃0) =

(
δi j − k̃0i k̃0 j

k2
0

)
E(k0)
4πk2

0

, (5.40)

whereE(k0) is the energy spectrum andk0 = (k̃2
01 + k̃2

02 + k̃2
03)

1
2 is the initial wavenumber magnitude.

Following Hunt & Graham (1978), the well-known von Kármán energy spectrum, which mimics an

inertial subrange at high wavenumbers, is adopted here,

E(k0) = u2l
g2(k0l)4

(g1 + (k0l)2)
17
6

, (5.41)

whereg1 = 0.558andg2 = 1.196are dimensionless constants.

All the statistics derived in this subsection are expressed in the curvilinear coordinate system

aligned with the streamlines. However, these can be readily compared with statistics measured in

a cartesian coordinate system, because the two coordinate systems are approximately equivalent for

waves of low slope, and in fact coincide exactly at the wave crests and at the wave troughs.

5.2.6 Important parameters

There are seven basic variables controlling the behaviour of the present model: three of them are

determined by the mean flow, in this case a surface wave. They are the amplitudeaw, wavenumberkw

and phase velocitycw of the wave. Two further variables characterise the turbulence: the initial RMS

turbulent velocityu and the initial integral length scalel . The remaining two variables are introduced

by the initial conditions and the duration of the interaction between the turbulence and the wave: they

are, respectively, the initial position relative to the wave phase,ã1, which may be approximated as

ã1 ≈ φ0/cw, and timet, which as was seen in§5.2.2 ist ≈ (φ − φ0)/c2
w. From these variables, it is

possible to construct five independent dimensionless parameters:

awkw, kwã1, kwcwt = σwt, u/cw, kwl . (5.42)

It turns out that the statistics of the velocity field do not depend on the parameteru/cw. So, in the

following section, the sensitivity of the model results to the 4 remaining parameters will be tested.

Graphs of the normalised Reynolds stressesũi ũ j/u2 and integral length scalesL̃(k)
i j /l will be plotted as

functions oft/T, whereT = 2π/σw is the wave period, keepingawkw, kwã1 andkwl constant. A few

profiles of the Reynolds stresses as a function ofx̃3/l will also be presented, keepingawkw, kwã1, kwl

andt/T constant.
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5.3 Results

Results for the distortion of turbulence during a single wave cycle are shown in§5.3.1. In§5.3.2, the

distortion of the turbulence by the Stokes drift of the wave is addressed, with the presentation of results

for the Reynolds stresses, TKE and integral length scales of the turbulence. In both subsections, the

blocking effect of the boundary is ignored. This would correspond in practice to taking measurements

at a depth̃x3 ≈ l . In §5.3.3, some results for turbulence distorted by a uniform shear are reproduced,

and compared with the preceding results obtained for turbulence distorted by a wave. In§5.3.4, the

blocking effect of the boundary is briefly examined, and found to lead to fairly trivial changes to the

results. Finally, in§5.3.5 and§5.3.6, scaling analyses of the energy equations are performed, in order

to estimate the energy transfer taking place between the wave and the turbulence and its effect on each

component of the flow.

5.3.1 Turbulence modulation in a wave cycle

For waves of low slope, the distortion of the turbulence during a single wave cycle is always weak.

Figures 5.2–5.5 show graphs of the diagonal components of the Reynolds stress tensor (velocity

variances) as a function of time normalised by the wave period, for different initial positions and

different wave slopes. In figure 5.2, the initial position is on the forward slope of the wave, in figure

5.3, it is on the wave crest. In figure 5.4, the initial position is on the backward slope of the wave and

in figure 5.5 it is on the wave trough.

Figures 5.2–5.5 show that the modulation of the Reynolds stresses by the wave intensifies as

the wave steepness increases, as would be expected. This modulation is approximately sinusoidal at

the lowest slopes, but becomes more and more asymmetric asawkw increases. This is partly due to

the curvilinear coordinate system used, becauseφ varies faster at the wave troughs than at the wave

crests, and the definition oft is based onφ (see (5.16)). The value of the Reynolds stresses does not

repeat itself after one complete cycle, for the highest slopes considered. This is a manifestation of the

irreversible part of the distortion, which is caused by the Stokes drift, and will be treated in detail in

the next subsection.

The Reynolds stress tangential to the free surface in the streamwise direction,ũ2
1, attains a maxi-

mum approximately at the wave crest and a minimum at the wave trough. The Reynolds stress normal

to the free surface,̃u2
3, attains a maximum at the wave trough and a minimum at the wave crest. The

tangential Reynolds stress in the cross-stream or spanwise direction,ũ2
2, always increases first and then

decreases, attaining a maximum approximately in the middle of the wave cycle, independent of the

initial position.
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Figure 5.2 Modulation of the Reynolds stresses during a wave cycle, forx̃3 = 0, kwl = 0.6. Solid line: awkw = 0.05,

dotted line:awkw = 0.1, dashed line:awkw = 0.15, dash-dotted line:awkw = 0.2, hatched profile: shape of the distorting

wave (arbitrary scale). (a) streamwise component, (b) spanwise component, (c) normal component.

Experimental and theoretical support for an increase in the intensity of the vertical velocity fluc-

tuations and a decrease in the intensity of the streamwise velocity fluctuations at a hill crest (here

equivalent to a wave trough) is provided by the work of Britteret al. (1981) (their equation (3.3) and

their figure 4(b)). Further experimental support for the predicted Reynolds stress modulation can be

found in figure 10 of Thais & Magnaudet (1996), where the streamwise Reynolds stress is greater than

the vertical stress at the wave crest, while the reverse happens at the wave trough.

The modulation of the streamwise and normal Reynolds stresses has a peak-to-peak amplitude

of ≈ 0.2 for a wave slope ofawkw = 0.1 and≈ 0.4 for awkw = 0.2, whereas the modulation of

the spanwise Reynolds stress has smaller amplitude, perhaps≈ 0.1 for awkw = 0.1 and≈ 0.2 for

awkw = 0.2. Although the data of Thais & Magnaudet (1996) are affected by a stronger turbulence

intensity at the wave trough, where the (fixed) probe almost touches the free-surface, it is possible
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Figure 5.3 Modulation of the Reynolds stresses during a wave cycle, forx̃3 = 0, kwl = 0.6. Solid line: awkw = 0.05,

dotted line:awkw = 0.1, dashed line:awkw = 0.15, dash-dotted line:awkw = 0.2, hatched profile: shape of the distorting

wave (arbitrary scale). (a) streamwise component, (b) spanwise component, (c) normal component.

to estimate the peak to peak modulations of the streamwise and vertical Reynolds stresses from their

figure 10 by determining the value by which the streamwise stress exceeds the vertical stress at the

wave crest and the vertical stress exceeds the streamwise stress at the wave trough. From visual

inspection, this is estimated as≈ 0.2−0.3, for a wave slope of≈ 0.1, and is therefore consistent with

the present results. The results will now be explained using a simplified model.

To first order in the wave slope, the distorting effect of a progressive surface wave on turbulence

can be understood if the wave is described in a fixed cartesian coordinate system, where the orbital

motion can be written

U1(x1, x3) = cwawkwekwx3 cos(kwx1 − σwt)

U3(x1, x3) = cwawkwekwx3 sin(kwx1 − σwt) (5.43)
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Figure 5.4 Modulation of the Reynolds stresses during a wave cycle, forx̃3 = 0, kwl = 0.6. Solid line: awkw = 0.05,

dotted line:awkw = 0.1, dashed line:awkw = 0.15, dash-dotted line:awkw = 0.2, hatched profile: shape of the distorting

wave (arbitrary scale). (a) streamwise component, (b) spanwise component, (c) normal component.

for a surface elevation

ζ = aw cos(kwx1 − σwt). (5.44)

If (5.7) is differentiated with respect to the initial position, it is found that

∂xi

∂a j
= δi j +

Z t

0

∂Ui

∂xk

∂xk

∂a j
dt ′. (5.45)

When the wave slope is sufficiently low, the distortion is relatively weak and the strain tensor inside

the integral may be approximated as∂xk/∂a j ≈ δk j. On the other hand, the integration in time may

be changed from an integration following the fluid parcels to a time integration at a fixed point. Then,
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Figure 5.5 Modulation of the Reynolds stresses during a wave cycle, forx̃3 = 0, kwl = 0.6. Solid line: awkw = 0.05,

dotted line:awkw = 0.1, dashed line:awkw = 0.15, dash-dotted line:awkw = 0.2, hatched profile: shape of the distorting

wave (arbitrary scale). (a) streamwise component, (b) spanwise component, (c) normal component.

differentiating the expressions (5.43) and inserting them into the integrals of (5.45), it is found after

integration that, for smallawkw, the following expressions are approximately valid:

∂x1

∂a1
= 1− awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)] ,

∂x1

∂a3
=

∂x3

∂a1
= −awkwekwx3 [sin(kwx1 − σwt)− sin(kwx1)]

∂x3

∂a3
= 1 + awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)]

∂x1

∂a2
=

∂x2

∂a1
=

∂x2

∂a3
=

∂x3

∂a2
= 0,

∂x2

∂a2
= 1. (5.46)

These expressions show that∂x1/∂a1 is in phase opposition to the surface elevation and thus attains

a maximum at the wave troughs and a minimum at the wave crests. This is best understood in the
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Figure 5.6 Schematic diagram showing the vorticity stretching and compression induced by the orbital motion at the crest

and at the trough of a surface wave, in a frame of reference travelling with the wave.

coordinate system travelling with the wave as being the result of the acceleration that the fluid suffers

as it moves from crest to trough.∂x3/∂a3, on the other hand, is in phase with the surface elevation and

attains a maximum at the crests and a minimum at the troughs. This result follows from the previous

one by continuity: a fluid parcel that is stretched in one direction, must contract in the other.

The effect of this distortion on the vorticity is shown schematically in figure 5.6. At the wave

crests, the fluid elements are stretched vertically and compressed in the streamwise direction, leading

to an intensification of the vertical vorticity and a weakening of the streamwise vorticity. Conversely,

at the wave troughs the fluid elements are stretched in the streamwise direction and compressed in

the vertical, leading to an amplification of the streamwise vorticity and a weakening of the vertical

vorticity.

The streamwise vorticity has contributions from the spanwise and vertical velocity components

and the vertical vorticity has contributions from the streamwise and spanwise velocity. Therefore,

at the wave crests, the streamwise turbulence intensity should increase and the vertical turbulence

intensity should decrease, while at the troughs, the streamwise turbulence intensity should decrease

and the vertical turbulence intensity should increase. This reasoning seems to explain the qualitative

behaviour ofũ2
1 andũ2

3 over one wave cycle.

