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Interaction of turbulence with a free surface

Abstract

Different interactions between turbulence and a free surface are investigated, by considering idealised
problems where the distortion of the turbulence by external forcings can be regarded as rapid.

The viscous coupling and the nonlinear interactions among the turbulence near a flat free surface
are first considered. Calculated profiles of the turbulence dissipation rate show very good agreement
with available numerical simulation data. The dissipation has a minimum at the boundary, promoting
an increase of the turbulent kinetic energy. Nonlinear interactions limit the growth of the viscous
boundary layer, and lead to large net strains at the boundary, associated with zones of impinging and
ejecting flow, which further enhance the turbulent kinetic energy. These interactions produce pressure
fluctuations correlated with the strain rates of the flow, promoting a return to isotropy of the turbulence
everywhere except in zones of impinging flow, near the boundary.

The interaction between turbulence and surface waves is then considered. Wave initiation from a
flat free surface by a turbulent shear flow in the water is found to be much more efficient than wave
initiation by an equivalent flow in the air, because the decorrelation time scale of the pressure fluc-
tuations is longer in the water. Calculated curvature spectra of these waves show a bimodal angular
energy distribution at low wavenumbers, for sufficiently high shears, which is consistent with labora-
tory data. Finally, the distortion of turbulence in the water by much larger waves is examined. The
turbulent velocity fluctuations transverse to the direction of wave propagation are amplified in time,
due to vorticity tilting and stretching by the Stokes drift, and originate intense and elongated stream-
wise vortices akin to Langmuir circulations. The energy transfer to these vortices is associated with
wave decay, and estimated wave attenuation rates are shown to be in order-of-magnitude agreement
with laboratory data.
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CHAPTER 1

Introduction

The interaction of turbulence with a free surface is a complicated physical process, which has impli-
cations for a wide range of fundamental and applied fields of research. These include: turbulence
modelling (Hunt, 1988; Johansson & Halitk, 1994), surface wave dynamics (Phillips, 1957, 1959)
and mass transfer at air-water interfaces (Hunt, b98émori et al, 1989). This thesis addresses a
number of simple model problems where turbulence is explicitly simulated, aiming to clarify different
aspects of the fundamental physics of turbulent flows near free surfaces.

For turbulence modelling purposes, it is important to understand how turbulence is modified by the
presence of a free surface, because numerical models of flows that do not resolve the smallest scales
in the turbulence require closures for the turbulent terms which are not represented explicitly (Salvetti
et al, 1997). These closures have to behave appropriately near boundaries, namely by reproducing as
closely as possible the results of models that resolve the flow entirely. While most turbulence closures
have been developed for flows near walls (Durbin, 1993), the development of closures for flows near
free surfaces is of interest for numerical simulations of, for example, open-channel flows (Pan &
Banerjee, 1995; Komoet al., 1993; Borueet al,, 1995) or atmosphere-ocean interaction (Melville,

1996; Kitaigorodskii, 1997). The development of turbulence closures with a sound physical basis is
only possible by studying the turbulence itself.

One of the important features characterising air-water interfaces are surface waves. The im-
portance of turbulence in the generation and in the decay of these waves has long been recognised
(Phillips, 1957; Kitaigorodskii & Lumley, 1983). Waves at an initially flat free surface are initiated
by turbulent pressure fluctuations being advected in the flow either side of the interface (Phillips,
1957), and it is only later that the instability growth mechanisms relying on the existence of, at least, a
small perturbation (Miles, 1957; Belcher & Hunt, 1993), and the nonlinear interactions among waves
(Hasselmann, 1962) can become active. Furthermore, turbulence contributes to the decay of surface
waves, through the energy transfer that takes place from the waves to turbulence, where the turbu-
lence acts like a damping viscosi®lnez & Milgram, 1992). The turbulence also scatters (Phillips,
1959) and distorts the wave field (Longuet-Higgins, 1996). Waves are known to organise the oceanic
turbulence into vortices aligned with their own propagation direction and with the mean wind (Craik
& Leibovich, 1976). These vortices are calledngmuir circulations Finally, breaking waves are an
important source of turbulence in the ocean surface layer (Melville, 1996). Clearly then, any treatment
of turbulence near free surfaces must also account for surface waves.
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Figure 1.1 Reproduction of figure 3 of Brocchini & Peregrine (2@)0The turbulence velocity scaleis here denoted by
g and the turbulence length scales here denoted bly. The dash-dotted lines correspond to the critical Froude and Weber
numbersFr. andWe.. The shaded area represents the region of marginal wave breaking.

Mass transfer at air-water interfaces influences the climate, since it controls the abundance in
the atmosphere of gases like carbon dioxide, which have great meteorological importance (Simpson,
1984). The transfer of gases from the air to the water is controlled by the characteristics of the turbu-
lence in the water (Brumley & Jirka, 1987; Theofanous, 1984), and also by the characteristics of the
wave field at the air-water interface (Kitaigorodskii & Donelan, 1984). Relating the properties of the
gas transfer to the properties of the turbulence and the waves in order to obtain gas-transfer models
requires a good fundamental understanding of the underlying physics of these processes, as noted by
Brocchini & Peregrine (2004). These applications motivate the developments presented in this thesis.

A free surface bounding a water mass responds to turbulence in the water in a variety of ways.
Brocchini & Peregrine (2004 distinguish 4 basic regimes, depending on the length $cabel the
velocity scaleu of the turbulence, or equivalently on the value of the Froude nutRbet u/(gl)/?
and the Weber number of the turbulentte = u?l /y (whereg is the acceleration of gravity and
is the surface tension). Fr andWeare both lower than certain threshold values, andWe,, the
turbulence can be classified as weak, and the boundary remains approximately flat (region ‘0’ in figure
1.1). The turbulence is then primarily affected by blocking and viscous effects (Perot & Moirg;1995
Walkeret al,, 1996). Blocking is a purely kinematic constraint similar to that imposed by a rigid wall.
Viscous effects are obviously different from those imposed by a rigid wall and determine the value of
the viscous stress near the boundary, which influences the shape of the tangential velocity profiles, and
the turbulence dissipation rate. These effects are controlled by the Reynolds number of the turbulence,
Re= ul/v (wherev is the kinematic viscosity). The Kolmogorov microscajeat which most of the
dissipation occurs, ig ~ IRe 4 (Tennekes & Lumley, 1972). Gas transfer across the free surface is
controlled by how thin the viscous boundary layer remains and how fast the fluid beneath the viscous
boundary layer is renewed by the turbulent motions (Hunt, @84 he thickness of the viscous
boundary layer i$ ~ IRez (Tennekes & Lumley, 1972), while the horizontal divergence of the flow,
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which is a factor determining surface renewal, receives a dominant contribution from the scales of the
turbulence oO(n).

When the turbulence is more vigorous larger), but the length scale is relatively small<
17mm), Fr > Frc butWe < We,, and waves dominated by surface tension are present at the free
surface. This corresponds to region ‘1’ in figure 1.1. When the turbulence is more vigorous than
in region ‘0’ but the length scale is relatively large & 17mm), Fr < Fr. butWe > We, and
the surface waves are dominated by gravity. This corresponds to region ‘3’ in figure 1.1. Finally,
when the turbulence is more vigorous than in all previous cdses; Fr. andWe > We.. In that
situation, which corresponds to region ‘2’ in figure 1.1, the waves existing at the free surface have
large slope. For sufficiently high values Bf andWe the free surface becomes disintegrated, and
there is permanent wave breaking, with the presence of bubbles in the water and spray in the air.

Obviously, a treatment of this last situation is not simple, and requires a reformulation of the
equations of motion (Brocchini & Peregrine, 20)0in order to make them able to simulate ‘two-
phase’ flows. However, many important interactions between waves and turbulence that do not involve
wave breaking can be understood by considering situations corresponding to regions ‘0’, ‘1’ and ‘3’
in figure 1.1 (wherd-r < Fr. orWe < We.). In most of the cases, the length scale of the turbulence
is| > 17mm(regions '0’ and '3’), so the slope of the waves is small, and the waves may be treated
using linear theory. Examples of interactions which have been treated successfully using linear theory
are wave generation at the initial stage (Phillips, 1957), wave distortion in turbulent zones (Longuet-
Higgins, 1996), and wave scattering by turbulence (Phillips, 1959). In all the problems considered in
this thesis, the turbulence is taken to be weak, so that wave breaking is excluded and surface waves,
when present, can also be treated using linear theory.

Although nonlinear interactions in the turbulence are by definition strong, there are a number of sit-
uations of practical relevance where these interactions are relatively unimportant when compared with
other external forcings. For example, at the initial stage of the development of the viscous boundary
layer in a turbulent flow near a boundary, viscous diffusion dominates the turbulence evolution close
to the boundary. Similarly, in the boundary layer of a turbulent shear flow, if the shear rate is much
higher than the typical frequency of the turbulent eddies, as tends to occur near the boundary, the
shearing of the turbulence by the mean flow is the dominant physical process. Or when a wave coex-
ists with turbulence in the ocean, if the slope and the frequency of the wave are sufficiently high, the
straining imposed by the wave on the turbulence dominates over other physical processes affecting the
turbulence. In all these examples, the equations of motion may be linearised with respect to the turbu-
lent velocity. This linearisation forms the basis of the mathematical method employed throughout this
thesis, which is calledapid-distortion theoryfor a review, see Hunt & Carruthers, 1990).

Formally, the linearisation used in rapid-distortion theory is entirely analogous to that used in the




Chapter 1 Introduction

theory of infinitesimal waves. The difference is that, since the turbulence is never infinitesimal by
definition, greater care needs to be taken to ensure that the linearisation is valid. Quantitatively, the
theory is applicable to situations where both the turbulence intensity and the strain rate associated
with the interaction of the turbulence with itself are much smaller than the mean velocity and the
mean strain rate, or alternatively, if the time since the ‘introduction’ of a distortion is shorter than
one eddy turn-over time. Because the initial state of the turbulence has finite amplitude, it can not be
assumed that a single wavenumber will dominate the response of the turbulence as time progresses.
This requires the turbulence before the distortion to be characterised by a given energy spectrum and
certain symmetry properties (for example, homogeneity and isotropy). It is then possible to determine
statistics of the turbulence after distortion by a boundary or a mean flow, or both (Hunt, 1973).

Rapid-distortion theory was first used by Taylor (1935) to evaluate the changes suffered by turbu-
lence passing through a wind-tunnel contraction. Taylor modelled the mean flow as a uniform strain-
ing flow, and considered only one harmonic of the turbulent velocity. This treatment was extended by
Batchelor & Proudman (1954) to a full energy spectrum, allowing the calculation of turbulence inten-
sities. The axisymmetric straining flow adopted by Taylor (1935) and Batchelor & Proudman (1954)
is also used in chapter 3 of this thesis to model the large scales of shear-free turbulence. Townsend
(1970) investigated the distortion of turbulence in a boundary layer, modelling the mean flow as a
uniform shear. This approach will also be followed in chapter 4 of this thesis, where the generation
of surface waves by turbulence at the initial stage is addressed. Subsequently, Hunt (1973) extended
rapid-distortion theory further to situations where the mean distorting flow is not uniform, and the
resulting turbulence is inhomogeneous (see also Goldstein, 1978). A non-uniform mean flow is also
considered in chapter 5 of this thesis, where the distortion of turbulence by a surface water wave is
addressed. Hunt's (1973) treatment accounted for the effect of solid boundaries, and this aspect was
explored in more detail in Hunt & Graham (1978), where the boundary condition at a solid wall is
satisfied by adding an irrotational correction to the velocity field. This is also done when address-
ing the effect of boundaries in chapters 2, 3 and 5 of this thesis. Although the flows used in the
model problems to be considered are simplified approximations to real flows, they enable a relatively
straightforward interpretation of the physical processes involved. Since these physical processes are
also important in real flows, the model problems can be seen as building blocks or tools that aid the
understanding of real flows. An overview of the model problems considered in the thesis is presented
next.

1.1 Overview of the thesis

In chapter 2, the linear dynamics of shear-free turbulence near a flat boundary are investigated, fo-
cussing on the viscous boundary layer. Calculated turbulence dissipation profiles are compared with
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recent direct numerical simulation data (Perot & Moin, 1993, 199Studying the behaviour of tur-
bulence dissipation is important both for developing turbulence closures for numerical models, where
dissipation is parameterised, and for gas transfer across air-water interfaces, because the dissipation
is related to the surface divergence of the flow. In this chapter, the rapid-distortion model of Hunt

& Graham (1978) for the initial distortion of turbulence by a flat boundary is extended to account
fully for viscous processes. Two types of boundary are considered: a solid wall and a free surface
with Fr <« 1 andWe< 1. The model is used to investigate the differences between the two types of
boundary. Profiles of the turbulent Reynolds stresses and dissipation rates are calculated, and shown to
be in excellent agreement with data for short times, while remaining in good qualitative agreement for
longer times. This is due to the fact that nonlinear processes arrest the growth of the viscous bound-
ary layer at a relatively early stage, preserving the profiles determined by linear processes (blocking
and viscous diffusion). The dissipation is found to be enhanced near a solid wall, due to the no-slip
boundary condition, but reduced near a free-surface, due to the no-stress boundary condition. This
partly explains the large turbulence intensity observed near free surfaces (Perot & Moia),. 85

model shows that the turbulent pressure fluctuations are associated with nonlinear processes. Since
the model is linearised with respect to the turbulent velocity, it does not produce pressure fluctuations,
and would be unable to generate surface waves even if the assunptieisl andWe < 1 were

relaxed.

Chapter 3 addresses some of the nonlinear processes that occur in shear-free turbulence near a
flat boundary outside the viscous boundary layer, which were neglected in chapter 2. Again, the flat
boundary can be a solid wall or a free surface viith< 1 andWe < 1. Attention is focussed on
the behaviour of turbulence in upwelling and downwelling zones. As noted by Perot & Moing}1995
these zones are salient features of turbulence near boundaries and deserve a careful study. Following
Kida & Hunt (1989), an inviscid rapid-distortion model is adopted that treats the large, long-lived
eddies in the turbulence as a mean flow and the smaller eddies as the fluctuating flow. Upwelling or
downwelling zones in the turbulence are modelled as axisymmetric straining flows. It is found that the
turbulence intensity is enhanced near boundaries by the net strain to which upwelling and downwelling
zones subject the smaller scale turbulence, which makes the turbulent kinetic energy increase. This
interaction between the large and the small scales of the flow produces a turbulent pressure field,
which would, in principle, be able to generate waves in the case of a free surface. However, these
are excluded by the assumptiofs < 1 andWe < 1. On the other hand, the added complexity
of the flow (compared with that used in chapter 2) enables the calculation of various inviscid source
terms in the turbulent kinetic energy budget, of which the most important are the pressure-strain terms.
Studying the behaviour of these terms is important for the development of closures for the pressure-
strain correlations in numerical models. It is found that the pressure-strain terms in the turbulent
kinetic energy equation contribute to make the small-scale turbulence more isotropic everywhere in
downwelling zones and also far from the boundary in upwelling zones, but move the turbulence away
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from isotropy near the boundary in upwelling zones.

In chapter 4, the assumptioRs < 1andWe< 1 are relaxed, and the initial generation of surface
waves by a turbulent shear flow, departing from a flat free surface, is investigated. This interaction is
considered for times sufficiently short that the waves remain small and have no effect on the mean flow
or on the turbulence. The model is used to assess the relative importance of surface wave generation by
a turbulent shear flow in the water (coupled case) and a turbulent shear flow in the air (uncoupled case).
This problem is important in the context of surface wave dynamics, since the role of turbulence in the
water in wave generation at the initial stage has often been overlooked (Giovanangeli & Memponteil,
1985; Kahma & Donelan, 1988). The original theory of Phillips (1957) is extended by relating the
turbulent pressure fluctuations responsible for generating the waves to the velocity fluctuations in the
turbulence, using the rapid-distortion approach developed by Durbin (1978). In both the coupled
and the uncoupled cases, the mean flow is assumed to have a constant shear rate, and represents
the part of the boundary layer profile that gives the dominant contribution to the surface pressure.
Various statistics of the surface waves generated by the turbulence are calculated, namely their mean-
square slope, curvature spectrum and their angular energy distribution. It is found that, for flows
producing pressure fluctuations of a similar magnitude, turbulence in the water is much more efficient
in generating surface waves than turbulence in the air, essentially because the decorrelation time for
the pressure fluctuations is longer in the water than in the air. In the calculated curvature spectra, a
bimodal angular energy distribution is predicted at the lowest wavenumbers for relatively high shear
rates of the turbulent flow. This behaviour is consistent with the laboratory measuremeitta el
Riemer (1990).

Chapter 5 addresses the straining of relatively weak and small-scale turbulence by a fast, progres-
sive, surface wave. This problem can be viewed as complementary to that of chapter 4, because now it
is the wave that controls the behaviour of the turbulence. Attention is focussed on the time evolution
of the turbulence structure, and the effect of the turbulence on the distorting wave. The first aspect is
relevant for pollution dispersion in the ocean, which is controlled by the characteristics of turbulence
in the water, and the second is important for surface wave dynamics, since turbulence is known to be
one of the factors leading to wave attenuation (Phillips, 1959). In the rapid-distortion model employed,
the turbulence is assumed to be shear-free, approximating, for example, turbulence generated by wave
breaking (Melville, 1996). It is found that, over a number of wave cycles, the Reynolds stresses
transverse to the wave propagation direction are amplified, making the turbulence progressively two-
dimensional and dominated by streamwise vortices. The integral length scales of the turbulence show
that these vortices become elongated in the streamwise direction. Their structure resembles that of
the ‘Langmuir turbulence’ produced in the large-eddy-simulation study of McWillienas. (1997).

The mechanism for the formation of these streamwise vortices is akin to that proposed by Craik &
Leibovich (Leibovich, 1983) for Langmuir circulations. That is the tilting of the vertical vorticity
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present in the water flow by the Stokes drift of the wave, and its amplification as streamwise vorticity.
The turbulent kinetic energy budget is analysed, showing that the energy transfer taking place from
the distorting wave to the turbulence leads to an intensification of the streamwise vortices and a slow
decay of the wave. The wave attenuation rate associated with this process is estimated, and found to
be consistent with existing laboratory data®ymez & Milgram (1992).

In chapter 6, the general conclusions of this thesis are presented.

Finally, in an appendix, the problem of surface wave generation by shear-free turbulence is briefly
addressed using a simplified rapid-distortion model. The model follows essentially Fernando & Hunt's
(1997) treatment of shear-free turbulence and waves near a density interface, but the effect of surface
tension has been added. The model parameterises nonlinear effects in the turbulence by relating the
frequency and the wavenumber of the turbulent eddies using a kind of ‘dispersion relation’. This
assumption, which enables the model to produce a turbulent pressure field and therefore to generate
waves, is found to be formally inconsistent with the equations of motion. That is the reason why this
treatment has not been included in the main body of the thesis. Despite this inconsistency, the model
allows a qualitatively correct interpretation of the mechanism for resonant wave growth.




CHAPTER 2

Dissipation of shear-free turbulence near boundaries

2.1 Introduction

Turbulence at finite Reynolds number is always subject to dissipation by viscosity. And when a turbu-
lent flow is unforced, it decays in a time that scales on the decorrelation time for the energy-containing
turbulent fluctuations (Batchelor, 1953). Hence the dissipation rate, together with the turbulent kinetic
energy, provide a time scale for the evolution of the turbulent flow. Parameterisation of the dissipation
rate is therefore at the heart of many Reynolds-averaged models of turbulent flows. Nevertheless, there
are at present few calculations of the dissipation rate. In the present chapter an exact calculation of the
dissipation rate in the rapid-distortion limit is developed.

The study of the dissipation rate of turbulence presented here was motivated by a general desire to
understand better turbulence near a free surface, and has practical importance for transfer of sparingly
soluble gases into the liquid that is in turbulent flow (Theofanous, 1984). Now, free surfaces cannot
support mean shear, since by definition a ‘free’ surface must support zero surface stress. Hence,
attention is focussed here on turbulence near a free surface in the absence of mean shear.

Shear-free turbulence near boundaries has been the subject of extensive study following the pio-
neering laboratory measurements of Uzkan & Reynolds (1967) and Thomas & Hancock (1977). The
definitive theoretical study of Hunt & Graham (1978), based on rapid-distortion theory, shows that
the boundary leads to a layer of blocking, where the normal velocity fluctuations are brought to zero,
and to a thinner viscous layer, where the tangential velocity fluctuations adjust to the condition at
the boundary. More recently, Perot & Moin (1395nd Walkeret al. (1996) have reported direct
numerical simulations of shear-free boundary layers, which pranige alia data for profiles of the
rate of dissipation of the turbulence and other correlations. These studies reveal significant differences
between shear-free boundary layers near solid walls and free surfaces, such as the higher tangential
Reynolds stress and lower dissipation near a free surface. An objective of the present study has been
to clarify and quantify the mechanisms responsible for these differences.

In this chapter the rapid-distortion model developed by Hunt & Graham (1978) for the initial
response of initially homogeneous turbulence to the sudden imposition of a boundary is further de-
veloped to account fully for the viscous effects of free surfaces and solid walls. The dissipation rate
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of the turbulence is then calculated from the model. There is a significant question over whether or
not rapid-distortion theory (hereafter RDT) can be usefully used to calculate dissipation. The reason
is that the crucial assumption used in RDT of neglecting nonlinear interactions within the turbulence
is usually justified, following the original RDT paper of Batchelor & Proudman (1954), by scaling
estimates based on the dynamics of the energy-containing eddies; dissipation, in contrast, is usually
associated with the smallest eddies, for which nonlinear processes become important at earlier times.
The calculations presented here show how and why RDT can be used to provide useful estimates of
dissipation.

The remainder of the chapter is organised as follow§2I8 a scaling analysis of the equations of
motion is presented, which identifies some conditions for the validity of the RDT modg&2.3rthe
response of a single Fourier mode of the turbulence to a solid wall and to a free surface is calculated.
These Fourier modes are integrated over a spectru§fd.thto obtain statistics of the flow near the
boundary. In§2.5 results are presented for the Reynolds stresses and dissipation rate and compared
with the DNS data of Perot & Moin (1993, 1985199%). Finally, in§2.6, conclusions are presented.

2.2 Scaling the equations of motion

Following Hunt & Graham (1978), the following model problem is studied. For titnesO, there
everywhere exists homogeneous and isotropic turbulence, characterised by an integral lendth scale,
and a root-mean-square velocity scaleAt timet = 0, a boundary is introduced & = 0 and the

initial response and subsequent evolution of the turbulence forO+ below the interfaces < 0

is investigated. Two types of boundary are considered: a solid wall and a free surface. A solid wall
imposes the condition that = uz = 0 atxz = 0, whereu; (i = 1 or 2) are the tangential velocity
components andsz is the normal velocity component. The distortion of the turbulence by a free
surface in the limit of very low Froude numbéit < 1, and very low Weber numbeWe <« 1, is
considered, hence the interface remains nearly flat. The free surface then imposes the conditions that
the surface is stress freg,= pou; /dxs = 0 (for i = 1 or 2), and vanishing normal velocityz = 0.

Far below the boundary, the turbulence returns to the homogeneous form it took before insertion of
the boundary.

As shown originally by Hunt & Graham (1978), flow in the vicinity of the boundary has a two-
layer structure. Following Hunt & Graham, the thickest layer is here calleddbece layer This
layer is associated with the kinematic blocking effect of the boundary, wherein irrotational motions
are induced to bring the normal component of the fluid velocity to zero at the boundary. The source
layer responds immediately to the introduction of the boundary and has thickness and velocity scales
| andu, the scales of the turbulence far below the boundary. The thinner inner-most layer, called here
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theviscous layeris associated with the viscous effect of the boundary, and is where rotational motions
are induced to adjust the tangential motions to the surface boundary condition: in the case of a solid
wall the tangential velocity is brought to zero, or in the case of a free surface the tangential stress is
brought to zero. The viscous layer is characterised by velocity and length scales determined by its
own internal dynamics, so that immediately after the boundary is introduced the viscous layer has
zero thickness; it then grows with time as momentum is diffused by molecular viscosity away from
the boundary.

For the purposes of scaling the equations of motion, it is useful to split the turbulent velocity field

into three components: the velocity field associated with the homogeneous turbulence in the absence

) the velocity field induced in the source Iayqﬂs,); and the velocity field induced

V)

of the boundaryui(H
in the viscous layen; " ’; namely

+u¥) =123 2.1)
According to the description given above, bcnlfl’i') and ufs) scale aau and vary over the integral

length scald. The depth of the viscous layer scales®s and the velocity there varies parallel

to the flat interface over the scdle The tangential components of the velocity in the viscous layer,

ui(V) (i = 1or 2), have magnitudes that are determined from the additional boundary condition at
the interface. Hence for a solid wall the no-slip boundary condition yiq(l\é)s: O(u) (i =1or

2), so that by continuitngv) = O(ud/l). And for a free surface the no-stress boundary condition,
dui/dxs = 0 (i = 1 or 2), yieldsu") = O(ud/1), so that by continuitys)) = O(u%/12). The free

surface evidently leads to a weaker constraint on the turbulence and hence induces smaller velocities
in the viscous layer.

In order to scale the dynamical equations controlling these velocity components, it is helpful to
define two time scales. The first is the time scale for turbulent velocity fluctuations to decorrelate,
T. = 1 /u, also called lagrangian time scale or eddy turn-over time. The second is the viscous time
scale, which is a measure of the time it takes for the viscous layer to grow to a thicknasd
is defined asl, = &°/v, wherev is the kinematic viscosity. Here the initial development of the
turbulence after insertion of the boundary and hence times suchithat T, are considered. This
limit can be expressed in terms of the Reynolds number of the turbulBecer ul /v, and the ratio
of the thickness of the viscous layer to the integral length scale of the turbulneed/I, to yield
Rerd? < 1. When the boundary is introduced instantaneously attigé, the viscous layer initially
grows ad ~ (vt)% andT, ~ t; however, it is useful to retain the designatinn order to emphasise
that the scalings of the viscous layer depend on the thickness of that layer and not explicitly on time.

On substituting the decomposition of the velocity into components (2.1), and on using their scal-
ings described above, it is found that, in the limit thatk T, flow near either a solid boundary or a

10
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free surface is described by a simplified form of the vorticity equation, namely,

V) a2V
o _ 0w 2.2)
ot 0x3
or
3 (ou) 2 (ou) :
ot ( FY B v 23)

wherew™) = 0 x u¥). The tangential vorticity budget is therefore dominated by changes induced
by viscous diffusion. Inviscid processes, such as vortex stretching, are negligibly small in this limit.
Hence the vorticity changes only in the viscous layer, since this layer is by definition the layer of fluid
affected by viscous diffusion. It is also concluded, as did Hunt & Graham (1978), that in the source
layer the vorticity is unaffected by insertion of the boundary and hence perturbations to the velocity
there,ui(s), are irrotational and can be described by a velocity potential, sucmﬁ%&& 0\ /0x;.

The physical reason for this is that the blocking effect of the boundary is felt instantaneously, whereas
vorticity generated by inviscid nonlinear processes takes a time of drder become important.
Therefore, whent < T, the velocity perturbatiormi(s) induced by the boundary is essentially ir-
rotational. Since initiallyT, ~ t, the scalings presented here show that both the appearance of an
irrotational velocity component in the source layer due to blocking by the boundary and tangential
vorticity generation by viscous processes in the viscous layer are more important than vorticity gen-
eration by inviscid processes in the linfit < T_. Hence, the criteria for both these approximations
turn out to be the same in practice, although the scaling of the viscous layer is bakgdubrereas

the scaling of the source layer is based explicitly on time.

The tangential momentum equation may be scaled in a similar way aRoxif T, it is found to
take the simplified form

ouY) oY)

i i i—12 2.4
at V aX% ) I ) ) ( )

for a solid wall. So, to this approximation, not only does the inviscid part of the ﬂl{m,+ ui(s),
have constant vorticity but it also has constant velocity. Thﬂ@, and ui(s) are approximately steady
compared with the viscous part of the floy,(/\,/).

The tangential velocity componem:é}/) (i = 1or 2), exist inside the viscous layer so that the
boundary condition on tangential velocity is satisfied. These tangential motions vary along the bound-
ary and generate regions of convergence and divergence and hence a normal velocity component, of
orderui(v)é/l (i = 1or 2), at the outer edge of the viscous layer. These motions slightly modify the

11
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flow in the source layer. The corresponding corrections are treated by expanding the squnigS%s for

(V)

anduiV in power series of the small parameder= 8/, for example

C)

US —

NG

+u™ o™

+up Y

+o U vo)

E\CIE

+uY o ul?

+up A4 (2.5)

where the powers a¥ have been incorporated into the terms of the series. In the following, the series

for ui(V) (i=1or2) andui(S) will be calculated to second order &in the case of a solid wall and to

third order ind' in the case of a free surface. Higher order terms are affected by nonlinear processes
and have been neglected. A detailed justification of this procedure is presefjid.ilh The series
expansion of the normal velocityiév), is truncated at one order higher than those of the tangential
components. This is done so that the series conserve mass exactly, which is important to do if the
Reynolds stresses and the dissipation rates are to have the correct behaviour near the boundary. The
price paid is that the solutions have small errors far from the boundary, but these are deemed less

serious, since it is the near-wall region that is of interest here.

2.3 Distortion of a single Fourier component of velocity fluctuation

The model developed in the previous section, based on the diffusion equations (2.4) and (2.3), is now
solved for the cases of a solid wall and a free surface, respectively. Here the modal solutions are
calculated for the Fourier amplitudes of the flow variables. These modal solutions will be integrated
over the spectrum of the turbulencesin 4.

2.3.1 Solid wall

First of all, the effects of a solid wall will be considered. If the series (2.5) are substituted into the
tangential momentum equation, then, to the 3 lowest ordeds, ithe equation for velocity in the
viscous layer becomes
ouV) o2uV)

|

P
a oxz ' (2:6)

wherei = 1 or 2 andj = 0,1 or 2. Mass conservation then determines the normal component of
velocity.

In the source layer, where as argued abq%: 0¢'S /dx;, mass conservation requires that the

12
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velocity potentialp'® satisfies the Laplace equation, which means thaj fer0, 1 or 2

2¢S) = 0. (2.7)

The boundary conditions are as follows. The flow tends to the original homogeneous turbulence,
ui(H), far below the boundary. Hence bafff) and ui(Vj) tend to zero far below the boundary. The
normal and tangential velocity components vanish at the boundary. Finally, the initial condition states
that the initial vorticity equals the vorticity in the homogeneous turbulence. Hq%e/anishes
everywhere at = 0+.

These equations are solved, following Hunt & Graham (1978), by noting firstly that the homoge-

neous turbulent velocityi(H) may be expressed as a superposition of Fourier modes,

U0 = [[[ 6w derddiodks, 1-1.2.3, (2:8)

WhereOi(H)(k) is the Fourier amplitude arkl = (ki, ko, k3) is the wavenumber vector. Note secondly

that, due to the geometry of the probleufl\,/) and ui(s) (and hence als@®) are homogeneous in
the directions tangential to the boundary, and so they can equally be expressed as a superposition of
Fourier modes along those directions:

@9 (x,1) = / / 9 (ke ko, Xa, 1) €XK22) e ey

W) = [0 ke xa, ) @l dig (2.9)

Hence, since the equations are linear, the response of one Fourier mode only needs to be considered.

The solution for the Fourier amplitude of the velocity potential in the source layer obtained by
solving (2.7) is found to be

s ag’ 8 B12\ ] v
) :_/E 1‘@(”@»— 12) 1+W 3, (2.10)

whereky, = (k2 + k%)%, and which is correct up to second ordedinThe zeroth-order part of (2.10)
is the well-known inviscid solution of Hunt & Graham (1978); the correction®@) andO(&?) are
new. The components ufs) are easily calculated from the potentja? .

The viscous solution may be found by solving (2.6) subject to the boundary and initial conditions.

13
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The Fourier amplitude of the tangential velocity is

~(V ~H) 1K (H o . Ok1o X3
V) = _/{uf ) _ @ug ) {1— 73 (iks — ki2) (1+T[1/2>}} [erf(S) +1} dks, (2.11)

wherei = 1or 2 andd = 2(vt)%. The corresponding Fourier amplitude of the normal velocity is

) i . 6k 62k2 X
oY) — — / 500 (ks — kaz) { (1 ot nlz) [33' (erf (%) +1)

21,2
+1exé/ﬂ 9 kl?} dks. (2.12)

/2 /2

2.3.2 Free surface

The solutions are now calculated for turbulence near a free surface. If in the viscous layer the series
(2.5) are substituted into (2.3) then fpe= 0, 1, 2 or 3 the tangential velocity components satisfy

Vi) 2 A (Vi)
oou 00w~ (2.13)
ot 0x3 0x3 0x3

wherei = 1or 2, and, as for the solid wall, the vertical velocity component is obtained from continuity.
In the source layer the velocity potential satisfies the Laplace equation (2.7) as for a solid wall.

The boundary conditions ensure that the turbulent velocity tends to the homogeneous turbulence
far below the boundary, and that at the boundagy= O, the normal velocity component and the
normal derivative of the tangential velocity components (and hence also the tangential stress) vanish.

The solution for the Fourier amplitude of the velocity potential in the source layer, correct to third
order ind, is found to be

~(H) 21,2
@S — — / % (1 + 5;) a2 (s, (2.14)

Again, the zeroth-order part of (2.14) is the well-known inviscid solution of Hunt & Graham (1978)
and is identical to the solution calculated for a solid wall. The corrections, which arise due to vertical
motions induced in the viscous layer, are new and are different from the correctipff ¢btained

for a solid wall because the solutions in the viscous layer are different. The velocity in the source layer
is easily calculated from the velocity potentigP .

14
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The viscous solution for the amplitude of the tangential velocity is

/5[.1@ i <1+ ézkzﬂ [5 (ef(a) +1) n/z Xs/éz] dks, (2.15)

wherei = 1 or 2. The corresponding amplitude of the normal velocity is

21,2
AV) 2, 2.4(H) 0%k, X3 28
o)~ [eaedl {<1+ . >[262(rf(6>+1) e
+5 (erf(g) + 1)} - T2 dee (2.16)

The differences between the solutions for a solid wall and a free surface will be illustrated later when
statistics of the flow have been calculated.

2.4 Integration of Fourier amplitudes to obtain statistics

In §2.3, solutions were found for how the Fourier amplitudes of the flow variables respond to the
presence of the boundary. These modal solutions are now integrated over a spectrum of wavenumbers
in order to understand the response of turbulence consisting of fluctuations on a wide range of scales.
In this way the turbulence near the boundary is related to the spectrum of the undistorted turbulence
far from the boundary. Firstly, to validate the RDT method used here, profiles of the Reynolds stresses
are calculated and compared with the profiles that Perot & Moin (1993,a) @#fiained by DNS.

Then rates of turbulence dissipation are calculated using the model, which have not been calculated
hitherto with RDT. Finally, these results are compared with the dissipation rates computed by Perot &
Moin (1993, 1998).

Statistics of the distorted turbulence are related to statistics of the undistorted turbulence far from
the boundary using the framework developed by Hunt (1973). The solution for a single mode of the
velocity fluctuation is given by the distorted Fourier amplituligks, ko, X3, 1), which is related to the
complete velocity fields(x,t) by

ui(x,t) = / / (i (K, ko, Xa, t) €KXk g, lkcy. (2.17)

Since the RDT model is linear, the distorted Fourier amplitude is linearly related to the Fourier ampli-
tude of the undistorted turbulen(fé,H), and so can be written

(i (K, ko, X3, t) = / Mic(k, xs, ) G () dka. (2.18)
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The matrixMj is extracted from the solutions calculatedsih3 and is listed in the appendi2.7).
Statistics of the flow are then calculated on recalling that the Fourier amplitude of the undistorted
turbulence is related to the three-dimensional wavenumber specnfﬁrlm,by

A" () a (k) = oY (k)3(k — K), (2.19)

where the overbar denotes ensemble averaging.

Using (2.17), (2.18) and (2.19), the Reynolds stresses can then be written

Fixa,t) = [[ it 0 chadiactc, (2.20)
wherei = 1,2 or 3. The diagonal elements of the Reynolds stress tensor (the velocity variances)

are the only non-zero components for the initially isotropic shear-free turbulence treated here. Ac-
cordingly, in the dissipation tensor, only the diagonal components are non-zero. They are defined

by
gi(Xa,1) = 2v [(Z:)z + (g)l:iz>2+ (g)i)z] : (2.21)

wherei = 1,2 or 3. The variances of velocity derivatives along the boundary are calculated from the

undistorted turbulence by

<Z>L<J;> /// KEMiMi @ dladiodls (2.22)

wherei = 1,2 or 3 andj = 1 or 2. The variances of derivatives normal to the boundary are calculated
from the undistorted turbulence by

ou oM aM
G e

Thus, the Reynolds stresses and the components of the dissipation rate tensor are calculated from the

spectrum of the undistorted turbulence.

In order to proceed further, recall that the undistorted turbulence far from the boundary is supposed
to be homogeneous and isotropic. The three-dimensional velocity spectrum is then related to the
energy spectruri (k) by

oH) _ <5”. B 'ﬁkl> Ek) (2.24)
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where the energy spectrum is defined by

1
2<u(1H)2+u(2 +u3 ) /E (2.25)

Once the form of the energy spectrum is specified, (2.20) and (2.21) can be evaluated to give profiles

of the Reynolds stresses and the dissipation rates. The model for the energy spectrum is considered
next.

2.4.1 The model for the energy spectrum

In their inviscid RDT calculations, Hunt & Graham (1978) used the vannkan form of the energy
spectrum

2| ga(kh)*

Bl = g ke

(2.26)
whereg; andg, are dimensionless constants. This form has an inertial subrange (where the spectrum
decays a& %/3) that extends té& — oo, corresponding to infinite Reynolds number. This spectrum is
appropriate for calculating quantities that receive their greatest contribution from the energy containing
part of the spectrum, such as the Reynolds stresses, but it is not appropriate for calculating quantities
that receive a significant contribution from the high wavenumbers, such as the dissipation rate. In fact,
because the von&tman spectrum does not have a viscous cut off at high wavenumbers, the integrals
that give the dissipation rate, (2.22) and (2.23), diverge. Hence, here it is necessary to use a form for
the energy spectrum that accounts for the viscous processes at high wavenumbers.

According to Tennekes & Lumley (1972, p.269), for large Reynolds number the energy spectrum
at high wavenumbers takes the form

E(k) ~ oxe? 3k >3 exp [gak(kn)‘%] (2.27)
whereay is a constant approximately equali® and the Kolmogorov microscalg, is given by

1/4
n= <V3> , (2.28)

wheree = 1/2(g11 + €22 + €33) is the isotropic dissipation rate in the homogeneous turbulence.
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Hence, an obvious extension of (2.26) for finite Reynolds numbers is

E(k) = W2l ga(k1)* - exp[ 3ak(kn)4/3] (2.29)

(91 + (kI)?)