It can also be seen from (5.46) that∂x1/∂a3 and∂x3/∂a1 are both out of phase byπ/2 relative to

the surface elevation, attaining maxima on the backward slope of the wave and minima on the forward

slope. These components of the strain tensor lead to additional irrotational tilting and stretching

of vorticity, whose effects on the Reynolds stresses are not as obvious as those associated with the

diagonal components.

The diagonal components of the strain tensor are the extensions suffered by the fluid in the 3
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coordinate directions, defined asei = ∂xi/∂ai . For a slab-symmetric straining flow in thex1 − x3

plane with the principal axes aligned with the cartesian coordinate system (Townsend, 1976), these

extensions have to satisfy

e1 = β, e2 = 1, e3 = β−1 (5.47)

due to continuity. In the present case, it follows from (5.46) that

β ≈ 1− awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)] . (5.48)

It is then possible to use equation (3.11.9) of Townsend (1976) to estimate the magnitude of the

Reynolds stress modulation attributable only to the extensions in the wave velocity field. Townsend’s

expressions state that, forβ sufficiently close to 1,

u2
1

u2 = 1− 4
5

β− β−1

β + β−1

u2
2

u2 = 1 +
8
35

(β− β−1)2

u2
3

u2 = 1 +
4
5

β− β−1

β + β−1 . (5.49)

Substitutingβ using (5.48) and truncating to the lowest order with respect to the perturbation (in this

case the wave motion), (5.49) becomes

u2
1

u2 = 1 +
4
5

awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)]

u2
2

u2 = 1 +
32
35

a2
wk2

we2kwx3 [cos(kwx1 − σwt)− cos(kwx1)]
2

u2
3

u2 = 1− 4
5

awkwekwx3 [cos(kwx1 − σwt)− cos(kwx1)] . (5.50)

This confirms that the existence of a maximum in the streamwise Reynolds stress at the crest

and a maximum in the normal Reynolds stress at the trough are due primarily to the extension and

compression of the fluid parcels. Equation (5.50) also explains why the spanwise Reynolds stress

always takes values above one independent of the initial position relative to the wave phase.

It is clear from (5.50) that bothu2
1/u2 andu2

3/u2 are predicted to undergo oscillations of peak-

to-peak amplitude8/5(awkw). For a wave slope ofawkw = 0.2, this corresponds to≈ 0.32. On

the other hand,u2
2/u2 is predicted to undergo oscillations of peak-to-peak amplitude32/35(awkw)2 or
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128/35(awkw)2 depending on the initial position relative to the wave phase. For a wave slope of 0.2,

this corresponds to≈ 0.04 and0.15 respectively. These results are roughly consistent with what is

observed in figures 5.2–5.5.

The differences between the predictions of this simplified model and those from the full model are

due essentially to two factors: the neglect of the non-diagonal components of the strain tensor, for any

wave slope, and the neglect of the Stokes drift, particularly at the highest slopes.

Equation (5.50) also helps to understand how the behaviour of the Reynolds stresses depends

on the initial conditions. Due to the way in which the streamwise and normal Reynolds stresses are

modulated, when the initial position is, for example, at a crest (figure 5.3(a)), the streamwise Reynolds

stress departs from a maximum value, which can not be exceeded during its oscillation, whereas the

normal Reynolds stress departs from a minimum (figure 5.3(c)). This corresponds to settingkwx1 = 0

in (5.50), which implies indeed thatu2
1/u2 is never larger than 1 andu2

3/u2 is never smaller than 1.

When the initial position is at a trough (kwx1 = π), exactly the reverse occurs, as can be confirmed in

figures 5.5(a, c).

Given the constraint of initial isotropy of the RDT model, it would seem that the most ‘natural’

initial positions are those in between crests and troughs, because at those positions both the streamwise

and normal Reynolds stresses are in the middle of their oscillations, and the flow appears as undistorted

as possible. However, the same is still not true for the spanwise Reynolds stress,u2
2, since this stress

always departs from a minimum. The problem, which is clear inspecting (5.46), is that there is no

region in a monochromatic surface wave where the flow can be considered naturally undistorted.

Any possible choice of initial positionkwx1 in (5.46) leads to either the diagonal or the off-diagonal

components of the strain tensor oscillating asymmetrically with respect to the undistorted state.

From a strictly mathematical viewpoint, this problem might only be avoided if the distorting wave

was replaced by a finite wave packet, away from which it would perhaps be more justified to impose

isotropy for the turbulence. However, that flow would no longer lead to an analytical travel time

function τ(φ, ψ), which is one of the main advantages of the present model. Furthermore, from a

physical point of view, such situation would not be significantly more realistic than that considered

here.

5.3.2 Effect of the Stokes drift

The distortion of the turbulence by the Stokes drift of the wave only becomes clear after a considerable

number of wave cycles.

Figure 5.7 shows the evolution of the diagonal components of the Reynolds stress tensor during 10
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Figure 5.7 Evolution of the Reynolds stresses over 10 wave cycles, forx̃3 = 0, kwl = 0.6, awkw = 0.2. Solid line:

streamwise component, dotted line: spanwise component, dashed line: normal component, hatched profile: shape of the

distorting wave (arbitrary scale). Turbulence initially at: (a) forward slope of wave, (b) wave crest, (c) backward slope of

wave, (d) wave trough.

wave cycles, for a wave slope of 0.2 and different initial positions. It is observed that, like in figures

5.2–5.5, the streamwise Reynolds stress,ũ2
1, attains maxima at the crests of the wave and minima at the

troughs, and the reverse happens with the normal Reynolds stress,ũ2
3. The spanwise Reynolds stress,

ũ2
2, always increases initially irrespective of the phase relation to the wave, as observed in figures

5.2(b), 5.3(b), 5.4(b) and 5.5(b), but after a few periods becomes phase-locked to the normal stress,

attaining maxima at the wave troughs and minima at the crests.

More importantly, the magnitude of the streamwise Reynolds stress progressively decreases, while

the magnitudes of both the spanwise and the normal Reynolds stress progressively increase at a com-

mon rate. For the slope considered (awkw = 0.2), ũ2
1 becomes approximately half of its initial value

after 10 wave cycles, whilẽu2
2 andũ2

3 increase by a factor of about 4. This means that the turbulence
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ω ωStokes drift

cw

Figure 5.8 Schematic diagram showing the tilting and stretching of vorticity carried out by the Stokes drift of a surface

wave over a number of wave cycles, in a fixed frame of reference.

becomes much more intense in the directions perpendicular to the direction of wave propagation. In

other words: the turbulence becomes dominated by vortices with their axes of rotation aligned with

the streamwise direction, as is the case in Langmuir circulations.

These results should be compared with those presented in figure 6 of McWilliamset al. (1997),

from large-eddy simulations (LES) of turbulent flow in the ocean surface layer. That figure shows

profiles of the Reynolds stresses for turbulence in a shear current (without the effect of a Stokes

drift) and when both shear and a Stokes drift are present, with the Stokes drift presumably having

the dominant role (Langmuir turbulence). In the case of Langmuir turbulence, the spanwise and

normal components of the Reynolds stress are distinctly larger than the streamwise component. This

is consistent with the results of figure 5.7.

The physical mechanism for the intensification of the streamwise vortices in the present model is

the same as ‘mechanism 2’ of Craik & Leibovich (1976) for the generation of Langmuir circulations.

It involves the tilting of vertical vorticity by the Stokes drift of the wave and its amplification as

streamwise vorticity (figure 5.8). The difference is that ‘mechanism 2’ of Craik & Leibovich departs

from an infinitesimal vertical vorticity perturbation, whereas in the present model, there is initially

a finite and isotropic distribution of vorticity, associated with the turbulence, and the Stokes drift

selectively amplifies the streamwise vorticity component.

Figure 5.9 shows the time evolution of the Reynolds shear stress,ũ1ũ3, during 10 wave cycles, for

the same conditions as figure 5.7. Since the turbulence is initially isotropic, the shear stress is initially

zero. However, as the turbulence evolves, the shear stress grows to a negative value, stabilising at

≈ −0.7. Like the velocity variances, the shear stress also oscillates during a wave cycle. At initial

stages in the turbulence evolution, shear stress maxima (in absolute value) coincide with the backward

slopes of the waves, and shear stress minima with the forward slopes. After 10 wave cycles, as the
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Figure 5.9 Evolution of the Reynolds stresses over 10 wave cycles, forx̃3 = 0, kwl = 0.6, awkw = 0.2. Solid line: shear

stress, hatched profile: shape of the distorting wave (arbitrary scale). Turbulence initially at: (a) forward slope of wave, (b)

wave crest, (c) backward slope of wave, (d) wave trough.

shear stress appears to attain a stable mean value, the maxima occur instead at the wave crests and the

minima occur at the wave troughs.

Physically, the existence of a non-zero shear stress in the turbulence is due to the skewing of the

velocity fluctuations carried out by the Stokes drift. As the vorticity is tilted from the vertical to an

orientation sloping along the direction of wave propagation, and is at the same time amplified, posi-

tive streamwise velocity fluctuations tend to be associated with negative normal velocity fluctuations,

thereby making̃u1ũ3 negative (see figure 5.8). The existence of a non-zero shear stress has important

consequences for the energy balance of the turbulence, as will be seen in§5.3.5.

Figure 5.10 shows the time evolution of the turbulent kinetic energy, defined asTKE = 1/2(ũ2
1 +

ũ2
2 + ũ2

3), during 10 wave cycles, for the same conditions as figure 5.7. It can be seen that the TKE is

also modulated by the waves, displaying an oscillatory behaviour, and tends to become dominated by

the spanwise and normal Reynolds stresses as time advances. The TKE progressively increases and
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Figure 5.10 Evolution of the TKE over 10 wave cycles, forx̃3 = 0, kwl = 0.6, awkw = 0.2. Solid line: turbulent kinetic

energy, hatched profile: shape of the distorting wave (arbitrary scale). Turbulence initially at: (a) forward slope of wave, (b)

wave crest, (c) backward slope of wave, (d) wave trough.

attains a value approximately 3 times higher than initially after 10 wave cycles.

Figures 5.2–5.5 have shown that the modulation of the turbulence in a wave cycle is sensitive to the

initial conditions. Figures 5.7, 5.9 and 5.10 now show that not only the oscillatory behaviour but also

the overall growth rate of the Reynolds stresses due to the Stokes drift depends on the initial conditions.