This form must be made to satisfy 3 constraints in order to become completely defined. The first
constraint results from the definition of root mean square velagity; u uH2 ,withi = 1,2 0r 3. Since

the total kinetic energy of the homogeneous turbulence is given by the integral over all wavenumbers
of E(k) (see (2.25)), then

/Om E(K)dk = Su2. (2.30)

The second constraint is that the length st¢aie(2.29) is defined as the longitudinal integral length
scale, so that

=

Iy u(lH)(xl,xz,xe, u(lH (X1 41X, xg)dr  3m )y k~1E(k)dk
2 4 [ E(Kdk

~—

| = (2.31)

P
T

The third constraint is given by the definition of viscous dissipation in homogeneous isotropic turbu-
lence, namely

Y /0 " KRE (K)dk. (2.32)

If these constraints are cast into dimensionless form they can be used to determine the unknown
coefficients in (2.29).

If the dimensionless wavenumber is defined’as kl then equation (2.28) shows thgfl is

_ 1\ Y4 _
Iﬂ_R 3/4 (;) — Re V14, (2.33)

whereg’ is the dimensionless dissipation rate. The dimensionless energy spectrum, defifi&f as
E(k)/(u?l), is then

E'(K) = ekt ex 30( Rer e/~ 1/3K4/3] (2.34)
(k) = (g1 + k2)17/6 P T :

The three constraints (2.30), (2.31) and (2.32) then take the dimensionless form

- / 1=/ /2 1_} /
/OE(k’)dk /w E kdl(_— /k K)dk' = ~Rer ¢’ (2.35)
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Figure 2.1 Dimensionless energy spectrum as a function of the dimensionless wavenumRer, -at 70. Solid line,
complete spectrum (2.34); dash-dotted line, truncated \amm&n spectrum (2.36).

Hence, for a given value dafx and a given Reynolds number, the dimensionless spectrum (2.34)
contains 3 unknown parametergi, g» and€’, which can be determined uniquely by solving the
implicit equation set (2.35).

The numerical evaluation of the integrals that determine the dissipation rate is made simpler if this
form of the spectrum (2.34) is approximated by truncating at a finite wavenukahgrnamely

gzk/4 )
B0 = i K <Ko
E(K)=0 if K> Ko (2.36)

wherek! .. = kmax is the dimensionless cutoff wavenumber. Heyg, is determined by requiring that
the dimensionless dissipation rate is correct. In the limit of iRghthe high wavenumbers dominate
the dissipation rate, hence the full spectrum (2.34) gives

/ K2E' (K )dK’ z/ 02K 3 exp —§akRe{1s’*1/3k’4/3 dK = L2 Re /3, (2.37)
0 0 2 201k

whereas the truncated spectrum gives

k':‘nax kil’T'IaX
K2E/(K)dK ~ / 0ok 3dK = ggzk:ﬁéi. (2.38)
0 0

So, in this regime, the cutoff wavenumber is obtained by comparing (2.38) and (2.37):

2 \ 34 3/a
Koy = <3ak> gl4Re!”. (2.39)
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Re,

Figure 2.2 Variation of the dimensionless dissipation with the Reynolds number. Solid line, theory using the truncated
spectrum (2.36) andy = 1.5; dotted line, theory using the complete spectrum (2.34)aang 2; squares, data of Jiemez
et al. (1993); diamonds, data of Warg al. (1996).

This procedure yieldkna1 = [2/(30k)]¥* ~ 0.54, as found by Tennekes and Lumley. Hethggy
is of orderl/n.

Figure 2.1 shows plots of the dimensionless profiles of the truncated spectrum (2.36) and full
spectrum (2.34) foRer = 70anday = 1.5. Figure 2.2 displays the dependence of dimensionless
dissipation on the Reynolds number for the complete spectrum and the truncated spectrum, together
with values computed with DNS by Jémezet al. (1993) and Wangt al. (1996). In the complete
spectrumay, = 2 (chosen so as to optimise the fit), whereas in the truncated speagm, 1.5,
as suggested by Tennekes and Lumley (1972). While it is clear that the complete spectrum gives
an excellent fit to the data, the truncated spectrum also reproduces the general trend quite well for
Rer > 70. In what follows, all calculations will be performed using the truncated spectrum (with
ax = 1.5), because this considerably shortens the time required for numerical integration.

2.4.2 Validity of the model

There are two conditions that must be satisfied if the current model is to be valid. Firstly, nonlinear
processes in the turbulence have to be negligible compared with the diffusive growth of the viscous
layer. As shown ir§2.2, this condition is met provideRer &% < 1. Secondly, the small effect

of viscosity was included by treating it as a small perturbation to the inviscid processes. Hence the
velocity components were expanded as series in (2.5), and these series were truncated after the first
three terms. Now, when statistics are calculated from the modal solutions for velocity, the magnitude
of the neglected terms depends on the distribution of energy within the spectrum. Hence, the condition
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required for these truncated expansions to be valid will now be determined.

The solution forMj given in the appendix§@.7), which is in the form of a power series &
together with the expression for the Reynolds stresses (2.20) show that, for example, the streamwise
Reynolds stress is also a seriedjmamely

@ - /Ow fo(k, xa)E (K)dk + 6/0°° Fa(k, xg)E(K)ck + & /Ow Bk x)E(K)K + ..., (2.40)

where the functiond,(k, x3) = O(K"). The peak of the spectrum dominates in the first integral of
(2.40), which is therefore independentl@fy, but the high-wavenumber tail of the spectrum domi-
nates the second and third integrals. Having in mind B{&) O k~%2 at high wavenumbers, these
integrals can be estimated to scale as

kmax
/ fo(k, xa)E(K)ck = O (U?)

0

kimex 2—2/3 [M 53 21-2/3;,1/3
/ fl(k,X3)E(k)dk:o<u| / / kkS/ dk) e Cia)
0 0

/0 " bk xe) E(K)dk = O <u2I2/3 /O o k2k5/3dk> ~-0 (u2|*2/3kﬁ4a3x) . (2.41)
And the series expansion for the Reynolds stress becomes
/U = b + biKES + bokidSs? + .., (2.42)
where the coefficients, = O(1). This expansion is asymptotic provided

Knad < 1. (2.43)

This condition arises physically from the treatment of the viscous layer as a thin boundary layer, i.e.
the assumption that variations across the viscous layer, normal to the surface, are much more rapid
than variations along the boundary layer, parallel to the surface. The smallest-scale variations in the
source layer just outside the viscous layer are determined by the smallest scale in the turbulence,
namelyn ~ k-1. Hence this boundary layer approximation is valid only when these smallest scales
are much larger than the thickness of the viscous layer.

Since the viscous layer grows initially with time &s-= 2(vt)%, this condition (2.43) together with
the definitions o® = &/I andk,,, given in (2.39), give a condition on time, namely

ut _
— < CRg"?

| (2.44)
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whereC = 1/4(3ay/2)%?e'~1/2 ~ 1 for ax = 1.5. Hence for very large Reynolds numbers, when the
turbulence has very small scales, the model developed here for the dissipation is valid for only short
times. Such a dependence on the Reynolds number in the comparisons between the model and the
DNS has indeed been detected.

If the scaling analysis is carried out again for the velocity fluctuations taking into account the
dependence of their magnitude on the spectrum, as implied by (2.42), then it is found that the terms
retained in the expansions for the velocity fluctuations are larger than the nonlinear terms that were
neglected provided, < T, i.e. thatt < |/u. This is the conventional requirement for the validity
of RDT: in the present flow, the particular form of the spectrum apparently does not affect the form of
this approximation.

2.4.3 Truncation errors

Finally, before showing results from the model, a practical aspect of implementing the current solu-
tions in calculating statistics of the turbulence near the boundary should be noted.

The Reynolds stresses are the square of velocity. So, if the power-series solutions for the velocity
are multiplied together, then the highest order terms in this product series, which correspond to the
products of the highest order terms of the velocity series, are of higher order than the truncation error.
Hence these higher-order terms might be considered negligible. However, the original expansions for
the velocity satisfy the boundary conditionsxat= O exactly. Hence, if the high-order products are
neglected, then the resulting statistics become unreliable very close to the boundary. The truncated
and the non-truncated expressions both have the same formal accuracy, since they differ from each
other only by terms of the order the truncation error. Therefore, the full products are prefered here as
they preserve the exact boundary conditiongat 0, and they are adopted everywhere hereafter.

2.5 Results and discussion

In this section, theoretical results obtained with the model developed in the preceding sections will
be compared with the DNS data presented in Perot & Moin (1993) (hereafter referred to as PM93)
and Perot & Moin (1998, 199%) (hereafter referred to as PM95a and PM95b, respectively). Two
important preliminary considerations must be made before carrying out such a task.

Firstly, the turbulence length and velocity scales defined by these authors are different from those
used in this chapter until now, and have to be related before any comparison is possible. Perot & Moin
normalise their data by defining a velocity scalg, and length scald;’, based on the values of the
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turbulent kinetic energi and dissipation ratefar from the boundary, i.e.

K3/2
ut=KY2, IF = — (2.45)
They then define a Reynolds number in term§*andu*:
ulr K2
Rer = v T (2.46)

Noting that the kinetic energy is defined in the present chaptir-as3/2)u?, the two sets of length
and velocity scales and Reynolds numbers are found to be related by

1/2 3/2
U = G) o 1= (2) ¢, Re& — %S/_lRer- (2.47)

Secondly, the flow computed by Perot & Moin is unforced and so the turbulence decays with time.
This decay changes some aspects of the flow, although the main features are the same as if the turbu-
lence were stationary, particularly for short times. In the current model, stationary and homogeneous
turbulence away from the boundary is assumed. Comparison with data obtained where the turbulence
decays might be thought to introduce a new limitation on the time interval over which the model is
valid. This is not so, however. Viscous decay of energy in the bulk of the flow is just a manifestation
of viscous diffusion of momentum or vorticity in the turbulence far from the boundary, a physical
process which was shown to be negligible at early times in the scalifgsaf

PM93 used Reynolds numbersRé = 54, 134 and 374 in their numerical simulations of a solid
wall and 6.2, 54 and 134 in their simulations of a free surface. The valRgof 6.2 is manifestly
too low for the concept of a viscous cutoff to work properly (§8e4.1), and hence this case is not
considered here. In terms of the velocity and length scales defined by (2.45), the condition (2.44) for
the validity of the analysis of the viscous layer takes the form

1 3o\ Y2
lf*<<4<;“‘> Re 2. (2.48)

For Reynolds numbers of 54, 134 and 374 this condition requiresittydt is smaller than 0.11, 0.07

and 0.04 respectively. Much of the DNS data presented in PM93, PM95a and PM95b are for times
when dissipation and nonlinear processes have become important in the dynamics of the turbulence,
and the earliest time that Perot & Moin show results afis/|* = 0.1. Therefore comparisons with

the theory are made att/|I* = 0.1 for the cases wheReg; = 54andRe; = 134 Some qualitative
comparisons will be made for later timesg.5.3.
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Figure 2.3 Reynolds stress profiles near a solid walligt/I* = 0.1. Solid line, viscous theory; dashed line, inviscid
theory; dotted line, DNS data.a) tangential componenie; = 54; (b) tangential componenie, = 134 (c) normal

componentRe: = 54; (d) normal componenRe = 134

2.5.1 Profiles of the Reynolds stresses

Figure 2.3 presents profiles of the Reynolds stress for a solid wall and figure 2.4 profiles for a free
surface, at a dimensionless timewf/I* = 0.1 and at Reynolds numbers of 54 and 134. The DNS
data presented in figure 2.3 were taken from figurea, 1§( 17 (@, b) of PM95a and those presented in
figure 2.4 were taken from figures® (), 12(@, b) of PM95a. The results from the DNS are compared
with the current model accounting for the viscous layer, called hereviftwus theoryand with
inviscid model results, which are obtained from the present model when the viscous layer is ignored

(i.e. ® = 0), called here th@viscid theory
Figures 2.34, b) show profiles of the tangential Reynolds stregs(i = 1or 2), near a solid wall
for Reg = 54, 134. The general shape of the DNS curves, as well as the location of their maxima,
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Figure 2.4 Reynolds stress profiles near a free surface‘gti* = 0.1. Solid line, viscous theory; dashed line, inviscid
theory; dotted line, DNS data.a) tangential componenie; = 54; (b) tangential componenie, = 134 (c) normal
componentRe: = 54; (d) normal componenRe = 134

are well reproduced by the viscous theory. Rei = 134 the profile from the viscous theory is in
excellent agreement with data, while Re; = 54 the theory gives slightly lower values, although the
general agreement remains good. In the inviscid theory the stresses increase monotonically towards
the boundary, however the viscous processes arrest this increase and lead to a reduction of the stresses,
varying approximately as an error function, so that they are zero actually at the surface. Hence there
is a maximum in the tangential Reynolds stress at the thickness of the viscous layer, hamely

3(vt)%. The maximum value obtained from the model is slightly larger for the larger Reynolds number
because, for a given time, the larger the Reynolds number, the thinner the viscous layer. The DNS
profiles shown in figures 1&¢c of PM95a show a maximum that increases betwRen= 134to

Re = 374 in agreement with this argument. However, in going frBg} = 54to Re; = 134the
maximum in the DNS profiles actually decreases. This behaviour might be attributed to an imperfect
ensemble average for the casdRal = 54.
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Figures 2.3¢, d) show profiles of the normal Reynolds strel%,near a solid wall. In this case,
the magnitude and general behaviour of theory and data agree very well, particularly in figdye 2.3(
but it is also true that viscous and inviscid theory differ much less. The small differences between the
theory and the DNS data in figure 2cBare attributed to an imperfect ensemble averaging, since they
are due to a lack of smoothness in the DNS curve. The curve from the viscous theory captures quite
well the viscous behaviour in the region immediately adjacent to the boundary, @reg‘ due to
the no-slip boundary condition.

Figures 2.44, b) present profiles of the tangential Reynolds stress near a free surface. For the same
reason as in figures 2a&(b), the quantitative agreement between theory and data is considerably better
for a Reynolds number of 134 than for a Reynolds number of 54 (although not as good as in figure
2.3()). As the Reynolds number increases, the viscous model shows a slight increase in the maximum
value of the stress, which lies at the free surface. The model shows that this happens because the
viscous layer becomes thinner. Surprisingly, the DNS data shows the opposite trend. The enforcement
of the boundary conditioﬁuiiz/ax3 = 0(i = 1or2)is evident in the viscous theory profiles, and this
is clearly an improvement upon the inviscid theory result.

Figures 2.4¢, d) show profiles of the normal Reynolds stress near a free surface. Apart from the
anomalous behaviour of the DNS data between approximatglit* = 0.5 and|x3|/I* = 2, which
again may be attributed to an imperfect ensemble averaging, the theoretical and DNS profiles are in
very good agreement. The shape of the viscous theory profile is now even closer to inviscid theory,
because the effect of the viscous layer on normal velocity is very weak.

2.5.2 Profiles of the turbulence dissipation rate

Figures 2.5 and 2.6 present profiles of the turbulence dissipation rate for a solid wall and for a free sur-
face, respectively. In both figures, the dimensionless tinétid* = 0.1 and the Reynolds numbers

are 54 and 134. The DNS data presented in figure 2.5 were taken from figures 3.3.9, 3.3.10, 3.3.18
and 3.3.19 of PM93 and those presented in figure 2.6 were taken from figures 3.2.10, 3.2.11, 3.2.21
and 3.2.22 of PM93.

Figures 2.54, b) show profiles of the rate of dissipation of tangential Reynolds stress, hormalised
by their value far from the boundary. The agreement of the viscous theory profiles with the DNS data
is very good. Even in the viscous layer adjacent to the boundary, where the profiles display large
variations because the velocity gradients are large there, the theoretical values show good agreement
with the DNS. The inviscid theory, of course, completely fails to model dissipation correctly in this
region, giving values which are much lower than observed.

Figures 2.5¢, d) present profiles of dissipation of nhormal Reynolds stress near a solid wall. The
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Figure 2.5 Dissipation rate profiles near a solid wallut /I* = 0.1. Solid line, viscous theory; dashed line, inviscid the-
ory; circles, DNS data.g) tangential componenRe: = 54; (b) tangential componenRe: = 134 (c) normal component,
Re: = 54; (d) normal componenRe; = 134

agreement of the viscous theory with the DNS data is good, although dissipation given by the model
is slightly smaller in an intermediate region between the boundary and the far-field. Curiously, in this
region, the inviscid theory gives a better approximation to the data, particularly in figuc [2ub(as

would be expected, the inviscid theory behaves much worse than the viscous theory inside the viscous
layer, where the dissipation decreases to zero towards the boundary.

Figures 2.64, b) show profiles of the tangential dissipation rate near a free surface. The agreement
of the viscous theory and DNS data is good, although there is an overestimation of the maximum
in dissipation forReg; = 54 and a slight overestimation of the viscous layer thicknesRfgr =
134 Nevertheless, it is clear that the profiles of the viscous theory are much better than those of
the inviscid theory and there are also signs that the ensemble averaging of the DNS data may not
have been perfectly stable. The important finding here, which has implications for the evolution of
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Figure 2.6 Dissipation rate profiles near a free surfacea*atl* = 0.1. Solid line, viscous theory; dashed line, inviscid the-
ory; circles, DNS data.g) tangential componenRe: = 54; (b) tangential componenRe: = 134 (c) normal component,
Re: = 54; (d) normal componenRe; = 134

the tangential Reynolds stress, is that dissipation attains an absolute minimum exactly at the boundary.
This contributes towards an intensification of the turbulence at the free surface, a phenomenon noted by
Hunt (1984), PM95a and Walkeet al. (1996). Using an inviscid model, Hunt (1984attributed this
phenomenon to the distortion of vorticity by the upwelling zones that exist near the boundary. PM95a
subsequently suggested that this effect is linked with the pressure-strain terms in the turbulent kinetic
energy budget near the boundary. While this physical process surely exists, the present model supports
the idea (put forward by PM95a) that the main factor enhancing the tangential Reynolds stresses at
short times is the minimum in tangential dissipation at the boundary: the pressure is intrinsically
nonlinear and so scaling argument$af2 show that it is negligible at short times.

Figures 2.6¢, d) present profiles of the normal dissipation rate near a free surface. The agreement
of viscous theory with DNS data is very good, particularly Re- = 134 Again, a very substantial
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improvement in the results is achieved inside the viscous layer by the viscous theory, as compared
with inviscid theory. In this layer, dissipation is considerably reduced, but not as much as near a solid
wall, and attains a finite value at the free surface.

In all the cases analysed above, the behaviour of the turbulence dissipation profiles can be related
to the behaviour of the corresponding Reynolds stresses. Basically, dissipation is high in the regions
where the velocity gradients are also high. For example, in the viscous layer of a solid wall, the
high tangential dissipation results from the steep gradients in the tangential Reynolds stress which
are required to satisfy the no-slip boundary condition. The fact that normal dissipation is zero at the
boundary can be explained using mass conservation and the no-slip boundary condition: since the
tangential velocityy; (i = 1 or 2) is zero at the boundary, its tangential derivatives are zero, hence
by continuity, the normal gradient of the normal velocity is zero. Since the tangential gradients of
the normal velocity are also zero, because the boundary is flat, the normal dissipation has to be zero
according to (2.21) with = 3.

In the viscous layer of a free surface, the reduced tangential dissipation is attributed to the no-
stress boundary condition, which imposes a zero normal gradient of the tangential Reynolds stress at
the boundary. The dissipation is not zero at the boundary because there are still tangential gradients of
the tangential velocity. The normal component of dissipation, on the other hand, is finite and non-zero
at the boundary because the no-stress boundary condition permits the existence of normal gradients of
the normal velocity component.

A striking aspect of these comparisons is the success of the RDT model in predicting turbulence
dissipation — a process usually associated with the smallest scales of the turbulence. RDT is justified
by a time-scale analysis based on the energy-containing eddies, and so is expected to fail for small-
scale eddies which evolve on a shorter time scale (Batchelor & Proudman, 1954). However, in the
bounded flows studied here, dissipation near the boundary is dominated by the large gradients of the
velocities associated with the energy-containing eddies in the viscous layer. The small-scale eddies are
of secondary importance in determining the dissipation rate inside the viscous layer. This may explain
in part why the normal dissipation rate profiles in figures @.8) agree less well with the DNS data
in an intermediate region between the viscous layer and the far-field. In that region, dissipation has
not yet reached its far-field value, but the large-scale velocity has already much weaker gradients, so
the velocity gradients of the smaller scales have an increased importance and, as a consequence, RDT
is less accurate. In the viscous layer, the role of the smallest scales in the turbulence is primarily that
of limiting the magnitude of dissipation through the viscous cutoff wavenuikhgr but these small
scales are relatively unimportant for determining the actual shape of the dissipation profiles.
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Figure 2.7 Dissipation rate profiles foRe = 134 at various times. Viscous theory at: solid lingf/I1* = 0; dotted
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component; d) free surface, normal component.

2.5.3 Time evolution of dissipation

Figure 2.7 shows profiles of the tangential and normal dissipation rates near a solid wall and a free
surface, for a Reynolds number of 134, at the tim&gl* = 0, 0.01, 0.05, 0.1 and 0.15, as calculated
from viscous theory. The DNS data presented in the same figure were taken from figures 2 and 3 of
PM95b, and refer to the much later tiro& /1* = 2.

The evolution of the theoretical solutions with time can be seert. -At0, the dissipation rates
begin by being equal to the dissipation rates calculated from inviscid theory. At the boundary, the
tangential dissipation component is twice its value in the far-field, and the dissipation smoothly decays
to its far-field value as one moves away from the boundary. The normal dissipation has the same value
at the boundary and in the far-field, with a minimum in between located at abdt = 0.05.
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As time progresses, the influence of the viscous layer spreads over increasingly larger distances,
and the theoretical profiles come to resemble the DNS profiles much closer, in particular regarding
the location of maxima and minima. The match is not perfect, however, because while the model
gives a reasonable prediction of the thickness of the viscous layer at a model tiriigl6f= 0.1 or
u‘t/I* = 0.15(in particular in figures 2.1-d)), the DNS curves tend to decay much slower towards
their asymptotic value far from the boundary than the theoretical curves. This behaviour is attributed
here to the additional diffusive effect of the turbulent transport (neglected in the model), which can be
felt far outside the viscous layer.

Near a solid wall, tangential dissipation (figure 2)§(is enhanced inside the viscous layer. As
the viscous layer thickens, the maximum in the dissipation, which occurs at the boundary, is reduced
as the velocity gradients in the viscous layer reduce. A region where dissipation is lower than in
the inviscid profile exists at the edge of the viscous layer. Qualitatively, the DNS profile at the late
time, u*t/1* = 2, displays similar features, as follows. The maximum at the boundary is higher
than would be expected from inviscid theory, consistently with the existence of a viscous boundary
layer. However, the value at the maximum is considerably lower than at early times, and the region of
lowered dissipation noted in the theoretical profiles is more pronounced and spread over a much wider
distance.

The time evolution of the normal dissipation shown in figure [2.Begins with a local maximum
very near the boundary. This maximum is progressively eroded because of the growth of the viscous
layer and the constraint that normal dissipation is zero exactly at the boundary. Nevertheless, a residual
maximum in curvature persists in the theoretical profiles up to the latest time considered, and this
maximum may also be observed in the DNS data.uAf|* = 0.15, the theoretical profile departs
slightly from its correct value far from the boundary, because the truncation error has become too large
due to the power series of the solution becoming nearly non-asymptoti¢<e2).

For a free surface, the tangential dissipation (figurec®) Begins by having a maximum near the
boundary, and a sharp reduction exactly at the boundary, associated with the no-stress condition. As
time progresses, these features become smoothed. The maximum decreases and moves away from
the boundary and the minimum also decreases slightly, becoming distinctly lower than the dissipa-
tion value far from the boundary. The thickness of the viscous layer, as identified by the dissipation
maximum, is in good agreement with DNS data for a model tim&ofi* = 0.15.

The normal dissipation (figure 2d) initially has a local maximum at the boundary, followed
by a minimum before tending to the far-field value. The maximum is soon eroded as the viscous
layer grows, so that at the latest time considered in the model, dissipation has become approximately
constant in the viscous layer. Again, there is a certain deal of qualitative agreement of the theoretical
profiles atu*t/I* = 0.1 or 0.15with the DNS profile.
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Except for a considerably higher maximum in tangential dissipation at the boundary in the case
of a solid wall, and a generally faster decay of the curves towards their far-field values as one moves
away from the boundary, which it is argued is due to the absence of turbulent transport, the dissipation
profiles presented in figure 2.7 for the viscous theory*afl* = 0.1 or u*t/I* = 0.15 resemble
the profiles obtained from the DNS at the late tioi¢/I* = 2. This happens partly because the
boundary conditions at; = 0 are independent of time and also because the viscous layer does not
Y2 (Hunt &

Graham, 1978). The same nonlinear effects are also responsible for the main differences between the

grow indefinitely, but rather its growth is halted by nonlinear effects wh@n~ Re;

theoretical and DNS profiles, namely the diffusion of relatively sharp features like the minimum in
tangential dissipation in figure 2a)(

Nevertheless, the similarities between the RDT and the DNS at late times remain striking, which
suggests the concept oftatal diffusionof the viscous boundary layer, akin to ttetal shearin-
troduced by Townsend (1976), and used more recently by Mann (1994), for matching the results of
RDT and measurements of equilibrium shear-flow turbulence. Qualitatively, equilibrium shear-flow
turbulence and initially isotropic turbulence suddenly distorted by a constant shear are quite different.
In equilibrium turbulence, vorticity tilting and stretching by shear is balanced by turbulent transport
and viscous diffusion. In rapid distortion by shear, the turbulence is non-stationary, and dominated
by vorticity tilting and stretching. Townsend noted that the first kind of turbulence resembled the sec-
ond if, in his rapid-distortion model, the total shear since the beginning of the distortion was chosen
appropriately.

The current model shows that homogeneous decaying turbulence near a solid or free boundary at
relatively long times qualitatively resembles turbulence distorted by the same boundary at a given total
diffusion of the viscous boundary layer. This total diffusion corresponds to afjménen the model
breaks down due to the growing relevance of neglected physical processes, such as turbulent transport.
The main effect of these processes seems to be to arrest the fast evolution of the turbulence at an early
distortion stage, changing it only slowly at subsequent times.

2.6 Conclusions

The rapid-distortion model of Hunt & Graham (1978) has been extended to treat the early development
of shear-free turbulence near a suddenly introduced solid wall or free surface, taking full account of
viscous processes, including the dynamics of the viscous boundary layer. The model is linear and
assumes the turbulence to be initially homogeneous and isotropic everywhere, and to remain so far
from the boundary. The turbulent velocity field is expressed as a superposition of Fourier modes and
then statistics of the velocity field are obtained, given the energy spectrum of the turbulence far from
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the boundary. The velocity components induced by the boundary are expanded in power series of a
small parameter, and terms in the series are considered up to the point where they become comparable
with the neglected nonlinear effects. The model is formally valid at short times when (i) the nonlinear
terms in the equations of motion are negligible and (ii) the power series of the solution for the turbulent
velocity are asymptotic. Condition (i), which is well known from other rapid distortion studies, ensures

in this particular case that viscous diffusion dominates over turbulent transport in the dynamics of the
viscous layer. Condition (ii), on the other hand, ensures that the viscous layer can be treated as a thin
boundary layer, and requires it to be much thinner than the smallest scales in the turbulence. The model
makes use of a turbulence spectrum with a viscous cutoff in order to be dynamically consistent. This
spectrum was found to lead to a correct dependence of the dimensionless dissipation on the Reynolds
number, as compared with recent DNS data.

Reynolds stress and turbulence dissipation profiles were then calculated. The model was able
to reproduce the essential observed differences between a solid wall and a free surface. Regarding
dissipation, these differences are: dissipation of the tangential Reynolds stress is enhanced near a solid
wall, while it is reduced near a free surface; dissipation of the normal Reynolds stress tends to zero
near a solid wall, while it is slightly reduced to a non-zero value near a free surface. Results at short
times were seen to be in good quantitative agreement with available DNS data, and also to reproduce
the qualitative features of DNS data (namely the location of maxima and minima in the profiles) at
later times, provided that the time used in the model was appropriately chosen. This suggests that
the structure of the turbulence statistics and their differences for each type of boundary are essentially
determined by the linear dynamics of the viscous boundary layer.

This study clarifies why the inviscid Hunt & Graham theory can be applied, with relative success,
to the prediction of the Reynolds stress profiles near free surfaces at relatively long times (cf. Brumley
and Jirka, 1987; Perot & Moin, 1985Walkeret al., 1996). On the one hand, a free surface introduces
a relatively weak viscous correction to the essentially inviscid flow associated with the blocking effect
of the boundary. That correction reduces only slightly the tangential Reynolds stresses at the boundary
so that the boundary condition can be enforced. On the other hand, the tangential dissipation at the free
surface is lower than in the bulk of the flow, as referred above, and this leads to a slow enhancement
over time of the tangential Reynolds stresses which counteracts the reduction associated with the
boundary condition. Because of these two opposing effects, the inviscid solution remains valid for
times longer than expected.

Ultimately, the viscous layer stops growing, and the effect of dissipation supersedes that of the
boundary condition, leading to the tangential Reynolds stresses at the free surface becoming greater
than those predicted from inviscid theory. Alternative explanations for this phenomenon have been
suggested, involving energy transfer from the normal to the tangential velocity components by the
pressure-strain terms in the turbulent kinetic energy equation. These will be discussed in chapter
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3. However, the present model supports the idea, put forward by PM95a, that the minimum in the
dissipation profile at the surface plays a crucial role in this phenomenon, at least at the initial stages,
because pressure is an intrinsically nonlinear quantity which was seen to be negligible at short times.

Turbulence dissipation also has implications for air-water gas transfer. The speed at which gases
are transported across an air-water interface where the water is in turbulent motion is determined by:
how thin the viscous boundary layer is forced to remain by the turbulence and how fast the turbulent
motions replace old fluid near the surface by new fluid (Theofanous, 1984). This surface renewal is
determined by the velocity and length scales of the turbulence, and also by the divergence of the flow
at the surface, particularly at high Reynolds numbers (Hunt, B98ddirectly, the dissipation profile
near a free surface promotes surface renewal by increasing the value of the turbulence velocity scale
there. At the same time, the dissipation rate of the normal Reynolds stggsis linked with the
surface divergence, through definition (2.21) witk 3, because at; = 0 the tangential derivatives
of the normal velocity are zero and the normal derivative of the vertical velocity can be related, using
continuity, to the horizontal divergence. The normal dissipation rate is thus proportional to the mean-
square surface divergence, and so its behaviour influences surface renewal.

Some more general conclusions are now presented. One of the main findings of this study is that
dissipation near a shear-free boundary is primarily determined by the velocity gradients corresponding
to the rapid variation across the viscous boundary layer of the energy containing eddies. The small
scales in the turbulence were seen to be important mainly for limiting the magnitude of dissipation, but
not for determining the shape of the dissipation profiles. Therefore, the reason why rapid-distortion
theory is in this case appropriate for calculating dissipation is because the boundary introduces a strong
inhomogeneity in the flow.

Another key conclusion is that the shape of the dissipation profiles in turbulence near a solid wall
or a free surface is essentially determined by the linear dynamics of the viscous boundary layer, even at
late times. The effect of nonlinear processes seems to be primarily to arrest the growth of the viscous
boundary layer on the one hand and to slightly diffuse the features in the profiles on the other.

2.7 Appendix. Expressions of the function®/iy

2.7.1 Solid wall

For a solid wall, the function®li(k, x3, t) are defined as follows:

gk [erf(%“’) +1}, i=1,2
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The remaining elements of tivy matrix are zero.

Using (2.20), the Reynolds stresses may be expressed in terms of the undistorted turbulence spec-
trum dJi(jH) and using (2.21), (2.22) and (2.23), the dissipation rates may be expressed in terms of the
undistorted turbulence spectrum.

The resulting expressions may be further simplified by expressing the integrals involved in spheri-
cal polar coordinates and using (2.24). This enables analytical integration in one of the axial variables
and the triple integrals become double integrals. That is the simplest form they can take before nu-
merical evaluation, which is carried out using NAG subroutines.

2.7.2 Free surface

For a free surface, the non-zero components oMék, x3, t) tensor can be written as follows:
=0 i [ (o1(g) +2) + e 5] 112

ik PN [ e 1 e
M|3——k12<1 . >{ek k126[6<erf(6>+1)+1/2e : ]}

Mgg = gkeXe _ ghaxs 4 = &k (1_ ek12x3) + (1_|_ 52k%2> 52K2
4 4

[ZX; (erf () +1) + 2r$25 T4 4erf< 2) }

Again, using (2.20), (2.21), (2.22) and (2.23), the Reynolds stresses and the dissipation rates may
be expressed in terms of the undistorted turbulence spe@mrlm

The integrals contained in those expressions may then be expressed in spherical polar coordinates
and integrated analytically over one of the axial variables, becoming double integrals, and then evalu-
ated numerically.
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CHAPTER 3

Nonlinear interactions in shear-free turbulence near boundaries

3.1 Introduction

Shear-free turbulence near flat boundaries constitutes a useful first approximation to many naturally
occurring flows, such as convection in weak winds in the atmosphere surface layer (Huia), 4984

the equivalent situation in the ocean, and turbulence produced by bottom friction that reaches the free
surface, in channels or rivers (Boragal, 1995). Data on shear-free turbulence near flat boundaries
are mostly available from numerical (Biringen & Reynolds, 1981; Perot & Moin, 49989%) and
experimental wind tunnel studies (Thomas & Hancock, 1977; Aroesah, 1997), because in these
studies it is easier to control the conditions used in the experiments, hence it is possible to isolate more
effectively the physical processes specific to this kind of turbulence.

As was seen in chapter 2, shear-free turbulence is affected by a flat boundary through blocking and
viscous coupling from very early times. Blocking was treated by introducing an irrotational correction
to the velocity that enables the flow to satisfy the boundary conditioa 0 atxs = 0. As shown
by Perot & Moin (199%), this irrotational correction is only strictly valid if the boundary is inserted
instantaneously at the initial time. In numerical simulations, the condition of instantaneous boundary
insertion is easily implemented numerically, and in wind tunnel experiments, the boundary is generally
a moving belt with an upstream edge not far away from the points where measurements are taken. So,
in either case, the turbulence is distorted by the boundary very rapidly, and the initial changes to
the free-stream turbulence must be approximately irrotational. This explains the very good agreement
observed between theory and data at early times (Hunt & Graham, 1978). On the time scale of an eddy
turn-over time or more, the turbulence also evolves due to the nonlinear interactions among eddies of
different sizes and due to dissipation outside the viscous boundary layer. Although the model adopted
in chapter 2 allowed to calculate profiles of the viscous dissipation, and thus to predict the likely future
evolution of the Reynolds stresses, the model dynamics were totally linear, and nothing could be said
about intrinsically nonlinear processes such as those involving pressure.

It was found that the dissipation profile near a free surface displays a minimum at the bound-
ary, promoting a (relative) enhancement of the tangential Reynolds stresses over time in that region,
which brings the value of the turbulent kinetic energy (TKE) to levels above those predicted by the
theory of Hunt & Graham (1978). This enhancement has been observed both in laboratory experi-
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ments (Brumley & Jirka, 1987) and direct numerical simulations (Perot & Moin, 498&lker et

al., 1996). However, a similar increase in the tangential Reynolds stresses has also been found near
solid walls, despite the fact that the dissipation profile has no minimum there. This phenomenon has
been attributed to residual shear or frictional heating in the early measurements of Thomas & Han-
cock (1977), but in a recent paper, Aronseiral. (1997) have taken particular care to eliminate any
such effect, and they still obtain an enhancement of the tangential Reynolds stresses in the region
immediately outside the viscous boundary layer (see their figure 9). For flows of a relatively large
scale, such as those associated with atmospheric convection (Hund) b®8drge-eddy simulations
(Biringen & Reynolds, 1981), the viscous boundary layer is in fact extremely thin compared with the
integral length scale of the turbulence, and it is evident that the shape of the dissipation profiles or any
other viscous process cannot be responsible for the observed enhancement of the turbulent velocity
fluctuations near the boundary.

Hunt (1984) has attributed this enhancement to nonlinear processes, namely the vorticity stretch-
ing that occurs in zones where the flow impinges upon the boundary. But he estimated this effect by
adapting the result of a model by Durbin (1981) for the flow at the stagnation point of a sphere. While
this flow resembles to a certain extent the downwelling zones of turbulence in the atmosphere surface
layer, or the upwelling zones of turbulence in the ocean surface layer, the distortion suffered by the
turbulence at the stagnation point is infinite (which is certainly not the case in shear free-turbulence),
and this makes the tangential Reynolds stress diverge at the boundary (see equatd)ro{Ziat,
1984a). On the other hand, Hunt's solution only applies to impinging flow, whereas turbulence near
a boundary contains both upwelling and downwelling zones. Although Hunt argues that zones of im-
pinging flow are more important for turbulence intensification, this has not been shown in practice.
To clarify this issue, an inviscid rapid-distortion (RDT) model is used in this chapter to study the
dynamics of upwelling and downwelling zones in shear-free turbulence near a flat boundary.

Besides helping to understand how turbulence intensifies near the boundary by nonlinear pro-
cesses, the study of upwelling and downwelling zones is also interesting from a fundamental fluid
dynamical point of view, since these zones (called ‘splats’ and ‘anti-splats’ in Perot & Moinall 995
are salient features in turbulent flows near boundaries. While in most experiments or numerical sim-
ulations (e.g. Perot & Moin, 192, the profiles of the turbulent statistics are averaged over whole
planes parallel to the boundary and therefore do not distinguish between upwelling and downwelling
zones existing across those planes, it will be seen later that the way in which the turbulent velocity
and pressure fluctuations are affected by these two types of flow is far from symmetrical. This has
important implications for the parameterisation of subgrid-scale terms in models that, for example,
resolve the upwelling/downwelling zones but not the smaller-scale turbulence.

The remainder of this chapter is organised as follows.§3r2, a simple theoretical model of
turbulence in an upwelling or downwelling zone is developed§dr8, model results are presented
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for the time evolution of the Reynolds stresses, and the terms in the TKE budget are evaluated. The
structure of the strain field near the boundary is analyse¢3.ly the model is modified to account for

the variation of the strain field with distance from the boundary and comparisons with data are carried
out. Finally, in§3.5, the main conclusions are presented.

3.2 Theoretical model

Consider shear-free turbulence beneath a horizontal solid wejl-at0 or a flat free surface (where

the Froude numbéefr and the Weber numbé&t/e are sufficiently low that there is not appreciable
surface wave generation). The turbulence consists of large eddies and small eddies. The large eddies
are distorted by the boundary (so as to satisfy the boundary condition) over a distance of the order
of their own size (Hunt & Graham, 1978) and they are longer lived than the small eddies. From the
viewpoint of the small eddies in the turbulence, the large eddies appear near the boundary as flattened
structures often resembling upwelling and downwelling zones, which are roughly axisymmetric (Perot

& Moin, 1995a) and slowly evolving in time.