For example, it is clear in figure 5.9 that the shear stress is largest when the initial position is at the

wave trough (figure 5.9(d)) and smallest when it is at the wave crest (figure 5.9(b)). Correspondingly,

the TKE growth rate is fastest when the initial position is at the wave trough (figure 5.10(d)) and

slowest when it is at the wave crest (figure 5.10(b)). The remaining plots of figures 5.9 and 5.10

show the same trend, suggesting a link between TKE growth and the shear stress. This link will be

confirmed and further explored in§5.3.5.
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Figure 5.11 Evolution of the integral length scales over 10 wave cycles, forx̃3 = 0, kwl = 0.6, awkw = 0.2. Hatched

profile: shape of the distorting wave (arbitrary scale). (a) streamwise length scales. Solid line:L̃(1)
11 , dotted line:L̃(1)

22 , dashed

line: L̃(1)
33 . (b) spanwise length scales. Solid line:L̃(2)

11 , dotted line:L̃(2)
22 , dashed line:̃L(2)

33 .

The behaviour of the Reynolds stresses over several wave cycles is different for different initial

conditions because the average values of the Reynolds stresses, over the first wave cycle, are also

different. On a time scale longer than a wave cycle, varying the initial position of the turbulence

relative to the wave phase is thus approximately equivalent to varying the initial turbulence intensity

slightly. However, the importance of the initial conditions is limited, because, as was seen in§5.3.1, the

fractional variation of the Reynolds stresses due to varying the initial position is, at most, ofO(awkw),

which is small. That explains why the four graphs of figures 5.7, 5.9 and 5.10 resemble each other

very much. For simplicity, all future results will consider an initial position on the forward slope of

the wave.

The intensity of the turbulent velocity fluctuations has been characterised in detail for turbulence

distorted by a surface wave. The spatial structure of the turbulent velocity fluctuations can now be

characterised by the integral length scales of the turbulence. These length scales are modulated over

a wave cycle, like the Reynolds stresses, but their evolution over several wave cycles is of greater

interest.

Figure 5.11 presents the time evolution of the streamwise and spanwise integral length scales

during 10 wave cycles, for a wave slopeawkw = 0.2. In figure 5.11(a), it can be seen that all the

streamwise length scales increase in time. The streamwise length scale of theũ1 velocity fluctuations,

L̃(1)
11 becomes≈ 2.5 times larger than initially after 10 wave cycles, while the corresponding amplifi-

cation factors for the integral length scales ofũ2 andũ3, L̃(1)
22 andL̃(1)

33 , are≈ 6 and≈ 2, respectively.

Figure 5.11(b) shows the time evolution of the spanwise integral length scales. It can be seen that only

the integral length scale for thẽu1 velocity component,̃L(2)
11 , increases in time, while the length scales
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for both ũ2 andũ3, L̃(2)
22 andL̃(2)

33 , decrease in time. After 10 wave cycles,L̃(2)
11 , L̃(2)

22 andL̃(2)
33 become

respectively≈ 2.5,≈ 0.25and≈ 0.25 times their initial values.

These results imply that the anisotropy of the streamwise velocity fluctuations remains small,

whereas the spanwise and normal velocity fluctuations become elongated in the streamwise direction,

with this elongation being especially pronounced for the normal velocity fluctuations. Hence, the

streamwise vortices induced by the Stokes drift in the present model not only have their axes of

rotation aligned with the streamwise direction (as shown by the Reynolds stresses), but they are also

elongated in that direction, a feature which is commonly observed in Langmuir circulations (Faller &

Auer, 1988).

Again, these results should be compared with figures 12(b–d) of McWilliams et al. (1997), where

horizontal cross-sections of the instantaneous velocity field are displayed, near the surface. While,

in these figures, the streamwise velocity fluctuations display no appreciable elongation in their struc-

ture, the spanwise and normal velocity components (shown in figures 12(b, c)) have contours that are

clearly elongated in the streamwise direction, with this elongation being more pronounced for the nor-

mal velocity. This is consistent with the results of figure 5.11, and provides evidence that Langmuir

turbulence in the simulations of McWilliamset al. (1997) resembles turbulence distorted by a surface

wave in the present model.

5.3.3 Comparison with turbulence distortion by shear

The shear current induced by the wind in the ocean surface layer and the Stokes drift of a wave

appear at first to be rather similar, since both flows are characterised by a lagrangian transport that

has a maximum at the surface and decays with depth. However, their fundamental dynamics are very

different, as the numerical simulations of McWilliamet al. (1997) have made clear.

The interaction between the shear current and the turbulence can be very easily understood by

using previous results applicable to turbulent boundary layer flows. At distances from the the boundary

greater thanl , the shear-flow model developed in chapter 4 reduces to the original RDT model of

Townsend (1970) which is known to describe well the turbulence structure in boundary layers. That

model, which assumes initially isotropic turbulence and a constant shear rate, is used in this subsection

to examine turbulence distortion by a shear current.

Figure 5.12 shows the time evolution of the diagonal components of the Reynolds stress tensor for

turbulence distorted by a shear flow aligned with thex1 direction, having a shear rateΓ. This figure

should be compared with figure 5.7, which shows similar quantities (albeit in the curvilinear coordinate

system) for turbulence distorted by a surface wave. The behaviour of the stresses differs markedly

between the two cases. While in Figure 5.7, the streamwise stress decreases and the spanwise and
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Figure 5.12 Evolution of the Reynolds stresses in a uniform shear flow, as a function of dimensionless timeΓt. Solid line:

streamwise componentu2
1, dotted line: spanwise componentu2

2, dashed line: normal componentu2
3.

normal stresses increase over a number of wave periods, in figure 5.12, the streamwise and spanwise

stresses,u2
1 andu2

2, increase and the normal stress,u2
3, decreases. And while in figure 5.7, the spanwise

and normal stresses become much larger than the streamwise stress, in figure 5.12,u2
1 becomes larger

thanu2
2, which in turn becomes larger thanu2

3. Physically, this behaviour is due to the existence of

vorticity in the shear current, that does not exist in the Stokes drift. The tilting of vorticity of the

mean flow by the turbulence, in the case of the current, counteracts, to a certain extent, the tilting of

turbulent vorticity by the mean flow, so thatu2
2 andu2

3 are prevented from becoming dominant (Lee &

Hunt, 1989).

Figure 5.12 should be compared with figure 6 of McWilliamset al. (1997), where profiles of the

Reynolds stresses in turbulence subject to a shear current (without the effect of a Stokes drift) are

denoted by the solid curves. These curves show that the streamwise stress is larger than the spanwise

stress, which in turn is larger than the normal stress. Hence, it can be concluded that the present

constant-shear model is able to explain the anisotropy of the turbulent velocity fluctuations in a shear

current.

Figures 5.13(a, b) display the time evolution of the integral length scales of the turbulence, for

the same conditions as figure 5.12. Both the streamwise and the spanwise integral length scales of

u2, L(1)
22 andL(2)

22 , decrease in time, and both the streamwise and the spanwise integral length scales

of u3, L(1)
33 andL(2)

33 , increase in time. Hence the structure of these two velocity components remains

approximately isotropic. However, the streamwise integral length scale ofu1, L(1)
11 , increases in time,

while the spanwise length scale of the same velocity component,L(2)
11 , decreases in time. This means

that the streamwise velocity fluctuations become elongated in the streamwise direction.
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Figure 5.13 Evolution of the integral length scales in a uniform shear flow, as a function of dimensionless timeΓt. (a)

streamwise length scales. Solid line:L(1)
11 , dotted line:L(1)

22 , dashed line:L(1)
33 . (b) spanwise length scales: Solid line:L(2)

11 ,

dotted line:L(2)
22 , dashed line:L(2)

33 .

The contrast of these results with those presented for turbulence distorted by a surface wave are

striking, as can be confirmed by comparing figure 5.13 with figure 5.11. While in figure 5.11, the

structure of thẽu2 andũ3 velocity fluctuations becomes elongated, in figure 5.13, the same happens

but with the structure ofu1. Elongated structures in the streamwise turbulent velocity field are a well

known feature of turbulent shear flows, where such structures are often calledstreaky structures(Kline

et al., 1967). Good examples of streaky structures produced in a turbulent boundary layer by DNS can

be found, for example, in figures 5, 7 and 9 of Leeet al. (1990), where horizontal cross-sections of

the streamwise turbulent velocity are shown.

The present comparison between the structure of turbulence distorted by a wave and turbulence

distorted by a shear flow seems to be able to explain the 2 basic flow regimes observed in the LES

of McWilliams et al. (1997): shear-flow turbulence and Langmuir turbulence. This indicates that the

occurrence of one regime or the other is probably determined by the relative importance of the two

physical processes modelled here in isolation. A rough way of quantifying the importance of each of

these processes is by comparing the strain rate imposed by the Stokes drifta2
wk2

wσw with the strain rate

associated with the shearΓ, through the ratio

R =
(awkw)2σw

Γ
. (5.51)

If R > 1, the distortion by the Stokes drift should prevail, and streamwise vortices should be produced,

while if R < 1, the distortion by shear should be more important, originating streaky structures. It was

seen in chapter 4 that, in a turbulent shear current,Γ = 10s−1 is a reasonable shear rate very near the

surface. A reasonable value ofσw for short waves isσw = 10s−1. Sinceawkw is always much smaller
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than 1, (5.51) implies thatR ¿ 1, so the shear should dominate in this particular case. In fact, very

low values ofΓ, of O(0.01σw), would be required for the Stokes drift to dominate, according to (5.51).

Situations with weak shear could be favoured by vertical mixing in conditions of wave breaking.

But the explanation for this apparently excessive importance of the shear is that the above estimates

are only valid at the surface. In real flows, the shear current weakens away from the surface over a

distance ofO(l), henceΓ decays to zero over that distance. On the other hand, the Stokes drift decays

to zero over a longer distance ofO(λw). Hence, as the depth increases, the effect of the Stokes drift

could become greater than the effect of shear. Since by hypothesisl ¿ λ, conditions favourable for

the formation of streaky structures may only exist in a thin layer near the surface, wherex̃3 ≤ l , while

in the much larger region wherel < x̃3 < λw, streamwise vortices could develop. This is consistent

with the observation by McWilliamset al. (1997) that Langmuir turbulence penetrates deeper than

shear-flow turbulence.

On the other hand, situations where both shear and a Stokes drift are present are more complex

than considered here, because the shear current also interacts with the wave motion, acting as an

additional source of vorticity, which contributes to the vorticity of the streamwise vortices along with

the turbulence (Leibovich, 1983). Hence the generation of such vortices is certainly more likely than

suggested by (5.51).

The results presented until now have been calculated without taking into account the effect of

blocking by the boundary on the turbulence. That effect will be considered briefly next.

5.3.4 Blocking effect of the boundary

As noted in§5.2.4, if at the initial time when the turbulence is undistorted by the wave, the blocking

effect of the free surface is assumed to be described appropriately by the theory of Hunt & Graham

(1978), this blocking effect remains purely kinematic at all subsequent times, and does not alter sub-

stantially the results obtained in the preceding sections (which are essentially linked with vorticity

distortion).

Since Hunt & Graham’s theory can be applied directly to the turbulence distorted by the wave, with

the completely undistorted turbulence that formerly served as input being simply replaced by slowly

varying turbulence, many of their conclusions remain valid, with slight alterations. For example, the

result which states that the TKE at the boundary has the same value as the TKE far from the boundary

is now reformulated as

(ũ2
1 + ũ2

2)(x̃3 = 0) = (ũ2
1 + ũ2

2 + ũ2
3)(x̃3 → ∞), when l → 0, λw → ∞. (5.52)
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Figure 5.14 Evolution of the tangential Reynolds stresses over 10 wave cycles, with and without blocking, forx̃3 = 0,

kwl = 0.6, awkw = 0.2. Thick solid line: ũ2
1 with blocking, thin solid line:ũ2

1 without blocking, thick dotted line:̃u2
2 with

blocking, thin dotted line:̃u2
2 without blocking, hatched profile: shape of the distorting wave (arbitrary scale).

This means that the TKE value at the boundary taking blocking into account is equal to the TKE value

that would exist at the boundary if there was no blocking or, alternatively, approximately equal to the

TKE immediately outside the layer directly influenced by blocking.

Figure 5.14 shows the time evolution of the streamwise and spanwise Reynolds stresses,ũ2
1 and

ũ2
2, during 10 wave cycles, with and without blocking. The curves relative to the blocked and non-

blocked cases only differ in magnitude, and there are no appreciable differences in shape. The factor

by which the curves with blocking exceed those without blocking increases from 1.5 at the initial time

(as predicted by Hunt & Graham, 1978) to a higher value later. This is due to the fact that, in the

blocked case, both̃u2
2(l ¿ x̃3 ¿ λw) andũ2

3(l ¿ x̃3 ¿ λw) increase due to the Stokes drift, but only

ũ2
1(x̃3 = 0) andũ2

2(x̃3 = 0) are not zero at the boundary (of whichũ2
1(x̃3 = 0) decreases in time).

Figure 5.15 presents profiles of the Reynolds stresses with and without blocking, att/T = 5,

for different values of the dimensionless wavenumberkwl . It is found thatkwl only influences the

shape of the Reynolds stresses in between the surface and the region far from the surface, leading

to a faster or slower decay of the profiles due to the distorting flow of the wave. Obviously, the

longer the wavelength (i.e., the smallerkwl ), the deeper the distorting effect of the wave can penetrate.

However, the value of the Reynolds stresses exactly at the boundary does not depend onkwl , either

when blocking is considered or when it is not. This justifiesa posterioriwhy the parameterkwl has

not been varied in previous tests.

Figures 5.15(a, b) show that, in the blocked case,ũ2
1 and ũ2

2 are amplified at the boundary by

a factor greater than 1.5 relative to the unblocked case, consistent with figure 5.14. The distortion

caused by the wave counteracts this amplification in figure 5.15(a), so thatũ2
1 at the boundary is only
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Figure 5.15 Profiles of the Reynolds stresses, with and without blocking, forawkw = 0.2. Thick lines: with blocking, thin

lines: without blocking. Solid lines: att/T = 0, dotted lines: att/T = 5, with kwl = 0.6, dashed lines: att/T = 5 with

kwl = 0.3, dash-dotted lines: att/T = 5 with kwl = 0.15. (a) streamwise component, (b) spanwise component, (c) normal

component, (d) shear stress.

slightly larger than far from the boundary, whereas in figure 5.15(b), the distortion caused by the wave

reinforces the amplification of̃u2
2 due to blocking. In figure 5.15(c), it can be seen that̃u2

3 is forced to

decay to zero towards the boundary over a length scalel , as expected, retaining nevertheless a value

greater than 1 in the regionl ¿ x̃3 ¿ λw. When blocking is considered, the shear stress,ũ1ũ3 also

has to decay to zero towards the boundary, for obvious reasons (figure 5.15(d)).

5.3.5 Estimation of the TKE growth

In §5.3.2, it was found that an increase in the TKE is predicted by the present model of turbulence

distortion by a wave, which is related to the straining of the turbulence by the Stokes drift of the wave.

134



Chapter 5 The distortion of turbulence by a progressive surface wave

In order to estimate this increase, it is necessary to derive an equation for the TKE compatible with

the assumptions of the model. The TKE equation is here derived in a cartesian coordinate system, for

simplicity. But when the terms in that equation are estimated, the results of the preceding sections,

which were found in the curvilinear coordinate system, will be used directly, since the behaviour of

the statistics, in either coordinate system, is approximately equal.

The linearised momentum equation consistent with (5.2) is

∂ui

∂t
+ U j

∂ui

∂x j
+ u j

∂Ui

∂x j
= −1

ρ
∂p
∂xi

, (5.53)

whereρ is the water density andp is the turbulent pressure. The required TKE equation may be

obtained by multiplying (5.53) byui , adding all the expressions fori = 1, 2, 3 and ensemble averaging.

This yields

d
dt

(
u2

1 + u2
2 + u2

3

2

)
= (u2

3−u2
1)

∂U1

∂x1
−2u1u3

∂U1

∂x3
− 1

ρ

[
∂

∂x1
(pu1) +

∂
∂x2

(pu2) +
∂

∂x3
(pu3)

]
. (5.54)

The last 3 terms between square brackets in (5.54) appear in flux form and are associated with the

redistribution of energy between different regions of the turbulence through pressure forces. The first

two terms on the right-hand side are turbulence production terms by the mean flow, in the present case

the surface wave. According to (5.43) and (5.44),∂U1/∂x1 attains maxima on the backward slopes

of the wave. On the other hand, figure 5.7 shows thatu2
1 attains maxima at the wave crests, whileu2

3

attains maxima at the wave troughs. The product(u2
3− u2

1)∂U1/∂x1 is thus in quadrature, and gives an

insignificant net contribution to the TKE. By contrast, both−u1u3 (see figure 5.9) and∂U1/∂x3 are in

phase with the wave crests. Therefore, when∂U1/∂x3 is positive,−u1u3 has a larger value than when

∂U1/∂x3 is negative, so−u1u3∂U1/∂x3 tends to be more positive than negative. This leads, through

(5.54), to a net positive contribution to the TKE, which is the primary reason why the TKE increases.

In order to test this reasoning, the growth rate of the TKE due only to the term−2u1u3∂U1/∂x3

will be estimated and compared with the growth rate predicted by the full model. The approximate

model is given by:

d
dt

(
u2

1 + u2
2 + u2

3

2

)
≈ −2u1u3

∂U1

∂x3
≈ −2u1u3a2

wk2
wσw, (5.55)

where, in the second approximate equality,∂U1/∂x3 has been substituted bearing in mind that the net

contribution of the production term to the TKE is made only through the Stokes drift. The Stokes drift

has been evaluated according to equation (3.3.5) of Phillips (1977). To compare this estimate more

easily with the dimensionless growth rates available in figure 5.10, it should be noted thatd/dt =
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(σw/2π)d/d(t/T), hence (5.55) becomes

d
d(t/T)

(
u2

1 + u2
2 + u2

3

2u2

)
≈ −4π

u1u3

u2 a2
wk2

w. (5.56)

Takingawkw = 0.2 and−u1u3/u2 ≈ 0.7, as suggested by the final portions of the graphs of figure 5.9,

it follows thatd/d(t/T)(TKE/u2) = 0.35. This is in remarkable agreement with the value that can be

extracted directly from the slopes of the final portions of the curves in figure 5.10. It thus appears that

the estimates made above and the connection established between the TKE increase and the Reynolds

shear stress are well founded.

To obtain an idea of the time-scales involved in the development of the streamwise vortices in the

present model, a still rougher estimate may be carried out. Noting thatui = O(u) and−u1u3 = O(u2)

(5.55) may be scaled as

u2

Td
= u2a2

wk2
wσw, (5.57)

whereTd is the development time scale. With minor rearranging, (5.57) becomes

Td =
1

a2
wk2

wσw
. (5.58)

Taking reasonable values for the variables, likeawkw = 0.1 andσw = 10s−1, it is found thatTd = 10s.

Hence the streamwise vortices that contain most of the TKE grow relatively fast.

5.3.6 Estimation of turbulence-induced wave decay

The preceding results have established how the TKE of turbulence beneath a surface wave increases

due to the distortion of the turbulence by the Stokes drift. Although in the RDT model used, the

turbulent flow has no feedback whatsoever on the mean flow, which is taken as fixed, in real situations

that is not the case. If a mean flow and a turbulent flow coexist in a fluid and the energy of the turbulent

flow increases, that energy has to come from the mean flow, which correspondingly weakens. In the

present case, the mean flow is associated with a surface wave, so the energy transfer taking place

to the turbulence as the wave distorts the turbulence is necessarily linked with a decay of the wave.

A mechanism of wave decay due to the straining of turbulence by the Stokes drift was first referred

in the Introduction of Phillips (1959), who called it ‘eddy viscosity interaction’. Although Phillips

(1959) did not establish a connection between the generation of streamwise vortices (which were

in fact almost unstudied at the time) and wave decay, that connection is implicit in his qualitative

arguments involving vorticity stretching. It will be shown in this subsection that the energy transfer
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from the waves to the turbulence through this eddy-viscosity interaction can indeed account for the

turbulence-induced wave decay observed in the experimental study ofÖlmez & Milgram (1992).

Consider the momentum equation for the mean flow in a cartesian coordinate system, now taking

into account the Reynolds stresses:

∂Ui

∂t
+ U j

∂Ui

∂x j
= −1

ρ
∂P
∂xi

− ∂
∂x j

(uiu j), (5.59)

whereP is the mean pressure. If this equation is multiplied byUi and the resulting expressions for

i = 1 and 3 are added (noting that thei = 2 component is zero for the monochromatic wave under

consideration), an equation for the kinetic energy of the wave is obtained, namely

d
dt

(
U2

1 + U2
3

2

)
= (u2

1 − u2
3)

∂U1

∂x1
+ 2u1u3

∂U1

∂x3
− ∂

∂x1
(U1u2

1 + U3u1u3)

− ∂
∂x3

(U1u1u3 + U3u2
3)−

1
ρ

(
∂

∂x1
(PU1) +

∂
∂x3

(PU3)
)

. (5.60)

The last 6 terms on the right-hand side appear in flux form, and so are related to transport processes,

which do not change the total kinetic energy. The first two terms, however, are formally identical and

with the opposite sign to those found on the right-hand side of the TKE budget (5.54). It is clear that

these terms are associated with the energy transfer from the wave motion to the turbulent motion.