In this chapter, the situation described above is approximated as follows. The shear-free turbu-
lence is taken as a superposition of a deterministic large-scale flow, which represents the upwelling or
downwelling zones, and a random small-scale flow representing the smaller eddies in the turbulence.
The large-scale flow takes the form of a steady, axisymmetric, irrotational straining flow aligned with
the boundary (cf. Kida & Hunt, 1989). The large-scale velotitys defined as

U =aqajx, i=123, 3.1

whereaq; are the strain rates. For an axisymmetric straining flow= o, = —(1/2)asz = a. This
is the simplest possible flow possessing the basic characteristics described above for the upwelling or
downwelling zones.

The small-scale flow takes the form of a random and time-evolving velocity field, which is as-
sumed to be statistically homogeneous and isotropic far from the boundary at the initial=inde
Since the large-scale flow (3.1) has a constant strain rate, the small-scale flow remains homogeneous
throughout its distortion.

Assume now that the large-scale flow is characterised by a lengthlseala velocity scalé) =
oL, and that the small-scale flow is characterised by a length scaid a velocity scale. If the
velocity scale and the strain rate of the large-scale flow are much larger than those corresponding to
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the small-scale flow, that is, if

u
a> -

noU>u (3.2)

the equations of motion may be linearised with respect to the small-scale flow, and the rapid-distortion
approximation is valid.

Assuming additionally that the Reynolds number of the fRe= UL /v (wherev is the kinematic
viscosity) is high enough, the vorticity equation takes the linearised and inviscid form

(3.3)

wherew = 0 x u is the vorticity of the small-scale flow. In the derivation of (3.3), the irrotationality
of the large-scale flow (3.1) was taken into account.

An additional condition is necessary for the rapid-distortion approximation to remain valid. This
results from the fact that nonlinear effects become more important when the degree of anisotropy of
the small-scale flow due to distortion by the large-scale flow is very large. Assuming initially isotropic
small-scale turbulence, this condition places an upper limit on the paraatet@hich ensures that
the turbulence does not become unrealistically anisotropic.

The model is then solved for the small-scale turbulent velagignd used to estimate the nonlin-
ear interactions in the turbulence, regarded here as the distortion of the small-scales by the straining
flow representing the upwelling or downwelling zone. This is done in the same way as in Kida &
Hunt (1989) and Kevlahan & Hunt (1997), but the blocking effect of the boundary on the small-scale
turbulence is also taken into account.

For the conditions (3.2) to be satisfied, a large separation has to exist between the velocity and the
length scales of the assumed two components of the flow. In real turbulence, there is no clean-cut sep-
aration between the scales of the large and small eddies, since the turbulence spectrum is continuous.
It may be argued, however, that the greatest contributions to the distortion of the small eddies come
from the large eddies satisfying the conditions (3.2). Furthermore, the studies of Kida & Hunt (1989)
and Kevlahan & Hunt (1997) have shown that models using the rapid-distortion approximation yield
results that are useful for a fundamental understanding of the nonlinear interactions in the turbulence.

Obviously, since the upwelling and downwelling zones are treated as uniform straining flows,
this model is only valid near the boundary but not at distaregs~ L of the order of the size of
the large eddies or greater, because over those distances the strain rate of the flow can no longer be
realistically considered uniform. The aim of the model is to see what features of shear-free turbulence
near boundaries can be attributed simply to the distortion by a large-scale uniform straining flow and
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the blocking effect.

3.2.1 Mathematical formulation

Subiject to the conditions specified in the preceding subsection, the RDT model consists of the lin-
earised vorticity equation (3.3), together with the large-scale straining flow (3.1). At sufficiently large
distances from the boundary, the small-scale turbulence is homogeneous in the 3 spatial directions, al-
though it becomes anisotropic due to distortion by the straining flow (Batchelor & Proudman, 1954).
In that region, it is therefore possible to express both the velocity and the vorticity of the small-scale
turbulenceui(H) andoq(H), as three-dimensional Fourier integrals,

u(x,t) = / / / 6" (k, t)&* dky dkodlks,

o xt) = [[] 6" 1 e dadidi, (3.4)

wherek(t) = (ki, ko, k3) is a time-dependent wavenumber vector which takes into account the distor-
tion by the straining flow. Using (3.4), the definition of vorticity yields algebraic equations that relate
the Fourier amplitudes of the small-scale turbulent velocity and vorticity, namely

~(H)

& )

I R K .

= sijk|kju|((H = Ui(H) = Eijklkfé(q((H), (35)

wherek = (k% + k3 + kg)% is the wavenumber magnitude. Making use of (3.4), the vorticity equation
(3.3) can be expressed in the spectral domain, and is found to be equivalent to a system of two equa-
tions that give the time evolution of the Fourier amplitude of the vorticity, and of the corresponding

wavenumber. When); is defined as in (3.1), these equations take the particularly simple form

o™ w dk
o ae, = —ak, (3.6)

and have the solutions (cf. Kevlahan & Hunt, 1997)
6" (k1) = 6" (ko, 0)&™,  Ki(t) = ke, (3.7)

where the initial wavenumber vector has been definedyas ki(t = 0). The first equation of (3.7)
can be reformulated in terms of the Fourier amplitudes of the velocity by using (3.5) at the initial and
final times, yielding

A(H)

. K
ui(H)(k,t) = —Sijkeklijtmeaktum (ko, 0). (3.8)
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This expression relates the small-scale turbulent velocity at the final time to the small-scale turbulent
velocity at the initial time for turbulence distorted by a homogeneous straining flow, exactly as in
Batchelor & Proudman (1954) or Kida & Hunt (1989).

3.2.2 Blocking by the boundary

At distances from the boundary @i(l) or smaller, the small-scale turbulence is affected not only

by the large-scale upwelling/downwelling flow but also by the boundary itself. Outside the viscous
boundary layer, where the present inviscid model is applicable, the effect of the boundary is primarily
blocking. This is valid for a solid wall (exactly) or for a free surface with very low Froude and
Weber numbers (approximately). In either case, the normal velocity component is forced to decay
to zero towards the boundary. As discussed before, if the boundary insertion can be approximated
as instantaneous, the correction to the velocity field due to blocking is initially irrotational (Hunt &
Graham, 1978). This correction remains approximately irrotational at later times, according to (3.3),
because the time variation of the vorticity of the small-scale turbulence only depends, in that equation,
on the large-scale flow and on the rotational part of the turbulence.

Therefore, in order to account for the boundary, the velocity field corresponding to the small-scale
turbulence is expressed as

S
u=u ¢ ;";, (3.9)

whereq® is the potential of the velocity correction due to blocking, which satisfies
0% =0 (3.10)

by continuity. Since the boundary is assumed to brsat 0 and the turbulent fluid exists in the
semi-infinite region belowg < 0), the velocity potential has to satisfy the boundary conditions

opS

g 6= 0= 06=0. ¢~ ) —0 (3.11)

which ensure that no fluid passes through the piane 0 and that the blocking effect is not felt far
from the boundary.

The small-scale turbulence is inhomogeneous in the vertical direction due to blocking by the
boundary, but remains homogeneous along the other two directions. The velocity paéhtaid
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the total small-scale turbulent velocifymay thus be expressed as two-dimensional Fourier integrals,

@9 (x,1) :/ 0 (ky, ko, x3, t)€katkee) g dko,

ui(x,t) = / / (i (K, ko, Xa, )& KHe%2) g, k. (3.12)

The first expression may be introduced in (3.10), which then becomes an ordinary differential equation
and is easily solved, using the boundary conditions (3.11). The solution for the Fourier amplitude of

@9 is

A(H)
Me}qz)@dk& (3.13)

FS (ke, ko, X3, t) = —/
wherekio = (k% + k%)%. This expression is formally identical to that obtained by Hunt & Graham
(1978), with the difference thafIéH) andk now depend on time. This happens because the input to
Hunt & Graham’s inviscid model is totally undistorted turbulence, whereas in the present case, the
input is turbulence already distorted by the large-scale straining flow corresponding to the upwelling
or downwelling zone.

Inserting (3.13) into (3.9) and taking into account (3.12), it is found that the Fourier amplitude of
the total small-scale turbulent velocity distorted by the boundary is
ke et = [ (0% cveo - o i e

"12*3) dks, i=1,2,
12

Ok, ke t) = [ 047 1 1) (€49 — o) dic (3.14)

Equation (3.14) shows that the Fourier amplitude of the turbulent velocity in the presence of the
boundary is related to the Fourier amplitude of the turbulent velocity in the absence of (or far from)
the boundary through an expression of the form

Gk, ke, o, ) = [ By, xa, 08" (K, )k, (3.15)
where

Bi = €k Big= —|—ek12"3 i=12

Baz = €8 _ ga2s, (3.16)

and the remaining elements of tBg matrix are zero. On the other hand, (3.8) can also be expressed
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more compactly as
0" (k. t) = W (k, )0 (ko, 0), (3.17)
where
Wim = —Sijkeklm%e«, (3.18)

ande = €° is the flow extension along the direction. Together, (3.15) and (3.17) imply that the
Fourier amplitude of the distorted small-scale turbulent velocity is related to the Fourier amplitude of
the undistorted turbulence through the product of the matBgesndW;, the first accounting for the
blocking effect of the boundary and the second accounting for the distortion by the large-scale flow,
namely

(i (ke ka, ) / M (k, x5, 1) 0 (k, 0)dks, (3.19)

whereMix = BjjWjx. This totally defines the solution to the problem, in a form analogous to that used
by Townsend (1980) for unbounded turbulence.

3.2.3 The turbulent pressure fluctuations

The pressure field associated with the turbulent flow already defined can now be derived. In order to do
that, it should be noted that the momentum equation consistent with the linearised vorticity equation
(3.3)is
oy oui oy, 1 ap
— +Uj— i— = 3.20
ot Tox; i oxp  pox’ (3.20)
wherep is the density of the turbulent fluid amulis the pressure. Taking the divergence of (3.20)
yields
oU; ou;
0%p = — 3.21
pP=—20-— o, %’ (3.21)
which shows that, in the linear approximation, the turbulent pressure is determined by the interaction
between the large-scale straining flow and the small-scale turbulence. For the particular flow described
by (3.1), this equation simplifies further to

ou;

0%p = —2pai - (3.22)
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The boundary conditions that are necessary to solve (3.22) state that the vertical pressure gradient
at the boundary is zero (this results from (3.20) wite- 3, applied atx3 = 0 and the boundary
conditionuz = 0 atxz = 0), and that the pressure infinitely far from the boundary is that induced by
the velocity field at infinity, namely

0
Txi% =0)=0, pixg— —o)— pH), (3.23)

wherep) is defined implicitly as the solution of

au§”>
% (3.24)

0?p™) = —2pa

Being statistically homogeneous in all directiops;) can be expressed as a three-dimensional
Fourier integral, and (3.24) becomes an easily solvable algebraic equation for its Fourier ampli-
tude. On the other hangh, because it is affected by the boundary, can only be expressed as a two-
dimensional Fourier integral in the form

p(x,t) = / / P(Ki, ka2, X3, 1) katkaxe) g, dk,. (3.25)

Substituting (3.25) into (3.22) yields an ordinary differential equation for the Fourier amplitude of
the turbulent pressur@. After some lengthy algebraic manipulations, it is found that this amplitude,
which is affected by both the distortion of the small-scale turbulence by the large-scale flow and by the
blocking effect of the boundary, can be related to the Fourier amplitude of the undistorted turbulent
velocity through

Bke, ko, Xa,t) = / Qi (k, x5, 1)) (k, 0)dks, (3.26)

where expressions for tlgy components are given in the appendj?.6).

3.2.4 Turbulence statistics

The simplest statistics that characterise the turbulent velocity fluctuations are the Reynolds stresses.
In shear-free turbulence, only the diagonal components of the Reynolds stress tensor (the velocity
variances,uTZ) are appreciable (Thomas & Hancock, 1977). In fact, in the present model, due to
the assumption of initial isotropy and due to the type of large-scale distorting flow, the off-diagonal
components of the Reynolds stress tensor associated with the small-scale turbulence are zero. For
that reason, all future references to ‘Reynolds stresses’ will be synonymous with ‘velocity variances’,
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as in chapter 2. An equation giving the time evolution of the Reynolds stresses can be obtained by
multiplying the momentum equation (3.20) by then taking the ensemble average and rearranging.
If the large-scale velocity is also substituted according to (3.1), the following equation results,

gt (7) - _U3a?<3 (?) — 202 + gp% 6i33i (PU) (3.27)

where the overbar denotes ensemble averaging. The term on the left-hand side is the tendency of
the Reynolds stress. The terms on the right-hand side are, respectively, the advection, production,
pressure-strain and pressure-flux terms. The advection and production terms appear as separated in
(3.27) because the flow was atrtificially split into a large-scale and a small-scale part. In the case where
the turbulence is taken as a whole, both of these terms are incorporated in the so-called turbulent
transport term (Perot & Moin, 1993). Since the flow is statistically homogeneous in the directions
parallel to the boundary, all the spatial derivatives of correlations along those directions are zero. That
is why only the vertical components of the advection and the pressure-flux terms appear in (3.27).
The various terms of (3.27) will be evaluatedsiB.3 in order to determine the physical mechanisms
responsible for the time evolution of the Reynolds stresses, following the procedure developed by
Maxey (1982) for an unbounded shear flow.

These terms may be related to the statistics of the undistorted turbulence as follows. If the three-
dimensional spectrum of the velocity fluctuations of the undistorted small-scale turbulq(ﬁ&ei,s
defined as

6" (ko)™ (k) = " (ko)B(ko — ko). (3.28)

(where the asterisk denotes complex conjugation), then (3.19) and (3.26) may be used, in conjunction
with (3.12) and (3.25), to obtain expressions for all the terms in (3.27) as functiohi%?beij and
Q. For example, the Reynolds stresses are given by

& = [[[ Midts 0ff1 dhadodc (3.29)
while the pressure-strain terms are

pgul = Re{///ikiQﬁMil q)|(<||4)dkldk2dk3}’ =12

6“3 { / / Qka'v'?" o dkldkzdkg} (3.30)
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The pressure-velocity correlation (necessary for determining the pressure-flux term) is

G = Re{ / / Q’,;Mi|¢|<('ﬁ>dkldk2dk3} . (3.31)

Since the initial undistorted small-scale turbulence is assumed to be homogeneous and isotropic,
its three-dimensional velocity spectrum can be related to the energy spdetkgjrthrough

(3.32)

cDi(jH)(kO) _ <6ij . kOikOI) E(kO)

G ) ang’

whereky = (k§; + k&, + k33)% is the initial wavenumber magnitude. The energy spectrum of the
undistorted small-scale turbulence is assumed to take the form attributed toavark(also used,
for example, in Hunt & Graham, 1978)

ga(kol )*

E(ko) = Wil —=———
(91 + (kol)?)

(3.33)

whereg; = 0.558andg, = 1.196are dimensionless constants. At high wavenumbers, this spectrum
reproduces the WeII-knOV\A’q;S/3 power law behaviour corresponding to an inertial subrange.

3.3 Results

3.3.1 Axisymmetric straining flow

In the results that will be presented next, it is assumed that the large-scale flow (3.1) is an axisymmetric
straining flow, since this seems to be the most natural form taken by an upwelling or downwelling zone
in shear-free turbulence (Perot & Moin, 19951t must be recalled that (3.1) then becomes

Ui =axy, Uzx=a0ax, Uz= —20X3. (3.34)
Sincea is the single parameter specifying the strain rate for this kind of flow, there is also a single
parameter specifying the total strain suffered by the small-scale turbulence. This will be galled

following Batchelor & Proudman (1954), and its definition is

1 —2at
C=6=—=¢€ “". 3.35
€16 ( )

The statistics of vector quantities tangential to the boundary will only be presented for the com-
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Figure 3.1 (a) Profiles of the Reynolds stresses. Thin Iina%: thick Iines:u?. Solid lines:c = 1 (undistorted), dotted
lines: ¢ = 0.5 (upwelling zone), dashed lines:= 2 (downwelling zone). lf) Reynolds stresses as a functioncofSolid
line: tangential Reynolds stress far from boundary, dotted line: tangential Reynolds stxgss @t dashed line: normal
Reynolds stress far from boundary.

ponent along the; direction since, due to the initial isotropy of the small-scale turbulence and the
symmetry of the flow (3.34), these statistics are equal for the components along any other tangential
direction.

3.3.2 The Reynolds stresses

In the present model, the Reynolds stresses depend only on the distance from the boundary and on time
(of which an appropriate dimensionless measure is the total s)taa only these two parameters will
be varied in the results that follow.

Figure 3.184) shows profiles of the tangential and normal components of the Reynolds stress for
different values ot, as a function of distance from the boundary normalised by the integral length
scale of the small-scale turbuleniceWhenc = 1, the turbulence is not distorted by the large-scale
flow, and behaves in a way similar to that predicted by Hunt & Graham (1978). The Reynolds stresses
tend to a normalised value of 1 far from the boundary. The tangential stress rises to 1.5 at the boundary
and the normal stress tends to zero at the boundary, due to blocking. &#herb (upwelling zone),
the tangential Reynolds stress decreases slightly far from the boundary and increases slightly at the
boundary. The normal stress increases everywhere. Whker2 (downwelling zone), the tangential
Reynolds stress increases everywhere, but more so far from the boundary, and the normal Reynolds
stress decreases everywhere.

The behaviour of the Reynolds stresses (and, for that matter, other statistics) far from the boundary
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and exactly at the boundary does not depend on the form of the energy spectrum adopted. Itis only in
the intermediate region, where the statistics change from their far-field value to their boundary value,
that such spectral form is relevant. Figure B)ishows plots of the tangential Reynolds stresses far
from the boundary and at the boundary and of the normal Reynolds stress far from the boundary,
as functions ott. The values far from the boundary reproduce the classical results of Batchelor &
Proudman (1954). When there is no distortion= 1), the results of Hunt & Graham (1978) are
recovered.

Whenc < 1 (upwelling zone), the tangential Reynolds stress far from the boundary first decreases
with ¢, while the tangential Reynolds stress at the boundary increases slowly, consistent with figure
3.1(@). For smaller values df, both tangential Reynolds stresses increase at a rate which approaches
asymptoticallyd) c-¥/2. The normal Reynolds stress also increases at the same rate <€dr, the
tangential Reynolds stress far from the boundary becomes half of both the tangential Reynolds stress
at the boundary and the normal Reynolds stress far from the boundary.

Whenc > 1 (downwelling zone), the tangential Reynolds stress both far from the boundary and
at the boundary increases at a rate which becomes asymptoficalffipr large values ot and the
normal Reynolds stress decreases at a rate which becomes asymptticajig) /¢ (cf. Batchelor
& Proudman, 1954). The normal Reynolds stress becomes much smaller than the tangential Reynolds
stress and the small-scale turbulence becomes approximately two-dimensional. Furthermore, the tan-
gential Reynolds stresses far from the boundary and at the boundary become equal, which is a conse-
guence of the normal velocity fluctuations approaching zero: if there are virtually no normal velocity
fluctuations, the blocking effect is unable to transfer energy from the normal to the tangential motions.

3.3.3 Physical interpretation

The behaviour of the Reynolds stresses in figuresa3ld(can be understood with the aid of the
schematic diagrams of figures 3a26). Figure 3.2§) shows that, in an upwelling zone, the horizontal
vorticity is stretched and the vertical vorticity is compressed. This implies that the horizontal vorticity
is amplified, whereas the vertical vorticity is attenuated. Since the horizontal vorticity receives contri-
butions from the horizontal and vertical velocities, its amplification contributes to an increase of both
the tangential and the normal Reynolds stresses. The vertical vorticity receives contributions only
from the horizontal velocity, so its weakening contributes to a decrease of the tangential Reynolds
stress. Apparently, this decrease is initially sufficient, far from the boundary, to counteract the in-
crease induced by the stretching of horizontal vorticity, but the latter effect soon becomes dominant,
leading to the observed increase of all the components of the Reynolds stress for moderate or large
distortions. The downwelling zone can be understood by reversing the orientation of the arrows in the
schematic of figure 3.2§. As the flow evolves, the horizontal vorticity is compressed, and therefore
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(b)

Figure 3.2 (a) Schematic diagram showing the vorticity distortion in an upwelling zobeS¢hematic diagram showing
the vortex tubes in isotropic turbulence and their images so that the blocking boundary condition is satisfied.

decreases in magnitude, and the vertical vorticity is stretched, and therefore increases in magnitude.
The weakening of the horizontal vorticity leads to a decrease of the normal Reynolds stress and a
negative contribution to the tangential Reynolds stress, but this tendency is counteracted by the faster
increase of the tangential Reynolds stress, both at the boundary and far from the boundary, which is
induced by the amplification of the vertical vorticity.

The relative magnitude of the components of the Reynolds stress far from the boundary and at the
boundary can be understood with the aid of figurel§.2(n that figure, isotropic turbulence below
the boundary is represented by 3 vortex tubes of similar intensity, oriented along the 3 coordinate
directions. The blocking effect of the boundary is represented by the 3 image vortex tubes placed
symmetrically above the boundary. The sign of the vorticity in the image vortex tubes is such that
the vertical vorticity is extended symmetrically across the boundary and the horizontal vorticity is ex-
tended anti-symmetrically, so that the no-flux boundary condition is satisfied (Durbin & Hunt, 1980).

The blocking effect of the boundary when there is no additional distortion by the large-scale flow
(c = 1) can be understood in the following way. Each vortex tube gives an equal contribution to
the turbulent velocity, and hence to the Reynolds stress along the directions perpendicular to its axis.
Suppose that the value of that contribution (which is here defined arbitrarily and is only important in
relative terms) is 1/2. Then the vortex tube aloagjives a 1/2 contribution to the Reynolds stresses
alongx, andxs, the vortex tube along, gives a 1/2 contribution to the Reynolds stresses akgrond
x3 and the vortex tube along gives a 1/2 contribution to the Reynolds stresses alerandxs. All
these contributions add up to Reynolds stresses of 1 along the 3 principal directions, corresponding to
isotropic turbulence. Consider now the effect of the image vortex tubes at the boundary. The image
vortex tube along; gives a contribution-1/2 to the Reynolds stress alowrg(in order to enforce the
boundary condition), but a contributidy2 to the Reynolds stress alomg Analogously, the image
vortex tube alonge gives a contribution-1/2 to the Reynolds stress alomg but a contributiorl,/2
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to the Reynolds stress alomg. Finally, the image vortex tube along is the same vortex tube that
would exist if the boundary was not there, and it adds a zero contribution to the Reynolds stresses
alongx; andx,. Adding up all the contributions, it is concluded that the Reynolds stresses at the
boundary alongg andx, have a value of 1.5 in the arbitrary units defined before, and the normal
Reynolds stress is of course zero. This explains the well-known result of Hunt & Graham (1978), that
the tangential stresses at the boundary in shear-free turbulence amplify by a factor of 1.5.

Whenc < 1in an upwelling zone, the vertical vorticity becomes virtually zero and ceases to
contribute to the Reynolds stresses. Then, it is only the vortex tubes i@l x, that contribute
to the Reynolds stresses. Far from the boundary, the effect of the image vortex tubes is not felt, and
the vortex tube along; contributes 1/2 to the Reynolds stress alangnd 1/2 to the Reynolds stress
alongxs (keeping the same units as before, for simplicity). On the other hand, the vortex tube along
Xz contributes 1/2 to the Reynolds stress alapgnd 1/2 to the Reynolds stress aloag Adding alll
the contributions, the Reynolds stresses abang, andxs have relative magnitudes of 1/2, 1/2 and 1,
respectively. This explains why the tangential Reynolds stress becomes half of the nhormal Reynolds
stress for low values df (see figure 3.1)). When the boundary is approached, the horizontal image
vortex tubes are necessary to satisfy the boundary condition. The image vortex tube; ajoms a
1/2 contribution to the Reynolds stress aloagand a -1/2 contribution to the Reynolds stress along
X3, and the image vortex tube alomng gives a 1/2 contribution to the Reynolds stress alkngnd
a -1/2 contribution to the Reynolds stress aleggAdding all the contributions, it is concluded that
the magnitude of the tangential Reynolds stressgs at0 is 1, equal to that of the normal Reynolds
stress far from the boundary, and twice the tangential Reynolds stress far from the boundary. This is
in agreement with the ratios observed in figure B).1¢r low c.

Whenc > 1in a downwelling zone, the horizontal vorticity is virtually zero and all the contribu-
tions to the Reynolds stresses come from the vertical vorticity. Since the vertical velocity fluctuations
are associated with the horizontal vorticity, this means that the normal Reynolds stress is very small,
which is indeed confirmed by figure 3d( On the other hand, near the boundary, the image vortex
tube alongxs is simply an extension of the vertical vortex tube across the boundary, exactly as if the
boundary did not exist. So the contribution of the vertical vorticity to the Reynolds stresses does not
change as the boundary is approached. In other words, the tangential Reynolds stress maintains a
constant magnitude throughout the turbulent fluid. This is consistent with figutd,3at(ich shows
that the tangential Reynolds stresses at the boundary and far from the boundary tend to the same value,
whenc s high.
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Figure 3.3 Profiles of the terms in the tangential Reynolds stress equation. Dotted line: advection, dashed line: production,
dash-dotted line: pressure-strain, solid line: tendency (sum of previous ter@s)=(1, a > 0 (upwelling flow, before
distortion). ) c = 0.5, a > 0 (upwelling flow, after distortion).d) ¢ = 2, a < 0 (downwelling flow, after distortion).

3.3.4 Analysis of the TKE budget

In order to investigate what physical processes are responsible for the observed time evolution of the
Reynolds stresses, the various terms in the Reynolds stress equation (3.27) will be evaluated. The
sum of all components of the Reynolds stress equation o, 2 and 3) yields an equation for the
evolution of the turbulent kinetic energyKE = (1/2) (u? + u? + u?).

Figure 3.38) shows profiles of the advection, production and pressure-strain terms, respectively

defined as

_2 oy

= Bp&, (3.36)
|

a S __
Aj = 20(X3673 <U.2) , Pu=-—2au,
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in the tangential Reynolds stress equation, for an upwelling zore=atl (undistorted flow). The
tendency of the Reynolds stress, which results from the sum of these 3 terms is also shown. The
advection term is zero far from the boundary, because the Reynolds stress is homogeneous there,
and at the boundary, because the normal component of the large-scale upwelling flow vanishes there.
Overall, the advection term is small and slightly negativ® at |x3| < | due to the fact that the
impinging flow brings fluid with a smaller Reynolds stress towards the boundary. The production
term is much larger in magnitude and negative everywhere (consistent with the vorticity arguments
presented above), but more so at the boundary due to reinforcing by the image vortex tubes. Finally,
the pressure-strain term is positive everywhere, with smaller magnitude than the production term far
from the boundary and the same magnitude at the boundary. The tendency of the tangential Reynolds
stress is negative far from the boundary and zerg at O.

At a later stage in the development of the distortion, for a total strain0.5 (figure 3.3p)), the
advection term has increased slightly in magnitude, but remains relatively small and negative, tending
to zero far from and at the boundary. The production term remains negative and has increased slightly
in magnitude at the boundary, while decreasing far from the boundary, and the pressure-strain term
has increased and become more positive everywhere. Crucially, the balance between the terms is now
different, because the pressure-strain term has become considerably larger than the production term,
and the tendency of the tangential Reynolds stress is now positive everywhere, but especially so at
the boundary, consistent with figures &,10). Since the tangential Reynolds stress is now smaller
than the normal Reynolds stress far from the boundary, but the normal Reynolds stress is always zero
at the boundary, the pressure-strain term, which is positive, is promoting a return to isotropy of the
small-scale turbulence far from the boundary, but contributing to a greater anisotropy at the boundary.

In the case of a downwelling zone, wheg- 1, the various terms in the tangential Reynolds stress
eguation have the same magnitude as those presented in figue BuB(he opposite sign. Therefore,
the advection term is small and positive, vanishing far from the boundary and at the boundary, the
production term is positive, with a maximum at the boundary, and the pressure-strain term is negative
and of larger magnitude than the production term, except at the boundary, where they balance each
other. Accordingly, the time variation of the tangential Reynolds stress is positive everywhere except
at the boundary, where it is zero.

At a later stage in the development of the downwelling flow, for a total stwaia 2 (figure
3.3(C)), this symmetry of behaviour has been lost. The advection term has decreased to become
insignificant, the production term has increased in magnitude, especially far from the boundary, and
the pressure strain-term has remained negative, while decreasing in magnitude. Since in this case the
tangential Reynolds stress is everywhere larger than the normal Reynolds stress, the pressure-strain
term contributes to a return to isotropy of the turbulence everywhere, particularly at the boundary. The
energy budget is dominated by the production term, which imposes a steady increase of the tangential
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Figure 3.4 Profiles of the terms in the normal Reynolds stress equation. Dotted line: advection, dashed line: production,
dash-dotted line: pressure-strain, long-dashed line: pressure flux, solid line: tendency (sum of previousaeems)i, (

o > 0 (upwelling flow, before distortion). bj ¢ = 0.5, a > 0 (upwelling flow, after distortion). ¢ = 2, a0 < 0
(downwelling flow, after distortion).

Reynolds stress.

Figure 3.44) presents profiles of the various terms in the normal Reynolds stress equation, for an

upwelling zone, at = 1. The symbols not already defined in (3.36) are
P = 4o, Qss= 2 (pwB) (3:37)
33 = 40Uz, U3z = 00X PW) , :

and represent the production and the pressure-flux terms, respectively. The advection term is small and
positive because the upwelling zone brings fluid to the boundary which originally had a larger normal
Reynolds stress. For the same reasons as before, this term vanishes both far from the boundary and
at the boundary. The production term is positive everywhere, due to horizontal vorticity stretching,
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Figure 3.5 Absolute value of terms in the Reynolds stress equations as a functor(@fTangential component. Solid
line: production far from boundary, dotted line: productionxat= 0, dashed line: pressure-strain far from boundary,
dash-dotted line: pressure-strainkgt= 0. (b) Normal component. Solid line: production far from boundary, dotted line:
pressure-strain far from boundary, dashed line: pressure-strain and pressuredflaxt

except at the boundary, where it is zero, because the normal velocity is also zero there. The pressure-
strain term is negative, with a maximum in magnitude at the boundary, and the pressure flux term
has a positive maximum at the boundary, equal in magnitude to the minimum of the pressure-strain,
but becomes slightly negative in an intermediate region and decays to zero far from the boundary.
The pressure-strain term equals minus twice the pressure-strain term in the tangential Reynolds stress
equation, due to continuity and the axial symmetry of the large-scale flow. At the boundary, the
pressure-flux term exactly balances the pressure-strain term, since all other terms are zero. The ten-
dency of the normal Reynolds stress is positive everywhere, except obviously at the boundary, where it
is zero. This picture is not substantially changed when the upwelling flow evolves entl5 (figure

3.4()). The advection, production, pressure-strain and pressure-flux terms all increase somewhat in
magnitude, but their qualitative behaviour remains the same.

In the case of a downwelling zone,@t 1, the terms in the normal Reynolds stress equation are
equal to those presented in figure 3)Ayith the sign reversed. Hence, the advection term is small
and negative, the production term is negative, except at the boundary, where it is zero, the pressure-
strain term is positive, with a maximum at the boundary, and the pressure-flux term is negative, with
the same magnitude as the pressure-strain term at the boundary, and decaying to zero far from the
boundary. After the flow has evolved until the distortio is 2 (figure 3.4€)), all these 4 terms have
become smaller in magnitude, but their qualitative behaviour has not changed appreciably.

Figure 3.58) shows the absolute value of some of the terms in the tangential Reynolds stress
equation, far from the boundary andxgt= 0, as a function o€. The production term is proportional
to the Reynolds stress itself (as implied by (3.36)), increasing asymptotically’#svhenc decreases
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much below 1 and increasing asymptoticdllyc whenc >> 1. The pressure-strain term, both at the
boundary and far from the boundary, is of the same order of magnitude, and behaves asymptotically
in the same way as the production tefthd %/2) whenc < 1, but whenc > 1 decays asymptotically

like c=2 far from the boundary and likeg(c)/c? atxs = 0. Therefore, as the turbulence becomes
progressively two dimensional in a downwelling zone, the relative importance of the pressure-strain
term in the evolution of the Reynolds stresses decreases.

Figure 3.56) shows the same as figure 3ap(but for the terms in the normal Reynolds stress
equation. The production term far from the boundary is again proportional to the Reynolds stress,
consistently with (3.37), and the pressure-strain term and pressure-flux terms are of the same order
of magnitude and have the same asymptotic behaviowr {/2) as the production term when< 1.

Whenc >> 1, the pressure-strain term far from the boundary decags%@@aster than the production
term) but the pressure-strain and pressure-flux terms-at0 show the same order of magnitude and
asymptotic behaviour as the production tefinl¢g(c)/c?). However, the absolute values of all these
terms become insignificant at high

3.3.5 Discussion

In general, the ‘driving force’ behind the time evolution of the Reynolds stresses is the production
term in the Reynolds stress equation. This term is responsible for moving the small-scale turbulence
away from isotropy initially. The pressure-strain term always tends to oppose the production term.
Far from the boundary (in the region where the Batchelor & Proudman (1954) theory can be applied),
this always corresponds to a tendency towards isotropy. However, near the boundary, the pressure-
strain term only contributes to make the small-scale turbulence isotropic in the case of a downwelling
zone, whereas it tends to move the small-scale turbulence away from isotropy in an upwelling zone.
This result ought to be taken into account in near-wall closures of the pressure-strain term for use in
numerical models. Until now, in the studies where RDT is used to guide the development of such
closures, the effect of boundaries is often not accounted for (Maxey, 1982; Johansson &ckallb
1994). As the present results show, that may lead to the neglect of important physical processes. In
the numerical simulations of Perot & Moin (1993) and Walkteral. (1996) (where there are both
upwelling and downwelling zones near the boundary) the pressure-strain term in the TKE equation is
identified as always contributing to the anisotropy of the turbulence near the boundary. The present
results suggest that this happens because the magnitude of the pressure-strain term is considerably
larger in an upwelling zone than in a downwelling zone, hence the contributions from the upwelling
zones to this term tend to dominate. Although the pressure-strain terms always promote a return to
isotropy of the small-scale turbulence in a downwelling zone, they become very inefficient in doing
so at high values of and have in fact vanishing importance in the TKE budget in the limit of two-
dimensional turbulence.
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An interesting question regarding the Reynolds stress budget is whether the sign of the tendency
of the Reynolds stresses is determined primarily by the production term or by any other term in the
corresponding equations. In the case of a downwelling zone or in the case of the normal Reynolds
stress in an upwelling zone, the pressure strain term is of smaller magnitude than the production term,
and the tendency of the Reynolds stress has the same sign as the production term. In the case of the
tangential Reynolds stress in an upwelling zone, however, the tendency has the opposite sign to the
production term and the same sign as the pressure-strain term (except for vatuesofl, far from
the boundary). The tangential Reynolds stress evolution is thus driven by the energy imparted from
the normal Reynolds stress through the pressure-strain correlations. That is why, in an upwelling zone,
both the tangential and the normal Reynolds stresses increase in time.

3.3.6 The structure of the strain field

It is clear from figure 3.1f) that the TKE increases with increasing distortion both in an upwelling
zone € < 1) and in a downwelling zonec(> 1). This is consistent with the enhanced turbulence
intensity which is observed in experiments or numerical simulations of shear-free turbulence near
boundaries at late times (Thomas & Hancock, 1977; Biringen & Reynolds, 1981). Although Hunt
(1984) argued that upwelling zones are more important in promoting this enhancement than down-
welling zones, figure 3.bj shows that the TKE increases faster for a downwelling zahe)(than

for an upwelling zonel{ c-/?). Hence both types of flow are important.

Most experiments or numerical simulations of shear-free turbulence consider stationary (Brumley
& Jirka, 1987) or decaying turbulence (Perot & Moin, 18R5The enhanced turbulence intensity
near the boundary is detected either by the ratio between the TKE at the boundary and far from the
boundary rising above 1, or equivalently by the ratio between the tangential Reynolds stress at the
boundary and far from the boundary becoming larger than the value of 1.5 predicted by the theory of
Hunt & Graham (1978). The second result follows from the first if the turbulence is isotropic away
from the boundary, which is generally the case (Aronsbal, 1997). Although the present model
predicts that the ratio between the tangential Reynolds stregs-at0 and far from the boundary
exceeds 1.5 in an upwelling zone, that behaviour is not linked with any relative increase of the TKE
at the boundary, but is simply a manifestation that the turbulence has become anisotropic far from the
boundary.

In fact, for the upwelling and the downwelling flows under consideration, the result of Hunt &
Graham (1978)

(B+B) (6 =0) = (& + B+ 1) (xs — —) (3.38)

56




Chapter 3 Nonlinear interactions in shear-free turbulence near boundaries

remains valid, as can be confirmed in figures 8.1, since the solutions for the small-scale tur-
bulence are obtained by directly applying Hunt & Graham’s blocking correction to the small-scale
turbulence already distorted by the straining flow. The reason why (3.38) holds in the model is be-
cause a uniform strain rate is assumed throughout the flow, and that strain is irrotational, allowing a
decoupling of the effects of the large-scale flow and of blocking. It will be shown next that, when the
non-uniformity of the large-scales in the turbulence is taken into account, the relative increase in TKE
near the boundary results from the effect of blocking on the large-scale strain field.

Consider the structure of shear-free turbulence. On the scale of a small eddy, the large eddies in
the turbulence can be viewed as deterministic and locally uniform flow structures, as considered in the
present model. However, over scales much larger than their own, the large eddies behave in much the
same way as the small eddies (Townsend, 1976) and tend to be statistically isotropic and homogeneous
far from the boundary. Hence a possible way of modelling the structure of the large-scale strain field
is by studying the strain field associated with the small eddies, and then extrapolating the results to the
large eddies. In what follows, the present modeldes 1 (which is equivalent to Hunt & Graham’s
(1978) model), will be used to do just that= 1 is assumed, because the large eddies themselves are
not subjected to any appreciable organised strain in shear-free turbulence.

According to (3.12) and (3.19), the strain rates of the turbulent velocity are defined as

%i = gu = [[[ Mmoo ddiodks, | = 1.2
j
/// 6|\/||k k1X1+kzx2)dkldk2dk3 (3.39)
aX3

By analogy with (3.29), and using (3.28), the variances of these strain rates, which give an estimate of
their magnitude, take the form

aTZ- _ / / / k-ZM(;(M”qaf('ﬁ)dkldkzdk3, =12
oM 0M|

At arbitrary distances from the boundary, the expressions of these variances are rather complex. But
they are much simpler far from the boundary and at the boundary, where they are independent of the
form of the energy spectruf(ky). In those regions, thaTZj only depend on the initial value of the
dissipation rate far from the boundagywhich is defined as

£ = 2v /0 " KZE (ko) dko. (3.41)
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Forc = 1, the expressions of the components offﬁematrix atx3 = 0Oand asxg — —o are

found to be
— le — 2 €
2 _ 2 _ _ Coy
Gi=15y % T By =123 i#]j, as X3— —m,
2 2 2 > le > 1¢ 2 2
0(11:0(12:0(21:0122:66, aigzég, a5, =05,=0, at x3=0. (3.42)

From (3.42), it is clear that, far from the boundary, the strain rates are statistically isotropic, like the
velocity field itself, but near the boundary, the strain rates are modified by the blocking effect in two
ways: (i) they increase in magnitude and (ii) they become anisotropic, adopting orientations compati-
ble with the blocking boundary condition. Since strains with an isotropic distribution are more prone
to cancellation than strains subject to a directional constraint, the second effect reinforces the first.
Both these effects, which exist in real turbulence, lead to the small-scale turbulence being subjected to
a substantially larger net straining rate at the boundary. Since the straining of the turbulence leads to
an increase of its TKE, as seen before, this explains why the Tif-at0 is larger than the TKE far

from the boundary.

The axisymmetric straining flow used in the present model to represent the large scales in the
turbulence represents the anisotropy of those scales due to the boundary in way that is approximated
but qualitatively correct, simply by being aligned with the boundary. But by being uniform, this
straining flow obviously fails to account for the weakening of the strain field and for its transition
from anisotropic to isotropic as one moves away from the boundary (which is implied by (3.42)).

A modification to the present model which incorporates these effects in a heuristic manner is
presented next.

3.4 Moadifications to the model and comparison with data

3.4.1 A spatially limited upwelling/downwelling zone

The inhomogeneity of the strain field which was seen to exist in shear free turbulence can be incorpo-
rated in the present model by redefining the large-scale flow as

2
Uy = ax €™, Up = axee™s, Us = —% (€™ — 1), (3.43)

wherel/mis a positive distance. This flow approximates the previously used straining flow (3.34) at
the boundary, but decays exponentially to zero far from the boundaxy,-as—. The treatment in
§3.3.6 showed that the strain rate far from the boundary is not zero, but simply smaller and isotropic,
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whereas the strain rate near the boundary is larger and anisotropic. Obviously, that situation is much
more complex than that modelled here, but a connection may be established in the following way.
In real turbulence, an equilibrium is reached between the distortion of the small scales by the large
scales, which leads to an increase of the TKE, and the dissipation of the small scales, which leads to
a decrease of the TKE. The equilibrium strain of the turbulence in a region with a larger strain rate
is higher than the equilibrium strain in a region with a smaller strain rate (this effect is included, for
example, in Maxey’s (1982) equation (3.3)). Hence, to compare the results of the present model with
data, it is more useful to think in terms of total strains than in terms of strain rates. Use of the large-
scale flow (3.43) allows the equilibrium state of the small-scale turbulence far from the boundary to
be arbitrarily defined as undistorted, and the more distorted equilibrium state existing at the boundary
(due to the larger strain rate there) to be matched through the parameter

In the model used by Hunt (198%to estimate the nonlinear effects in shear-free turbulence,
the flow in an upwelling zone is approximated as potential flow around a sphere. This flow has the
advantage of possessing a strain that naturally tends to zero far from the boundary. However, since
the flow is assumed to be stationary, and the turbulence is assumed to be homogeneous far from the
sphere, the value of the total strain at the boundary is infinite. This leads to an infinite Reynolds stress
at the boundary (cf. equation (2120of Hunt, 1984), which is not realistic. Since upwelling and
downwelling zones are not steady but transient flow structures, the present time-dependent model is
deemed more appropriate to treat them.

The new large-scale flow (3.43) satisfies mass conservation exactly, but not irrotationality, and has
an associated vorticity dd(mU). This flow can still be considered approximately irrotational if its
vorticity is much smaller than its strain rate. Since the strain rate @(0df/L), approximate irrota-
tionality holds ifmL < 1. On the other hand, sinte< L, the conditiornL <« 1implies thatml <« 1,
and this means that the small-scale turbulence can still be considered locally homogeneous over the
distancel/m. Hence the theoretical framework developed for a flow with a constant strain rate con-
tinues to be valid (as in Hunt (1973), for sufficiently small-scale turbulence), and the large-scale flow
(3.43) can just be substituted in the original model, withppearing as a parameter. Subject to these
conditions, when (3.43) is used, the statistics of the small-scale turbulence will behave near the bound-
ary exactly as for a constant strain rate, with the TKE becoming largebasomes larger or smaller
than one. Over a distantérom the boundary, the statistics will change from their values modified by
blocking to their values influenced only by the straining flow. Finally, over a larger distance from the
boundary 0fO(1/m), the statistics will decay towards their totally undistorted values.

Since the exponential factor in (3.43) aims to account for the effect of the boundary on the strain
rate, and this effect is felt over a distance from the boundary of the order of the length scale of the
large eddiesl., m should in fact be oD(1/L). Furthermore, there is not, in real turbulence, a clear
separation between the length schlef a large-scale flow and that of the small-scale turbulence
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distorted by that flomf. Although this choice disrespects both the condition for the irrotationality of
the large-scale flow and the condition for local homogeneity of the turbulence, it will be assumed in
the following calculations that/m = L = |, because the agreement with data is optimised in that
way.

3.4.2 The Reynolds stress profiles

Before comparing results from the modified model of the previous subsection with data, an additional
aspect needs to be noted. In real shear-free turbulence, there are both upwelling and downwelling
zones near the boundary. The statistics of this turbulence averaged over a whole plane parallel to the
boundary should therefore be a mixture of the statistics in the upwelling zones and in the downwelling
zones. Neglecting effects associated with the finite size of these zones, their only relevant parameter
is their mass flux. Due to mass conservation, the total mass flux towards the boundary associated with
the upwelling zones has to be the same as the total mass flux away from the boundary associated with
the downwelling zones. In the present model, the mass flux towards the boundary is proportional to
the strain rate of the large-scale flow. Hence, the global effect of all the upwelling zones and all the
downwelling zones can taken into account by considering only one ‘global’ upwelling zone and one
‘global’ downwelling zone, with strain rates, and—a respectively, representative of the total mass

flux towards the boundary and the total mass flux away from the boundary. If, at a given time, the
‘global’ upwelling zone has a total strainthe corresponding ‘global’ downwelling zone must have a

total strainl/c, by continuity.

Figure 3.68) shows model results for the Reynolds stresses, for ‘global’ downwelling and up-
welling zones withc = 2.3 andc = 1/2.3 = 0.435, respectively, compared with data from Thomas &
Hancock (1977) for a shorter distance and a longer distance from the upstream end of the wind tunnel.
The data at the upstream location are in quite good agreement with the theory of Hunt & Graham
(1978) (present model with = 1), because nonlinear effects are unimportant. Further downstream,
however, the tangential Reynolds stress is larger and falls in between the theoretical lines calculated
for the upwelling and the downwelling zones.

This suggests that the Reynolds stresses averaged over a plane parallel to the boundary can be de-
termined simply by taking the average of the Reynolds streu#gézs associated with the ‘global’ up-
welling zone and the Reynolds stress@z, associated with the ‘global’ downwelling zone, nhamely

— 1 /5 o
7= (ui(“)2 + uSD)Z) . (3.44)

This approach is adopted in the theoretical results presented in figub, 3vBere some numerical
model data from Biringen & Reynolds (1981), for an earlier and a later time, are also shown. The
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Figure 3.6 (&) Reynolds stress profiles for the large-scale flow (3.43). Solid limes: 1 (undistorted), dotted lines:

¢ = 2.3 (downwelling zone), dashed lines:= 0.435 (upwelling zone), triangles: data of Thomas & Hancock (1977) at
upstream position, squares: data of Thomas & Hancock further downstrigefvefage of the Reynolds stress profiles for
upwelling and downwelling zones with the same intensity. Solid liees:1; dotted lines: average af= 2.5 andc = 0.4;
dashed lines: average of= 3.2 andc = 0.3125 circles: data of Biringen & Reynolds (1981) at earlier time; triangles: data
of Biringen & Reynolds at later time.

values ofc have been chosen so as to fit the data in the best possible way. Given the considerable
scatter of the data, which is due to the relatively small ensemble used in the averaging process, the
model does a very reasonable job in fitting the data.

3.4.3 The turbulent pressure field

A variable which is intrinsically related to the nonlinear interactions in the turbulence is the so-called
‘slow’ pressure. Kim (1989) presented results from numerical simulations of channel-flow on vari-
ances, correlations and spectra of both the fast pressure, which results from the interaction between
the turbulence and the mean flow, and the slow pressure, which results from the interaction of the tur-
bulence with itself. Perhaps the most striking aspect in Kim’s plots of the pressure spectra (his figure
9) is that the slope of the spectra at high wavenumbers is steeper than predicted by theory, particularly
near the channel wall, and does not differ appreciably between the fast and the slow pressures. Theo-
retical predictions indicate that the slope of the fast pressure should b€ (Durbin, 1978) and the

slope of the slow pressure should-b&/3 at high wavenumbers (Fureg al,, 1992).

Here, an attempt to explain these results is presented, based on the idea that the slow pressure
results from the interaction of the small eddies in the turbulence with the large eddies, and that these
large eddies can be represented by a uniform straining flow. This is equivalent to assuming that the
slow pressure is in fact a fast pressure where the turbulence is replaced by the small-scale turbulence
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and the mean flow is replaced by the large-scale turbulence.

In the present linear model, the pressure field is produced by the interaction between the small-
scale turbulence and the large-scale velocity gradients. That interaction happens everywhere, but if
the large-scale flow used in the previous subsection is adopted, the model will produce no pressure
fluctuations far from the boundary (since the large-scale flow tends to zero there). Hence, the straining
flow used originally (3.34) will be adopted instead. It will be shown that the observed differences
between the magnitude of pressure at the boundary and in the bulk of the flow can be explained
simply in terms of the blocking effect of the boundary, and that the variation of the strain rate does not
seem to be important in this case.

Making use of (3.25) and (3.26), the pressure variance is found to be

2= / / Q@ " kg ok, (3.45)

and the one-dimensional pressure spectrum, whose definition is

1 .
My(ky, X3,t) = E‘[/ (X1, X2, X3, 1) P(X1 + F1, X2, X3, t)& K" 1dry (3.46)

can also be expressed as

My — / / Qi Qo dkadks. (3.47)

Figure 3.76) shows profiles of the pressure variance for undistorted turbulence and for an up-
welling and a downwelling zone after some distortion has taken place. The first interesting feature
is that the pressure variance increases towards the boundary, where it attains a maximum. This is
caused by the contributions to the pressure associated with the image velocity field that is necessary
to satisfy the blocking boundary condition. Regarding this feature, figur@)3&¢embles figures 2
and 3 of Kim (1989), where profiles of the root-mean-square pressure are presented. In these figures,
the slow pressure also increases towards the boundary, but decreases slightly very near the boundary.
The latter effect is probably due to the viscous boundary layer, and cannot be captured in the present
inviscid model. The other interesting feature of figure & 7¢ that the pressure fluctuations associ-
ated with an upwelling zone are more intense than those associated with a downwelling zone (this is
consistent with the trends of the pressure-strain terms verified in figure 3.5). Hence upwelling zones
in shear-free turbulence beneath a free surface should be more important for surface wave generation
than downwelling zones.

Figure 3.7b) presents plots of the pressure spectrum predicted by the model, calculated ior
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Figure 3.7 (a) Profiles of the pressure variance. Solid lime= 1 (undistorted), dotted linec = 2 (downwelling zone),
dashed linexc = 0.5 (upwelling zone). If) One-dimensional spectrum of the turbulent pressure fluctuations. Solid line:
model, far from the boundary, dotted line: modelxat= 0, dashed line: data of Kim (1989), far from the boundary,
dash-dotted line: data of Kim, a = 0.

at the boundary and far from the boundary, compared with the numerical simulation data of Kim
(1989). These data have been renormalised so as to be fitted by the theoretical curves in an optimal
way, since it was impossible to find a relation between the normalisation used by Kim and that used in
this chapter (the vertical scales of the graphs presented in figure 9 of Kim’s paper have no label). Both
the theoretical spectra and the data have larger magnitude at the boundary than far from the boundary.
All the curves have a plateau and then a breakpoint and a sloping portion with negative slope at higher
wavenumbers. The theoretical curves both have a slopd df3 at high wavenumbers, which is also

the slope predicted by RDT for the fast pressure. The curves of the numerical data have a steeper
slope at high wavenumbers, especially at the boundary. While this slope is higher than that predicted
by the model, it is closer to that predicted by the model thar783. On the other hand, this slope

is approximately equal to the slope of the spectra of the fast pressure (not shown). This aspect is
consistent with the model. At dimensionless wavenumkgdrsot much greater than 1, the model
results fit the data quite reasonably. One of the possible reasons for the observed discrepancies is that
the slow pressure of Kim (1989) may be affected indirectly by the shear in the channel flow, which is
not taken into account in the model.

3.5 Conclusions

An inviscid rapid-distortion model has been developed for studying the interaction between the large
and small scales in shear-free turbulence beneath a flat boundary. The large-scale turbulence is treated
as a steady, axisymmetric straining flow, while the small-scale turbulence is assumed to be homo-
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geneous and initially isotropic far from the boundary. Subject to the condition that the small-scale
turbulence has a velocity scale and a strain rate which are much smaller than those imposed by the
large-scale flow, the model is linearised and solved in the spectral domain for the small-scale turbu-
lence. Turbulence statistics, such as the Reynolds stresses and various inviscid source terms in the
TKE budget are calculated, assuming that the undistorted small-scale turbulence is characterised by a
prescribed energy spectrum.

The distortion of the small-scale turbulence by upwelling and downwelling zones existing in the
turbulence is addressed by considering straining flows that transport fluid towards the boundary and
away from the boundary, respectively. It is found that these two types of flow affect the small-scale
turbulence in quite different ways. While the upwelling zone induces an increase of both the tangential
and the normal Reynolds stresses of the small-scale turbulence, the downwelling zone induces an
increase of the tangential Reynolds stress but a decrease of the normal Reynolds stress, rendering
the turbulence almost two-dimensional for sufficiently large distortions. The ratio of the tangential
Reynolds stress at the boundary and far from the boundary rises above 1.5 in the upwelling zone,
approaching asymptotically 2 for large distortions, while it decreases below 1.5 in the downwelling
zone, approaching asymptotically 1 for large distortions.

The TKE budget is analysed in detail. It is found that the evolution of the Reynolds stresses in
time is determined primarily by the production term in the Reynolds stress equations in the case of a
downwelling zone and for the normal component of the Reynolds stress in the case of an upwelling
zone, but the evolution of the tangential component of the Reynolds stress in an upwelling zone is
determined by the pressure-strain term. The pressure-strain terms act to move the turbulence towards
isotropy everywhere in a downwelling zone, and in the bulk of the flow in an upwelling zone, but away
from isotropy near the boundary, in an upwelling zone. The TKE of the small-scale turbulence rises
with increasing distortion both in an upwelling zone and in a downwelling zone, and this rise occurs
at the same rate at the boundary and far from the boundary, for a flow with a uniform strain, so that
the value of the TKE remains equal in those two regions. However, observations show that the TKE
tends to be larger near the boundary.

Such behaviour is due to the fact that the strain rate of upwelling and downwelling zones in fact
varies with distance from the boundary. The characteristics of the strain field associated with the
small-scale turbulence are investigated, and these characteristics are extrapolated to the large-scale
flow, assuming scale invariance. It is found that the strain rates are stronger and more anisotropic
near the boundary while they remain smaller and isotropic far from the boundary. This causes a larger
net effective strain at the boundary and explains the larger TKE levels that are observed there. An
approximate model is developed to address this aspect, where the strain rate decays exponentially to
zero away from the boundary. The model is only formally valid when the distance over which the
strain rate decays is much larger than the integral length scale of the small-scale turbulence, but in
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practice the Reynolds stress predictions are best when the two scales are equal. This reflects the lack
of a scale separation in the turbulence with which the model output is compared.

The pressure field associated with the distortion of the small-scale turbulence by an upwelling or
downwelling zone with a uniform strain rate has been calculated. It is found that the pressure variance
intensifies at the boundary, due to the image velocity necessary to satisfy the boundary condition,
and that the wavenumber spectra of the slow pressure, at the boundary and far from the boundary,
exhibit a -11/3 power law behaviour at high wavenumbers, which is the same that RDT would predict
for the fast pressure. Both the relative pressure magnitude and the power law behaviour of the spectra
showed some qualitative agreement with direct numerical simulation data of the slow pressure by Kim
(1989). This suggests that the increase in pressure magnitude at the boundary can be explained simply
by the blocking effect, and that the high wavenumber behaviour of the pressure spectra in shear-free
turbulence are determined primarily by the interaction between the large scales and the small scales in
the turbulence.

3.6 Appendix. Expressions of),

The components of th@; vector, introduced in (3.26), are defined as follows:

QL= 2p£2 e'""’@ — iﬁeklm @eg + K3k03ez oqik; — klk20263(12ik2
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CHAPTER 4

The initial generation of surface waves by turbulent shear flow

4.1 Introduction

The guestion of how wind blowing over a water mass generates surface waves has received consider-
able attention since the classical review of Ursell (1956). Miles (1957) and Phillips (1957) presented
the first two systematic treatments of this problem, suggesting two complementary wave generation
mechanisms, which are presently widely accepted. Phillips’ theory deals with the initiation of the wave
field by a resonance of the pressure fluctuations contained in the turbulent air flow with the air-water
interface, leading to a linear growth of the waves. Miles’ theory addresses the subsequent amplifica-
tion of the waves by a feedback, shear instability mechanism, and leads to exponential growth. More
recently, the sheltering wave growth mechanism first proposed by Jeffreys (1925) was also shown to be
important, and quantified in detail by van Duin & Janssen (1992) and Belcher & Hunt (1993). Both the
shear instability and the sheltering mechanisms belong to the category of feedback instability mech-
anisms, leading to exponential growth, and corresponding to source terms in the wave energy budget
roughly with the same form. The resonance mechanism and the feedback instability mechanisms have
been included in various wave prediction numerical models (Hasselmann, 1988).

Ultimately, all wave growth is caused by travelling stress fluctuations applied at the air-water
interface. When waves exist already, part of this stress is associated with the perturbation of the air or
water flows by the wave field. This part of the stress is dominant for waves of sufficient amplitude,
and has been the subject of the studies of Townsend (1972), Jacobs (1987), van Duin & Janssen (1992)
and Belcher & Hunt (1993). At the initial stage of wave growth, the stress fluctuations associated only
with the turbulence, which would exist even if the air-water interface was perfectly flat, determine the
wave growth. These stresses, in particular their inviscid part (the pressure), are central to the theory
developed by Phillips (1957)

Phillips (1957) found that the air-water interface responds to the turbulent pressure fluctuations
in the airflow as a forced harmonic oscillator. Among all turbulent pressure fluctuations, the most
efficient in generating waves are those advected by the wind at a velocity that matches the phase
speed of waves having a similar length scale. These pressure fluctuations can interact resonantly
with the air-water interface and make the waves grow fastest. Phillips derived an expression for the
wave spectrum resulting from this resonant process as a function of the spectrum of the pressure
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fluctuations present in the airflow. Subsequent theoretical investigations on this subject resulted in
only minor additions to Phillips’ theory. Krasitskiy (1980) considered the effect of the viscous stresses
on the initiation of surface waves, while Kitaigorodskii & Lumley (1983) and Sazontov & Shagalov
(1984) used dimensional analysis to obtain crude definitions for the spectrum of the turbulent pressure
fluctuations.

Only a few numerical and experimental studies have focussed on the initiation of surface waves.
Gelci et al. (1985) and Giovanangeli & Memponteil (1985) used discrete vortices in the airflow to
initiate the waves, but did not evaluate the pressure field. Their results were consistent with the exis-
tence of resonant wave growth, but were unable to demonstrate the quantitative accuracy of Phillips’
theory. Kahma & Donelan (1988) used a homogeneous boundary layer flow similar to that implied
in Phillips’ (1957) paper, but were forced to assume rather strong approximations about the spatio-
temporal structure of the pressure fluctuations, and consequently were very cautious when comment-
ing on the order-of-magnitude agreement achieved between the theory and their data. Recently, the
studies of Mellvilleet al. (1998) and Caullieet al. (1998) have led to renewed interest in this subject.

One key problem in validating Phillips’ theory using experimental data is related to the difficulty
of measuring the turbulent pressure spectrum at the air-water interface in the absence of waves. After
a turbulent wind starts blowing over a water mass, the waves generated as a result very soon begin to
contaminate the pressure measurements through their feedback on the mean flow (Kahma & Donelan,
1988). On the other hand, the measurement of very small waves, which are those likely to be dom-
inated by Phillips’ mechanism, is itself technically complicated and requires great accuracy. These
problems might be avoided through the use of numerical modelling, but numerical simulations of
flows with a mobile free surface have only become available recently (Buarale 1995; Tsai, 1998)
due to the complexity of the boundary condition at the interface, which is generally linearised.

For all these reasons, the analytical model of Phillips (1957) remains at present a very useful tool
to understand the initial stage of surface wave generation. If an actual wave spectrum is to be calcu-
lated from this model, however, some assumption about the form of the turbulent pressure spectrum is
required. Kitaigorodskii & Lumley (1983) and Sazontov & Shagalov (1984) assumed in their theoret-
ical studies that the pressure spectrum has a functional form suggested by dimensional analysis and a
simplified spatio-temporal structure. However, since the spatio-temporal structure of the turbulence is
crucial for determining the growth rate of the waves (Phillips, 1957), it would be preferable to model
the pressure spectrum in a way that accounts for the detailed dynamics of the turbulence. That will be
done in this chapter by using rapid distortion theory (RDT).

Being a linearised theory of turbulence, RDT is applicable to situations where the distortion of the
turbulence by itself is negligible compared with the distortion of the turbulence by external forcings
(Batchelor & Proudman, 1954). In the case of shear flows, this condition is satisfied where the shear
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rate is large compared with the typical frequency of the turbulent eddies, a situation that occurs in
boundary layers (Leet al, 1990). RDT was first applied successfully to boundary layer flow by
Townsend (1970), who was able to predict with good accuracy the spatial correlation functions of the
turbulent velocity. Subsequently, the theory was generalised by Durbin (1978), Lee & Hunt (1989) and
Mann (1994) to shear flows near a flat wall. While the studies of Lee & Hunt and Mann focussed on the
turbulent velocity statistics, Durbin’s study included calculations of the turbulent pressure fluctuations.
Through the linear approximation, RDT enables the turbulent pressure field to be straightforwardly
related to the turbulent velocity field, of which more details are known and better measurements can
be made. Durbin’s (1978) results for the correlations and spectra of the pressure at the boundary
showed qualitative agreement with data.

Now, according to Phillips (1957), the turbulent pressure fluctuations at a flat boundary are exactly
those responsible for the initiation of surface waves. Therefore, in this chapter, Durbin’s (1978) RDT
model is coupled with the wave generation model of Phillips (1957) and the complete model thus
obtained is used to predict the initial growth of surface waves at an air-water interface. Through RDT,
the surface wave spectrum is obtained as a function of the spectrum of the initial turbulent velocity, and
the spectrum of the turbulent pressure does not need to be parameterised. Phillips (1957) addressed
explicitly only the case where the pressure fluctuations responsible for generating the surface waves
originate in the airflow. But the dominance of these over the pressure fluctuations in the water flow is
not at all obvious. As noted by Belchet al. (1994), the wind induces a shear current in the water
which is characterised by a friction velocity,, =~ (pa/pw)%u*a, wherep, andp,, are, respectively,
the densities of air and water, amg, is the friction velocity in the air. If the turbulent pressure
fluctuations in the air and in the water are estimated, respectivedyudsandp,u2,, their magnitude
is similar, and both pressure fluctuations should have the same relevance for wave growth.

However, it will be found that the decorrelation time for the turbulent pressure fluctuations in the
airflow is much shorter than that in the water flow, making the turbulence in the water, according to the
model, more effective for generating waves than turbulence in the air. This is consistent with the recent
measurements of Caulliet al. (1998) and Melvilleet al. (1998), which show that the appearance of
the first visible waves generally follows the establishment of a turbulent shear current in the water.

The remainder of this chapter is organised as follow$4l&, the theoretical model for the initia-
tion of surface waves by a turbulent shear flow will be presentegd.By some statistics of the waves
generated will be shown and their behaviour will be discussed in detail. Finalf#t.4n the main
conclusions of this chapter will be reported.

68




Chapter 4 The initial generation of surface waves by turbulent shear flow

@ OC (b)
air ODG air

o U ®
GO0

00

water

0000

O
8@0@

CC water
OO

OO0

Figure 4.1 Schematic diagram showing the flow consideredirtifie uncoupled case anb) the coupled case.

4.2 Theoretical model

Consider a situation where the air and the water are initially at rest and the interface that separates the
two fluids coincides with the plang = 0. Assume now that, dt= 0, a horizontally homogeneous
turbulent wind starts blowing over the water in the regiar> 0 (this will be called theuncoupled

casg or that a horizontally homogeneous turbulent current starts flowing beneath the water surface
in the regionxz < 0 (this will be called thecoupled casge(see figure 4.1) The turbulent wind or

the turbulent current are associated with turbulent pressure fluctuations that will first initiate and then
amplify surface waves at the air-water interface. The characteristics of such waves, when they have
relatively low slope, and when the turbulence that generates them is relatively weak, constitute the
main topic of this chapter. To tackle this problem, an inviscid RDT model of turbulent shear flow
near a flat boundary similar to those used by Durbin (1978), Lee & Hunt (1989) and Mann (1994), is
coupled with a wave generation model which essentially follows Phillips (1957).

The case of a mean flow with a linear shear profile of constant sheaF rat& initially ho-
mogeneous and isotropic turbulence far from the boundary is considered for simplicity, since these
approximations yielded satisfactory predictions of various turbulent velocity and pressure statistics
in the RDT studies mentioned above. In this model, the presence of the boundary is taken into ac-
count by simply adding an initially irrotational correction to the velocity field, so that the boundary
condition is satisfied (Durbin, 1978). Although this assumption would only be strictly valid if the
boundary was suddenly introduced (Hunt & Graham, 1978), it is observed in measurements of shear-
free turbulence (which is the type of turbulence that would exist before distortion by a wind or current)
that the kinematic correction to the velocity due to the boundary is indeed approximately irrotational
(Hunt, 1984y). This is inferred, for example, from the fact that the dissipation VW remains
approximately uniform near the boundary, hence the vorticity I@Wﬁ is approximately constant
throughout the fluid. However, unlike in the cases treated in chapters 2 and 3, the velocity correction
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due to the boundary becomes rotational due to the mean sheas for

The conditions necessary for the model to be valid are now quantified and discussed. The total
velocity field U; consists in this problem of 3 components: a mean compadsenthich corresponds
to the mean wind or current, a turbulent compongnand a component associated with the orbital
motions of the generated surface Wavé\g). The pressure? can likewise be decomposed into a
mean, a turbulent, and a wave-related part. Hence

(W)

U=VU+u+uy ', 1=123
P=P+p+pW. 4.1)
Consider the momentum equation,
0, 0U; 10? 02U

= e R SR | R 4.2

at Tox; pox oxz’ *.2)
wherep is the density and is the kinematic viscosity of the fluid under consideration. The decompo-
sition (4.1) enables this equation to be expanded into a rather lengthy expression where each term can
be separately scaled.

If L andU are the typical length and velocity scales of the mean flowlattu are the typical
length and velocity scales of the turbulence, the wavelength of the waves generated by the turbulence
will also scale likel and the associated orbital velocities will be initially small, because they are

proportional to the wave slope. Hence, as Iongji% < U, the scaling of the components and
(W)
i

U’ may be lumped together. Provided that the Reynolds nufber UL /v is sufficiently large,

the viscous terms in (4.2) can be neglected. On the other hand, assuminggHat u/l < U /L and

ui(W) < u;, the leading order form of the momentum equation, involving only the mean variables, is

oU; oy, 10P

— i— =———. 4.3

P 0x; p 0X; (4.3)
This equation may be subtracted from (4.2) and the nonlinear terms involving prodmxptsrcnifw)
can be shown to be negligible compared with the remaining terms (Hunt, 1973). In that case, separate
linear equations for the turbulent and wave motions can be obtained:

ouj _ oui _an 1 op
au™ ™ Wy 10pW
| W)= 2T 4.4
o Yiax T o T Tp ox (44)

Since the mean shear ratd’isthenU /L = I, and the conditiot) /L >> u/I is equivalent td” > u/I.
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Since the wave orbital velocity i:z'(W) = O(awkwCw), Wherec,, is the corresponding phase speed and
awky is the wave slope, the conditicm{ww) < u; implies thatayky < u/cy. For a typical value of, for
exampleu/c, = 0.1, this condition is satisfied faawky < 0.1, which is always true initially. When

a random wave field is considered instead of a monochromatic surface ay&yemay be replaced

by the mean-square slope of the waves, MSS, and the phasegpeey be replaced by the phase
speed of the dominant waveg. An additional constraint on the model results from the fact that the
shear tends to make the turbulence progressively more anisotropic, and when the degree of anisotropy
reached is high enough, the nonlinear processes in the turbulence become more efficient in reducing
the anisotropy than estimated above. This places a limit on the total distortion that the turbulence is
allowed to undergd;t, which can be estimated from the study of lageal. (1990) to be around 10
(although in fact it depends on the shear rate).

Summarising, the conditions for the proposed model to be valid are

rl
S <1 —>1 Rexl MSS?

% <1, Tt<10 (4.5)

Of course, as the boundary ®f = 0 is approached, the scaling of the viscous terms changes
and these terms become important at a distance from the boundary of the order of the viscous bound-
ary layer thicknessd ~ (vI/U)% (Sternberg, 1962). For purposes of wave generation, viscosity is
important not only for energy dissipation but also because it is associated with viscous stress fluctu-
ations which contribute to wave growth alongside with the pressure fluctuations. The viscous stress
fluctuations, which are appreciable only inside the viscous boundary layer can be estimated as

11 = ”32 = O(pvu/d) = O(pv%uu%l‘%). (4.6)

while the pressure fluctuations are seen from the first equation of (4.4) and the previous scalings to be
p = O(pUu). The ratio of the viscous stress and pressure fluctuations is therefore

T1 (pviuuél‘%
=0 ———
pUu

) = O(Re Z(L/1)2), (4.7)

and it can be concluded that the viscous stresses are negligible provid&ginaufficiently large.

The above scaling arguments justify the use of a generic linear and inviscid model for predicting
the initial growth of surface waves by turbulence. The reasons why that model can be a combination
of Phillips’ (1957) wave growth model and Durbin’s (1978) model of a turbulent shear flow bounded
by a plane wall, are presented next.

According to Phillips’ theory, the pressure fluctuations relevant for wave generation at the initial

71




Chapter 4 The initial generation of surface waves by turbulent shear flow

stage are those that exist at a flat air-water interface. Now, a flat free surface and a flat solid wall affect
a turbulent flow primarily through blocking and viscous effects. The kinematic blocking effect is the
same in the two types of boundary, but the viscous coupling with the adjacent fluid is different (see
chapter 2), inducing different velocity profiles. Differences directly due to viscosity are confined to
the region inside the viscous boundary layer. In this region, the source terms in the equation that gives
the pressure are small (Kim, 1989), so the pressure is transmitted almost unchanged across the viscous
boundary layer. Therefore, for the purpose of calculating the pressure field at the boundary, what is
important is to model the flow outside the viscous boundary layer correctly (Durbin & Hunt, 1980).
The pressure field at the boundary is relatively insensitive to the type of viscous coupling of the fluid
with the boundary and can be modelled to a good approximation using the inviscid theory of Durbin
(1978), developed for a wall.

As mentioned before, Durbin’s model considers a mean flow with a constant shear rate. Because
the pressure fluctuations responsible for generating the waves receive their greatest contributions from
the flow very near the boundary, where the shear rate is particularly large, this assumption is probably
accurate enough for this purpose (Durbin, 1978).

Throughout this chapter, the turbulent shear flow will be assumed to exist in the air but not in
the water in the uncoupled case and in the water but not in the air in the coupled case. Since a wind
necessarily induces a shear current in the water, real situations are a mixture between the coupled and
the uncoupled cases, but for the purpose of comparing the relative importance of the flow in the air
and in the water for generating surface waves, an analysis of these idealised cases seems justified.

4.2.1 Wave generation by turbulence

Because of the high density difference between air and water, the wave orbital motions in the air are
not dynamically significant and the air-water interface can be treated approximately as a stress-free
boundary, apart from the forcing induced by the turbulence (Phillips, 1957). In the uncoupled case,
the distortion of the waves by the mean shear in the air is insignificant, and the waves are only affected
by the pressure fluctuations induced at the boundary by the interaction of the turbulence with the
shear flow. In the coupled case, the mean shear in the water not only interacts with the turbulence,
generating the pressure fluctuations that drive the waves, but also distorts the waves, slightly altering
their dispersion relation. Since the orbital motion of the waves generated initially does not penetrate
to a depth greater thdnthese waves are unlikely to be much affected by the variation of shear with
depth. Thus, the approximation of a constant shear rate in the coupled case is probably also a good
one for the wave distortion.

Both the turbulence and the surface waves are statistically horizontally homogeneous, but not
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stationary. The turbulence is inhomogeneous in the vertical direction, because of the blocking effect
of the boundary. The turbulent velocity and pressure can thus be expressed as Fourier integrals along
the horizontal directions, namely

uxt) = [t ke, xs, et oelddie,

p(x,t) = // P(k1, ko, xa, t)€kxatkee) g dky, (4.8)
where(; and p are time dependent Fourier amplitudes dRkgd k») is the horizontal wavenumber

vector. The surface elevatidnassociated with the wave field generated by the turbulence, and the
corresponding orbital velocity and pressure can be expressed in a formally similar way,

{(X1, X2, t) = //Z(kl,kzjt)ei(klxﬁkzx”dkldkz,
U e, = [ 604 ke e, D dhdie,

o™ (x,t) = / / B (ky, ko, Xa, 1) &% k2% gy (4.9)

Wherez, Oi(W> andp™) are time dependent Fourier amplitudes.

The linearised kinematic boundary condition at the air-water interface requires that the vertical
velocity of the interface equals that of the adjacent fluid. In a frame of reference moving with the
mean velocity at the air-water interface, this means

0
Us(xg = 0) + U (xa = 0) = af' (4.10)
Since this equation is linear it can be satisfied if
uz(xs =0) =0,
" (xa = 0) = gf, (4.11)

where the first equation is just the blocking condition for turbulence near a boundary without waves

and the second is the well-known kinematic boundary condition for infinitesimal waves in the absence
of turbulence. Using (4.9), the second equation of (4.11) can be expressed in terms of the Fourier
amplitudes of the surface elevation and the orbital velocity as

(X3 =0) = . (4.12)

The dynamical boundary condition is obtained from the momentum equation for the orbital veloc-
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ity, and is different in the coupled and in the uncoupled cases. The coupled case will be treated first,
since it is more complicated, and the uncoupled case will be obtained next as a special case.

4.2.2 Coupled case
In the coupled case, the mean velocity field is given by

U =01lxs If x3< O,
U=0 if x3>0. (4.13)

The wave motion, which is primarily determined by what happens in the water, is appreciably affected
by the shear so, for the mean flow given by (4.13), the second equation of (4.4) takes the form

W) W)
ou; ‘U Uj

) w)s dUz 1 opWV)
ot 0X1

+ U i1 =

- 4.14
dxs Pw 0X; (4.14)

wherepy, is the density of the water. Taking the curl of this equation, a vorticity equation is obtained.
If the vertical component of the vorticity equation is differentiated with respeks and subtracted
from the derivative with respect g of the spanwise component of the vorticity equation, it follows
that

o (Pu” +02“(3W) +62u(3W) L Ui(x) AL +62u<3W) +62“(3W) =0. (4.15)
o\ o2 X2 X2 Y0 | ox X2 FY N A '

This simplifies the problem considerably, since the only unknown wave quantity becomes the vertical

orbital velocityuém. Equation (4.15) has the general solution

025" = F(x1 — Ur(xa)t, Xe, Xa), (4.16)

whereF is an arbitrary function. If the wave motion is initially irrotational, thén= 0 att = 0 and
remains zero for all time, so

02ulY) = o. (4.17)

The dynamical boundary condition is obtained by differentiating (4.14) ferl with respect to
X1, adding it to the derivative of (4.14) for= 2 with respect tox; and using continuity. This gives an
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equation for the horizontal divergence,

(W) (W) (W) 2 (W) 2 (W)
0 (dug +Uli ous dU;ou; 1 (0 p2 n 0 p2 ’ (4.18)
ot \ 0x3 ox  \ 0xg | dxg Ox1  pw \ 0X x5

which must be imposed ag = 0. Since the waves are forced by the turbulence, the pressure at

the interface is equal to the turbulent presspirén the linearised boundary condition (4.18)") is
evaluated akz = 0 and results from 3 contributions: a turbulent part, a hydrostatic part, due to the
weight of water associated with the surface elevation, and a part due to surface tension, which involves
the curvature of the interface, namely

92 92
" — bt o |-y (55 52 ) . (@19)
2

whereg = 9.8m s 2 is the acceleration of gravity and= 72.6 x 10 m3s2 is the surface tension,
and the curvature term has been linearised. Using this definition and (4.13), the dynamical boundary
condition atxs = 0, (4.18), becomes

o [oudV aulV) 927 92 az 2\’ 1 /?p 02
— = |-T==-—g¢g —ZJF—Z +y — | {=— —E+i§’ . (4.20)
ot \ 0x3 Xy oxz  oxa c')x1 0x5 Pw \OX]  0X5

To further simplify this equation, it is necessary to use (4.8) and (4.9), which will be done next.

Since the wave orbital motion has to decay to zero as the depth increases,
ug" (xg — —0) — 0, (4.21)

hence ifuéw) satisfies (4.17) and is expressed as in (4.9), the corresponding Fourier amplitude takes
the form

S = ") (x3 = 0)eaze, (4.22)

whereky, = (k2 + k2) 2. Inserting the definitions of Z andp given by (4.8) and (4.9) into (4.20)
and using also (4.22), it follows that, &t = O,

aal" K w)

- I'Eu3 + (gkiz + Yk3,) (=

kg (4.23)
Pw

Finally, substitutingﬂéw) according to (4.12), an equation for the Fourier amplitude of the surface
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elevation results:

P kol | 55 ki

I
o
~—

(4.24)
where

03 = gkio + Yk, (4.25)

defines the natural angular frequency of surface waves in quiescent water. The solution of (4.24)
subject to the boundary conditioﬁét =0) = OZ/at(t =0)=0is

5 kig [t i 9 (g
((ke, ko, t) = ~ ouon /0 P(ka, ka2, X3 = 0,5)e Z12" 7 sin[oy(t — s)]ds, (4.26)
W
whereao is defined as
Mk \?
2_ 2 1
01=0; |1+ <2k1200> ] . (4.27)

The solution (4.26) is expressed as a time integral involving the pressure fluctuations at the air-water
interface. The surface elevation is therefore determined at each instant by the history of these pressure
fluctuations since the inception of the turbulent current.