Since the growth rate of the TKE was estimated very accurately assuming it to be solely de-

termined by the production terms mentioned above, by analogy with (5.55) it seems reasonable to

estimate the decay of the kinetic energy of the wave due to the existence of turbulence from (5.60), as

simply

d
dt

(
U2

1 + U2
3

2

)
≈ 2u1u3

∂U1

∂x3
. (5.61)

It remains to apply the same scaling ideas leading to (5.57) to the right-hand side of (5.61), and to note

that the kinetic energy of the wave is(U2
1 + U2

3 )/2 = O(a2
wk2

wc2
w). Then, (5.61) may be scaled as

d
dt

(a2
wk2

wc2
w) ≈ −u2a2

wk2
wσw ⇒ 1

aw

daw

dt
≈ −u2

c2
w

σw, (5.62)

which implies that the wave decays exponentially in time due to the turbulence, with an attenuation

rate

βt = a
u2

c2
w

σw, (5.63)
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wherea is a dimensionless constant ofO(1).

The attenuation of surface waves due to turbulence has been investigated, for example, by Skoda

(1972), Greenet al. (1972), van Hoften & Karaki (1976) and Kitaigorodskii & Lumley (1983). In

their theoretical study, Kitaigorodskii & Lumley identified a wave decay mechanism involving the

transport of wave energy away from the surface by the turbulent velocity field, and parameterised

that process in terms of the friction velocity of the turbulence. However, they emphasised that this

process was only significant in a random wave field, and not for a periodic wave. Skoda (1972),

Greenet al. (1972) and van Hoften & Karaki (1976) performed experiments where they measured the

decay of approximately monochromatic, mechanically generated waves, due to turbulence induced by

rotating paddles, an oscillating grid and channel bottom friction, respectively.Ölmez and Milgram

(1992) studied again the decay of periodic waves due to grid-generated turbulence, and re-analysed

the data of Skoda (1972). Unlike most previous authors, they presented an extensive list of all the

relevant parameters of the problem, including the intensity and length scale of the turbulence. They

parameterised the wave attenuation in terms of the turbulence mixing rate, by resorting to dimensional

analysis. In the present notation, their formula for the temporal attenuation rate is

βt = 0.103
u

l
1
3 λ

2
3
w

, (5.64)

where the constant 0.103 has been adjusted to their experimental data. In the graph that tests this

relation (Ölmez & Milgram’s figure 11), the scatter of the data points is considerable. Although

relation (5.64) fits wellÖlmez & Milgram’s own data, the fit is not so good for the data of Skoda

(1972), which they also present. The data of Skoda appear to be more sensitive to the parameter

u/(l
1
3 λ

2
3
w) and accordingly concentrate more above the theoretical line corresponding to (5.64). In

particular, there are 2 points of Skoda’s data which lie outside their graph, corresponding to a very

high decay rate.

Figure 5.16 shows̈Olmez & Milgram’s (1992) and Skoda’s (1972) experimental data for the atten-

uation rate of surface waves plotted as a function of(u/cw)2σw instead. The straight line corresponds

to the formula (5.63) witha = 0.6. As in figure 11 ofÖlmez & Milgram (1992), the scatter is quite

considerable. This is to be expected, since the attenuation rate due to turbulence can only be calculated

as a residue of the wave decay due to other processes (e.g. geometric spreading inÖlmez & Milgram’s

axisymmetric experiments, or channel wall friction in Skoda’s experiments), and is thus subject to a

large error. It was decided to include in figure 5.16 the data points of Skoda which lie outside figure

11 of Ölmez & Milgram (1992). They still depart very much from the present theoretical line.

In figure 5.16, the 2 data points with the highest value of(u/cw)2σw are fitted worse by the present

theoretical line than in figure 11 of̈Olmez & Milgram (1992), but there is no reason to believe that

they deserve more confidence than the two outlying points of Skoda (1972). The great majority of the
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Figure 5.16 Comparison with experimental data of the temporal wave attenuation rate predicted by theory. Solid line:

equation (5.63) witha = 0.6, squares: data from̈Olmez & Milgram (1992), diamonds: data from Skoda (1972) (taken from

Ölmez & Milgram, 1992).

data points, however (40 in total), concentrate approximately inside an ellipsoid with the longest axis

roughly aligned with the theoretical line. The scatter can not be considered worse than in figure 11 of

Ölmez & Milgram (1992). This provides convincing evidence that the scaling developed here for the

wave attenuation due to turbulence is at least as acceptable, in order-of-magnitude terms, as (5.64).

Indeed, the fact that the slope of the line fitted to the data using (5.63) is closer to one than that fitted

using (5.64) might be considered an advantage of the present scaling.

It should be pointed out that both the data ofÖlmez & Milgram (1992) and of Skoda (1972)

marginally satisfy the assumptions of RDT, (5.3). In particular, inÖlmez & Milgram (1992)

4.36 <
λw

l
< 7.10, 0.583< awkwσw

l
u

< 2.663 (5.65)

except for one of the outlying points, which hasawkwσwl/u = 0.399. For that particular point,

the departure from theory might be justified as resulting from gross violation of the condition

awkwσwl/uÀ 1. On the other hand, in Skoda’s data,

1.57 <
λw

l
< 10.296 (5.66)

and it was impossible to find information about the slope of the waves used by Skoda inÖlmez &

Milgram’s study.

The results of the present subsection consolidate the link established by Phillips (1959) between

the stretching of vorticity by the Stokes drift in turbulence beneath a surface wave and the enhancement

of wave energy dissipation by turbulence. The physical mechanism addressed here is inviscid, so it

139



Chapter 5 The distortion of turbulence by a progressive surface wave

is not, in a strict sense, a mechanism of dissipation, but of energy transfer. The predicted decay of

the wave energy is exponential and, according to (5.63), the attenuation rate depends on the frequency

or wavenumber of the wave in the same way as in the shear instability wave generation mechanism

of Miles (1957) or the non-separated sheltering mechanism of Belcher & Hunt (1993). Using the

dispersion relation of gravity waves, which implies thatσwcw = g, it can be shown that (5.63) leads to

a temporal attenuation rate that is∝ σ3
w. The corresponding spatial attenuation rate, which is obtained

by dividing the temporal attenuation rate by the group velocity of the wavecg ≈ (1/2)cw (Ölmez &

Milgram, 1992), is then∝ σ4
w. This kind of dependence is compatible with the experimental results

shown in figure 4 of Greenet al. (1972).

The attenuation is therefore expected to be most important at wavenumbers or frequencies which

are high, but lower than those where viscous dissipation becomes dominant. Having in mind that

the wave attenuation rate due to viscous dissipation is4νk2
w (Lamb, 1932), whereν is the kinematic

viscosity of the water, the present mechanism is relevant when

u2

c2
w

σw À 4νk2
w ⇒ uÀ (4νσw)

1
2 . (5.67)

Takingσw = 1s−1 and noting thatν = 1× 10−6m2 s−1, it is concluded thatu must be considerably

larger than2mm s−1 (not a difficult condition to satisfy in the ocean). Alternatively, the criterion (5.67)

can be expressed as

σw ¿ u2

4ν
, (5.68)

which, if it is assumedu = 2cm s−1, givesσw ¿ 100s−1, corresponding approximately toλw À
1.5cm. Wavelengths outside this range would be excluded anyway because of the condition requiring

the scale of the wave to be much larger than the scale of the turbulence (first equation of (5.3)). The

mechanism addressed here is therefore primarily a gravity wave dissipation mechanism.

5.4 Conclusions

A rapid-distortion model has been used to study the interaction between initially homogeneous, shear-

free turbulence and a progressive, irrotational surface wave. The model is applicable when the integral

length scale of the turbulence is much smaller than the wavelength of the wave and the slope of the

wave is high enough that the straining of the turbulence by the wave is stronger than the straining of

the turbulence by itself.

As a result of distortion by the orbital motions of the wave, the turbulent Reynolds stresses undergo
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a modulation over a wave cycle, with the streamwise Reynolds stress attaining maxima at the wave

crests and minima at the wave troughs and the reverse happening with the normal Reynolds stress.

This behaviour is consistent with the experimental results of Thais & Magnaudet (1996).

Over several wave cycles, the turbulence becomes strongly anisotropic due to the tilting of the ver-

tical vorticity by the Stokes drift and its subsequent amplification as streamwise vorticity. The stream-

wise Reynolds stress becomes progressively smaller, while the spanwise and normal Reynolds stresses

both amplify over time. This corresponds, in a statistical sense, to the formation of intense streamwise

vortices. The integral length scales of the turbulence indicate that these vortices are elongated in the

streamwise direction, like Langmuir circulations. The structure of the turbulence predicted by the

model is found to resemble that of ‘Langmuir turbulence’ in the LES of McWilliamset al. (1997).

The effect of turbulence distortion by a shear current is examined by using a rapid-distortion model

of turbulence in a uniform shear flow. The differences relative to turbulence distorted by a wave are

striking. In the case of the shear flow, the streamwise Reynolds stress becomes the largest of all

Reynolds stresses and the structure of the streamwise velocity fluctuations becomes elongated in the

streamwise direction, showing signs of the ‘streaky structures’ produced, for example, in the DNS of

Leeet al. (1990).

The increase of the TKE associated with the formation of the intense streamwise vortices in the

turbulence distorted by a surface wave is linked with the existence of a negative shear stress in the

turbulence, and the tendency of the TKE is found to be proportional to−u1u3. The time scale for the

amplification of the TKE is obtained by scaling the TKE equation, and found to be ofO(1/(a2
wk2

wσw)).

Finally, the effect of the turbulence on the distorting surface wave is estimated by scaling the

equation for the kinetic energy of the wave. It is found that the energy of the wave decreases due to

the energy transfer taking place to the turbulence. The wave therefore decays through the attenuation

mechanism identified by Phillips (1959) as ‘eddy-viscosity interaction’. The wave decay is found to

be exponential, with an attenuation rate ofO((u/cw)2σw), which is consistent with the laboratory data

of Ölmez & Milgram (1992).

These results enable to establish a definite link between the generation of streamwise vortices in

turbulence beneath a surface wave and the enhanced decay of that wave due to the turbulence. The

results also provide an explanation for the existence of ‘Langmuir turbulence’, since the anisotropy of

that kind of turbulence, both in terms of the intensity of the various velocity components and in terms

of their length scales, is predicted correctly. Some caution is necessary regarding these results, since

the model does not account for the simultaneous presence of a Stokes drift and a shear current. But

the importance of that current as an additional source of vorticity is deemed to be limited, in many

situations, to a thin layer near the surface, whereas the interaction between turbulence and the Stokes

drift penetrates deeper.
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Conclusions

A number of simplified model problems relevant for understanding fundamental aspects of the inter-

action between turbulence and a free surface have been considered. The important findings achieved

using these models will be recalled next.

In the viscous model of shear-free turbulence near flat boundaries, presented in chapter 2, the aim

was to analyse the differences between the viscous coupling of the turbulence with a solid wall and

with a free surface, and to explain existing direct numerical simulation (DNS) data of the turbulence

dissipation rate. For that purpose, an energy spectrum with a viscous cutoff was adopted for the

turbulence. This spectrum allowed a correct prediction of the dependence on the Reynolds number

of the dimensionless dissipation rate, in agreement with the DNS data of Jimenezet al. (1993) and

Wanget al. (1996). Profiles of the turbulence dissipation rate tangential and normal to the two types

of boundary were then calculated, and found to agree extremely well with profiles obtained using

DNS by Perot & Moin (1993). The tangential dissipation rate is higher near a solid wall than in the

bulk of the flow because the no-slip boundary condition leads to large velocity gradients across the

viscous boundary layer. In contrast, the weaker constraint of no stress at a free surface leads to the

dissipation rate close to the free surface actually being smaller than in the bulk of the flow. This partly

explains why tangential velocity fluctuations parallel to a free surface are so large (see, for example,

Perot & Moin, 1995a). In addition, it was shown that it is the adjustment of the large energy-containing

eddies across the viscous boundary layer that controls the dissipation rate profiles, which explains why

rapid-distortion theory can give quantitatively accurate values for the dissipation rate at short times.

It was also found that the dissipation rates obtained from the model evaluated at early times actually

yield useful estimates of the dissipation obtained from the DNS at times when nonlinear processes are

significant. It is concluded that the main role of the nonlinear processes is to arrest growth by linear

processes of the viscous boundary layer after about one large-eddy turnover time.

In the inviscid model of shear-free turbulence near a flat boundary, presented in chapter 3, the

aim was to understand how nonlinear interactions in the turbulence are affected by a wall or a flat

free surface. This was done by considering the distortion of small-scale turbulence by axisymmetric

straining flows representing the large-scale upwelling or downwelling zones in the turbulence. It

was found that, in a downwelling zone, the tangential Reynolds stresses increase in time, while the

normal Reynolds stress decreases in time, and the small-scale turbulence becomes approximately two-

dimensional. In an upwelling zone, both the tangential and the normal Reynolds stresses increase
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in time, and the turbulence remains three-dimensional. In both cases, the turbulent kinetic energy

(TKE) increases everywhere, but the ratio between its value at the boundary and far from the boundary

remains 1, if the straining rate is constant. In shear-free turbulence, it is observed (Thomas & Hancock,

1977; Biringen & Reynolds, 1981) that the TKE near the boundary is larger than the TKE far from the

boundary, even near solid walls, where it was seen in chapter 2 that there is no minimum in dissipation.

This can be explained by the presence of upwelling and downwelling zones near the boundary, where

the net strain is high and highly anisotropic, and a transition into an isotropic strain field as one moves

away from the boundary, where there is a great deal of cancellation of the distortions and the net

strain is weaker. When this effect is mimicked in the model by considering straining flows that decay

exponentially away from the boundary, the calculated Reynolds stresses show good agreement with

the data of Thomas & Hancock (1977) and Biringen & Reynolds (1981). The pressure-strain terms in

the TKE equation are found to lead to a return to isotropy of the small-scale turbulence everywhere,

except in the near-boundary region of upwelling zones. The turbulent pressure fluctuations are found

to be more intense in an upwelling zone than in a downwelling zone, suggesting that the former flow

may be more important for surface wave generation than the latter. Pressure spectra calculated at the

boundary and far from the boundary in the case of a flow with a constant strain rate show reasonable

agreement with spectra of the ‘slow’ pressure obtained from DNS data by Kim (1989), indicating that

the high wavenumber tail of these spectra may be dominated by contributions due to the interactions

between the large and the small scales of the turbulence.

In the model of surface wave initiation by a turbulent shear flow, presented in chapter 4, the aim

was to extend the inviscid theory of Phillips (1957) by relating the pressure fluctuations that generate

the waves to the velocity fluctuations in the turbulence, and to compare the relative importance of

turbulence in the air and turbulence in the water for surface wave generation. It was found that, for

flows producing turbulent pressure fluctuations of a similar magnitude, a turbulent shear flow in the

water (coupled case) is much more efficient for generating surface waves of considerable slope than a

turbulent shear flow in the air (uncoupled case). This is in agreement with the findings of Caulliezet

al. (1998), who report that the first visible waves in their wave tank only appear when the water flow

becomes turbulent. Wave generation is more efficient in the coupled case than in the uncoupled case

because the decorrelation time of the turbulent pressure fluctuations is longer in the water than in the

air – hence the turbulence in the water can interact with the free surface for a longer time – and also

because the integral length scale of the turbulent eddies is shorter in the water than in the air – hence

waves of a larger slope tend to be excited. In the coupled case, wave slopes of≈ 0.1 are attained in

realistic times (Cox, 1958), while in the uncoupled case the free surface remains almost perfectly flat.

The predicted time evolution of the mean-square slope (MSS) of the waves resembles qualitatively

graphs of the same quantity in the experimental study of Cox (1958), suggesting that the initial growth

of the measured waves is due to the onset of turbulence in the water. Calculated curvature spectra

of the waves are found to display a peak at the wavenumber corresponding to the integral length
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scale of the turbulence, satisfying at lower and higher wavenumbers power laws resulting directly

from the assumed turbulence spectrum. These spectra qualitatively resemble the curvature spectra of

waves measured in the laboratory by Hwanget al. (1993). The directional distribution of energy in

the calculated spectra shows a peak in the direction of the flow for low shear rates of the turbulent

flow (with a cos2 dependence on the propagation angle), but broadens and becomes bimodal at low

wavenumbers for higher shear rates, in accordance with observations (Jähne & Riemer, 1990) and

theoretical models (Kudryavtsev, 1999). This behaviour results from the emergence of truly resonant

waves (as understood by Phillips, 1957) when the velocity of the flow at the level that forces the

dominant waves rises above their minimum phase speedcmin ≈ 23cm s−1.

In the model of shear-free turbulence distorted by a surface wave, presented in chapter 5, the aim

was to investigate in what ways the structure of initially homogeneous and isotropic turbulence is

affected by the wave motion, and also, indirectly, how the wave is affected by the turbulence. It was

found that, on the time scale of a wave period, the Reynolds stresses are modulated by the orbital

motion of the wave, and undergo oscillations with the same period as the wave. The streamwise

Reynolds stress attains maxima at the wave crests and minima at the wave troughs, while the Reynolds

stress normal to the free surface attains maxima at the wave troughs and minima at the crests. This

modulation is consistent with the laboratory measurements of Thais & Magnaudet (1996). On the time

scale of several wave periods, the streamwise Reynolds stress progressively decreases in magnitude,

while the spanwise and normal Reynolds stresses increase, rendering the turbulence approximately

two dimensional and dominated by intense streamwise vortices. The streamwise integral length scales

of the spanwise and normal velocity fluctuations increase, while the spanwise length scales of the same

velocity fluctuations decrease. Hence the streamwise vortices become elongated in the streamwise

direction. This structure is found to resemble the structure of ‘Langmuir turbulence’, produced in

the large-eddy simulations of McWilliamset al. (1997). The formation of streamwise vortices can

be explained by the tilting of vertical vorticity initially present in the turbulence by the Stokes drift

of the wave, and its amplification as streamwise vorticity. This is the same physical mechanism as

that proposed by Craik & Leibovich (Leibovich, 1983) for the formation of Langmuir circulations.

However, in Craik & Leibovich’s theory, the source of vorticity for the circulations is a wind-induced

shear current, whereas in the present model the source of vorticity is the turbulence which is assumed

to exist initially in the water, due to for example, wave breaking (Melville, 1996). The role of the

shear current in the dynamics of the turbulence is studied by using a model of turbulence distorted by a

uniform shear. It is found that, in turbulence subject to shear, the streamwise Reynolds stress becomes

dominant, and the streamwise velocity fluctuations are elongated in the streamwise direction, forming

‘streaky structures’ (Leeet al., 1990). Whether the turbulence behaves as shear-flow turbulence or

Langmuir turbulence therefore seems to depend on whether the distorting effects of the Stokes drift or

of the shear dominate. By scaling the TKE equation, the growth rate of the turbulent kinetic energy

is found to be ofO((awkw)2σw), whereawkw is the wave slope andσw is the angular frequency of the
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wave. The energy transfer taking place to the turbulence as the streamwise vortices intensify is related

to a weakening of the wave motion, corresponding to the wave decay mechanism termed by Phillips

(1958) ‘eddy viscosity interaction’. This effect is estimated by scaling the equation for the kinetic

energy of the wave. When the estimated attenuation rate is compared with recent laboratory data on

wave decay due to turbulence (Ölmez & Milgram, 1992), order-of-magnitude agreement is achieved.

6.1 Applications and future work

The idealised model problems addressed in this thesis can be seen as building blocks that help to

understand the dynamics of turbulence near free surfaces.

The findings of chapter 2 regarding the linear dynamics of the viscous boundary layer in shear-

free turbulence may enable the improvement of closures for the dissipation terms near boundaries in

numerical models, as in Perot & Moin (1993). The behaviour of the dissipation predicted by the model

at a free surface may also help to understand gas transfer at air-water interfaces (Theofanous, 1984),

since the normal dissipation at the boundary is related to the surface divergence of the flow.

The treatment of the nonlinear dynamics of shear-free turbulence near boundaries, presented in

chapter 3, is useful in two ways. Firstly, it shows how the small-scale turbulence is affected by large-

scale flow structures that are ever-present in turbulence near boundaries: upwelling and downwelling

zones (Perot & Moin, 1995a). Secondly, it provides exact calculations of the inviscid source terms

in the turbulent kinetic energy equation, including the pressure-strain terms. These results may help

to parameterise those terms near boundaries in numerical models, as done in Johansson & Hallbäck

(1994) for unbounded turbulence.

The results of chapter 4 on surface wave initiation by a turbulent shear flow are useful primarily

for a more complete understanding of the wave energy balance in oceans or lakes. While the initial

generation of surface waves has generally been attributed to turbulence in the air (Phillips, 1957;

Kahma & Donelan, 1988), the results presented here show the importance of turbulence in the water,

whose effect should be included in the wave balance equations. Due to the highly idealised nature

of the flow employed in the rapid-distortion model, comparisons with data were mainly qualitative.