4.2.3 Waves in a laminar shear current

The role of the mean shear in distorting the waves can be understood more clearly by setting the
turbulence to zero{ = 0), so that the turbulent pressupevanishes. From (4.24), the equation
governing the dynamics of the interface becomes

%0 kol s

2 e 0% =0 (4.28)
and, since this equation has no forcing, the behaviour of the wave variables becomes statistically
stationary. The amplitude of the surface eIevaﬁocan then be considered as the superposition of
many components oscillating sinusoidally in time. Consider one of these components,

~

L (ke ke t) = (K, ko, 0)e %, (4.29)

76




Chapter 4 The initial generation of surface waves by turbulent shear flow

10
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Ky, (M)

Figure 4.2 Phase speed of gravity-capillary waves in a linear shear current, along the direction of the currient; for
10st. Solid line: no shear, dotted line: with shear, waves propagating in the direction of the current; dashed line: with
shear, waves propagating against the current.

whereZ is an amplitude not dependent on time. On substituting (4.29) in (4.28), the ampflitude
cancels out and an equation that gives the dispersion relation of the waves is obtained:

0%+ g 05 =0, (4.30)
K12

wherea is the angular frequency. The solution to (4.30) is

ot ((ra, g) (4.31)
2k 2k12 0 '

and shows that the wave propagation is made anisotropic by the shear, with a maximum in anisotropy
occurring along the streamwise ) direction. In that direction, the phase velocitycis= o/k;2 and
given by

1
r r\? L\’
Q’V—_2k12i<<2k12> +co> , (4.32)

wherecy = 0p/ki2. This solution is well-known and was found, for example, as a leading order
approximation in the treatment of waves on shear currents by Shrira (1993).

The effect of shear is to decrease the phase speed of waves propagating in thexpatithation
and to increase the phase speed of waves propagating in the negative direction. Equation (4.32) shows
that this effect is especially important at low wavenumbers (see figure 4.2). Since the waves with the
lowest wavenumbers (highest wavelengths) are those whose orbital motions penetrate more deeply,
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physically it is as if the fluid below the surface is ‘carrying’ the longer waves with its own motion
(which is in the negative; direction), while the shorter waves are only affected by the motion very
near the surface, which is approximately zero. As (4.31) shows, this effect decreasesfike %

as the direction of propagatidhchanges fron® (parallel to the current) ta/2 (perpendicular to the
current). For waves perpendicular to the current, the mean shear does not affect the dispersion relation.

Since the existence of shear in the water changes the dispersion relation of freely propagating
surface waves, it affects the resonance condition in the wave generation process by slightly modifying
the velocity at which turbulent pressure fluctuations of a given scale have to be advected for resonant
growth to occur.

4.2.4 Uncoupled case

For an interface forced by pressure fluctuations driven by a turbulent shear flow in the air and un-
sheared water flow, the mean velocity field takes the form

U =0i1lxg if X3>0,
U=0 if x3<0. (4.33)

In that case, the wave motion is not appreciably distorted by the mean shear (which has an effect
O(pa/pw) weaker than in the coupled case) and so, from the point of view of the waves, it is as if
there was no shear at all. Then, the equation that the amplitude of the surface elevation must satisfy is
obtained by simply setting = 0in (4.24), which gives

022 25 I(12 A

— = ——%p(x3=0). 4.34

a2 T 0¢ O P(xs = 0) (4.34)
This is equivalent to Phillips’ (1957) equation (2.12). The solution of (4.34) for an initially unper-
turbed interface, wheré: GZ/at =0att =0,is

= k12
ka, ko, t) = —
tlk k) PwOo

/0t (K1, ka2, X3 = 0, ) sinjop(t — s)]ds. (4.35)

In order to proceed further from (4.26) or (4.35), it is necessary to specify the turbulent pressure
field. In the RDT approximation, the turbulent pressure fluctuations are linearly related to the turbu-
lent velocity fluctuations. Since the pressure at a given point (and therefore also at the boundary) is
determined by contributions of the velocity field coming from the whole domain (due to the elliptic
nature of equation that gives the pressure), it is convenient to specify first the turbulent velocity field
and only then calculate expressions for the pressure. This will be done in the next two subsections.
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4.2.5 Turbulent shear flow near a boundary

The turbulent velocity field will now be determined in the RDT approximation, following Durbin
(1978). A situation where the turbulence is below the boundary (coupled case), will be considered
next as an example, but the treatment is analogous if the turbulence is above the boundary. Consider
the first equation of (4.4) which, for a mean shear fldw= &1 X3, can be written

aui aui dUl 1 ap

— 4+ Ui— +ud1— = ———. 4.36

0t+ 16x1+ 3'1dX3 0 0% ( )
Taking the curl of this equation, a vorticity equation is obtained. If the vertical component of the
vorticity equation is differentiated with respectstp and subtracted from the derivative with respect
to x3 of the spanwise component of the vorticity equation, as was dofe 22 for the wave orbital
velocity, then an equation far; formally analogous to (4.15) is obtained:

0 02U3 62U3 62U3 0 62U3 02U3 02U3
— Ui(X3)=— =0. 4.37
ot ( o2 ox3  0x2 ) +Us(xe) 0x1 ( o2 ox3  0x2 ) (4-37)
That equation has the solution
%ug = G(x1 — Uz (X3)t, X2, X3), (4.38)

whereG is an arbitrary function. But the similarities between the wave and turbulent motions end
at this point. While the wave velocity is initially irrotational, the turbulent velocity is by definition
rotational, so the functios is not zero and is defined instead by the initial condition (cf. Durbin,
1978)

G(x1, X2, X3) = [PU3(Xq, X2, X3,t = 0). (4.39)

The boundary and initial conditions of the problem become much simplified if it is recalled now
that the turbulence far from the boundary is assumed to be homogeneous (Durbin, 1978). Since the
shear raté is constant, the turbulence remains homogeneous at all times. Thus, the turbulent velocity
far from the boundary can be expressed as a three-dimensional Fourier integral,

u(x,t) = / / / 6™ (k, t) @< *dk; dkadlks, (4.40)
whereﬂi(H) is the Fourier amplitude, and the wavenumber vekter (ki, k2, k3) is time dependent due
to the shear, which makes the turbulence anisotropic over time. Towards the boundary, the turbulence
is made inhomogeneous in tixg direction by the blocking effect. This effect can be taken into
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account by adding tui(m a correction which enables the flow to satisfy the boundary condition at the
interface (first equation of (4.11)). The other boundary condition states that this correction decays to
zero far from the boundary, ag — —oo. Following Durbin (1978), the initial condition states that

the correction is initially irrotational. The solution to the problent at 0 is then identical to that
corresponding to shear-free turbulence near a wall (Hunt & Graham, 1978). In particular, the vertical
velocity component takes the form

Ua(x,t = 0) = / / / A (ko,t = 0) (ékm _ ek°12X3) i(kovctkonY) g dkoodlkos, (4.41)

wherekgo = (ko1, Koz, Koz) = k(t = 0) is the initial wavenumber vector arkgi2 = (kg1 + koz)%. This
expression can be introduced in (4.39) to obtain the form of the funGiagp x, X3). Replacing the
argumentk; of that function byx; — U1 (X3)t and substituting the resulting expression in (4.38) yields

an equation fows in the general, time-dependent case. This equation is again subject to the same
boundary conditions as at= 0.

It is found that the horizontal components of the wavenumber vector are not affected by the mean
shear, and therefollg (t) = ko1, ko(t) = koz andki2 = ko1, but the vertical component has a linear
dependence on time (Townsend, 197&)t) = kos — ko1l't. For simplicity, the shorter notatiok,
ko andki, will be adopted henceforth instead ki, ko2 andkg1o. Accordingly, the time-dependent
solution for the vertical velocity component is (Durbin, 1978)

2 . .
Us(x,t) = / / / %og'ﬂ(ko,t —0) (é"3X3 - eklzxa) & (kakoxe) g, ik clks, (4.42)

whereky = (k2 4+ K& + k3;)2 andk = (K2 + k3 + K3(t))2. The form of the horizontal velocity
components); andus is rather more involved and has been obtained, for example, by Lee & Hunt
(1989) and Mann (1994). However, for the problem of surface wave generation, only the pressure
statistics are of interest, and in the RDT approximation these only depend on the vertical component
of the turbulent velocity, as will be seen next.

4.2.6 Pressure inthe RDT approximation

In§4.2.2 ank4.2.4, the wave amplitude was determined as a function of the amplitude of the turbulent
pressure fluctuations at the air-water interface. The turbulent pressure field will now be related to the
turbulent velocity field calculated ig?.2.5 making use of the simplifying assumptions of RDT. Again,

the coupled case will be considered as an example, but the treatment for the uncoupled case is entirely
analogous.
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Taking the divergence of (4.36), it follows that

U, du;

2 e JE—
5 P= 2 dx36x1'

(4.43)
To obtain the turbulent pressure field everywhere, this equation has to be solved, subject to the bound-
ary conditions

plxs — ) = p and 9P (x;=0) =0, (4.42)
6X3

wherepH) (x, 1) is the pressure field associated with the turbulence far from the boundary, and where
the boundary condition ag = O was obtained from the vertical component of the momentum equation
(4.36), taking into account the first equation of (4.11) (blocking conditigni}!) is defined as the
solution of

du; 0u;”

20H) — _
Hp de3 0xy

(4.45)

Using (4.8), the Poisson equation (4.43) may be simplified, becoming an ordinary differential equation
for the Fourier amplitudes of the pressure and velocity:

p 5, . .
Fv ki,p = —2plikyUs. (4.46)
3

The solution for the turbulent velocity (4.42), together with (4.8), may then be used, and the boundary
conditions (4.44) applied.

After some algebra, the solution for the Fourier amplitude of the pressure is found to be

A — 2i ﬁ%"(H) i iksXs 3 1 _ iks 123
b = 2ipr / 0@ |28+ (50~ 2, e i | gk, (4.47)

which at the boundary takes the simplified form

5 oK kK6 o)
k,k,x:O,tzlr—/.iu ko,t = 0)dks, 4.48
p( 1, K2, A3 ) p (||<3+k12)2 3 ( 0 ) 3 ( )

as obtained by Durbin (1978). This form is independent of whether the turbulent fluid is above or
below the boundary, and so gives the pressure fluctuations induced by the turbulence in the coupled or
in the uncoupled case, if the density in (4.48) is replaced by the density of water or by the density of
air, respectively.

Since the turbulent pressure that drives the waves is now known, it remains to substitute the pres-
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sure amplitude (4.48) in (4.26) and (4.35) to obtain the resulting wave field as a function of the turbu-
lent velocity field. It is then possible to calculate statistics of the waves.

4.2.7 Statistics of the flow

Like turbulence itself, the waves generated by a turbulent shear flow must be characterised by a range
of statistics, namely covariances, spectra and variances. Previous RDT studies have concentrated
on the statistics of the turbulent velocity and pressure fields. This chapter focusses primarily on the
statistics of the wave field induced by the turbulence.

First of all, it should be noted that, since the model is linear, the turbulent velocity and pressure, and

the surface elevation at any point in space and at any time can always be related to the ‘unperturbed
or ‘undistorted’ turbulence which is assumed to exist far from the boundary at the initial time. Hence,

ui(x,t) = / / Mij (K, Xa,t) GEH)(ko,t _ 0)ékake) g, dkpdlks,
p(x,1) / / Qj(k, xa, 1)d'") (ko, t = 0)& k) gy dkydks,

Z(x1, %2, 1) / / i (k, ¥, 1) (Ko, t = 0)s %) iy s, (4.49)

where the matriXVj; and the vector®; andS; are given in appendix 1§4.5) for the flow under
consideration. The matriM;; may be extracted from the expressions contained in the study of Mann
(1994), where, however, there is a minor mistake which has been corrected in appendix 1. The vector
Q; may be obtained from the expressions in Durbin’s (1978) study or (4.47) of this chapter. Finally,
Sj can be determined after substituting (4.48) into (4.26) or (4.35).

Since the boundary a; = 0 makes the turbulence inhomogeneous inxthéirection, it only
makes sense to calculate spatial covariances and spectra alorgahdx, directions. The two-
dimensional spectra corresponding to the variables in (4.49) are defined as

0 (K1, ko, X3, t) = // Ui (x, D)Uj (Xq + 1, X2 + 2, X3, t)e~ (Kirtker2)gr  diry

M(ky, ko, x3,t) = (2]_[)2/ p(x, ) p(Xy + F1, X2 + 2, X3, t)e Krtker2lgr dr,

l .
Wik, ko, t) = (2]_[)2/ L(x1, X2, 1) (Xq + 1, X + o, t)e  kartker2)gr, gy (4.50)

where the overbar denotes ensemble averaging, and v@giie the velocity spectrumll is the
pressure spectrum amelis the surface elevation spectrum. Taking into account (4.49), these spectra
can be expressed as functions of the corresponding undistorted Fourier amplitudes in the following
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simplified way (cf. Hunt, 1973),

Oij (K1, ko, x3,1) = /Miijmq)m(ko)dka,
M(ka, k2, X3,1) = /Qkaq)S:n)(ko)dk&
Wik, ke,) = [ Sl (ko) (4.51)

where the three-dimensional wavenumber spectrum of the undistorted turbulent v@lﬁﬁit;an be
related to the corresponding Fourier amplitude using

0" (ko) 0™ (i) = ®{f" (ko)3(ko — kp)- (4.52)

If the undistorted turbulence is isotropic, this spectrum takes the form

(4.53)

cDi(jH)(kO) _ <6ij . kOikOI) E(kO)

) ang’

whereE (ko) is the energy spectrum of the undistorted turbulence. Following Hunt & Graham (1978)
and Durbin (1978), the well known vondman form of the energy spectrum, which has proved to be
appropriate for inviscid calculations, is adopted here,

2 Gk _, (4.54)
(01 + (kol)?)®

whereg; = 0.558andg, = 1.196 are dimensionless constants.andl, the velocity and length
scales of the turbulence used in (4.54), are defined, respectively, as the initial root-mean-square (RMS)
turbulent velocity and integral length scale far from the boundary.

The two-dimensional spectra of (4.51) are functions of the horizontal wavenukbamgk,. To
obtain one-dimensional spectra, the expressions of these spectra have to be integrdtgdrdyer
To obtain covariances or variances of the velocity, pressure, or surface elevation, the expressions must
be integrated simultaneously ougrandks.

Of particular interest in this chapter are the surface elevation statistics, which have a relatively
simple explicit form, due to the fact that they only depend on the vertical component of the turbulent
velocity. From (4.51) and appendix 1, the surface wave spectrum in the uncoupled case may be written

t o — 2
/O sin(op(t S))st dkos, (4.55)

2 2
Wik, ko, t) = mrared / E(ko) (—ika(s) + ki2)

~4mpg,  of
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while in the coupled case, it has the form

T 2

1,k t dm .
Wik ko, t) = T 0%/E(ko) /O Cila(g kg SOt 9)ds dos (4.56)

The expressions between brackets in (4.55) and (4.56) can be expanded into an oscillating part and
a growing part (see appendix §4.6). The oscillating part, although formally accurate, corresponds

to the addition of an oscillatory function of time and wavenumber to the spectra, which introduces
undesired noise in the calculated statistics. For that reason, in the following numerical calculations,
only the growing part of the solution will be considered. This is approximately equivalent to time
averaging the spectra over an interval sufficiently long to filter the oscillations, but shorter than the
time scale relevant for wave growth. It is also found that the time integrals in the expressions between
brackets can be written explicitly in terms of exponential integral functions of a complex argument.
The final form taken by these expressions is rather lengthy, so it has been left for appefdii .3 (

It can be seen from (4.55) and (4.56) that the integrals between brackets are somewhat akin to a
Fourier transformation in the time domain. Over a sufficiently long interval, the fasitg{is(t — s))
andexp[(ilky/2ki2)s] sin(o1(t — s)) select frequencies of the forcing which are close to the reso-
nance frequency, thus making the surface wave spectrum grow preferentially for the combination of
frequency and wavenumber that corresponds to freely-propagating waves. The time-dependent ex-
pression in the denominator, however, increases in time and limits this growth.

4.2.8 Dimensionless parameters

In order to avoid redundancy when testing the model, it is convenient to reduce the number of input
variables of the model to a minimum. This can be done by making the expressions of the surface wave
spectrum dimensionless¥(ky, ko, t) has dimensions dengttf, hence (4.55) and (4.56) should be
divided byl* to become dimensionless. The result is

t' Qi !4 2
/0 sin(ag/I'(t s))OIS oK), (4.57)

1 p2 k/2
W /,/,t/—ffafl/E// :
ol WoIlJo "0, - 14972

- 4mpg of

in the uncoupled case and

, 2
i

k2 t/ 2k’12S ]
V) = gt [EK)| [ s Snoy/ T~ 9)ds dis (450

~ 4no? ki, — iK5(9))
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in the coupled case, where the primed variables which appear in both equations have been made
dimensionless usingandu (e.g. " = I'l /u), except for the dimensionless time, which is defined as

t' = I't. It can be seen from (4.57) and (4.58) that, apart figrandk,, the dimensionless surface

wave spectrum depends of), t" andl™ in the coupled case araj), t’, I’ andpa/pw in the uncoupled

case. The density ratio considered will always be that of the air to the waigy/s@ can be taken as

a constant. On the other hand, using the definitioa;af4.27), it follows that

nt 2
1+( M ) ] (4.59)

o2 = o2

!/ /

henceo’ is a function ofoy andl™ (apart fromk; andk5), and the parameters relevant for the coupled
case are the same as those relevant for the uncoupled case.

Now, from (4.25) it can be deduced that
o¢ = Fr 2Kk, + We k3, (4.60)
where

u lu?
. We= —

(4.61)

are the Froude number and the Weber number, respectively. So the dimensionless natural frequency
o, depends orFr, Weandkj,. From all these results, it can be concluded that the dimensionless
parameters controlling’ areFr, Wg t’ andl”’. As (4.60) showsk-r andWeonly enter in the equation

for W indirectly, throughop. The Froude and the Weber numbers estimate the relative importance of
the forcing at the interface due to the turbulence and the restoring forces due to gravity and surface
tension, respectively. The larger these two numbers are, the easier it becomes for the interface to be
deformed by the turbulence (see chapter 1).

Sinceg andy are fixed physical constants, definition (4.61) implies thiaandWeare uniquely
related to andu and either pair of variables may be used interchangeably. As in Brocchini & Pere-
grine (200@), | andu will be adopted instead dfr andWeas direct input parameters to the present
surface wave model, because physically plausible values are more readily found for these dimensional
guantities.
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4.3 Results

Results will now be presented for the coupled and uncoupled cases. In the uncoupled case, the values
of the turbulence intensity and the shear rate for the flow in the air are higher than the corresponding
values in the water for the coupled case. This is done in a way that guarantees a similar magnitude
for the pressure fluctuations in both cases. The scaling of the pressure fluctuations presghfied in

in fact suggests that this approximation may be reasonably realistic in air-water coupled flows. The
idea is to show how the temporal structure of the turbulent pressure (not only its intensity) is important

in the evolution of the wave field. As mentioned above, the input parameterswaité andl”’. The

relation between these parameters that ensures a similar pressure intensity in the coupled and in the
uncoupled cases will be defined next.

The pressure variance at the interface induced by a turbulent shear flow existing in the air or in
the water can be obtained by integrating the two-dimensional pressure spéttimr(4.51) over
ki1 andky, making use of the expressions fQr available in appendix 184.5) and also (4.53). After
some algebra, and using the dimensionless variables introduced in (4.57) and (4.58), the dimensionless
pressure, which is defined as

p
/
p = —prul, (4.62)
is found to have the variance
k/2 , k/ ,
P2 = 0.t) = - // / W k,4 7 (K)o dkia, (4.63)

By inspection of (4.63), it is clear that the dimensionless pressure variance at the interface is only a
function oft’. Hence, for a givert’, the dimensional pressure variance is proportionglpfoul )2.

This reasoning is valid both for turbulence in the water (coupled case) and for turbulence in the air
(uncoupled case). So, in order to have pressure fluctuations of a similar magnitude in the coupled and
uncoupled cases, the produail has to be greater in the air than in the water by a fagigipa. In

the following treatmentp,,/pa = 10° is taken and, to satisfy the above constraint in a very simple
way, I, uandl are each assumed to be greater in the air than in the water by a factor of 10. Although
rough, this estimate is in clear qualitative agreement with experiment: it is well known that shear is
more intense and turbulence more vigorous and characterised by larger eddies in the atmosphere than
in the ocean (Donelan, 1990).
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4.3.1 Mean square slope of the waves

The mean square slope (MSS) of the surface waves generated at the air-water interface will be deter-
mined first, because it gives a gross measure of the size of the waves. It should be emphasised that,
since both gravity and surface tension were taken into account in the treatnigh othe surface

waves under consideration are gravity-capillary waves. The MSS can be found by integrating the
surface elevation spectrum multiplied kg over all wavenumbers:

(N (TNl
MSS = <ax1> + <6x2> — / / K2, W(ky, ko, t) gk, (4.64)

Figure 4.3 shows the evolution of the MSS of the surface waves predicted by the model for the
coupled case as a function of dimensionless timin figure 4.36), the sensitivity of the MSS tb’,
keeping andu constant, is tested. It can be seen that the wave growth is faster and more sustained for
higher values of’. This was to be expected since, as shown in the previous subsection, the pressure
fluctuations that generate the waves are proportional to

In figure 4.3b), the MSS is plotted for different values af keepingl"’ and| constant. It is
observed that the waves grow faster and for a longer time wigshigher. This is not surprising either,
since the pressure fluctuations that drive the waves are proportionalTtoere is an indirect effect
which further promotes wave growth: whéhis kept constant and is increasedl also increases
proportionally. Because of this, the MSS is very sensitive. to

Finally, figure 4.3¢) displays the variation of the MSS growth withkeepingl"’ andu constant.
It can be seen that the waves grow faster for lower valuds @¥hile the pressure fluctuations that
generate the waves are proportional t6 decreases dsincreases wheh’ is kept constant and the
two effects cancel. However, since the dominant wavelength of the waves is approximately equal to
the length scale of the turbulentavaves of a given amplitude tend to be steeper for smal@ther
gualitative aspects of these curves will be discusséd.id.2.

Quantitatively, for example when= 5cm u = 5cms?t andl” = 10(i.e. [ = 10s 1), the MSS
takes a value 00.002att’ = 3. This means that the root-mean-square (RMS) slope takes a value of
~ 0.05at 0.3 s. Having in mind the value tf this corresponds to waves sf 2.5mm amplitude,
which are necessarily visible. The chief criterion used in choosing the valu€s waindl used in
figure 4.3 has been the ability of the model to produce waves with a RMS slopé0df) in the
time interval considered. The values adopteduor andl™" are also found to be of the same order
of magnitude as those which can be inferred by inspection from the laboratory data of Mstlalle
(1998), or Magnaudet & Thais (1995) (slightly higher than observed in the cage dhe value of
t’, on the other hand, is within the range of total distortions used by Townsend (1976) et ke
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Figure 4.3 Time evolution of mean square slope of the waves in the coupled casé.= 5cm, u = 5cms?. Solid
line: " = 5, dotted line:"" = 10, dashed linel”’ = 20, long-dashed linel" = 50. (b) | = 5cm, " = 10. Solid line:
u = 3cms?, dotted line:u = 5cms?, dashed lineu = 7cms?, long-dashed lineu = 9cms™. (c)u= 5cms?, ' = 10.
Solid line: | = 1cm, dotted line:l = 2cm, dashed linel = 5cm, long-dashed linel = 10cm

(1990). Hence, these are reasonably realistic values.

Figure 4.4 shows plots of the MSS as a functiornt’aifh the uncoupled case for values Iof,
u andl ten times larger than those used in figure 4.3, so as to produce pressure fluctuations of the
same magnitude. Two differences immediately stand out between figures 4.3 and 4.4. Firstly, in the
uncoupled case the MSS values attained are much lower than in the coupled case, despite the turbulent
pressure fluctuations being of the same magnitude. In all the three plots in figueescy.t{e MSS
barely reacheg x 108, which corresponds to a RMS slopebk 102. In a real situation, waves
with such a slope would be invisible to the naked eye. Secondly, although the trends in the behaviour
of wave growth with the parametefs, u andl are in the same sense as in the coupled case, the
sensitivity to the shear raf€ is much reduced (see figure 4)) Both these aspects are linked with
the decorrelation process of the turbulent pressure fluctuations over time, and will be explained in the
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Figure 4.4 Time evolution of mean square slope of the waves in the uncoupled @de=(0.5m, u = 0.5ms?*. Solid
line: " = 50, dotted line:l’ = 100, dashed linel" = 200, long-dashed linel” = 500. (b) | = 0.5m, " = 100. Solid line:
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next subsection.

There is a considerable resemblance between the MSS curves presented in figure 4.3 of this chapter
and those presented in figure 3 of Cox (1958). Qualitatively, in both cases the MSS initially increases
at a fast rate, but later increases progressively slower, reaching an approximate plateau. This feature is
also related to the time evolution of the pressure fluctuations, which will be addressed in the next sub-
section. Quantitatively, the time interval over which the waves grow rapidly (which can be evaluated
visually from Cox’s figure 3) isz 0.5s not very different from the value extracted previously from
figure 4.3 of this chapter (0.3 s). The MSS values of figure 4.3 are smaller than those of Cox by less
than an order of magnitude, while the values of figure 4.4 are insignificantly small by comparison. It
thus seems that the coupled case explains Cox’s results better than the uncoupled case, which leads to
the conclusion that the initial wave growth observed in Cox’s experiments may be driven by turbulence
in the water rather than by turbulence in the air.
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In Cox’s figure 3, the fetch at which waves are initiated is progressively translated upstream as
the windspeed increases, but is always greater than approximately 1m, for the range of windspeeds he
considered. This also supports the idea that it is the turbulence in the water that generates the waves,
because it is only after the wind has blown for some distance over the water that a shear current appears
in the water and becomes turbulent (Caulkal., 1998).

4.3.2 Decorrelation of the pressure fluctuations

To understand why the waves generated in the uncoupled case are much smaller than those generated
in the coupled case despite the fact that the magnitude of the forcing pressure fluctuations is the same,
recall that the spatio-temporal structure of these pressure fluctuations is also crucial for wave growth.
Phillips (1957) pointed out that resonant wave growth occurs when pressure fluctuations advected over
the air-water interface match both the wavenumber and the frequency or phase speed of free surface
waves. The resonance process would be maximised if the pressure fluctuations with the appropriate
‘dispersion relation’ were rigidly advected, following the waves with which they are able to resonate.
But such perfect resonance never happens in turbulent flows. Due to the interaction between the mean
flow and the turbulence or the turbulence with itself, pressure patterns with given initial length and time
scales lose coherence as they are transported by the velocity field, and are only capable of interacting
resonantly with a wave for a finite time. That time is the decorrelation time of pressure, which Phillips
calls 8 in his theory. Corcos (1964) has suggested that, in a boundary layer flow, ‘the dispersion of
the sources of pressure by the mean stream may well be the dominant mechanism responsible for the
convective lack of coherence of pressure’. In other words: the mean shearing of the turbulence may
be the primary cause for the decorrelation of the pressure fluctuations. In the present RDT model, the
mean shear is not the dominant mechanism for the decorrelation of the pressure fluctuations, but the
only mechanism, since the turbulence does not interact with itself.

A function which contains useful information about the decorrelation time of pressure is the tem-
poral covariance function of the turbulent pressure fluctuations. That function can be determined at
the air-water interface by multiplying (4.48) at tirhby the same expression at tifne At (whereAt
is a time lag), then using (4.8) and ensemble averaging. The resulting expression can then be made
dimensionless, yielding

PP +AY) = / / / ki E'llk) i, di, k! (4.65)
art ) )] K (K, — iKg(1))2(Ky, + ik (1 + At))2 12 '
whereAt’ = At is the dimensionless time lag. The dimensionless pressure covariance only depends
ont’ andAt’. If this covariance is divided by the dimensionless pressure variance (4.63), the pressure
correlation function is obtained. The pressure correlation has been plotted in figure #.5=fd,
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Figure 4.5 Temporal correlation of the pressure. Solid litte= O, dotted linet’ = 3, dashed linet’ = 5.

3 and 5, as a function dit’. The dependence of this function gnis relatively weak. Concerning

the dependence aft’, the pressure correlation has a maximum at the origin, then becomes slightly
negative, and for large values Af’ decays to zero. The point where this function intercepts the
horizontal axis remains approximately the same for eterilow, the location of this intercept can

be understood as giving one of the possible definitions of decorrelation time for pressure. In figure
4.5, the intercept corresponds to a valuétdf~ 1.5. So, it can be concluded that the dimensional
decorrelation time for pressure & ~ 1.5/'. Hence the turbulent pressure fluctuations remain
coherent for a shorter time as the shear rate increases.

Since the shear rate is higher in the air than in the water, the decorrelation time for the turbulent
pressure fluctuations is shorter in the air than in the water. This effect counteracts the proportionality
of the pressure to the shear rate which was seen to exist at the begingéhg.0b0, even if the pres-
sure fluctuations in the air have the same magnitude as those in the water, they are considerably less
coherent, and that is the reason for the reduced wave growth in the uncoupled case. The dimensionless
number which best describes this effect is

g, O

ﬁzg, (4.66)
which appears in the argument of the sine function in the nondimensional solution for the wave spec-
trum (4.57), and also, more indirectly, in (4.58). When (4.66) is larger than 1, the turbulent pressure
fluctuations decorrelate over a time longer than one period of the free surface waves and considerable
resonant or near-resonant growth may be expected. Conversely, when (4.66) is smaller than 1, the
pressure fluctuations decorrelate over a time shorter than one period of the free surface waves, and
sustained growth is highly inhibited.
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Figure 4.6 Dimensionless wavenumber spectrum of the pressure along the direction of the current. Sotid=in@;
dotted line:t’ = 3, dashed linet’ = 5.

0p depends orki2 and so is a function of the length of the surface waves. Since for turbulence
with an integral length scale the dominant waves generated have a wavenukber: 21t/l, the
‘dominant’ angular frequencgy = op(ki2 = 211/1) is more useful thawy for evaluating the overall
effect of the pressure decorrelation of the wave field. The dimensionless quantity which controls wave
growth then becomes (4.66) withy replaced byop. The ratiogp/I" is typically ~ 4 in the coupled
case andv 0.1 in the uncoupled case so, according to the above remarks, wave growth is favoured
in the first case and highly inhibited in the second. This is in agreement with the actual numerical
results. Interestingly, an increase in eitlfieor | contributes to a decreasedg/I'. In the case of,
this happens for obvious reasons; in the case tifrough the decrease of the wavenumber at which
the wave spectrum peaks, which results in a decreasg. of

The reason why the wave growth depends very weakly amthe uncoupled case (figure 4aJ(is
that the effects of increasirigon the magnitude of the pressure fluctuations and on their decorrelation
time almost offset each other for high valued af

A qualitative feature of figures 4.3 and 4.4 that was noteg4ii3.1 is the slowing down in the
growth rate of the MSS as time progresses. That feature is related to the time evolution of the turbu-
lent pressure fluctuations that force the waves as the turbulence is subjected to an increasingly large
total distortion in the RDT model. It can be understood by plotting the time evolution of the one-
dimensional pressure spectrum at the interface. That spectrum, which is seen from (4.51) to be

My (ke, % = 0,t) = / / QQrP) (ko) dkoks, (4.67)

can be determined using the expressionsJpifrom appendix 144.5) and also (4.53), to yield, in
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dimensionless form,

% 1
Mi(k, % = 0t) = - / / i (KIdaK (4.68)

wherel) = My/(p?r2u?3). The dimensionless pressure spectrum only depend$ andt’ and

is plotted in figure 4.6 for different values tf As time advances, the peak in the spectrum moves
towards lower wavenumbers and the energy at high wavenumbers decreases. Therefore, the pressure
forcing at the interface moves towards larger scales and these scales contribute less and less to the
surface wave slope, making the slope grow progressively slower. This process corresponds to the
elongation of the turbulent eddies in the streamwise direction, as observed, for example, in the numer-
ical simulations of Leet al. (1990). In this light, the initial, relatively fast, rise of the MSS curves in

figure 3 of Cox (1958) may be interpreted as corresponding to the inception of turbulence in the water,
and the levelling out of the curves as being due to the subsequent stretching of the turbulent eddies by
shear in the boundary layer of the water flow.

4.3.3 Surface wave spectra

Despite its limitations, the model seems to indicate quite firmly that it is the turbulence in the water
that initially drives the surface waves. Therefore, more detailed statistics of these waves will now be
presented for the coupled case.

The curvature or saturation spectrum of the surface waves is defined as
B(ky, ka, t) = kKLW(ky, ko, t). (4.69)

This spectrum is dimensionless by definition, and will be plotted next in the functional form
B(ki2, 6,t'), where® = arctariky/k;) is the angle of the wavenumber vector with the direction of
the current.

Figure 4.7 shows the sensitivity of the predicted curvature spectrum to the input vaFiatlasd
u, for an angle® = 0 and a dimensionless tinté = 5. This time was chosen because, on the one
hand, it is within the range of realistic total distortions (see last equation of (4.5)) and on the other
corresponds to a stage where the MSS has almost stopped growing (see figure 4.3). The spectrum
is plotted as a function of the dimensional wavenumber and not as a function of the dimensionless
wavenumber, because the former variable is more frequently used in measurements of wave spectra
and also because it bears out more clearly the important wavenkmker 367nT . This wavenum-
ber corresponds to the transition between the gravity and the capillary wave regimes, where the phase
speed of surface waves is a minimum. The first aspect which stands out in figuesyig that
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Figure 4.7 Curvature spectra of the waves along the direction of the current, in the coupled case, at dimensionless time
t' =5. (@)l = 5cm u=5cms?. Solid line:I" = 5, dotted line:l"" = 10, dashed linel" = 20, long-dashed linef’ = 50.

(o) | = 5cm " = 10. Solid line: u = 3cms?, dotted line:u = 5cms?, dashed lineu = 7cms?, long-dashed line:
u=9cms? (c)u=5cms? " = 10. Solid line:| = 1cm dotted line:!l = 2cm, dashed linel = 5cm, long-dashed line:

| =10cm

the curvature spectra of the waves are sharply peaked. The peak occurs roughly at the wavenumber
ki2 ~ 2m/l, as predicted before. Some departure from this value towards lower wavenumbers can be
attributed to the elongation that the turbulent eddies have suffered in the streamwise dirdttiob at

(cf. figure 4.6).

In figure 4.76), it can be seen that, &3 increases, the level @(ki», 0) generally increases, in
agreement with figure 4.3. The peak of the spectrum moves to the right, tokyasdand the zone
to the left of the peak lowers slightly, while the zone to the right rises. This happens because, for a
higherr, the ratio (4.66) is only larger than 1 (favouring wave growth) for a higheand therefore
for a higherky,. The value of the spectrum at the peak varies betwe&n< 10° and~ 9 x 104,

Figure 4.7b) presents the dependence of the curvature spectrum on the turbulence RMS velocity
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The spectral density increases witkeverywhere, but more so at the peak and to the right of the peak.
There is a drift of the peak towards higher wavenumbers i€reases, but much less pronounced
than in figure 4.74). Maximum values of the spectrum vary betwee® x 10~° and~ 2 x 1073,

Finally, figure 4.7€) shows the dependenceBfk;», 0) on the turbulence length scdleThere is
a general decrease on the values of the spectrum as the length scale increases, in agreement with the
MSS results. The spectral peak moves towards lower wavenumberd witeaases, as expected. In
that process, the energy to the left of the peak increases, while that to the right decreases. Maximum
values range from: 9 x 10 °to~ 2 x 1073,

Some of the features just described can also be found in the laboratory datanef& Riemer
(1990) and Hwanget al. (1993) despite the fact that their wave spectra were measured at fetches
of 90m and 16m, respectively, where certainly many effects not considered in the present model,
such as nonlinear wave interactions, growth by feedback instability and wave breaking must have
come into play. In figure &) of Hwanget al. (1993), it is particularly significant that the curvature
spectrum of the waves is sharply peaked, and that the peak tends to become centre#t,asasd
the wind-friction velocity increases (see aléthde & Riemer (1990)). In figure 9 ofine & Riemer,
the high-wavenumber part of the spectrum tends to rise relative to the low-wavenumber part of the
spectrum as the windspeed increases, and that is also observed in the present model whémeither
uincreases.

Since the wave field is always initiated by turbulent pressure fluctuations, and the feedback insta-
bility mechanisms that later become dominant, as well as the nonlinear wave interactions, can only
modify the wave spectrum, it is perhaps to be expected that some of the features of the spectrum at the
inception of the waves will be preserved. This may account for the similarities encountered between
the model results and the data.

4.3.4 Angular energy distribution

The curvature spectrum contains information about the angular distribution of the wave energy, which
will be analysed next.

Figure 8 of &hne and Riemer (1990) shows that the energy distributi@tkiy, 6) for the mea-
sured waves is relatively narrow for the whole range of wavenumbers considered at relatively low
windspeeds, but broadens, especially at low wavenumbers when the windspeed increases. For wind-
speeds greater thaa 5.4ms 1, the spectrum has a bimodal distribution at low wavenumbers, with
peaks centred at some particular angle symmetrical about 0. The theoretical wave model of
Kudryavtsewet al. (1999) also incorporates a broadening of the spectrum with decreasing wavenum-
ber and increasing windspeed (see their figure 6).
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Figure 4.8 Variation of the curvature spectrum with direction, in the coupled casé,fobcm u = 5cms* andt’ = 5.
Solid line: ki, = 20m?, dotted line: ki, = 50nT?, dashed line:k;, = 100nT?, long-dashed linek;, = 200nT?,
dash-dotted linek;, = 500nT . (a) lower shear ratd,’ = 10. (b) higher shear ratd,’ = 50.

Figure 4.8 displays plots @(kj2, 8), for various values ok;», as a function o6, at a dimension-
less timet’ = 5. In figure 4.86), the spectral density distribution varies with the angle approximately
ascos 0, because of the factdqf present in the expression of the wave spectrum (4.56). Only at
the lowest wavenumber considered can a slight broadening be noticed. In figloe Ad(ever,
where the shear rate has been increased, a different behaviour can be observed. While at the high-
est wavenumber, the spectral density distribution is still peak@d-=ai0, at lower wavenumbers the
distribution becomes flattened and then bimodal, emulating qualitatively the experimental data. The
wavenumbers for which this bimodal behaviour occlis € 100n 1) roughly agree with those in
figure 8¢) of Jahne & Riemer (1990), which corresponds to a windspe&t3sh s L.

Physically, the broadening of the spectrum occurs in the model because the pressure fluctuations
at the interface move at different speeds according to their scale. Large-scale pressure fluctuations
are induced by large turbulent eddies (Durbin, 1978) existing at a wide range of distances from the
interface, and advected at a wide range of velocities. Hence, these pressure fluctuations are also
advected at a wide range of velocities. The small-scale pressure fluctuations, on the other hand,
are induced by small turbulent eddies at short distances from the interface, which all have a low
advection velocity. Hence, these pressure fluctuations also move slowly. Since resonance requires that
the pressure fluctuations follow the surface waves, short waves, which are generated by small-scale
pressure fluctuations, choose preferentially the direction that minimises the difference between their
phase speed and the small advection velocity of the pressure fluctuations that generate them. That
direction corresponds to the andle= 0. Longer waves, on the other hand, are generated by large-
scale pressure fluctuations, which move faster, so the waves can satisfy resonance or near-resonance
for various values 08. That is why the curvature spectrum broadenk;aslecreases. The spectrum
also broadens ds increases, because a higher shear rate promotes a wider range of eddy advection
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velocities in the vicinity of the interface, thereby widening the rang® at which resonance can
occur.

In qualitative terms, the bimodal distribution of the wave spectrum could have been predicted from
Phillips’ (1957) theory on the basis of resonance arguments. However, the fact that the wave spectrum
broadens as the wavenumber decreases is a result of the relation derived here between the turbulent
pressure field and the turbulent velocity field. That relation has enabled the calculation of a precise
form for the spectrum of the surface waves, which was beyond the possibilities of Phillips’ theory.

In figure 3 of Phillips (1957), the angular energy distribution of the wave spectrum always peaks at a
certain ‘critical’ angle that depends on the wind velocity, and is zero for larger angles to the wind. By
contrast, the present model is able to produce angular energy distributions that peak in the direction
of the current, and also bimodal distributions that decay smoothly to zero after the peaks, clearly in
better agreement with data.

4.3.5 Discussion

The present model probably underestimates wave growth for three reasons, all of them related to
the linear approximation of RDT. Firstly, the model does not take into account the nonlinear part of
the pressure, associated with the interaction of the turbulence with itself. The numerical simulations
of Kim (1989) have shown that, in a turbulent channel flow, the linear and nonlinear parts of the
pressure can have about the same magnitude, even at the channel wall. Secondly, the decorrelation
time of the turbulent pressure fluctuations seems to be underestimated by RDT (see figure 15 of Corcos
(1964), where the temporal pressure correlation is plotted for the total and linear parts of the pressure).
This again inhibits wave growth, for the reasons pointed o§#iB.2. Thirdly, the rendering of the
turbulence anisotropic by shear is overestimated by RDT, since the neglected nonlinear processes
tend to oppose this anisotropy. Because the increase in anisotropy is associated with the migration of
the peak in the pressure spectrum to lower wavenumber$4sée), the slowing down of the MSS
growth rate observed in figure 4.3 is probably overestimated.

However, there is one aspect of the model which may lead to an overestimation of the pressure.
That is the assumption of a constant shear rate throughout the domain. Since the pressure field is pro-
portional in a nonlocal way to the shear rate, this approximation should overestimate the contributions
to the surface pressure originating from some distance from the boundary, where the shear rate is in
reality much lower than assumed. Nevertheless, the pressure has a much stronger dependence on the
velocity field in the vicinity of the boundary (Kim, 1989), so this overestimation is probably moderate.

An important issue in the present model is how to determine the value of the shelrtoatise
as an input variable. For all the runs carried out in this chapter, this was done in a rough way by
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direct inspection of the figure 4.7 of Melvillet al. (1998). The shear rate in the top 1 or 2cm of the
water flow was estimated as 6f(10s1), and this order of magnitude was confirmed in the studies

of shear currents of McLeish & Putland (1975) and of Tsai (1998). While the value of the shear rate
immediately outside the viscous boundary layer is probably the most important for determining the
pressure fluctuations, it is clear that some sort of average must be carried out over a certain distance
from the boundary, because of the nonlocality of the contributions to the pressure. How that averaging
may be done in an objective way is a problem that remains open.

4.4 Conclusions

A theoretical model has been developed for the initial stage of surface wave generation at an air-water
interface by a turbulent shear flow. The problem of the onset of a turbulent wind and the problem of the
onset of a turbulent shear current have been addressed separately by assuming that the turbulent shear
flow exists in the air or in the water, respectively. Although the existence of winds in the atmosphere
and currents in the ocean is closely linked because of the viscous coupling between the air and the
water, the two processes are separated in this model, in order to assess the importance of each one of
them. The case of a turbulent current is called the coupled case and the case of a turbulent wind is
called the uncoupled case.

The model can be viewed as a combination between the wave generation model of Phillips (1957)
and the turbulence rapid-distortion model of Durbin (1978). The air-water interface is assumed to be
initially flat and at rest. Surface waves subsequently grow as a response to the pressure fluctuations
induced at the interface by the turbulent shear flow. The pressure field at the interface is linearly
related to the turbulent velocity field. This pressure results from the interaction taking place in the
turbulent fluid between the mean shear and the turbulence. The turbulence is assumed to be statistically
homogeneous in the horizontal directions, and isotropic far from the boundary at the initial time. The
mean velocity is assumed to vary linearly with height or depth. Both the turbulent and wave velocity
components are assumed to be weak, in the sense of being unable to self-interact or interact with one
another, being affected only by the mean flow.

The mean-square-slope of the surface waves is calculated as a function of time in the coupled and
in the uncoupled cases. Itis found that the MSS increases faster for higher values of the dimensionless
shear ratd”’, initial RMS turbulent velocityu and lower values of the initial integral length scale of
the turbulencé. This is explained by the proportionality of the pressure applied at the interfdce to
andu, and by the inverse proportionality of the wave slopé to

For pressure fluctuations of similar magnitude, the waves generated in the uncoupled case are
much smaller than the waves generated in the coupled case. This behaviour is attributed primarily to
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differences in the rati@o/I" between the decorrelation time scale for pressure (whi€higln) and

the period of the dominant waves (L/0p). In the coupled casé, is smaller and larger (because

the length scale of the dominant waveis smaller), leading to a value of the rati/I" larger than

1. This allows the turbulence and the waves to interact for more than one wave period before the
turbulent pressure fluctuations lose their coherence. In the uncoupled case, by doigraster and

0o smaller (because the length scale of the dominant wiaigdarger), resulting in a value of the ratio

0o/l lower than 1. This means that the turbulent pressure fluctuations can not interact appreciably
with the surface waves before decorrelating, and wave growth is strongly inhibited.

In the coupled case, plots illustrating the MSS time evolution are found to have a shape and
magnitude consistent with plots of the same quantity derived from measurements by Cox (1958). The
MSS initially increases in time relatively fast, but after a certain time slows down and reaches an
approximate plateau. This phenomenon is attributed to the progressive elongation of the turbulent
eddies in the streamwise direction by the shear, which causes the turbulent pressure fluctuations to
force the air-water interface at progressively lower wavenumbers.

Wave curvature spectra are calculated in the coupled case, and plotted as a function of the
wavenumber. These spectra are found to have a maximum roughly at the wavehymise2r/|,
and to satisfy power laws at higher and lower wavenumbers that result directly from the correspond-
ing power laws of the turbulence spectrum. The wave curvature spectra are also plotted for discrete
wavenumbers, as a function of the angle of propagation with the direction of the clrréhg spectra
are found to peak likeos 8 at® = 0 for all wavenumbers at low shear rates, but to peak-at0 for
higher shear rates only at high wavenumbers, having a broader distribution at lower wavenumbers and
a bimodal distribution at even lower wavenumbers. This scale dependent behaviour, which is consis-
tent with spectra measured bhhe & Riemer (1990), is found to be linked with the spatio-temporal
structure of the pressure fluctuations, as modelled by RDT. Longer waves are excited by pressure fluc-
tuations associated with larger and faster-moving turbulent eddies being advected at some distance
from the boundary, while shorter waves grow due to the pressure fluctuations associated with smaller
and slower-moving eddies, which exist closer to the boundary.

4.5 Appendix 1. Expressions oM;;, Q; and S;

In the coupled case, thé;; matrix can be written

My = ek,

M12 == 07
_ 2 21,2
Mi3 = ek { <k1k30 kiks k°> ks {arctan<k‘°’°) - arctan<k3>

K, K, k) kk, ki2 K12
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+— e2k12x3 [El((klz + ik30)X3) — E]_((k12 + ik3)X3) + 1 (sign(kg) — Sigr(kgo))]

2i
— [Ex((—kaz + ikso)Xs) — Ex((—kiz + iks)xa)]] } } — i1 k1k|22’
Mz1 =0,
Moy = e”@@,
“e () g (o) el

Mg = €@ { < @ @, 2 + 2, arctan ki arctan »
+% |:e2k12X3 [El((k12 + |k30)X3) - El((k12 —+ |K’3) ) + 71 (S|gr(k3) _ Slgn(Kgo))]
— [Ex((—ka2 + ikso)Xa) — Ex((—kuz + iks)xa)]] }} — ie*s2 kakOZ’
M3y = M32 =0,

2
Mas = Eg (g — ). (4.70)

where ‘sign’ denotes the sign function aBd denotes the exponential integral function of order one.
TheQj vector is given by

Q=Q=

k0 1 ikaX3 X3 . 1 - iks 12X3
Qs = 2ipkagg | €+ ( 5~ A2, el azs | (4.71)

The corresponding expressions for the uncoupled case can be obtained by simply reflecting these
expressions about the plarg= 0, by replacingks with —ks, kgz with —kgz andxs with —xs.

TheS; vector is defined as

S=%=0,
S = —2i g; ;0 ZEZ / K t K2 5 sin(go(t — s))ds (4.72)
in the uncoupled case and
S=%=0,
5T Ky t dasty .
S$=- 01 %0 / ka7 ko) 5 Sin(oy(t —s))ds (4.73)

in the coupled case.
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4.6 Appendix 2. Growing and oscillating parts of¥

In (4.55) and (4.56), the terms between brackets can be expanded into a growing and an oscillating
part. Expressions for these parts will be presented next in the coupled case. The expressions for the
uncoupled case may then be found as a particular case.

After expressing the sine function in (4.56) in complex form, moving the factors explicitly de-
pendent on time outside the integrals and rearranging, the term between brackets in (4.56) can be
written

2 2 2

- Tk
/t eITJ.lZSS|n<O-1(t — S))ds } 1 —01)S N } +01)
0

t é(rrkiz t ¢ (2 2k12
> ———ds /—ds
(kiz — ika(9))2 4 /o (ki — ika(9))2 4| Jo (kiz—iks(9))2

i(zrk—ilzfol)s t ei(zrk—l;lz+01)s
62|01t/ e—dS/ ————ds;. 4.74
{ (k12 — Ikg( )) 0 (klz + |k3(S))2 ( )

The third term on the right oscillates in time and was neglected in the numerical calculations, for

reasons explained i§4.2.7. By makingos; = 6o andl" = 0in (4.74) only in the numerator of the
fractions (i.e., not irks), the expression applicable to the uncoupled case, (4.55), is found:

2 2

t sin(oo(t —9)) Lt eos 1)t dos

o Taz—1ke(9)? ™ =210 Taz— @72 ¥ 2|Jo ez a7
_ ioot g'008 t goos

Re{ ¢ / (k12 — ika(9))2 ds/o (k12+iK3(s))2ds}' (4.75)

4.7 Appendix 3. Solution in terms of exponential integrals

The product of complex conjugate time integrals in (4.55) and (4.56) was seen in appendix 2 to be
approximately equal to the first two terms on the right of (4.74) and (4.75), due to the fact that the third
terms are oscillatory. Thus, the approximate solution for the wave growth only requires a calculation
of the time integrals in the non-oscillatory terms. In the coupled case, these are

t g i( 2k12ﬂ’1) 1 e ( 2k12 Lot 1
- ds=-—-— — -
/o (k12 — Ikg(S))z kil kg( ) + ikio koz + ikq2

rkl :l: o zrl Lkl :l: o
2k12 1 _ 1 (klz Ik03) 2k12 1 .
i e E -2 (ko — ik
+ T2 { 1 ( T (ka2 3))

T 4o e+ o M40
e e Zkp — 1 Pk — 1
El ( klr (k]_z Ikog)) + 1iH ( k r k]_z) [&gn( k1F k3>

101




Chapter 4 The initial generation of surface waves by turbulent shear flow

Lkl j: o
—sign (2"12 1k03>] } ; (4.76)
kel

and in the uncoupled case

/t eiioos ds—_l( eiioot B 1 >
0 (kiz—iks(s)2 " kil \ks(t) +ikiz Koz + ikiz

. 00 _F29 (kip—ikos) E ﬁk ik _E &k i
ilik%rze L { 1 Iklr( 12 — ika) 1 ¥k1r( 12 — iko3)

. + . .
+T1iH <k1(lj'0k12> [S|gn <iki?|<g> — sign (ié?k{n)] }, 4.77)

whereH is the Heaviside function.
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CHAPTER 5

The distortion of turbulence by a progressive surface wave

5.1 Introduction

Turbulence and surface waves in the ocean can interact in a variety of ways. As mentioned in the
previous chapter, turbulent pressure fluctuations and turbulent shear stresses are responsible for both
the initiation of surface waves (Phillips, 1957) and their amplification by a sheltering mechanism
(Belcher & Hunt, 1993). Surface waves can also be scattered (Phillips, 1959), distorted (Longuet-
Higgins, 1996) and dissipated by turbulence existing in the water (Kitaigorodskii & Lumley, 1983).

Conversely, breaking waves (Melville, 1996), shear currents induced by the wind and thermal
convection generate turbulence in the ocean surface layer, which is subsequently distorted by the wave
orbital motions (Thais & Magnaudet, 1996). This distortion is of two types: on the one hand, there is
the direct effect of the orbital motions, of first order in the wave slope, which has a straining rate of
O(awkwow), Whereay, ky andoy, are, respectively, the amplitude, wavenumber and angular frequency
of the waves. This effect is relatively weak, because the wave motions are periodic and the total strain
never exceed®(ayky), which is small. On the other hand, there is the effect of the Stokes drift, of
second order in the wave slope, whose straining rate can be estimaéel#éo,,). Although this
straining rate is even smaller, its effect is cumulative, and the total strairOga@k2out), wheret is
time. So, this second order effect is bound to affect turbulence appreciably after a sufficient number
of wave cycles.

The distorting effect of the Stokes drift is at the basis of the explanation commonly accepted at
present for the existence of Langmuir circulations in the ocean (Leibovich, 1983). Langmuir circu-
lations are intense, elongated vortices, with their axes of rotation aligned with the wind and with the
dominant surface waves. In the instability mechanism proposed by Craik & Leibovich (1976), these
circulations result from the tilting and amplification, by the Stokes drift of the waves, of the vertical
vorticity associated with an infinitesimal perturbation to the wind-induced shear current. Although the
treatment of Craik and Leibovich addresses this interaction in a deterministic framework, considering
the flow as laminar, the flow in the ocean surface layer is almost invariably turbulent. Field observa-
tions (Faller & Auer, 1988) and numerical simulations (McWilliagisl,, 1997) of the ocean surface
layer in fact show that the streamwise vortices identified as Langmuir circulations have themselves
a wide range of scales, and can therefore be seen as turbulence. They have bedranghaar
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turbulenceby McWilliams et al. (1997). Hence it is likely that turbulence plays an important role in
the development of Langmuir circulations.

When turbulence coexists with waves and a shear current in the ocean surface layer, the inter-
actions between these 3 flow components are necessarily complex, and probably best understood in
isolation. Both the turbulence and the shear current are rotational, and their vorticity can be tilted and
amplified by the Stokes drift of the wave. Only the shear current and the waves have been taken into
account in the early theoretical studies of Langmuir circulations (Leibovich, 1983). The interaction
between the turbulence and the shear current, which is akin to the mean flow—turbulence interaction
occurring in numerous boundary layer flows (Leteal,, 1990), has received some attention in the
context of Langmuir circulations in McWilliamet al. (1997).

The interaction between the waves and the turbulence has been investigated experimentally by
Greenet al. (1972),0lmez & Milgram (1992), Nepf & Monismith (1995) and Thais & Magnaudet
(1996), but a systematic theoretical treatment of this situation has been lacking. The primary aim
of this chapter is to examine the interaction between shear-free turbulence and a surface wave when
the turbulence can be considered weak and slow compared with the wave. This is done by treating
the wave as prescribed and deterministic, and the turbulence as a random velocity field, of which
statistics can be calculated. Attention is focussed on the time evolution of the statistics of the velocity
fluctuations, and also on their spatial structure. Turbulence distortion by a wave is briefly compared
with turbulence distortion by a shear current using the model of chapter 4 for a turbulent flow with
a constant shear rate. The energetics of the turbulence are analysed by scaling the turbulent kinetic
energy (TKE) equation, and the consequences of the wave-turbulence interaction for the wave are
investigated by scaling an equation for the wave energy.

The remainder of this chapter is organised as follows§5r2, the theoretical model of wave-
turbulence interaction is presented.§h3, the results obtained from the model are analysed in detalil.
These concentrate on the time evolution of the Reynolds stresses and the integral length scales, over
one wave cycle and over several wave cycles. These results are compared with those obtained for
turbulence distorted by a shear current. The consequences of the energy transfer taking place between
the turbulence and the wave are then analysed. The chapter ends with the main conclugioss, in

5.2 Theoretical model

Consider an infinite water mass bounded above by a free surface on which a progressive, monochro-
matic, surface wave is propagating. The wave is irrotational and has relatively low slope. It will be
analysed here how turbulence beneath the free surface is distorted by the orbital motions associated
with the wave. To tackle this idealised problem, the rapid distortion theory (RDT) of Hunt (1973) will
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be used.

The total velocity fieldt; is split into a mean part);, and a turbulent party, namely
U =Vi(x) + ui(x,t), =123, (5.1)

The mean velocity corresponds to the wave orbital motion expressed in a coordinate system travelling
with the wave crests. Hentg is stationary. The wave is taken to propagate in the positidirection

and, since the wave is also monochromadticjs slab-symmetric and does not dependxgen The
turbulence is assumed to be statistically stationary, homogeneous and isotropic far from the surface.
At the initial time, the turbulence is assumed to be homogeneous and isotropic throughout the depth
of the water column at a particular point of the wave phase. The turbulence is also assumed to be of a
much smaller scale than the wave, so that the initial integral length scale of the turbuterisfies

I < Aw, Where,, is the wavelength of the wave. The idea is then to analyse the evolution of the
turbulence statistics following a water parcel as the wave propagates over the turbulence.

This idealised model approximates two physical situations: the first is a laboratory arrangement
where mechanically generated surface waves propagate over a turbulent region created by an oscil-
lating grid, as in the experiments &mez and Milgram (1992) and Milgram (1998). The second
situation is where turbulence is injected into the water by breaking surface waves at a particular time
and location, being then distorted by subsequent waves. Of course, in the second case, the initial
turbulence is not homogeneous and isotropic, but it is usually reasonably isotropic (Rapp & Melville,
1990) and its integral length scale is generally considerably smaller than the wavelength, since wave
breaking is a highly localised process. Hence the conditianA,, is approximately satisfied.

In the formulation adopted by Hunt (1973), RDT is based on the linearised inviscid equations of
motion. For example, the linearised vorticity equation can be written
oW oW 0Q; 0

hia) el 0.
o TYigg TUiG =

oU;

jTXj’ (52)

Ui

o +
whereQ? = O x U is the vorticity of the mean flow an@ = [ x u is the vorticity of the turbulence.

In the present casg); is the velocity associated with an irrotational surface waveQise= 0. If u

is defined as the initial root-mean-square (RMS) velocity of the turbuléhess, the typical velocity

scale of the mean flow aridas the typical length scale over which the mean flow varies, the conditions
for the validity of (5.2) are that the turbulent velocity is sufficiently weak compared with the mean
velocity, u < U, and that the strain rate of the mean flow is higher than that associated with the
interaction of the turbulence with itselfi/l < U/L. The first condition is immediately satisfied if,
additionally to the second, < L is also satisfied. It will be seen later that this last condition on
the length scales is convenient if the equations of motion are to be simplified by being expressed in
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a curvilinear coordinate system aligned with the mean flow (Durbin & Hunt, 1980), because in that
case the curvature terms in the equations af@(bfL) and can be neglected, i.e. the equations take at
leading order the same form as in a cartesian coordinate system.

In the particular flow under consideration, the length scale of the mean flow is the wavelength of
the wave\,, and the strain rate associated with the wave B@k,0ow), S0 the conditions for which
the linear RDT model is valid are

u

| < Aw,  awky > .
low

(5.3)
Hence, the turbulence has to be of relatively small scale and the steepness of the wave cannot be too
small.

Turbulence generated by a grid (Brumley and Jirka, 1989) or associated with a wind-induced shear
current (Melvilleet al,, 1998) generally has an integral length scal®@cm) or larger and turbulence
generated by breaking waves is certainly not likely to be smaller than this (see table V of Kitaigorodskii
et al, 1983). Since the transition between the gravity and capillary regimes of surface waves occurs
at a wavelengtlx 1.7cm, the first condition of (5.3) is only satisfied if the wave that distorts the
turbulence is a gravity wave. Then, if it is noted that, in the gravity regime= (2Ttg/)\w)%, the
second equation of (5.3) may also be expressed as a condition on the wavelength, and (5.3) takes the
more compact form

2
| < Aw < 21g (Lawkw> . (5.4)

Taking the reasonable values= 5cm u = 1cms?, ayky = 0.1, andg = 9.8m s, the following
estimate for the range of applicability of the model is obtained:

5cm<« Ay < 154m. (5.5)

This condition is easily satisfied for laboratory waves, and for an important fraction of the gravity
waves existing in the ocean.

5.2.1 Mathematical formulation

For applying RDT to mean flows as complex as that associated with a progressive surface wave, it is
convenient to express the vorticity equation (5.2) in the intrinsically lagrangian form due to Cauchy
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(Batchelor & Proudman, 1954),

0%

Wi (x,t) = mei (a,0), (5.6)

where
t
x(at) = a+ [ UGt 5.7)
0

is the position at timeof a fluid parcel with initial positior;. dx; /0a; is the strain tensor, which gives

the ratio of the separations, along the 3 coordinate directions, of two infinitesimally distant material
particles at a given time, following the fluid motion, and at the initial time. It should be noted that
(5.6) is already a linearisation, like (5.2), and tlat= 0 has been assumed. If the mean flow was not
irrotational, (5.6) would have to includ®; as well, and the strain tensor would include the distortion

of the mean vorticity by the turbulent velocity, as pointed out recently by Nazaren&b (1999).

This would make the calculations much more complicated.

Given the initial turbulent velocity fields (a, 0), the initial turbulent vorticityw = 0 x u is
easily obtained by taking the curl and, once the strain tensor is known, the final velocity field may be
recovered from the final vorticity obtained from (5.6) by solving the equation

(?u = —0 x w, (5.8)

which results from taking the curl of the definition of turbulent vorticity. The remaining problem,
therefore, is determiningx; /da; as a function of the mean velocity field.

Durbin (1978) noted that the form taken by the strain tensor was considerably simplified if the
RDT problem was formulated in a streamline coordinate system. In fact, such formulation is not only
advantageous for simplifying the form taken by the equations of motion but also for simplifying the
boundary conditions, which would otherwise be awkward to impose. Therefore, in the present model,
a curvilinear coordinate system is adopted, wherghe direction along which the wave propagates)
is replaced byp, the velocity potential of the wave motioxy remains as the cross-stream horizontal
coordinate andas (the vertical coordinate) is replaced kpy the streamfunction. The new curvilinear
coordinates are defined by the relations

s _% %

1= 0Xq N 6x3’ 3= 0X3 B _aX]_' (5-9)

The spatial coordinates and components of vectors in the new curvilinear system retain the sub-
scripts 1, 2 and 3, respectively, for the direction along the streamlines, horizontally across the stream-
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A/\ _
- — W=const—1
/—\‘\-__/—\_.’/

Figure 5.1 Schematic diagram of the model problem in a frame of reference moving with the wave, showing the streamlines
(solid) and lines of constant potential (dotted), and the cartesian and curvilinear coordinate systems.

lines and along lines of constant potential, but are distinguished from their cartesian counterparts
by a tilde. The infinitesimal length element in the direction along the streamlings’igp, where
U; = (UZ 4 U2)z and the length element along the lines of constant potentis tsly. The spatial
derivatives along the 3 coordinate directions are defined as

0 0 0 0 ~

0 ~
=l o= =0

7L o 0% ox

A
% (5.10)

The flow configuration and coordinate systems for a surface wave propagating in the pesitree-

tion is presented schematically in figure 5.1. Note that the orientation of the curvilinear coordinates is
approximately opposite to that of the cartesian coordinates (exceff)favith X; pointing to the left

andXs pointing downwards.

In the curvilinear coordinate system, Cauchy’s equation takes an exact form analogous to (5.6),
but the strain tensor is considerably simpler than when expressed in a cartesian coordinate system,

namely
J J. 0t ot
sz [ Ow O Yiea ~Yios
% 0 1 0 ; (5.11)
Lj10
0 O o

where the subscript O denotes variables evaluated at the initial time, before any turbulence distortion
has taken place, arnds thetravel timeof a fluid parcel, defined as

_ [?d¢
T—/ 0 (5.12)
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For turbulence flowing around a bluff body (Hunt, 1973; Durbin, 1981), the ‘initial position’ used

in the model, where the turbulence is undistorted, is infinitely upstream of the bodljjy3$e the
free-stream velocity, which is assumed constant. As a conseqagf)@d; = 0 and (5.11) simplifies

further. If the mean flow is a periodic wave, however, there is no obvious choice for the initial position,
which has to be imposed rather arbitrariliso andodtp/08z then depend on the location of the initial
position relative to the phase of the wave and must be retained in (5.11). This dependence of the model
on the initial position will be explored i§5.3. In the case of turbulence generated by a breaking wave,

it is perhaps to be expected that the turbulence is injected at the forward slope of the wave (Rapp
& Melville, 1990), and as a result, most of the calculations present&€8.Buse this as the initial
position.

5.2.2 The mean velocity field

The mean velocity field considered in the present model is that associated with a relatively small-
amplitude, monochromatic surface wave, expressed in a frame of reference travelling with the phase
velocity of the wavec,, = ow/ky. Following Longuet-Higgins (1984), the wave motion is expressed
here as a function of the curvilinear coordinagesndy, but only the first term in the corresponding
series expansion (his equation (4.4)) is considered. This is a good approximation for low wave slopes.
The horizontal and vertical velocity components are

U = cu (aukue /™ costkug/cu) — 1)
Us = —Guawkwe ™ ¥/ % sin(kup/cw), (5.13)

which satisfy continuity and irrotationality, and lead to

i

Uy = ¢y (1 + a2k e 2w/ _ 2g, ke KW/ Cu cos(kwcp/cw)> ? (5.14)
The advantage of this peculiar formulation of the wave motion is that it enables an easy analytical

evaluation of the travel time function On performing the integration ovet in (5.12), the result is

2 1 1+ aykye kb/cw kw®
(oY) = Sk 1 ke Tl arctan(1 ke tan <20W>>
rint (W)] + W), (5.15)

where f is an arbitrary function and Int denotes ‘integer part’. The second term between square
brackets has to be introduced in order fdp be a monotonically increasing function of the velocity
potential, because trectanfunction is limited to take values in the intervat /2, 11/2).

109




Chapter 5 The distortion of turbulence by a progressive surface wave

From (5.11), (5.14) and (5.15), it follows that the strain tensor is specified completely as a function
of gandy, @y andyp. Therefore, to obtain the evolution of the turbulence along the wave profile,
values forgg and Yy must be chosen to specify the initial position, and then the relevant turbulent
guantities may be calculated along a streamlipe=()p), for different values ofp. However, it would
be convenient to express the results as a function of more physically significant variables like time or
space. Arigorous relation between the cartesian and the curvilinear coordinates requires the numerical
resolution of complicated equations, but a very simple approximation, valid for low wave slopes, is
readily available. Equations (5.9) and (5.13) show that, to zeroth order in the wave@kopec,x1
and@ ~ —cya;. Now, to the same order of approximation, it follows from (5.7) thate a; — cyt.

Then, subtracting the initial from the final potenti@lk- @ = —cy (X1 — a1) = ¢2t, so that finally

t~ (¢0— @)/ (5.16)

This shows that the time can be approximately related to the potential function. When the turbulence
statistics are plotted as a function of timegm3,t will always be defined according to (5.16), so it
must be recalled, when interpreting the results, that (5.16) is only an approximate equality.

5.2.3 Fourier analysis of the turbulence

Far from the free surface, the turbulence is not affected by the wave nor directly by the boundary,
and remains homogeneous, isotropic and stationary. Since the scale over which the motion associated
with the wave varies is much larger than the initial integral length scale of the turbulence (see the
first equation of (5.3)), at distances from the free surface in the farg&; < Ay, the turbulence is
distorted by the wave motion (which penetrates to a dep@®(a§,)), but not directly by the boundary.

In this region, the turbulence is still locally homogeneous, in the sense that it varies over a length
scale much larger than its own. So, for depths greaterlthiaiis justified to represent the turbulent
velocity as a three-dimensional Fourier integral, with space and time dependent wavenumbers, in order
to account for the slight inhomogeneity of the mean flow. This isstbes-variation approximation

also used by Durbin (1981). In the curvilinear coordinate system, the turbulent velocity is thus

i (z,t) = / / / 6 (&, %, )&% %k, diodiks, (5.17)

wherek(x,t) = (ki, ko, ka) is the wavenumber vector, and the spatial coordinates in the plane of the
wave motion can be approximated locallysas= ¢/Us, &3 = @/U;. The vorticity of the turbulence
may be expressed in a formally similar way:

o &0 = [[[ 6" k% v ddkd. (5.18)
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Invoking the slow-variation approximation, it is now possible to relate the Fourier amplitudes of the
turbulent velocity and of the turbulent vorticity through an algebraic relation, in exactly the same way
as in a cartesian coordinate system, namely

&(W = SijkiRj l?l|((H), (5.19)

where terms of higher order in the paramélgi,,) have been ignored. Taking the external product
of the wavenumber vector with this expression, an equation equivalent to (5.8) in the spectral domain
is obtained,

2 Kj 2 (H
Ui(H) = sijklk—ém& ), (5.20)

wherek = (k2 + k2 + k2)z is the wavenumber magnitude.

The Cauchy equation can be expressed in terms of Fourier amplitudes by using (5.6) (with tildes,
in the curvilinear coordinate system) and (5.18), yielding

& (k,%,1) = —g;(‘_ dkoa k)M (i, 5,0),
]
. 04,
ki(x,t) = % koj, (5.21)

whereko = (ko1, Koz, ko3) = k(&, 0) is the wavenumber vector at the initial time. Applying (5.19) to
obtain the initial vorticity amplitude in (5.21) as a function of the velocity amplitude and inserting the
final vorticity amplitude given by (5.21) into (5.20) yields

RJ‘ROm@ei(R

od-kx)§H 5 22
K2 agu Un (0;370)7 (5 )

6 (k, %,1) = —EijkEImn
which, together with the second equation of (5.21) and (5.17), completely defines the final distorted
turbulent velocity field as a function of the initial undistorted turbulent velocity field.

5.2.4 Blocking effect of the boundary

At distances from the free surface©fl) or shorter, the turbulence is no longer locally homogeneous,
since it is forced to adjust to the boundary condition in the direction normal to the boundary. For
turbulence with sufficiently low Froude and Weber numbers (see chapter 1), the effect of the boundary
is primarily blocking. This effect can be included in the model in a very simple way by adding an
irrotational correction to the velocity field such that the normal velocity component of the turbulence
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vanishes at the boundary (Hunt & Graham, 1978). Equation (5.2) ensures that, for an irrotational
mean flow, if an irrotational correction to the turbulent velocity exists initially, that correction remains
irrotational at all subsequent times. The total velocity field thus becomes

S
|

where@® (%, t) is a velocity potential satisfying

02¢® =0, (5.24)
subject to the boundary conditions
09 S(H) o y
gp(xs% =0)= 0" (% =0) and ¢9(%—«)=0. (5.25)

Since the velocity potentia)S decays rapidly to zero fat; > |, but remains locally homoge-
neous along the other two coordinate directions, it can be expressed as a two-dimensional Fourier
integral as follows:

P9 (%,1) = // @9 (ka. ko, %, t) € ki) gicy i, (5.26)

Invoking again the slow-variation approximation, the solution of (5.24) which can be expressed in the
form (5.26) and satisfies the boundary conditions (5.25), is formally identical to that found by Hunt &
Graham (1978) for turbulence near a flat wall, namely
aH) T < L
POk xy = BT e ki, (5.27)
k12

wherek;, = (R§+Rg)%. This expression only differs from that of Hunt & Graham in that the turbulence
is not perfectly homogeneous along theandX, directions, due to the wave motion, so that both the
wavenumbek andﬁgH) vary slowly in space and time.

From (5.17), (5.23) and (5.26), it follows that the total turbulent velocity field must be given by a
two-dimensional Fourier integral in the form

Gi(x,1) = // G (ky, ko, %, 1) Rk e dicy, (5.28)
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where the Fourier amplitude is defined as

G = / G ek, + k@S, i=1,2
. . . oS
0 = / o) ee%slicy 4 a(;‘)’és . (5.29)

Taking into account (5.22), (5.27) and (5.29), the Fourier amplitude of the total distorted turbulent
velocity (including the effects of distortion by the wave and by the boundary) may be related to the
initial undistorted amplitude through

Gk, R, %,1) = [ Wi e 5,08 (ko, &, 0)cs, (5.30)

where the elements of the matllﬁlqj can be seen as ‘transfer functions’. Since, as was just seen, the
effect of the boundary may be taken into account by simply applying the changes due to blocking to
the turbulence already distorted by the wave, the funcm&irpsnay be decomposed as

Mij (k, %, 1) = B (k, X, )Wk (k, X, 1), (5.31)

where the matriB;, accounts for blocking and the mathi¥, accounts for distortion by the wave (cf.
chapter 3). The effect of the wave is deduced from (5.22), and leads to

i RJ‘ kom 0% dkod—k=x)

Wi = —EijkEimn— 57— 9, , (5.32)
while the effect of blocking is deduced from (5.27) and (5.29), yielding
Bi = gk
Bo— il ek |12
ka2
Bas = €lefs _ g7kuoks, (5.33)

with the remaining elements &j being equal to zero.

The turbulent velocity distorted by both the wave orbital motion and by the boundary is thus
completely defined as a function of the undistorted turbulent velocity. It remains to prescribe the
characteristics of the undistorted turbulence and to calculate statistics of the turbulence at various
stages of distortion.
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5.2.5 Statistics of the turbulent velocity field

In order to analyse the structure of the turbulence, statistics of the turbulent velocity field are required.
The intensity and correlation of the velocity fluctuations is characterised by the Reynolds stresses.
These may be calculated from the Fourier amplitudes of the turbulent velocity using

Gl = / / / / 0 (o, ko) (K, Ky iy clkacli ok, (5.34)

where the asterisk denotes complex conjugation and the overbar denotes ensemble averaging. Equa-
tion (5.30) implies that

0 (ko ko) (K, Kb) / / N, (RN ()G (o)™ () clkacli. (5.35)

Now, the three-dimensional spectrum of the initial undistorted turbulent veléém/is defined as

6" (ko)™ (k) = B (ko)3(ko — Kb), (5.36)

hence (5.34) and (5.35) can be used to obtain a simplified expression for the Reynolds stresses:

G = / / / NN &) ik ko, (5.37)

The spatial structure of the velocity fluctuations in the turbulence is characterised by the integral
length scales of the turbulence. For the velocity fluctuatiprsdd; and along the directioR these
are defined by

~ I ~
@i(j)< =0)
=T

ij ~ 5

T (5.38)

c

whereéi(}) is the one-dimensional wavenumber spectrum, along;thd@ection, of the velocity fluc-

tuations(i anddj. The one-dimensional spectrum alaigs defined in terms oﬁ)l(('ﬂ) as

O (k. %, 1) = // NN i dikoclics, (5.39)
and an analogous definition is valid for the spectrum afong

The undistorted turbulence is assumed to be isotropic, so its three-dimensional spectrum is related
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to the energy spectrum in the following way:

koikoj ) E(ko) (5.40)

HH Y (5
&) — (85— 05 ) G2
whereE (ko) is the energy spectrum akg = (K3, + k3, + Rgg)% is the initial wavenumber magnitude.
Following Hunt & Graham (1978), the well-known vorakrman energy spectrum, which mimics an
inertial subrange at high wavenumbers, is adopted here,

Ek) =2l 2k (5.41)

(G + (kol)?)®
whereg; = 0.558andg, = 1.196are dimensionless constants.

All the statistics derived in this subsection are expressed in the curvilinear coordinate system
aligned with the streamlines. However, these can be readily compared with statistics measured in
a cartesian coordinate system, because the two coordinate systems are approximately equivalent for
waves of low slope, and in fact coincide exactly at the wave crests and at the wave troughs.

5.2.6 Important parameters

There are seven basic variables controlling the behaviour of the present model: three of them are
determined by the mean flow, in this case a surface wave. They are the amaljiwdevenumbek,,

and phase velocitg, of the wave. Two further variables characterise the turbulence: the initial RMS
turbulent velocityu and the initial integral length scale The remaining two variables are introduced

by the initial conditions and the duration of the interaction between the turbulence and the wave: they
are, respectively, the initial position relative to the wave phasewhich may be approximated as

& ~ @u/cw, and timet, which as was seen §6.2.2 ist ~ (¢ — @)/c2. From these variables, it is
possible to construct five independent dimensionless parameters:

anky, ka8, KkaCat =0ut, U/Cy, Kal. (5.42)

It turns out that the statistics of the velocity field do not depend on the parametgr So, in the
following section, the sensitivity of the model results to the 4 remaining parameters will be tested.