It would be useful to perform direct numerical simulations of similar flows and compare their results

with those obtained here. The rapid-distortion model could also be used to calculate the source terms

in the turbulent kinetic energy equation, as was done in chapter 3 for shear-free turbulence. This would

provide insights about the near-boundary dynamics of shear turbulence, which are more complicated

than the dynamics of shear-free turbulence, or unbounded shear turbulence (Maxey, 1982), because the

interaction of the mean vorticity and the turbulent vorticity is substantially modified by the blocking

effect of the boundary (Lee & Hunt, 1989).
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The distortion of turbulence by a progressive surface wave, treated in chapter 5, is perhaps the

model problem considered in this thesis with the widest range of possible applications. The predictions

of how the turbulence structure is affected by the Stokes drift, generating streamwise vortices, are

relevant for developing parameterisations of these vortices in numerical models of ocean flows that

do not resolve them. Furthermore, the structure of the turbulence, particularly when it is organised

in streamwise vortices, is known to control pollutant dispersion in the ocean surface layer (Faller

& Auer, 1988) and gas transfer across the air-water interface (Faller & Perini, 1984). It would be

interesting to relate more extensively the turbulence distortion mechanism addressed in this chapter

to the classical mechanism of Craik & Leibovich (1976) for the generation of Langmuir circulations.

From the viewpoint of the waves, the turbulence-induced wave decay which was seen to be associated

with the intensification of the streamwise vortices is obviously of great importance as a sink term in the

wave energy balance, and should be included in the balance equations (Hasselmann, 1988). It would

also be useful to compare the wave attenuation rate predicted by the model with further experimental

or numerical simulation data, in order to test its validity and to better calibrate the adjustable constant.

All the model problems in this thesis have been solved using rapid-distortion theory. The ana-

lytical solutions obtained for the turbulent velocity field are thus in a form which is adequate to be

implemented directly in kinematic simulations of turbulence (Perkinset al., 1990). These numerical

simulations retain only the dynamics that are contained in the rapid-distortion solutions, so they are

much cheaper to run than models involving a full resolution of the Navier-Stokes equations. By adding

a random phase to the Fourier components of the rapid-distortion solutions, kinematic simulations al-

low the calculation of actual flow fields, that can be compared with those produced by more realistic

models, and the computation of flow trajectories (Funget al., 1992). While it would be interesting to

perform kinematic simulations of all the flows considered in the thesis, it is intended in particular to

study the trajectories of a tracer released at the free surface of a turbulent flow distorted by a surface

wave (the problem of chapter 5). The aim is to see if the tracer tends to concentrate in rows aligned

with the streamwise direction, as happens in Langmuir circulations (Melvilleet al., 1998).
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APPENDIX A

Surface wave generation by shear-free turbulence

A.1 Introduction

It was initially intended to address the problem of surface wave generation by shear-free turbulence at

an air-water interface using a simple extension of Hunt & Graham’s (1978) RDT model of shear-free

turbulence near a wall.

A similar approach was first used by Carruthers & Hunt (1986) to address the generation of gravity

waves in a stably stratified layer above a turbulent layer. During the course of the work leading to this

thesis, another study was published by Fernando & Hunt (1997), who treated the case of turbulence

near a sharp interface separating two fluids of different densities, and calculated statistics of the inter-

facial waves generated by the turbulence. Fernando & Hunt’s model appeared to provide a framework

that could be applied directly to the problem of wave generation at an air-water interface, requiring

only the addition of the effect of surface tension, which was not considered in the original treatment.

However, the way in which the turbulent pressure is treated in that model leads to serious concerns

about its applicability.

It is well known that wave generation is an intrinsically dynamical process, which is essentially

driven by pressure (Phillips, 1957). However, Hunt & Graham’s (1978) inviscid model is purely

kinematic, and produces no pressure fluctuations. To enable their models to produce the pressure

fluctuations that are required to generate waves, both Carruthers & Hunt (1986) and Fernando & Hunt

(1997), introduced a crucial assumption about the spatio-temporal structure of the turbulence, which

will be shown to be formally inconsistent. This formal inconsistency is not serious for the generation

of waves that are not resonant (the situation treated in detail by Carruthers & Hunt and Fernando &

Hunt) because the order of magnitude of the pressure is predicted correctly, but reservations exist

when the model is applied to resonant wave growth, because of the crucial way in which this process

depends of the spatio-temporal structure of the turbulence (see chapter 4).

First of all, it will be shown that Hunt & Graham’s linearised equations do not produce turbulent

pressure fluctuations, and are thus unable to generate waves. Then, it will be shown how the assump-

tion of Carruthers & Hunt (1986) and Fernando & Hunt (1997) about the spatio-temporal structure of

turbulence is inconsistent with the equations of motion, but generates a pressure field of the right order
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of magnitude. Finally, this assumption will be adopted, despite its inconsistency, to calculate resonant

wave growth, and a physical interpretation of the results will be presented.

A.2 Theoretical model

The linearised inviscid momentum equation applicable to turbulence in the absence of a mean flow is

∂ui

∂t
= −1

ρ
∂p
∂xi

, (A.1)

whereui is the turbulent velocity,p is the turbulent pressure andρ is the density of the fluid under

consideration. The mass conservation equation is

∂ui

∂xi
= 0. (A.2)

Taking the curl of (A.1) yields the vorticity equation

∂ωi

∂t
= 0, (A.3)

whereω = ∇× u is the turbulent vorticity.

Now, (A.3), implies that the rotational part ofui does not depend on time. Since the flow consists

of a rotational part plus an irrotational part, (A.2) implies that the irrotational part ofui cannot depend

on time either. Therefore, the velocity field must be frozen, and (A.1) reduces to

∂ui

∂t
= −1

ρ
∂p
∂xi

= 0. (A.4)

Hence it can be concluded that the turbulent pressure is a constant, and by definition of fluctuating

quantity, equal to zero.

Carruthers & Hunt (1986) and Fernando & Hunt (1997) assume in their models that the turbulence

far from the boundary is statistically homogeneous, isotropic and stationary. The turbulent velocity

can then be expressed as a 4-dimensional Fourier integral as

u(H)
i (x, t) =

ZZZZ
ˆ̂u
(H)
i (k, σ)ei(k·x−σt)dk1dk2dk3dσ. (A.5)

where ˆ̂u
(H)
i is a Fourier amplitude,k = (k1, k2, k3) is a wavenumber vector andσ is an angular

frequency. Now, the only possible choice ofσ consistent with (A.4) isσ = 0. But equation (2.5b) of
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Carruthers & Hunt (1986) and equation(2.1)d of Fernando & Hunt are equivalent to setting

σ = uk, (A.6)

wherek = (k2
1 + k2

2 + k2
3)

1
2 is the wavenumber value andu the root-mean-square (RMS) velocity of

the turbulence. This assumption, which has also been used in the kinematic simulations of Turfus &

Hunt (1987) and Perkinset al. (1990), makes the turbulence evolve in time and have approximately

correct temporal statistics, without having to account for complicated dynamical processes. However,

(A.6) is clearly inconsistent with the equations of motion.

Since the only velocity scale of the turbulence isu, if the the various terms in (A.1) are estimated,

using (A.6), it is found that the turbulent pressure scales asρu2, which is correct for shear-free turbu-

lence (Batchelor, 1950). Regarding this particular aspect then, (A.6) appears to mimic correctly the

nonlinear effects that are neglected in the linearised fundamental equations. In the following calcula-

tions, (A.6) will be adopted to treat the problem of wave generation, in order to see how it affects the

wave growth rates.

A.2.1 The wave generation problem

Like the turbulent velocityu(H)
i that is ultimately responsible for driving the waves, all the turbu-

lent and wave variables are horizontally homogeneous. Hence both the interface elevationζ and the

turbulent pressurep can be expanded as two-dimensional Fourier integrals as

ζ(x1, x2, t) =
ZZ

ζ̂(k1, k2, t)ei(k1x1+k2x2)dk1dk2,

p(x, t) =
ZZ

p̂(k1, k2, x3, t)ei(k1x1+k2x2)dk1dk2. (A.7)

The wave orbital motion is equally horizontally homogeneous, and assumed to be irrotational. Using

mass conservation and the kinematic and the dynamical boundary conditions at the interface (see

chapter 4), the Fourier amplitude of the surface elevation is found to satisfy

∂2ζ̂
∂t2 + σ2

0ζ̂ = −k12p̂(x3 = 0)
ρ

, (A.8)

wherek12 = (k2
1 + k2

2)
1
2 and

σ0 = (gk12 + γk3
12)

1
2 (A.9)
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is the natural frequency of surface waves,g is the acceleration of gravity andγ is the surface tension.

This is equivalent to Phillips’ (1957) equation (2.12), and shows that the Fourier amplitude of the

surface elevation behaves like a forced harmonic oscillator driven by the turbulent pressure forcing at

the air-water interface.

Following Carruthers & Hunt (1986) and Fernando & Hunt (1997), rapid distortion theory enables

to relate the turbulent pressurep to the turbulent velocity field, and this considerably simplifies the

wave generation problem. Taking the horizontal divergence of (A.1) and using (A.2) yields

∂
∂t

∂u3

∂x3
=

1
ρ

(
∂2p

∂x2
1

+
∂2p

∂x2
2

)
, (A.10)

which may then be applied at the air-water interface. Since the turbulent pressure field responsible for

the initial wave growth is that in the absence of any waves (Phillips, 1957), the turbulent velocity field

on the left-hand side of (A.10) is also that in the absence of waves, being given by the solutions of

Hunt & Graham (1978). In contrast with (A.5), Hunt & Graham did not representu(H)
i explicitly as a

Fourier integral in time. However, when the turbulence far from the boundary is assumed stationary,

that approach may be followed (Fernando & Hunt, 1997), and the expression obtained for the vertical

component of the turbulent velocity taking into account blocking by the boundary is

u3(x, t) =
ZZZZ

ˆ̂u
(H)
3 (k, σ)

(
eik3x3 − ek12x3

)
e−iσtdk1dk2dk3dσ. (A.11)

This equation may then be inserted into (A.10), and if (A.7) is also used, an expression for the turbulent

pressure amplitude is obtained. At the interface, that expression takes the form

p̂(k1, k2, x3 = 0, t) = − ρ
k12

ZZ
ˆ̂u
(H)
3 (k, σ)σ

(
i − k3

k12

)
e−iσtdk3dσ, (A.12)

which may be substituted on the right-hand side of (A.8).

The solution of (A.8) for an initially unperturbed interface is well known from Phillips (1957) and

chapter 4 of this thesis. The corresponding solution for the wave spectrum is

Ψ(k1, k2, t) =
k2

12

ρ2σ2
0

Z t

0

Z t

0
p̂∗(k1, k2, 0, r)p̂(k1, k2, 0, s) sin[σ0(t − r)] sin[σ0(t − s)]drds. (A.13)

where the overbar denotes ensemble averaging and the asterisk denotes complex conjugation. Now,

noting from (A.12) that the pressure field is statistically stationary (because the velocity field that

generates it is also statistically stationary), a wavenumber-frequency pressure spectrumΠ̂(k1, k2, σ)
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may be introduced, being defined as

ˆ̂p
∗(k1, k2, σ) ˆ̂p(k′1, k′2, σ′) = Π̂(k1, k2, σ)δ(k1 − k′1)δ(k2 − k′2)δ(σ− σ′), (A.14)

where

p̂(k1, k2, 0, t) =
Z

ˆ̂p(k1, k2, σ)e−iσtdσ. (A.15)

Equations (A.14) and (A.15) may then be substituted in (A.13), yielding an equation for the surface

wave spectrum as a function of the wavenumber-frequency spectrum of the turbulent pressure.