Graphs of the normalised Reynolds stres$gg/ u? and integral length scaldiéjk) /I will be plotted as
functions oft /T, whereT = 2m/0y, is the wave period, keepirg,ky, kw1 andk,l constant. A few
profiles of the Reynolds stresses as a functiofs@f will also be presented, keepirgky, kyai, kul
andt/T constant.
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5.3 Results

Results for the distortion of turbulence during a single wave cycle are sho§#a3ri. In§5.3.2, the
distortion of the turbulence by the Stokes drift of the wave is addressed, with the presentation of results
for the Reynolds stresses, TKE and integral length scales of the turbulence. In both subsections, the
blocking effect of the boundary is ignored. This would correspond in practice to taking measurements
at a depthkz =~ |. In §5.3.3, some results for turbulence distorted by a uniform shear are reproduced,
and compared with the preceding results obtained for turbulence distorted by a w&®e3.4h the
blocking effect of the boundary is briefly examined, and found to lead to fairly trivial changes to the
results. Finally, irg5.3.5 and;5.3.6, scaling analyses of the energy equations are performed, in order

to estimate the energy transfer taking place between the wave and the turbulence and its effect on each
component of the flow.

5.3.1 Turbulence modulation in a wave cycle

For waves of low slope, the distortion of the turbulence during a single wave cycle is always weak.

Figures 5.2-5.5 show graphs of the diagonal components of the Reynolds stress tensor (velocity
variances) as a function of time normalised by the wave period, for different initial positions and
different wave slopes. In figure 5.2, the initial position is on the forward slope of the wave, in figure
5.3, itis on the wave crest. In figure 5.4, the initial position is on the backward slope of the wave and
in figure 5.5 it is on the wave trough.

Figures 5.2-5.5 show that the modulation of the Reynolds stresses by the wave intensifies as
the wave steepness increases, as would be expected. This modulation is approximately sinusoidal at
the lowest slopes, but becomes more and more asymmetaigkgancreases. This is partly due to
the curvilinear coordinate system used, becapgaries faster at the wave troughs than at the wave
crests, and the definition ofis based onp (see (5.16)). The value of the Reynolds stresses does not
repeat itself after one complete cycle, for the highest slopes considered. This is a manifestation of the
irreversible part of the distortion, which is caused by the Stokes drift, and will be treated in detail in
the next subsection.

The Reynolds stress tangential to the free surface in the streamwise diré?tiaﬁains a maxi-
mum approximately at the wave crest and a minimum at the wave trough. The Reynolds stress normal
to the free surfacej?, attains a maximum at the wave trough and a minimum at the wave crest. The
tangential Reynolds stress in the cross-stream or spanwise dire%tiajways increases first and then
decreases, attaining a maximum approximately in the middle of the wave cycle, independent of the
initial position.
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Figure 5.2 Modulation of the Reynolds stresses during a wave cycleffoe O, k,| = 0.6. Solid line: a,k, = 0.05,
dotted line:ayk, = 0.1, dashed linea,k, = 0.15, dash-dotted linea,k, = 0.2, hatched profile: shape of the distorting
wave (arbitrary scale)aj streamwise componenb)(spanwise component)(normal component.

Experimental and theoretical support for an increase in the intensity of the vertical velocity fluc-
tuations and a decrease in the intensity of the streamwise velocity fluctuations at a hill crest (here
equivalent to a wave trough) is provided by the work of Brigteal. (1981) (their equation (3.3) and
their figure 40)). Further experimental support for the predicted Reynolds stress modulation can be
found in figure 10 of Thais & Magnaudet (1996), where the streamwise Reynolds stress is greater than
the vertical stress at the wave crest, while the reverse happens at the wave trough.

The modulation of the streamwise and normal Reynolds stresses has a peak-to-peak amplitude
of ~ 0.2 for a wave slope ok, = 0.1 and= 0.4 for ayky = 0.2, whereas the modulation of
the spanwise Reynolds stress has smaller amplitude, peshdhs for a,ky = 0.1 and~ 0.2 for
awky = 0.2. Although the data of Thais & Magnaudet (1996) are affected by a stronger turbulence
intensity at the wave trough, where the (fixed) probe almost touches the free-surface, it is possible
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Figure 5.3 Modulation of the Reynolds stresses during a wave cycleffoe O, k,| = 0.6. Solid line: a,k, = 0.05,
dotted line:ayk, = 0.1, dashed linea,k, = 0.15, dash-dotted linea,k, = 0.2, hatched profile: shape of the distorting
wave (arbitrary scale)aj streamwise componenb)(spanwise component)(normal component.

to estimate the peak to peak modulations of the streamwise and vertical Reynolds stresses from their
figure 10 by determining the value by which the streamwise stress exceeds the vertical stress at the
wave crest and the vertical stress exceeds the streamwise stress at the wave trough. From visual
inspection, this is estimated as0.2 — 0.3, for a wave slope of: 0.1, and is therefore consistent with

the present results. The results will now be explained using a simplified model.

To first order in the wave slope, the distorting effect of a progressive surface wave on turbulence
can be understood if the wave is described in a fixed cartesian coordinate system, where the orbital
motion can be written

U1 (X1, Xa) = Cuawkn€"® cOknXy — Oit)

Us(X1,X3) = Cuauwkw€®* sin(kyX1y — Out) (5.43)
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Figure 5.4 Modulation of the Reynolds stresses during a wave cycleffoe O, k,| = 0.6. Solid line: a,k, = 0.05,
dotted line:ayk, = 0.1, dashed linea,k, = 0.15, dash-dotted linea,k, = 0.2, hatched profile: shape of the distorting
wave (arbitrary scale)aj streamwise componenb)(spanwise component)(normal component.

for a surface elevation

( = aycogkyXs — Out). (5.44)

If (5.7) is differentiated with respect to the initial position, it is found that

5 =0 (5.45)

] + 0 aaiaj .
When the wave slope is sufficiently low, the distortion is relatively weak and the strain tensor inside
the integral may be approximated @&/0a; ~ &;. On the other hand, the integration in time may

be changed from an integration following the fluid parcels to a time integration at a fixed point. Then,
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Figure 5.5 Modulation of the Reynolds stresses during a wave cycleffoe O, k,| = 0.6. Solid line: a,k, = 0.05,
dotted line:ayk, = 0.1, dashed linea,k, = 0.15, dash-dotted linea,k, = 0.2, hatched profile: shape of the distorting
wave (arbitrary scale)aj streamwise componenb)(spanwise component)(normal component.

differentiating the expressions (5.43) and inserting them into the integrals of (5.45), it is found after
integration that, for smab,ky, the following expressions are approximately valid:

ox

aiai = 1 — ayky€ [cogkyx1 — Owt) — cogkyX1)] ,

aX]_ . 6X3 _ X3 . _ _ Q]

S = 3. = awkn € [sin(kyxy — Owt) — sin(kyX1)]

0

% = 1+ ayky€ [cogkyXy — Out) — cogknx1)]
aX]__aXZ_%_%_ %_

673_2 - aial N dag N day B 0ay =1 549

These expressions show tlet /da; is in phase opposition to the surface elevation and thus attains
a maximum at the wave troughs and a minimum at the wave crests. This is best understood in the
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Figure 5.6 Schematic diagram showing the vorticity stretching and compression induced by the orbital motion at the crest
and at the trough of a surface wave, in a frame of reference travelling with the wave.

coordinate system travelling with the wave as being the result of the acceleration that the fluid suffers
as it moves from crest to trougbxz/das, on the other hand, is in phase with the surface elevation and
attains a maximum at the crests and a minimum at the troughs. This result follows from the previous
one by continuity: a fluid parcel that is stretched in one direction, must contract in the other.

The effect of this distortion on the vorticity is shown schematically in figure 5.6. At the wave
crests, the fluid elements are stretched vertically and compressed in the streamwise direction, leading
to an intensification of the vertical vorticity and a weakening of the streamwise vorticity. Conversely,
at the wave troughs the fluid elements are stretched in the streamwise direction and compressed in
the vertical, leading to an amplification of the streamwise vorticity and a weakening of the vertical
vorticity.

The streamwise vorticity has contributions from the spanwise and vertical velocity components
and the vertical vorticity has contributions from the streamwise and spanwise velocity. Therefore,
at the wave crests, the streamwise turbulence intensity should increase and the vertical turbulence
intensity should decrease, while at the troughs, the streamwise turbulence intensity should decrease
and the vertical turbulence intensity should increase. This reasoning seems to explain the qualitative
behaviour oﬁ? andﬁ? over one wave cycle.

It can also be seen from (5.46) that /0az anddxz/da; are both out of phase hy/2 relative to
the surface elevation, attaining maxima on the backward slope of the wave and minima on the forward
slope. These components of the strain tensor lead to additional irrotational tilting and stretching
of vorticity, whose effects on the Reynolds stresses are not as obvious as those associated with the
diagonal components.

The diagonal components of the strain tensor are the extensions suffered by the fluid in the 3
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coordinate directions, defined as= 0x;/0a;. For a slab-symmetric straining flow in the — x3
plane with the principal axes aligned with the cartesian coordinate system (Townsend, 1976), these
extensions have to satisfy

e=pB &=1 e=p" (5.47)
due to continuity. In the present case, it follows from (5.46) that

B~ 1— awkye [cogknXs — Ot) — COSknXa)] - (5.48)

It is then possible to use equation (3.11.9) of Townsend (1976) to estimate the magnitude of the
Reynolds stress modulation attributable only to the extensions in the wave velocity field. Townsend'’s
expressions state that, fBrsufficiently close to 1,

ui . 4p-p*

u2 5+p1

g .8 12

u% 1+§5(B—B )

"2 _n-1

Eg:1+;‘g+8_1. (5.49)

Substitutingp using (5.48) and truncating to the lowest order with respect to the perturbation (in this
case the wave motion), (5.49) becomes

2
Moy gawkwekm [coS(kuX1 — Gut) — COSKyxa)]
E =1+ :iza&vlgﬁ,ez‘(m [cog(knX1 — Out) — COFkwX1)]?
2 35 WAl w 1
2
% =1 Zauk@ [coskwx — out) — coskex)] (5.50)

This confirms that the existence of a maximum in the streamwise Reynolds stress at the crest
and a maximum in the normal Reynolds stress at the trough are due primarily to the extension and
compression of the fluid parcels. Equation (5.50) also explains why the spanwise Reynolds stress
always takes values above one independent of the initial position relative to the wave phase.

It is clear from (5.50) that both?/u2 andu?,/u2 are predicted to undergo oscillations of peak-
to-peak amplitude3/5(aynky). For a wave slope of,ky = 0.2, this corresponds tez 0.32. On
the other hancl,T%/u2 is predicted to undergo oscillations of peak-to-peak ampli@RI&5(a,ky)? or
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128/35(ayky)? depending on the initial position relative to the wave phase. For a wave slope of 0.2,
this corresponds te: 0.04 and0.15 respectively. These results are roughly consistent with what is
observed in figures 5.2-5.5.

The differences between the predictions of this simplified model and those from the full model are
due essentially to two factors: the neglect of the non-diagonal components of the strain tensor, for any
wave slope, and the neglect of the Stokes drift, particularly at the highest slopes.

Equation (5.50) also helps to understand how the behaviour of the Reynolds stresses depends
on the initial conditions. Due to the way in which the streamwise and normal Reynolds stresses are
modulated, when the initial position is, for example, at a crest (figurap, 3fe streamwise Reynolds
stress departs from a maximum value, which can not be exceeded during its oscillation, whereas the
normal Reynolds stress departs from a minimum (figurech.3(his corresponds to settilgx; = 0
in (5.50), which implies indeed thzail%/u2 is never larger than 1 an@/u2 is never smaller than 1.

When the initial position is at a troughkyx; = 1), exactly the reverse occurs, as can be confirmed in
figures 5.54, c).

Given the constraint of initial isotropy of the RDT model, it would seem that the most ‘natural’
initial positions are those in between crests and troughs, because at those positions both the streamwise
and normal Reynolds stresses are in the middle of their oscillations, and the flow appears as undistorted
as possible. However, the same is still not true for the spanwise Reynolds @reﬁsce this stress
always departs from a minimum. The problem, which is clear inspecting (5.46), is that there is no
region in a monochromatic surface wave where the flow can be considered naturally undistorted.
Any possible choice of initial positiok,x; in (5.46) leads to either the diagonal or the off-diagonal
components of the strain tensor oscillating asymmetrically with respect to the undistorted state.

From a strictly mathematical viewpoint, this problem might only be avoided if the distorting wave
was replaced by a finite wave packet, away from which it would perhaps be more justified to impose
isotropy for the turbulence. However, that flow would no longer lead to an analytical travel time
function t(¢, ), which is one of the main advantages of the present model. Furthermore, from a
physical point of view, such situation would not be significantly more realistic than that considered
here.

5.3.2 Effect of the Stokes drift

The distortion of the turbulence by the Stokes drift of the wave only becomes clear after a considerable
number of wave cycles.

Figure 5.7 shows the evolution of the diagonal components of the Reynolds stress tensor during 10

123




Chapter 5 The distortion of turbulence by a progressive surface wave

@ ®)

0 0
0 2 4 6 8 10 0 2 4 6 8 10
T T
6 T T T T 6 T T T T 7
© (d) 5
5+ 1 s5¢ e
{

Figure 5.7 Evolution of the Reynolds stresses over 10 wave cyclesgfoe 0, k.| = 0.6, ayk, = 0.2. Solid line:
streamwise component, dotted line: spanwise component, dashed line: normal component, hatched profile: shape of the
distorting wave (arbitrary scale). Turbulence initially a) forward slope of wave k) wave crest, ) backward slope of

wave, @) wave trough.

wave cycles, for a wave slope of 0.2 and different initial positions. It is observed that, like in figures
5.2-5.5, the streamwise Reynolds stréT%sattains maxima at the crests of the wave and minima at the
troughs, and the reverse happens with the normal Reynolds s%e%]e spanwise Reynolds stress,

G?, always increases initially irrespective of the phase relation to the wave, as observed in figures
5.2(), 5.30), 5.40) and 5.56), but after a few periods becomes phase-locked to the normal stress,
attaining maxima at the wave troughs and minima at the crests.

More importantly, the magnitude of the streamwise Reynolds stress progressively decreases, while
the magnitudes of both the spanwise and the normal Reynolds stress progressively increase at a com-
mon rate. For the slope considereg K, = 0.2), L”T{ becomes approximately half of its initial value
after 10 wave cycles, whil and (2 increase by a factor of about 4. This means that the turbulence
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Figure 5.8 Schematic diagram showing the tilting and stretching of vorticity carried out by the Stokes drift of a surface

wave over a number of wave cycles, in a fixed frame of reference.

becomes much more intense in the directions perpendicular to the direction of wave propagation. In
other words: the turbulence becomes dominated by vortices with their axes of rotation aligned with

the streamwise direction, as is the case in Langmuir circulations.

These results should be compared with those presented in figure 6 of McWidizaths(1997),
from large-eddy simulations (LES) of turbulent flow in the ocean surface layer. That figure shows
profiles of the Reynolds stresses for turbulence in a shear current (without the effect of a Stokes
drift) and when both shear and a Stokes drift are present, with the Stokes drift presumably having
the dominant role (Langmuir turbulence). In the case of Langmuir turbulence, the spanwise and
normal components of the Reynolds stress are distinctly larger than the streamwise component. This

is consistent with the results of figure 5.7.

The physical mechanism for the intensification of the streamwise vortices in the present model is
the same as ‘mechanism 2’ of Craik & Leibovich (1976) for the generation of Langmuir circulations.
It involves the tilting of vertical vorticity by the Stokes drift of the wave and its amplification as
streamwise vorticity (figure 5.8). The difference is that ‘mechanism 2’ of Craik & Leibovich departs
from an infinitesimal vertical vorticity perturbation, whereas in the present model, there is initially
a finite and isotropic distribution of vorticity, associated with the turbulence, and the Stokes drift

selectively amplifies the streamwise vorticity component.

Figure 5.9 shows the time evolution of the Reynolds shear stigs,during 10 wave cycles, for
the same conditions as figure 5.7. Since the turbulence is initially isotropic, the shear stress is initially
zero. However, as the turbulence evolves, the shear stress grows to a negative value, stabilising at
~ —0.7. Like the velocity variances, the shear stress also oscillates during a wave cycle. At initial
stages in the turbulence evolution, shear stress maxima (in absolute value) coincide with the backward
slopes of the waves, and shear stress minima with the forward slopes. After 10 wave cycles, as the
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Figure 5.9 Evolution of the Reynolds stresses over 10 wave cyclestsfer 0, k,I = 0.6, a,ky, = 0.2. Solid line: shear
stress, hatched profile: shape of the distorting wave (arbitrary scale). Turbulence initiadlyfatw@rd slope of wave b
wave crest, ) backward slope of waved) wave trough.

shear stress appears to attain a stable mean value, the maxima occur instead at the wave crests and the
minima occur at the wave troughs.

Physically, the existence of a non-zero shear stress in the turbulence is due to the skewing of the
velocity fluctuations carried out by the Stokes drift. As the vorticity is tilted from the vertical to an
orientation sloping along the direction of wave propagation, and is at the same time amplified, posi-
tive streamwise velocity fluctuations tend to be associated with negative normal velocity fluctuations,

thereby makingi, 0z negative (see figure 5.8). The existence of a non-zero shear stress has important
consequences for the energy balance of the turbulence, as will be $ge8.t

Figure 5.10 shows the time evolution of the turbulent kinetic energy, defin€&&s= 1/2(0? +
G? + Gz), during 10 wave cycles, for the same conditions as figure 5.7. It can be seen that the TKE is
also modulated by the waves, displaying an oscillatory behaviour, and tends to become dominated by
the spanwise and normal Reynolds stresses as time advances. The TKE progressively increases and
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Figure 5.10 Evolution of the TKE over 10 wave cycles, f& = 0, k,| = 0.6, a,ky, = 0.2. Solid line: turbulent kinetic
energy, hatched profile: shape of the distorting wave (arbitrary scale). Turbulence initiaflyfarward slope of wave h)
wave crest,€) backward slope of waved) wave trough.

attains a value approximately 3 times higher than initially after 10 wave cycles.

Figures 5.2-5.5 have shown that the modulation of the turbulence in a wave cycle is sensitive to the
initial conditions. Figures 5.7, 5.9 and 5.10 now show that not only the oscillatory behaviour but also
the overall growth rate of the Reynolds stresses due to the Stokes drift depends on the initial conditions.
For example, it is clear in figure 5.9 that the shear stress is largest when the initial position is at the
wave trough (figure 5.9) and smallest when it is at the wave crest (figurel®)9Correspondingly,
the TKE growth rate is fastest when the initial position is at the wave trough (figured.Hi({d
slowest when it is at the wave crest (figure 5HP( The remaining plots of figures 5.9 and 5.10
show the same trend, suggesting a link between TKE growth and the shear stress. This link will be
confirmed and further explored §%.3.5.
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Figure 5.11 Evolution of the integral length scales over 10 wave cyclesifoe 0, k,l = 0.6, ayk, = 0.2. Hatched
profile: shape of the distorting wave (arbitrary scala).streamwise length scales. Solid Iir@ll), dotted Iine:I:(zlz), dashed
line: L. (b) spanwise length scales. Solid lirig?, dotted line:L'3, dashed linel 3.

The behaviour of the Reynolds stresses over several wave cycles is different for different initial
conditions because the average values of the Reynolds stresses, over the first wave cycle, are also
different. On a time scale longer than a wave cycle, varying the initial position of the turbulence
relative to the wave phase is thus approximately equivalent to varying the initial turbulence intensity
slightly. However, the importance of the initial conditions is limited, because, as was sge8.1h the
fractional variation of the Reynolds stresses due to varying the initial position is, at magg, ),
which is small. That explains why the four graphs of figures 5.7, 5.9 and 5.10 resemble each other
very much. For simplicity, all future results will consider an initial position on the forward slope of
the wave.

The intensity of the turbulent velocity fluctuations has been characterised in detail for turbulence
distorted by a surface wave. The spatial structure of the turbulent velocity fluctuations can now be
characterised by the integral length scales of the turbulence. These length scales are modulated over
a wave cycle, like the Reynolds stresses, but their evolution over several wave cycles is of greater
interest.

Figure 5.11 presents the time evolution of the streamwise and spanwise integral length scales
during 10 wave cycles, for a wave slopgk, = 0.2. In figure 5.114), it can be seen that all the
streamwise length scales increase in time. The streamwise length scaléip¥éhecity fluctuations,

I:(lll) becomesx 2.5 times larger than initially after 10 wave cycles, while the corresponding amplifi-

cation factors for the integral length scaledigfands, I:(le) andligls), arex 6 and~ 2, respectively.
Figure 5.11K) shows the time evolution of the spanwise integral length scales. It can be seen that only

the integral length scale for thig velocity componenﬂ:(lzl), increases in time, while the length scales
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for both i, andis, L2 and(Z, decrease in time. After 10 wave cyclés?, £'2 andi ) become
respectivelyx 2.5, ~ 0.25and~ 0.25times their initial values.

These results imply that the anisotropy of the streamwise velocity fluctuations remains small,
whereas the spanwise and normal velocity fluctuations become elongated in the streamwise direction,
with this elongation being especially pronounced for the normal velocity fluctuations. Hence, the
streamwise vortices induced by the Stokes drift in the present model not only have their axes of
rotation aligned with the streamwise direction (as shown by the Reynolds stresses), but they are also
elongated in that direction, a feature which is commonly observed in Langmuir circulations (Faller &
Auer, 1988).

Again, these results should be compared with figureb-42 (of McWilliams et al. (1997), where
horizontal cross-sections of the instantaneous velocity field are displayed, near the surface. While,
in these figures, the streamwise velocity fluctuations display no appreciable elongation in their struc-
ture, the spanwise and normal velocity components (shown in figuresdRbave contours that are
clearly elongated in the streamwise direction, with this elongation being more pronounced for the nor-
mal velocity. This is consistent with the results of figure 5.11, and provides evidence that Langmuir
turbulence in the simulations of McWillianet al. (1997) resembles turbulence distorted by a surface
wave in the present model.

5.3.3 Comparison with turbulence distortion by shear

The shear current induced by the wind in the ocean surface layer and the Stokes drift of a wave
appear at first to be rather similar, since both flows are characterised by a lagrangian transport that
has a maximum at the surface and decays with depth. However, their fundamental dynamics are very
different, as the numerical simulations of McWilliaghal. (1997) have made clear.

The interaction between the shear current and the turbulence can be very easily understood by
using previous results applicable to turbulent boundary layer flows. At distances from the the boundary
greater than, the shear-flow model developed in chapter 4 reduces to the original RDT model of
Townsend (1970) which is known to describe well the turbulence structure in boundary layers. That
model, which assumes initially isotropic turbulence and a constant shear rate, is used in this subsection
to examine turbulence distortion by a shear current.

Figure 5.12 shows the time evolution of the diagonal components of the Reynolds stress tensor for
turbulence distorted by a shear flow aligned with xpalirection, having a shear rafe This figure
should be compared with figure 5.7, which shows similar quantities (albeit in the curvilinear coordinate
system) for turbulence distorted by a surface wave. The behaviour of the stresses differs markedly
between the two cases. While in Figure 5.7, the streamwise stress decreases and the spanwise and
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Figure 5.12 Evolution of the Reynolds stresses in a uniform shear flow, as a function of dimensionle§s.ti&uwdid line:
streamwise compone[Tf, dotted line: spanwise componeﬁt dashed line: normal componaﬁt

normal stresses increase over a number of wave periods, in figure 5.12, the streamwise and spanwise
stressesu? andu?, increase and the normal stre%,decreases. And while in figure 5.7, the spanwise

and normal stresses become much larger than the streamwise stress, in fing% et@mes larger

thanu?, which in turn becomes larger thag. Physically, this behaviour is due to the existence of
vorticity in the shear current, that does not exist in the Stokes drift. The tilting of vorticity of the
mean flow by the turbulence, in the case of the current, counteracts, to a certain extent, the tilting of
turbulent vorticity by the mean flow, so th% anduig are prevented from becoming dominant (Lee &

Hunt, 1989).

Figure 5.12 should be compared with figure 6 of McWilliaatsal. (1997), where profiles of the
Reynolds stresses in turbulence subject to a shear current (without the effect of a Stokes drift) are
denoted by the solid curves. These curves show that the streamwise stress is larger than the spanwise
stress, which in turn is larger than the normal stress. Hence, it can be concluded that the present
constant-shear model is able to explain the anisotropy of the turbulent velocity fluctuations in a shear
current.

Figures 5.13, b) display the time evolution of the integral length scales of the turbulence, for
the same conditions as figure 5.12. Both the streamwise and the spanwise integral length scales of
Up, L(zlz) and L(222) decrease in time, and both the streamwise and the spanwise integral length scales
of ug, L%) and Lg%) increase in time. Hence the structure of these two velocity components remains
approximately isotropic. However, the streamwise integral length scalg bﬁll) increases in time,
while the spanwise length scale of the same velocity compohgfw,t,decreases in time. This means
that the streamwise velocity fluctuations become elongated in the streamwise direction.
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(b)

Figure 5.13 Evolution of the integral length scales in a uniform shear flow, as a function of dimensionlesittir(e

streamwise length scales. Solid li (.11), dotted Iine:L(212>, dashed IineLg. (b) spanwise length scales: Solid Iinbfl),

dotted line:L'7, dashed lineLy).

The contrast of these results with those presented for turbulence distorted by a surface wave are
striking, as can be confirmed by comparing figure 5.13 with figure 5.11. While in figure 5.11, the
structure of thdi, and s velocity fluctuations becomes elongated, in figure 5.13, the same happens
but with the structure ofi;. Elongated structures in the streamwise turbulent velocity field are a well
known feature of turbulent shear flows, where such structures are oftenstadiekly structuregline
etal, 1967). Good examples of streaky structures produced in a turbulent boundary layer by DNS can
be found, for example, in figures 5, 7 and 9 of Leteal. (1990), where horizontal cross-sections of
the streamwise turbulent velocity are shown.

The present comparison between the structure of turbulence distorted by a wave and turbulence
distorted by a shear flow seems to be able to explain the 2 basic flow regimes observed in the LES
of McWilliams et al. (1997): shear-flow turbulence and Langmuir turbulence. This indicates that the
occurrence of one regime or the other is probably determined by the relative importance of the two
physical processes modelled here in isolation. A rough way of quantifying the importance of each of
these processes is by comparing the strain rate imposed by the Stokagigify, with the strain rate
associated with the shefythrough the ratio

R= m. (5.51)
r
If R> 1, the distortion by the Stokes drift should prevail, and streamwise vortices should be produced,
while if R < 1, the distortion by shear should be more important, originating streaky structures. It was
seen in chapter 4 that, in a turbulent shear curiert, 10s ™ is a reasonable shear rate very near the
surface. A reasonable value @f, for short waves iw,, = 10s 1. Sinceayky is always much smaller
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than 1, (5.51) implies th&® < 1, so the shear should dominate in this particular case. In fact, very
low values of", of O(0.010y,), would be required for the Stokes drift to dominate, according to (5.51).
Situations with weak shear could be favoured by vertical mixing in conditions of wave breaking.

But the explanation for this apparently excessive importance of the shear is that the above estimates
are only valid at the surface. In real flows, the shear current weakens away from the surface over a
distance ofO(l), hencd" decays to zero over that distance. On the other hand, the Stokes drift decays
to zero over a longer distance OfA,). Hence, as the depth increases, the effect of the Stokes drift
could become greater than the effect of shear. Since by hypothesia, conditions favourable for
the formation of streaky structures may only exist in a thin layer near the surface, ¥yhere while
in the much larger region whete< X3 < Ay, streamwise vortices could develop. This is consistent
with the observation by McWilliamst al. (1997) that Langmuir turbulence penetrates deeper than
shear-flow turbulence.

On the other hand, situations where both shear and a Stokes drift are present are more complex
than considered here, because the shear current also interacts with the wave motion, acting as an
additional source of vorticity, which contributes to the vorticity of the streamwise vortices along with
the turbulence (Leibovich, 1983). Hence the generation of such vortices is certainly more likely than
suggested by (5.51).

The results presented until now have been calculated without taking into account the effect of
blocking by the boundary on the turbulence. That effect will be considered briefly next.

5.3.4 Blocking effect of the boundary

As noted in§5.2.4, if at the initial time when the turbulence is undistorted by the wave, the blocking
effect of the free surface is assumed to be described appropriately by the theory of Hunt & Graham
(1978), this blocking effect remains purely kinematic at all subsequent times, and does not alter sub-
stantially the results obtained in the preceding sections (which are essentially linked with vorticity
distortion).

Since Hunt & Graham'’s theory can be applied directly to the turbulence distorted by the wave, with
the completely undistorted turbulence that formerly served as input being simply replaced by slowly
varying turbulence, many of their conclusions remain valid, with slight alterations. For example, the
result which states that the TKE at the boundary has the same value as the TKE far from the boundary
is now reformulated as

(02 + (B)(%a = 0) = (B + (B + B)(% — ), when | — 0,Ay — . (5.52)
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090, G,

Figure 5.14 Evolution of the tangential Reynolds stresses over 10 wave cycles, with and without blockisig,=o0,
kyl = 0.6, ayky = 0.2. Thick solid Iine:ﬂ?with blocking, thin solid Iine:ﬂ? without blocking, thick dotted Iineﬁ? with
blocking, thin dotted Iineﬁ? without blocking, hatched profile: shape of the distorting wave (arbitrary scale).

This means that the TKE value at the boundary taking blocking into account is equal to the TKE value
that would exist at the boundary if there was no blocking or, alternatively, approximately equal to the
TKE immediately outside the layer directly influenced by blocking.

Figure 5.14 shows the time evolution of the streamwise and spanwise Reynolds sﬁ?samb,
fT%, during 10 wave cycles, with and without blocking. The curves relative to the blocked and non-
blocked cases only differ in magnitude, and there are no appreciable differences in shape. The factor
by which the curves with blocking exceed those without blocking increases from 1.5 at the initial time
(as predicted by Hunt & Graham, 1978) to a higher value later. This is due to the fact that, in the
blocked case, bot%(l K X3 < Aw) andU?(I < X3 < Ay) increase due to the Stokes drift, but only
(2(%; = 0) and((%; = 0) are not zero at the boundary (of whigf(%; = 0) decreases in time).

Figure 5.15 presents profiles of the Reynolds stresses with and without blocking, at 5,
for different values of the dimensionless wavenumkgr It is found thatk,l only influences the
shape of the Reynolds stresses in between the surface and the region far from the surface, leading
to a faster or slower decay of the profiles due to the distorting flow of the wave. Obviously, the
longer the wavelength (i.e., the smalkgt), the deeper the distorting effect of the wave can penetrate.
However, the value of the Reynolds stresses exactly at the boundary does not dejpghdedher
when blocking is considered or when it is not. This justifiggosterioriwhy the parametek,| has
not been varied in previous tests.

Figures 5.1%, b) show that, in the blocked cas?1 andl]? are amplified at the boundary by
a factor greater than 1.5 relative to the unblocked case, consistent with figure 5.14. The distortion
caused by the wave counteracts this amplification in figure &)15¢ thau]? at the boundary is only
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Figure 5.15 Profiles of the Reynolds stresses, with and without blockingaf&y = 0.2. Thick lines: with blocking, thin
lines: without blocking. Solid lines: &yT = 0, dotted lines: at/T = 5, with k,| = 0.6, dashed lines: a&/T = 5 with

kol = 0.3, dash-dotted lines: & T = 5 with k,l = 0.15. (a) streamwise componenb)(spanwise component)(normal
component,d) shear stress.

slightly larger than far from the boundary, whereas in figure ®)1 5ije distortion caused by the wave
reinforces the amplification cn?g due to blocking. In figure 5.18), it can be seen thaT@ is forced to
decay to zero towards the boundary over a length d¢ae expected, retaining nevertheless a value
greater than 1 in the regidn< X3 < Aw. When blocking is considered, the shear stréigg; also
has to decay to zero towards the boundary, for obvious reasons (figurd)h.15(

5.3.5 Estimation of the TKE growth

In §5.3.2, it was found that an increase in the TKE is predicted by the present model of turbulence
distortion by a wave, which is related to the straining of the turbulence by the Stokes drift of the wave.
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In order to estimate this increase, it is necessary to derive an equation for the TKE compatible with
the assumptions of the model. The TKE equation is here derived in a cartesian coordinate system, for
simplicity. But when the terms in that equation are estimated, the results of the preceding sections,
which were found in the curvilinear coordinate system, will be used directly, since the behaviour of
the statistics, in either coordinate system, is approximately equal.

The linearised momentum equation consistent with (5.2) is

aui 0

ou _ _1op (5.53)

o " Wox ~ pox’

Ui
+u
j
wherep is the water density ang is the turbulent pressure. The required TKE equation may be
obtained by multiplying (5.53) by, adding all the expressions foe 1, 2, 3and ensemble averaging.

This yields

d [u2+u+ U3 —  —,0U1 U 170 0 0
— | 2223 | =(B-w)—— -2z = | — — . (5.54
dt( > (Ug =) 55, ~20a0s . = o | 5 (PU) + 550 (PWB) + 5~ (PWG) | - (5.54)

The last 3 terms between square brackets in (5.54) appear in flux form and are associated with the
redistribution of energy between different regions of the turbulence through pressure forces. The first
two terms on the right-hand side are turbulence production terms by the mean flow, in the present case
the surface wave. According to (5.43) and (5.41);/0x; attains maxima on the backward slopes

of the wave. On the other hand, figure 5.7 shows Eﬁaﬁttains maxima at the wave crests, th&

attains maxima at the wave troughs. The produét- u2)dU; /dx, is thus in quadrature, and gives an
insignificant net contribution to the TKE. By contrast, betthuz (see figure 5.9) andU; /0x3 are in

phase with the wave crests. Therefore, wBen/dxs is positive,—UiUz has a larger value than when
0U1/0x3 is negative, so-UUz0U1/0X3 tends to be more positive than negative. This leads, through
(5.54), to a net positive contribution to the TKE, which is the primary reason why the TKE increases.

In order to test this reasoning, the growth rate of the TKE due only to the t&uquzoU, /0X3
will be estimated and compared with the growth rate predicted by the full model. The approximate
model is given by:

d (B+u+1u M1 a2k
a (2 ~ Ulusaix3 ~ U1U3awkw0W7 (5-55)
where, in the second approximate equabty; /0x3 has been substituted bearing in mind that the net
contribution of the production term to the TKE is made only through the Stokes drift. The Stokes drift
has been evaluated according to equation (3.3.5) of Phillips (1977). To compare this estimate more
easily with the dimensionless growth rates available in figure 5.10, it should be notedydhat
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(ow/2m)d/d(t/T), hence (5.55) becomes

d B+ B+ bz 5,0
dt/T) ( 22 ~ AT oAk (5.56)

Takingaywky = 0.2 and—UgUz/u? ~ 0.7, as suggested by the final portions of the graphs of figure 5.9,

it follows thatd/d(t/T)(TKE/u?) = 0.35. This is in remarkable agreement with the value that can be
extracted directly from the slopes of the final portions of the curves in figure 5.10. It thus appears that
the estimates made above and the connection established between the TKE increase and the Reynolds
shear stress are well founded.

To obtain an idea of the time-scales involved in the development of the streamwise vortices in the
present model, a still rougher estimate may be carried out. NotingitkaO(u) and—tztz = O(u?)
(5.55) may be scaled as

= al ka0, (5.57)
d

whereTy is the development time scale. With minor rearranging, (5.57) becomes

1

Ta= 55—
7 a2kzow

(5.58)
Taking reasonable values for the variables, 8k, = 0.1 ando,, = 10s 71, itis found thafTy = 10s
Hence the streamwise vortices that contain most of the TKE grow relatively fast.

5.3.6 Estimation of turbulence-induced wave decay

The preceding results have established how the TKE of turbulence beneath a surface wave increases
due to the distortion of the turbulence by the Stokes drift. Although in the RDT model used, the
turbulent flow has no feedback whatsoever on the mean flow, which is taken as fixed, in real situations
thatis not the case. If a mean flow and a turbulent flow coexist in a fluid and the energy of the turbulent
flow increases, that energy has to come from the mean flow, which correspondingly weakens. In the
present case, the mean flow is associated with a surface wave, so the energy transfer taking place
to the turbulence as the wave distorts the turbulence is necessarily linked with a decay of the wave.
A mechanism of wave decay due to the straining of turbulence by the Stokes drift was first referred
in the Introduction of Phillips (1959), who called it ‘eddy viscosity interaction’. Although Phillips
(1959) did not establish a connection between the generation of streamwise vortices (which were
in fact almost unstudied at the time) and wave decay, that connection is implicit in his qualitative
arguments involving vorticity stretching. It will be shown in this subsection that the energy transfer
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from the waves to the turbulence through this eddy-viscosity interaction can indeed account for the
turbulence-induced wave decay observed in the experimental st@lynez & Milgram (1992).

Consider the momentum equation for the mean flow in a cartesian coordinate system, now taking
into account the Reynolds stresses:
oU; oy; 1 oP 0

whereP is the mean pressure. If this equation is multiplieddpyand the resulting expressions for
i = 1and 3 are added (noting that the= 2 component is zero for the monochromatic wave under
consideration), an equation for the kinetic energy of the wave is obtained, namely

d U12+U32 5 U, 6U 0 - o
a <2> = (U - )a 20— gy, (Uit + Usthts)

d —. 1/0 0
——(U Usud) — = ( —(PU —(PU3) ) . 5.60
o U+ UstB) 5 (2 (PU) + (P ) (5.60)
The last 6 terms on the right-hand side appear in flux form, and so are related to transport processes,
which do not change the total kinetic energy. The first two terms, however, are formally identical and
with the opposite sign to those found on the right-hand side of the TKE budget (5.54). Itis clear that
these terms are associated with the energy transfer from the wave motion to the turbulent motion.

Since the growth rate of the TKE was estimated very accurately assuming it to be solely de-
termined by the production terms mentioned above, by analogy with (5.55) it seems reasonable to
estimate the decay of the kinetic energy of the wave due to the existence of turbulence from (5.60), as
simply

d (UZ+U2 U,

It remains to apply the same scaling ideas leading to (5.57) to the right-hand side of (5.61), and to note
that the kinetic energy of the wave(ldZ + UZ2)/2 = O(aZk2c3). Then, (5.61) may be scaled as

1 day u?

N —— .62
awdt C\%,O-V\h (56)

which implies that the wave decays exponentially in time due to the turbulence, with an attenuation
rate

u2
B = g Ow (5.63)
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wherea is a dimensionless constant©f1).

The attenuation of surface waves due to turbulence has been investigated, for example, by Skoda
(1972), Greeret al. (1972), van Hoften & Karaki (1976) and Kitaigorodskii & Lumley (1983). In
their theoretical study, Kitaigorodskii & Lumley identified a wave decay mechanism involving the
transport of wave energy away from the surface by the turbulent velocity field, and parameterised
that process in terms of the friction velocity of the turbulence. However, they emphasised that this
process was only significant in a random wave field, and not for a periodic wave. Skoda (1972),
Greenet al. (1972) and van Hoften & Karaki (1976) performed experiments where they measured the
decay of approximately monochromatic, mechanically generated waves, due to turbulence induced by
rotating paddles, an oscillating grid and channel bottom friction, respecti@mez and Milgram
(1992) studied again the decay of periodic waves due to grid-generated turbulence, and re-analysed
the data of Skoda (1972). Unlike most previous authors, they presented an extensive list of all the
relevant parameters of the problem, including the intensity and length scale of the turbulence. They
parameterised the wave attenuation in terms of the turbulence mixing rate, by resorting to dimensional
analysis. In the present notation, their formula for the temporal attenuation rate is

Bt =0. 103— (5.64)
I3)\W

where the constant 0.103 has been adjusted to their experimental data. In the graph that tests this
relation Olmez & Milgram’s figure 11), the scatter of the data points is considerable. Although
relation (5.64) fits wellOlmez & Milgram’s own data, the fit is not so good for the data of Skoda
(1972) which they also present. The data of Skoda appear to be more sensitive to the parameter
u/(l 3)\W) and accordingly concentrate more above the theoretical line corresponding to (5.64).
particular, there are 2 points of Skoda’s data which lie outside their graph, corresponding to a very
high decay rate.

Figure 5.16 show®Imez & Milgram’s (1992) and Skoda’s (1972) experimental data for the atten-
uation rate of surface waves plotted as a functiotugt,,)?c,, instead. The straight line corresponds
to the formula (5.63) witta = 0.6. As in figure 11 ofOlmez & Milgram (1992), the scatter is quite
considerable. This is to be expected, since the attenuation rate due to turbulence can only be calculated
as a residue of the wave decay due to other processes (e.g. geometric spre@tfimegig Milgram’s
axisymmetric experiments, or channel wall friction in Skoda’s experiments), and is thus subject to a
large error. It was decided to include in figure 5.16 the data points of Skoda which lie outside figure
11 of Olmez & Milgram (1992). They still depart very much from the present theoretical line.

In figure 5.16, the 2 data points with the highest valuéugt,,)?o,, are fitted worse by the present
theoretical line than in figure 11 @Imez & Milgram (1992), but there is no reason to believe that
they deserve more confidence than the two outlying points of Skoda (1972). The great majority of the
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Figure 5.16 Comparison with experimental data of the temporal wave attenuation rate predicted by theory. Solid line:
equation (5.63) witla = 0.6, squares: data frolmez & Milgram (1992), diamonds: data from Skoda (1972) (taken from
Olmez & Milgram, 1992).

data points, however (40 in total), concentrate approximately inside an ellipsoid with the longest axis
roughly aligned with the theoretical line. The scatter can not be considered worse than in figure 11 of
Olmez & Milgram (1992). This provides convincing evidence that the scaling developed here for the
wave attenuation due to turbulence is at least as acceptable, in order-of-magnitude terms, as (5.64).
Indeed, the fact that the slope of the line fitted to the data using (5.63) is closer to one than that fitted
using (5.64) might be considered an advantage of the present scaling.

It should be pointed out that both the data@imez & Milgram (1992) and of Skoda (1972)
marginally satisfy the assumptions of RDT, (5.3). In particulaf)imez & Milgram (1992)
Aw

|
4.36< " <710, 0583< awkyOw < 2663 (5.65)

except for one of the outlying points, which hagk,owl /u = 0.399. For that particular point,
the departure from theory might be justified as resulting from gross violation of the condition
awkwowl /u > 1. On the other hand, in Skoda’s data,

157 < ATW < 10.296 (5.66)

and it was impossible to find information about the slope of the waves used by Sk@dméz &
Milgram’s study.

The results of the present subsection consolidate the link established by Phillips (1959) between
the stretching of vorticity by the Stokes drift in turbulence beneath a surface wave and the enhancement
of wave energy dissipation by turbulence. The physical mechanism addressed here is inviscid, so it

139




Chapter 5 The distortion of turbulence by a progressive surface wave

is not, in a strict sense, a mechanism of dissipation, but of energy transfer. The predicted decay of
the wave energy is exponential and, according to (5.63), the attenuation rate depends on the frequency
or wavenumber of the wave in the same way as in the shear instability wave generation mechanism
of Miles (1957) or the non-separated sheltering mechanism of Belcher & Hunt (1993). Using the
dispersion relation of gravity waves, which implies that,, = g, it can be shown that (5.63) leads to

a temporal attenuation rate thatiss3. The corresponding spatial attenuation rate, which is obtained

by dividing the temporal attenuation rate by the group velocity of the wgve (1/2)cy (Olmez &

Milgram, 1992), is theril o&. This kind of dependence is compatible with the experimental results
shown in figure 4 of Greeat al. (1972).

The attenuation is therefore expected to be most important at wavenumbers or frequencies which
are high, but lower than those where viscous dissipation becomes dominant. Having in mind that
the wave attenuation rate due to viscous dissipati@vkg, (Lamb, 1932), where is the kinematic
viscosity of the water, the present mechanism is relevant when

2
u
@ 0w > 4vkE = u>> (4voy)?.

Nl=

(5.67)

Takingo, = 1s ! and noting thav = 1 x 10°®°m?s71, it is concluded thati must be considerably
larger tharemm s (not a difficult condition to satisfy in the ocean). Alternatively, the criterion (5.67)
can be expressed as
w2
o] — 5.68
W << 4\)7 ( )

which, if it is assumedi = 2cms?, givesa,, < 100s?, corresponding approximately #q, >
1.5cm Wavelengths outside this range would be excluded anyway because of the condition requiring
the scale of the wave to be much larger than the scale of the turbulence (first equation of (5.3)). The
mechanism addressed here is therefore primarily a gravity wave dissipation mechanism.

5.4 Conclusions

A rapid-distortion model has been used to study the interaction between initially homogeneous, shear-
free turbulence and a progressive, irrotational surface wave. The model is applicable when the integral
length scale of the turbulence is much smaller than the wavelength of the wave and the slope of the
wave is high enough that the straining of the turbulence by the wave is stronger than the straining of
the turbulence by itself.

As a result of distortion by the orbital motions of the wave, the turbulent Reynolds stresses undergo
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a modulation over a wave cycle, with the streamwise Reynolds stress attaining maxima at the wave
crests and minima at the wave troughs and the reverse happening with the normal Reynolds stress.
This behaviour is consistent with the experimental results of Thais & Magnaudet (1996).

Over several wave cycles, the turbulence becomes strongly anisotropic due to the tilting of the ver-
tical vorticity by the Stokes drift and its subsequent amplification as streamwise vorticity. The stream-
wise Reynolds stress becomes progressively smaller, while the spanwise and normal Reynolds stresses
both amplify over time. This corresponds, in a statistical sense, to the formation of intense streamwise
vortices. The integral length scales of the turbulence indicate that these vortices are elongated in the
streamwise direction, like Langmuir circulations. The structure of the turbulence predicted by the
model is found to resemble that of ‘Langmuir turbulence’ in the LES of McWilli@tnal. (1997).

The effect of turbulence distortion by a shear current is examined by using a rapid-distortion model
of turbulence in a uniform shear flow. The differences relative to turbulence distorted by a wave are
striking. In the case of the shear flow, the streamwise Reynolds stress becomes the largest of all
Reynolds stresses and the structure of the streamwise velocity fluctuations becomes elongated in the
streamwise direction, showing signs of the ‘streaky structures’ produced, for example, in the DNS of
Leeet al. (1990).

The increase of the TKE associated with the formation of the intense streamwise vortices in the
turbulence distorted by a surface wave is linked with the existence of a negative shear stress in the
turbulence, and the tendency of the TKE is found to be proportionatif@z. The time scale for the
amplification of the TKE is obtained by scaling the TKE equation, and found to 8¢lof(a2k20y)).

Finally, the effect of the turbulence on the distorting surface wave is estimated by scaling the
equation for the kinetic energy of the wave. It is found that the energy of the wave decreases due to
the energy transfer taking place to the turbulence. The wave therefore decays through the attenuation
mechanism identified by Phillips (1959) as ‘eddy-viscosity interaction’. The wave decay is found to
be exponential, with an attenuation rateQgf u/c,)?0y,), which is consistent with the laboratory data
of Olmez & Milgram (1992).

These results enable to establish a definite link between the generation of streamwise vortices in
turbulence beneath a surface wave and the enhanced decay of that wave due to the turbulence. The
results also provide an explanation for the existence of ‘Langmuir turbulence’, since the anisotropy of
that kind of turbulence, both in terms of the intensity of the various velocity components and in terms
of their length scales, is predicted correctly. Some caution is necessary regarding these results, since
the model does not account for the simultaneous presence of a Stokes drift and a shear current. But
the importance of that current as an additional source of vorticity is deemed to be limited, in many
situations, to a thin layer near the surface, whereas the interaction between turbulence and the Stokes
drift penetrates deeper.
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Conclusions

A number of simplified model problems relevant for understanding fundamental aspects of the inter-
action between turbulence and a free surface have been considered. The important findings achieved
using these models will be recalled next.

In the viscous model of shear-free turbulence near flat boundaries, presented in chapter 2, the aim
was to analyse the differences between the viscous coupling of the turbulence with a solid wall and
with a free surface, and to explain existing direct numerical simulation (DNS) data of the turbulence
dissipation rate. For that purpose, an energy spectrum with a viscous cutoff was adopted for the
turbulence. This spectrum allowed a correct prediction of the dependence on the Reynolds number
of the dimensionless dissipation rate, in agreement with the DNS data of JirmeakZ1993) and
Wanget al. (1996). Profiles of the turbulence dissipation rate tangential and normal to the two types
of boundary were then calculated, and found to agree extremely well with profiles obtained using
DNS by Perot & Moin (1993). The tangential dissipation rate is higher near a solid wall than in the
bulk of the flow because the no-slip boundary condition leads to large velocity gradients across the
viscous boundary layer. In contrast, the weaker constraint of no stress at a free surface leads to the
dissipation rate close to the free surface actually being smaller than in the bulk of the flow. This partly
explains why tangential velocity fluctuations parallel to a free surface are so large (see, for example,
Perot & Moin, 199%). In addition, it was shown that it is the adjustment of the large energy-containing
eddies across the viscous boundary layer that controls the dissipation rate profiles, which explains why
rapid-distortion theory can give quantitatively accurate values for the dissipation rate at short times.
It was also found that the dissipation rates obtained from the model evaluated at early times actually
yield useful estimates of the dissipation obtained from the DNS at times when nonlinear processes are
significant. It is concluded that the main role of the nonlinear processes is to arrest growth by linear
processes of the viscous boundary layer after about one large-eddy turnover time.

In the inviscid model of shear-free turbulence near a flat boundary, presented in chapter 3, the
aim was to understand how nonlinear interactions in the turbulence are affected by a wall or a flat
free surface. This was done by considering the distortion of small-scale turbulence by axisymmetric
straining flows representing the large-scale upwelling or downwelling zones in the turbulence. It
was found that, in a downwelling zone, the tangential Reynolds stresses increase in time, while the
normal Reynolds stress decreases in time, and the small-scale turbulence becomes approximately two-
dimensional. In an upwelling zone, both the tangential and the normal Reynolds stresses increase

142




Chapter 6 Conclusions

in time, and the turbulence remains three-dimensional. In both cases, the turbulent kinetic energy
(TKE) increases everywhere, but the ratio between its value at the boundary and far from the boundary
remains 1, if the straining rate is constant. In shear-free turbulence, it is observed (Thomas & Hancock,
1977; Biringen & Reynolds, 1981) that the TKE near the boundary is larger than the TKE far from the
boundary, even near solid walls, where it was seen in chapter 2 that there is no minimum in dissipation.
This can be explained by the presence of upwelling and downwelling zones near the boundary, where
the net strain is high and highly anisotropic, and a transition into an isotropic strain field as one moves
away from the boundary, where there is a great deal of cancellation of the distortions and the net
strain is weaker. When this effect is mimicked in the model by considering straining flows that decay
exponentially away from the boundary, the calculated Reynolds stresses show good agreement with
the data of Thomas & Hancock (1977) and Biringen & Reynolds (1981). The pressure-strain terms in
the TKE equation are found to lead to a return to isotropy of the small-scale turbulence everywhere,
except in the near-boundary region of upwelling zones. The turbulent pressure fluctuations are found
to be more intense in an upwelling zone than in a downwelling zone, suggesting that the former flow
may be more important for surface wave generation than the latter. Pressure spectra calculated at the
boundary and far from the boundary in the case of a flow with a constant strain rate show reasonable
agreement with spectra of the ‘slow’ pressure obtained from DNS data by Kim (1989), indicating that
the high wavenumber tail of these spectra may be dominated by contributions due to the interactions
between the large and the small scales of the turbulence.

In the model of surface wave initiation by a turbulent shear flow, presented in chapter 4, the aim
was to extend the inviscid theory of Phillips (1957) by relating the pressure fluctuations that generate
the waves to the velocity fluctuations in the turbulence, and to compare the relative importance of
turbulence in the air and turbulence in the water for surface wave generation. It was found that, for
flows producing turbulent pressure fluctuations of a similar magnitude, a turbulent shear flow in the
water (coupled case) is much more efficient for generating surface waves of considerable slope than a
turbulent shear flow in the air (uncoupled case). This is in agreement with the findings of Caulliez
al. (1998), who report that the first visible waves in their wave tank only appear when the water flow
becomes turbulent. Wave generation is more efficient in the coupled case than in the uncoupled case
because the decorrelation time of the turbulent pressure fluctuations is longer in the water than in the
air — hence the turbulence in the water can interact with the free surface for a longer time — and also
because the integral length scale of the turbulent eddies is shorter in the water than in the air — hence
waves of a larger slope tend to be excited. In the coupled case, wave slopddbéare attained in
realistic times (Cox, 1958), while in the uncoupled case the free surface remains almost perfectly flat.
The predicted time evolution of the mean-square slope (MSS) of the waves resembles qualitatively
graphs of the same quantity in the experimental study of Cox (1958), suggesting that the initial growth
of the measured waves is due to the onset of turbulence in the water. Calculated curvature spectra
of the waves are found to display a peak at the wavenumber corresponding to the integral length
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scale of the turbulence, satisfying at lower and higher wavenumbers power laws resulting directly
from the assumed turbulence spectrum. These spectra qualitatively resemble the curvature spectra of
waves measured in the laboratory by Hwaai@l. (1993). The directional distribution of energy in

the calculated spectra shows a peak in the direction of the flow for low shear rates of the turbulent
flow (with a cos dependence on the propagation angle), but broadens and becomes bimodal at low
wavenumbers for higher shear rates, in accordance with observatidme (& Riemer, 1990) and
theoretical models (Kudryavtsev, 1999). This behaviour results from the emergence of truly resonant
waves (as understood by Phillips, 1957) when the velocity of the flow at the level that forces the
dominant waves rises above their minimum phase spggd- 23cms™.

In the model of shear-free turbulence distorted by a surface wave, presented in chapter 5, the aim
was to investigate in what ways the structure of initially homogeneous and isotropic turbulence is
affected by the wave motion, and also, indirectly, how the wave is affected by the turbulence. It was
found that, on the time scale of a wave period, the Reynolds stresses are modulated by the orbital
motion of the wave, and undergo oscillations with the same period as the wave. The streamwise
Reynolds stress attains maxima at the wave crests and minima at the wave troughs, while the Reynolds
stress normal to the free surface attains maxima at the wave troughs and minima at the crests. This
modulation is consistent with the laboratory measurements of Thais & Magnaudet (1996). On the time
scale of several wave periods, the streamwise Reynolds stress progressively decreases in magnitude,
while the spanwise and normal Reynolds stresses increase, rendering the turbulence approximately
two dimensional and dominated by intense streamwise vortices. The streamwise integral length scales
of the spanwise and normal velocity fluctuations increase, while the spanwise length scales of the same
velocity fluctuations decrease. Hence the streamwise vortices become elongated in the streamwise
direction. This structure is found to resemble the structure of ‘Langmuir turbulence’, produced in
the large-eddy simulations of McWillianmet al. (1997). The formation of streamwise vortices can
be explained by the tilting of vertical vorticity initially present in the turbulence by the Stokes drift
of the wave, and its amplification as streamwise vorticity. This is the same physical mechanism as
that proposed by Craik & Leibovich (Leibovich, 1983) for the formation of Langmuir circulations.
However, in Craik & Leibovich’s theory, the source of vorticity for the circulations is a wind-induced
shear current, whereas in the present model the source of vorticity is the turbulence which is assumed
to exist initially in the water, due to for example, wave breaking (Melville, 1996). The role of the
shear current in the dynamics of the turbulence is studied by using a model of turbulence distorted by a
uniform shear. Itis found that, in turbulence subject to shear, the streamwise Reynolds stress becomes
dominant, and the streamwise velocity fluctuations are elongated in the streamwise direction, forming
‘streaky structures’ (Leet al,, 1990). Whether the turbulence behaves as shear-flow turbulence or
Langmuir turbulence therefore seems to depend on whether the distorting effects of the Stokes drift or
of the shear dominate. By scaling the TKE equation, the growth rate of the turbulent kinetic energy
is found to be of0((awky)?0w), Whereayk,, is the wave slope anal, is the angular frequency of the
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wave. The energy transfer taking place to the turbulence as the streamwise vortices intensify is related
to a weakening of the wave motion, corresponding to the wave decay mechanism termed by Phillips
(1958) ‘eddy viscosity interaction’. This effect is estimated by scaling the equation for the kinetic
energy of the wave. When the estimated attenuation rate is compared with recent laboratory data on
wave decay due to turbulend®lmez & Milgram, 1992), order-of-magnitude agreement is achieved.

6.1 Applications and future work

The idealised model problems addressed in this thesis can be seen as building blocks that help to
understand the dynamics of turbulence near free surfaces.

The findings of chapter 2 regarding the linear dynamics of the viscous boundary layer in shear-
free turbulence may enable the improvement of closures for the dissipation terms near boundaries in
numerical models, as in Perot & Moin (1993). The behaviour of the dissipation predicted by the model
at a free surface may also help to understand gas transfer at air-water interfaces (Theofanous, 1984),
since the normal dissipation at the boundary is related to the surface divergence of the flow.

The treatment of the nonlinear dynamics of shear-free turbulence near boundaries, presented in
chapter 3, is useful in two ways. Firstly, it shows how the small-scale turbulence is affected by large-
scale flow structures that are ever-present in turbulence near boundaries: upwelling and downwelling
zones (Perot & Moin, 1995. Secondly, it provides exact calculations of the inviscid source terms
in the turbulent kinetic energy equation, including the pressure-strain terms. These results may help
to parameterise those terms near boundaries in numerical models, as done in Johanssoack Hallb
(1994) for unbounded turbulence.

The results of chapter 4 on surface wave initiation by a turbulent shear flow are useful primarily
for a more complete understanding of the wave energy balance in oceans or lakes. While the initial
generation of surface waves has generally been attributed to turbulence in the air (Phillips, 1957;
Kahma & Donelan, 1988), the results presented here show the importance of turbulence in the water,
whose effect should be included in the wave balance equations. Due to the highly idealised nature
of the flow employed in the rapid-distortion model, comparisons with data were mainly qualitative.

It would be useful to perform direct numerical simulations of similar flows and compare their results
with those obtained here. The rapid-distortion model could also be used to calculate the source terms
in the turbulent kinetic energy equation, as was done in chapter 3 for shear-free turbulence. This would
provide insights about the near-boundary dynamics of shear turbulence, which are more complicated
than the dynamics of shear-free turbulence, or unbounded shear turbulence (Maxey, 1982), because the
interaction of the mean vorticity and the turbulent vorticity is substantially modified by the blocking
effect of the boundary (Lee & Hunt, 1989).
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The distortion of turbulence by a progressive surface wave, treated in chapter 5, is perhaps the
model problem considered in this thesis with the widest range of possible applications. The predictions
of how the turbulence structure is affected by the Stokes drift, generating streamwise vortices, are
relevant for developing parameterisations of these vortices in numerical models of ocean flows that
do not resolve them. Furthermore, the structure of the turbulence, particularly when it is organised
in streamwise vortices, is known to control pollutant dispersion in the ocean surface layer (Faller
& Auer, 1988) and gas transfer across the air-water interface (Faller & Perini, 1984). It would be
interesting to relate more extensively the turbulence distortion mechanism addressed in this chapter
to the classical mechanism of Craik & Leibovich (1976) for the generation of Langmuir circulations.
From the viewpoint of the waves, the turbulence-induced wave decay which was seen to be associated
with the intensification of the streamwise vortices is obviously of great importance as a sink term in the
wave energy balance, and should be included in the balance equations (Hasselmann, 1988). It would
also be useful to compare the wave attenuation rate predicted by the model with further experimental
or numerical simulation data, in order to test its validity and to better calibrate the adjustable constant.

All the model problems in this thesis have been solved using rapid-distortion theory. The ana-
Iytical solutions obtained for the turbulent velocity field are thus in a form which is adequate to be
implemented directly in kinematic simulations of turbulence (Perkirel., 1990). These numerical
simulations retain only the dynamics that are contained in the rapid-distortion solutions, so they are
much cheaper to run than models involving a full resolution of the Navier-Stokes equations. By adding
a random phase to the Fourier components of the rapid-distortion solutions, kinematic simulations al-
low the calculation of actual flow fields, that can be compared with those produced by more realistic
models, and the computation of flow trajectories (Fengl, 1992). While it would be interesting to
perform kinematic simulations of all the flows considered in the thesis, it is intended in particular to
study the trajectories of a tracer released at the free surface of a turbulent flow distorted by a surface
wave (the problem of chapter 5). The aim is to see if the tracer tends to concentrate in rows aligned
with the streamwise direction, as happens in Langmuir circulations (Meéti, 1998).
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APPENDIX A

Surface wave generation by shear-free turbulence

A.1 Introduction

It was initially intended to address the problem of surface wave generation by shear-free turbulence at
an air-water interface using a simple extension of Hunt & Graham’s (1978) RDT model of shear-free
turbulence near a wall.

A similar approach was first used by Carruthers & Hunt (1986) to address the generation of gravity
waves in a stably stratified layer above a turbulent layer. During the course of the work leading to this
thesis, another study was published by Fernando & Hunt (1997), who treated the case of turbulence
near a sharp interface separating two fluids of different densities, and calculated statistics of the inter-
facial waves generated by the turbulence. Fernando & Hunt's model appeared to provide a framework
that could be applied directly to the problem of wave generation at an air-water interface, requiring
only the addition of the effect of surface tension, which was not considered in the original treatment.
However, the way in which the turbulent pressure is treated in that model leads to serious concerns
about its applicability.

It is well known that wave generation is an intrinsically dynamical process, which is essentially
driven by pressure (Phillips, 1957). However, Hunt & Graham’s (1978) inviscid model is purely
kinematic, and produces no pressure fluctuations. To enable their models to produce the pressure
fluctuations that are required to generate waves, both Carruthers & Hunt (1986) and Fernando & Hunt
(1997), introduced a crucial assumption about the spatio-temporal structure of the turbulence, which
will be shown to be formally inconsistent. This formal inconsistency is not serious for the generation
of waves that are not resonant (the situation treated in detail by Carruthers & Hunt and Fernando &
Hunt) because the order of magnitude of the pressure is predicted correctly, but reservations exist
when the model is applied to resonant wave growth, because of the crucial way in which this process
depends of the spatio-temporal structure of the turbulence (see chapter 4).

First of all, it will be shown that Hunt & Graham’s linearised equations do not produce turbulent
pressure fluctuations, and are thus unable to generate waves. Then, it will be shown how the assump-
tion of Carruthers & Hunt (1986) and Fernando & Hunt (1997) about the spatio-temporal structure of
turbulence is inconsistent with the equations of motion, but generates a pressure field of the right order
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of magnitude. Finally, this assumption will be adopted, despite its inconsistency, to calculate resonant
wave growth, and a physical interpretation of the results will be presented.

A.2 Theoretical model

The linearised inviscid momentum equation applicable to turbulence in the absence of a mean flow is

ou; 1dp
= __=-~F Al
wherey; is the turbulent velocityp is the turbulent pressure amdis the density of the fluid under

consideration. The mass conservation equation is
aui
20 A.2
o (A.2)
Taking the curl of (A.1) yields the vorticity equation

ow
5= 0, (A.3)

wherew = [ x u is the turbulent vorticity.

Now, (A.3), implies that the rotational part of does not depend on time. Since the flow consists
of a rotational part plus an irrotational part, (A.2) implies that the irrotational paftadnnot depend
on time either. Therefore, the velocity field must be frozen, and (A.1) reduces to
ou; ladp
2 __ZF _q A4
ot p 0% (A4)
Hence it can be concluded that the turbulent pressure is a constant, and by definition of fluctuating
guantity, equal to zero.

Carruthers & Hunt (1986) and Fernando & Hunt (1997) assume in their models that the turbulence
far from the boundary is statistically homogeneous, isotropic and stationary. The turbulent velocity
can then be expressed as a 4-dimensional Fourier integral as

ut) = [[[[87 e, 008 Mg dkediado. (A5)

where Gi(H) is a Fourier amplitudek = (ki, ko, k3) is a wavenumber vector anal is an angular

frequency. Now, the only possible choicemtonsistent with (A.4) i = 0. But equation (2.B) of
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Carruthers & Hunt (1986) and equati¢a1)® of Fernando & Hunt are equivalent to setting
o = uk, (A.6)

wherek = (k% + k% + k%)% is the wavenumber value ancthe root-mean-square (RMS) velocity of

the turbulence. This assumption, which has also been used in the kinematic simulations of Turfus &
Hunt (1987) and Perkinst al. (1990), makes the turbulence evolve in time and have approximately
correct temporal statistics, without having to account for complicated dynamical processes. However,
(A.6) is clearly inconsistent with the equations of motion.

Since the only velocity scale of the turbulenceiisf the the various terms in (A.1) are estimated,
using (A.6), it is found that the turbulent pressure scalgsLdswhich is correct for shear-free turbu-
lence (Batchelor, 1950). Regarding this particular aspect then, (A.6) appears to mimic correctly the
nonlinear effects that are neglected in the linearised fundamental equations. In the following calcula-
tions, (A.6) will be adopted to treat the problem of wave generation, in order to see how it affects the
wave growth rates.

A.2.1 The wave generation problem

Like the turbulent velocitwi(H) that is ultimately responsible for driving the waves, all the turbu-
lent and wave variables are horizontally homogeneous. Hence both the interface el@atibthe

turbulent pressurp can be expanded as two-dimensional Fourier integrals as

(X1, %2, t) = //Z(kL ko, )€ kiatkexe) g dko,
p(x,t) = // P(k1, ko, xa, t) € kxtkex) g, dko. (A7)
The wave orbital motion is equally horizontally homogeneous, and assumed to be irrotational. Using

mass conservation and the kinematic and the dynamical boundary conditions at the interface (see
chapter 4), the Fourier amplitude of the surface elevation is found to satisfy

92 25 ki2Pp(xz = 0)
e 0o( = E— (A.8)
wherek; = (k2 + k2)2 and
0o = (gkuz + YiG,) 2 (A.9)
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is the natural frequency of surface wavgss the acceleration of gravity ands the surface tension.

This is equivalent to Phillips’ (1957) equation (2.12), and shows that the Fourier amplitude of the
surface elevation behaves like a forced harmonic oscillator driven by the turbulent pressure forcing at
the air-water interface.

Following Carruthers & Hunt (1986) and Fernando & Hunt (1997), rapid distortion theory enables
to relate the turbulent pressupeto the turbulent velocity field, and this considerably simplifies the
wave generation problem. Taking the horizontal divergence of (A.1) and using (A.2) yields

dou; 1 (%  &p
ox2  0xa

which may then be applied at the air-water interface. Since the turbulent pressure field responsible for
the initial wave growth is that in the absence of any waves (Phillips, 1957), the turbulent velocity field
on the left-hand side of (A.10) is also that in the absence of waves, being given by the solutions of
Hunt & Graham (1978). In contrast with (A.5), Hunt & Graham did not reprengtexplicitIy asa

Fourier integral in time. However, when the turbulence far from the boundary is assumed stationary,
that approach may be followed (Fernando & Hunt, 1997), and the expression obtained for the vertical
component of the turbulent velocity taking into account blocking by the boundary is

Us(x,t) = / / / / 85" (i, 0) (el — i) et diodiado. (A.11)

This equation may then be inserted into (A.10), and if (A.7) is also used, an expression for the turbulent
pressure amplitude is obtained. At the interface, that expression takes the form

5 ke
Bke, ko, X3 = 0,1) = — P // ok, 0)0 <| _ 3> e 9dksdo, (A.12)
K12 ki2

which may be substituted on the right-hand side of (A.8).

The solution of (A.8) for an initially unperturbed interface is well known from Phillips (1957) and
chapter 4 of this thesis. The corresponding solution for the wave spectrum is

Wk, ko, t) / / B (K1, k2, 0, 1) p(Ka, k2, 0, S) sinao(t — r)] sinjao(t — s)]drds.  (A.13)

pz 122
where the overbar denotes ensemble averaging and the asterisk denotes complex conjugation. Now,
noting from (A.12) that the pressure field is statistically stationary (because the velocity field that
generates it is also statistically stationary), a wavenumber-frequency pressure sp%(k[uk@, 0)
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may be introduced, being defined as

(k. ke, 0) Py K. 0') = Ak, ko, 0)3(ka — KBz ~ k)80~ ). (A.14)
where
plla.te.0.0) = [ Blka, ke, 0)e o (n15)

Equations (A.14) and (A.15) may then be substituted in (A.13), yielding an equation for the surface
wave spectrum as a function of the wavenumber-frequency spectrum of the turbulent pressure.

A sufficiently long time after the turbulent forcing has begun, the only turbulent pressure fluc-
tuations that give appreciable contributions to the integral on the right-hand side of (A.13) are those
whose frequency satisfies = op(ki2). The wave spectrum then becomes dominated by resonant
contributions and the equation that gives the wave growth in the notation of Hasselmann (1968) can
be obtained:

aLP Tt k%z el =

— = = —5 (M(ky, k M(ky, ko, — . Al
&~ 2p20? (M (K, ko, 00) + M(ky, ko, —00)) (A.16)
Finally, using (A.12), (A.14) and (A.15), the wavenumber-frequency spectrum of the turbulent pres-
sure may be related to the wavenumber-frequency spectrum of the turbulent velocity far from the

boundaryxi(jH), yielding

A o? k2
[ (ky, ko, 0) = kaT/ (1 + k23> X (k, o) dks, (A.17)
12 12

(H)

whereyj; ' is defined as

(H)x H)
1

(K,0") =X (k,0)3(k — K)3(c — ). (A.18)

(k, 08

The crucial assumption of Carruthers & Hunt (1986) and Fernando & Hunt (1997) states that
the wavenumber-frequency spectrum of the turbulent velocity can be related to the corresponding
wavenumber spectrumi(jH) through (cf. (A.6))

X (k,0) = o' (k)5(0 — uk). (A.19)

This means that the turbulent velocity field is treated like a superposition of waves with the ‘dispersion
relation’ (A.6). The definition of the wavenumber spectruﬁﬁ') adopted here is that appropriate for
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isotropic turbulence and can also be found in Hunt & Graham (1978), or in chapter 4 of this thesis
(equation (4.53)).

A.3 Results and discussion

Equation (A.16) shows that the wave spectrum grows linearly in time, and proportionally to the pres-
sure spectrum at the wavenumhkgrand frequency that satisfy the dispersion relation of free surface
waves. Due to linearisation, that pressure spectrum is in turn proportional to the velocity spectrum at
the same wavenumber and frequency (see (A.17)). It should be noted that (A.16) and (A.17) are phys-
ically consistent, since they were derived from the original linearised equations of motion. It is only
when, as a result of (A.19), it is assumed tbag 0 in (A.17) that the model becomes inconsistent,

for the reasons explained before. But that inconsistency is necessary if any pressure forcing, and the
resulting wave growth, are to be predicted.

Although the equations ifA.2 have been derived for turbulence in the water, this model can be
applied to turbulence in the water or to turbulence in the air. The wave motions themselves are always
dominated by the dynamics of the water-side of the domain, because of the large density difference
existing between air and water, so the density in (A.16) must always be replaced by the density of
waterpy. In the expression for the turbulent pressure forcing, (A.17), the density may be replaced by
the density of water or by the density of g, depending on whether the interface is forced from
below or from above. For a similar RMS velocityand integral length scale of the turbulencéhe
effect of the density is simply to make the spectral growth rates for turbulence in the air smaller by a
factor~ 107° than for turbulence in the water. Of course, the fact thand| are generally larger in
the atmosphere than in the ocean tends to counter this effect, at least partly (see chapter 4).

For an isotropic wave field, such as that generated by horizontally isotropic turbulence, the omni-
directional slope spectrum of the air-water interface is defined as

S(k12) = 21S,W(k12). (A.20)

Figure A.1 shows the growth rate of the omni-directional slope spectrum, for plausible valusasdof

u, in the case of turbulence in the air. It can be seen that the growth rate increases as the RMS turbulent
velocity u increases, as would be expected, but Becomes larger than the minimum phase speed of
surface wavesmin ~ 23cm s 1, which occurs at the wavenumbegin ~ 3.67cn1 1, a gap where there

is no resonant growth appears, centreck@n. The gap becomes wider asncreases. This can be
understood with the aid of the schematic diagram of figured.Z{he resonance condition states that

o, the frequency of the turbulence, has to be equalgtdhe natural frequency of the surface waves.
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dSdt (cms )

Figure A.1 Resonant wave growth for turbulence in the air, using assumption (A.19). Integral length scale of the turbulence
| = 30cm Thin solid line: u = 19cms?, dotted line:u = 20cms?, dashed line:u = 21cms?, long-dashed line:
u=22cms?, dash-dotted lineu = 24cm s'%, thick solid line:u = 26cms?t.

Now, (A.6) and (A.9) show that
0=0p = Uk=cykqo, (A.21)

wherecy, is the phase speed of the wave. Sikgeis by definition smaller thak, (A.21) means that
resonance can only occuruf < c,. The gap in the graph of figure A.1 includes the wavenumbers

for which this condition is not met. The schematic diagram of figure #.2kplains in more detail

the resonance mechanism. Resonance happens when a Fourier component of the turbulent pressure
becomes phase locked with a surface wave having the same horizontal propagation velocity. For this
to be possible, a Fourier component of the pressure of wavel@ngtiat excites a monochromatic

wave of wavelengti,, must travel at an angk to the horizontal such thabsbr = u/cy = At /Aw.

Whenu > ¢y, or Ay > Ay, there can be no resonant wave growth. The gap in the graph of figure

A.1 only appears because, in the present model, the turbulence advection is parameterised in a rather
artificial way, as a superposition of wave-like components all travelling at the same ‘phasegpeed’

albeit in different directions (see (A.6)).

A slightly more realistic approach is to model the turbulence still as a superposition of independent
Fourier modes, but with a ‘phase speed’ characterised by a gaussian distribution, as suggested in the
study of Funget al. (1992) on kinematic simulation of turbulence. In that case, assumption (A.19) is

replaced by

exp(—(o —o(k))?/252(k)), (A.22)

(H) — o
X|] (ka 0) @ (k) Z(k)

T 2y

[T

whered is an average frequency aidis the corresponding standard deviation. Equation (A.22)
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@ (b~

c,
Gravity Capillary
waves waves

u

Resonant Resonant Ao
growth No growth growth
0 I(m‘n k12

Figure A.2 (a) Schematic diagram showing the resonance conditions. The thick solid curve represents the phase speed of
surface waves,,. (b) Schematic diagram of the general mechanism for resonance.

implies that there is a gaussian distribution of frequencies for each Fourier component of the turbulence
having a given wavenumber magnitude. The average frequency is chosen lzere ak and the
standard deviation is defined as= 0.25G, being proportional t@, in accordance with the ideas of
Funget al. (1992).

Figure A.3@) shows the resonant growth rate of the omni-directional slope spectrum for the same
conditions as figure A.1, but with the new assumption (A.22). The theoretical curves in figuad A.3(
are quite similar to those of figure A.1 except for the highest values iofthe region where the gap
existed. The gap has now been filled, and become simply a dip in the curves, cenkggl drhis
can be understood by noting that the second equality of (A.21) is no longer valid, since there is now a
distribution of ‘advection velocities’ of the turbulence, and not only one velagityhe curves giving
the spectral growth rate in figure Ag(somewhat resemble the spectra shown in figure 1 of Zhang
(1995). This would suggest that turbulence exclusively in the air might be responsible for the dip at
the wavenumbek,i, which is observed not only in Zhang’s data but also in wave spectra measured
by other authors (Cox, 1958akine and Riemer, 1990). The plausibility of this idea can be tested by
analysing the order of magnitude of the wave growth rate.

A global measure of the ‘size’ of the waves is mean-square-slope (MSS) of the interface, which is
defined as

00\? () _ =
(5) * (5g) = St 423

In figure 1 of Zhang (1995) and also in numerous other data, the MSS is gener@i{9.61), corre-
sponding to a root-mean-square (RMS) slop®©@@.1) (wave slopes much higher than these values
are prevented from occurring by nonlinear processes like wave breaking). The growth rates of the
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=

Figure A.3 (a) Resonant wave growth using assumption (A.23).Turbulence in the air, same conditions as figure A.1.
(b) Turbulence in the water. Integral length scale 4cm Thin solid line:u = 2cm s, dotted line:u = 2.3cms™?, dashed
line: u = 2.6cms, long-dashed lineu = 3cm s, dash-dotted lineu = 3.5cm st thick solid line:u = 4cms™.

MSS calculated for the values bfandu used in figure A.3) are found to range between 1.0 and
3.4x107°s1. This means that a RMS slope of 0.1 would be attained in between 5 and 17 minutes.
These time scales are manifestly much larger than the observed time scales for wave development.
Hence, the model can not explain the initial growth of surface waves.

That initial wave growth might be explained by turbulence in the water. FigurdopsBiows the
growth rate of the omni-directional slope spectra of waves generated by turbulence in the water, for
plausible values dfandu. There is now unimpeded resonant growth for waves of any length (because
U < Cmin), hence there is not a dip in the curves of the spectral growth rate at the waverigmnber
Regarding this aspect, the curves of figure A)3esemble less those of Zhang (1995) than in the
case of turbulence in the air. However, the magnitude of the growth rate is somewhat greater than for
turbulence in the air, ranging betwe®2 x 10~4s! and8.2 x 10~3s~1 for the values of andu used
in figure A.3b). For these growth rates, the time interval required to attain waves with a RMS slope
of 0.1 would be between 1.2s and 31s, which is much closer to the observed time scales for wave
development. Hence the initial growth of surface waves might be attributed to the onset of turbulence
in the water induced, for example, by a wind blowing over the air-water interface, a result which is
consistent with the findings of chapter 4.

These results are interesting, and suggest that the model is able to predict wave growth rates with a
plausible order of magnitude. But it would be risky to attach too much significance to them, since, as
was seen before, the pressure field which is ultimately responsible for generating the waves is obtained
in a way that is formally inconsistent with the fundamental equations, and the physics of the model
are thus incorrect. That was the reason why the presentation of this model has been relegated to an

appendix.
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