A sufficiently long time after the turbulent forcing has begun, the only turbulent pressure fluc-

tuations that give appreciable contributions to the integral on the right-hand side of (A.13) are those

whose frequency satisfiesσ = σ0(k12). The wave spectrum then becomes dominated by resonant

contributions and the equation that gives the wave growth in the notation of Hasselmann (1968) can

be obtained:

∂Ψ
∂t

=
π
2

k2
12

ρ2σ2
0

(
Π̂(k1, k2, σ0) + Π̂(k1, k2,−σ0)

)
. (A.16)

Finally, using (A.12), (A.14) and (A.15), the wavenumber-frequency spectrum of the turbulent pres-

sure may be related to the wavenumber-frequency spectrum of the turbulent velocity far from the

boundary,χ(H)
i j , yielding

Π̂(k1, k2, σ) = ρ2 σ2

k2
12

Z (
1 +

k2
3

k2
12

)
χ(H)

33 (k, σ)dk3, (A.17)

whereχ(H)
i j is defined as

ˆ̂u
(H)∗
i (k, σ) ˆ̂u

(H)
j (k′, σ′) = χ(H)

i j (k, σ)δ(k− k′)δ(σ− σ′). (A.18)

The crucial assumption of Carruthers & Hunt (1986) and Fernando & Hunt (1997) states that

the wavenumber-frequency spectrum of the turbulent velocity can be related to the corresponding

wavenumber spectrumΦ(H)
i j through (cf. (A.6))

χ(H)
i j (k, σ) = Φ(H)

i j (k)δ(σ− uk). (A.19)

This means that the turbulent velocity field is treated like a superposition of waves with the ‘dispersion

relation’ (A.6). The definition of the wavenumber spectrumΦ(H)
i j adopted here is that appropriate for
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isotropic turbulence and can also be found in Hunt & Graham (1978), or in chapter 4 of this thesis

(equation (4.53)).

A.3 Results and discussion

Equation (A.16) shows that the wave spectrum grows linearly in time, and proportionally to the pres-

sure spectrum at the wavenumberk12 and frequencyσ that satisfy the dispersion relation of free surface

waves. Due to linearisation, that pressure spectrum is in turn proportional to the velocity spectrum at

the same wavenumber and frequency (see (A.17)). It should be noted that (A.16) and (A.17) are phys-

ically consistent, since they were derived from the original linearised equations of motion. It is only

when, as a result of (A.19), it is assumed thatσ 6= 0 in (A.17) that the model becomes inconsistent,

for the reasons explained before. But that inconsistency is necessary if any pressure forcing, and the

resulting wave growth, are to be predicted.

Although the equations in§A.2 have been derived for turbulence in the water, this model can be

applied to turbulence in the water or to turbulence in the air. The wave motions themselves are always

dominated by the dynamics of the water-side of the domain, because of the large density difference

existing between air and water, so the density in (A.16) must always be replaced by the density of

waterρw. In the expression for the turbulent pressure forcing, (A.17), the density may be replaced by

the density of water or by the density of air,ρa, depending on whether the interface is forced from

below or from above. For a similar RMS velocityu and integral length scale of the turbulencel , the

effect of the density is simply to make the spectral growth rates for turbulence in the air smaller by a

factor≈ 10−6 than for turbulence in the water. Of course, the fact thatu andl are generally larger in

the atmosphere than in the ocean tends to counter this effect, at least partly (see chapter 4).

For an isotropic wave field, such as that generated by horizontally isotropic turbulence, the omni-

directional slope spectrum of the air-water interface is defined as

S(k12) = 2πk3
12Ψ(k12). (A.20)

Figure A.1 shows the growth rate of the omni-directional slope spectrum, for plausible values ofl and

u, in the case of turbulence in the air. It can be seen that the growth rate increases as the RMS turbulent

velocityu increases, as would be expected, but asu becomes larger than the minimum phase speed of

surface wavescmin ≈ 23cm s−1, which occurs at the wavenumberkmin ≈ 3.67cm−1, a gap where there

is no resonant growth appears, centred onkmin. The gap becomes wider asu increases. This can be

understood with the aid of the schematic diagram of figure A.2(a). The resonance condition states that

σ, the frequency of the turbulence, has to be equal toσ0, the natural frequency of the surface waves.
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Figure A.1 Resonant wave growth for turbulence in the air, using assumption (A.19). Integral length scale of the turbulence

l = 30cm. Thin solid line: u = 19cm s−1, dotted line: u = 20cm s−1, dashed line:u = 21cm s−1, long-dashed line:

u = 22cm s−1, dash-dotted line:u = 24cm s−1, thick solid line:u = 26cm s−1.

Now, (A.6) and (A.9) show that

σ = σ0 ⇒ uk = cwk12, (A.21)

wherecw is the phase speed of the wave. Sincek12 is by definition smaller thank, (A.21) means that

resonance can only occur ifu < cw. The gap in the graph of figure A.1 includes the wavenumbers

for which this condition is not met. The schematic diagram of figure A.2(b) explains in more detail

the resonance mechanism. Resonance happens when a Fourier component of the turbulent pressure

becomes phase locked with a surface wave having the same horizontal propagation velocity. For this

to be possible, a Fourier component of the pressure of wavelengthλt that excites a monochromatic

wave of wavelengthλw must travel at an angleθR to the horizontal such thatcosθR = u/cw = λt/λw.

Whenu > cw, or λt > λw, there can be no resonant wave growth. The gap in the graph of figure

A.1 only appears because, in the present model, the turbulence advection is parameterised in a rather

artificial way, as a superposition of wave-like components all travelling at the same ‘phase speed’u,

albeit in different directions (see (A.6)).

A slightly more realistic approach is to model the turbulence still as a superposition of independent

Fourier modes, but with a ‘phase speed’ characterised by a gaussian distribution, as suggested in the

study of Funget al. (1992) on kinematic simulation of turbulence. In that case, assumption (A.19) is

replaced by

χ(H)
i j (k, σ) = Φ(H)

i j (k)
1

(2π)
1
2 Σ(k)

exp
(−(σ− σ(k))2/2Σ2(k)

)
, (A.22)

whereσ is an average frequency andΣ is the corresponding standard deviation. Equation (A.22)
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Figure A.2 (a) Schematic diagram showing the resonance conditions. The thick solid curve represents the phase speed of

surface wavescw. (b) Schematic diagram of the general mechanism for resonance.

implies that there is a gaussian distribution of frequencies for each Fourier component of the turbulence

having a given wavenumber magnitude. The average frequency is chosen here asσ = uk and the

standard deviation is defined asΣ = 0.25σ, being proportional toσ, in accordance with the ideas of

Funget al. (1992).

Figure A.3(a) shows the resonant growth rate of the omni-directional slope spectrum for the same

conditions as figure A.1, but with the new assumption (A.22). The theoretical curves in figure A.3(a)

are quite similar to those of figure A.1 except for the highest values ofu, in the region where the gap

existed. The gap has now been filled, and become simply a dip in the curves, centred onkmin. This

can be understood by noting that the second equality of (A.21) is no longer valid, since there is now a

distribution of ‘advection velocities’ of the turbulence, and not only one velocity,u. The curves giving

the spectral growth rate in figure A.3(a) somewhat resemble the spectra shown in figure 1 of Zhang

(1995). This would suggest that turbulence exclusively in the air might be responsible for the dip at

the wavenumberkmin which is observed not only in Zhang’s data but also in wave spectra measured

by other authors (Cox, 1958; Jähne and Riemer, 1990). The plausibility of this idea can be tested by

analysing the order of magnitude of the wave growth rate.

A global measure of the ‘size’ of the waves is mean-square-slope (MSS) of the interface, which is

defined as

(
∂ζ
∂x1

)2

+
(

∂ζ
∂x2

)2

=
Z ∞

0
S(k12)dk12. (A.23)

In figure 1 of Zhang (1995) and also in numerous other data, the MSS is generally ofO(0.01), corre-

sponding to a root-mean-square (RMS) slope ofO(0.1) (wave slopes much higher than these values

are prevented from occurring by nonlinear processes like wave breaking). The growth rates of the
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Figure A.3 (a) Resonant wave growth using assumption (A.22). (a) Turbulence in the air, same conditions as figure A.1.

(b) Turbulence in the water. Integral length scalel = 4cm. Thin solid line:u = 2cm s−1, dotted line:u = 2.3cm s−1, dashed

line: u = 2.6cm s−1, long-dashed line:u = 3cm s−1, dash-dotted line:u = 3.5cm s−1, thick solid line:u = 4cm s−1.

MSS calculated for the values ofl andu used in figure A.3(a) are found to range between 1.0 and

3.4×10−5s−1. This means that a RMS slope of 0.1 would be attained in between 5 and 17 minutes.

These time scales are manifestly much larger than the observed time scales for wave development.

Hence, the model can not explain the initial growth of surface waves.

That initial wave growth might be explained by turbulence in the water. Figure A.3(b) shows the

growth rate of the omni-directional slope spectra of waves generated by turbulence in the water, for

plausible values ofl andu. There is now unimpeded resonant growth for waves of any length (because

u < cmin), hence there is not a dip in the curves of the spectral growth rate at the wavenumberkmin.

Regarding this aspect, the curves of figure A.3(b) resemble less those of Zhang (1995) than in the

case of turbulence in the air. However, the magnitude of the growth rate is somewhat greater than for

turbulence in the air, ranging between3.2× 10−4s−1 and8.2× 10−3s−1 for the values ofl andu used

in figure A.3(b). For these growth rates, the time interval required to attain waves with a RMS slope

of 0.1 would be between 1.2s and 31s, which is much closer to the observed time scales for wave

development. Hence the initial growth of surface waves might be attributed to the onset of turbulence

in the water induced, for example, by a wind blowing over the air-water interface, a result which is

consistent with the findings of chapter 4.

These results are interesting, and suggest that the model is able to predict wave growth rates with a

plausible order of magnitude. But it would be risky to attach too much significance to them, since, as

was seen before, the pressure field which is ultimately responsible for generating the waves is obtained

in a way that is formally inconsistent with the fundamental equations, and the physics of the model

are thus incorrect. That was the reason why the presentation of this model has been relegated to an

appendix.
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