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Analysis of Inhomogeneous Wave Number Spectra 
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As waves propagate from deep to shallow water, various effects of the shallowing depth of water 
spatially modify spectral characteristics of the sea surface. In such spatially inhomogeneous regimes, 
spectral 99•putations based on a finite field size are subject to errors due to an inherent spatial smoothing 
in addition to resolution errors of a more conventional nature. The conflicting requirements of resolution 
and smoothing errors for an accurate analysis prescribe an optimal field size for which the combined 
magnitude of such errors is minimal. The optimal field size, the associated errors in resolution and 
smoothing, and the conditions for limiting accuracy are derived for computations in a shallow water wave 
field in which refraction and shoaling constitute the predominant inhomogeneity effects. Bottom friction, 
percolation, and reflection are neglected, and calculations are based on a first-order approximate shallow 
water wave theroy. 

INTRODUCTION 

Aerial photographic techniques have recently proved to be 
entirely appropriate and effective in the study of the ocean sur- 
face. These techniques offer certain advantages over various 
other techniques for the computation of two-dimensional 
wave number spectra: the advantages of economy and of 
covering large areas in a short time..Stilwell [ 1969] and Stilwell 
and Pilon [1974] developed and demonstrated an operational 
photographic system capable of providing quantitative es- 
timates of surface wave spectra for nonstationary and spatially 
homogeneous wave fields and suggested further applications 
of these techniques in the study of wave propagation, interac- 
tion, and generation. 

Although several limitations resulting from wave slopes, 
solar angles, sky luminance, haze, etc., influence the accuracy 
of spectral estimates obtained with photographic techniques, 
the applicability of these methods is not severely restricted un- 
less a fundamental assumption embedded in such techniques is 
violated. This is the assumption of spatial homogeneity, i.e., 
the requ•irement that the statistical properties of the sea surface 
remain essentially the same over the area to be spectrally 
analyzed. The violation of this assumption means that if the 
size of the area to be photographed is too large, the spectral 
characteristics of a given location may be smoothed or 
smeared out by contamination from the neighboring areas in 
the estimation process. On the other hand, if the size of the 
area photographed is too small, the accuracy of the resulting 
estimates will be limited in terms of spectral resolution. 

Recently, in applying photooptical techniques in shallow 
water, Klemas et al. [1974] pointed out that the spatial ir•- 
homogeneity of the shallow water wave field requires choosing 
an optimal field size. Co0sequently, questions arise as to the 
rational basis for such a selection, the criteria governing the 
accuracy of the associated shallow water spectral estimates, 
and the limiting conditions under which the applicability of 
photographic techniques becomes doubtful. Polis [ 1974], using 
Heisenberg's uncertainty principle, showed the possibility of 
choosing an optimal field size on the basis of a trade off that 
must be made between the intrinsic spatial variation of a wave 
number in shallow water and the increase in the resolution of 

the wave number from a larger field size. Although this con- 
cept is interesting as an optical analogy and obviously useful in 
examining a regular train of waves in shallow water, its ap. 
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plicability seems less certain to photooptical spectral computa- 
tions in a random wave field where the primary objective is to 
determine the spectral magnitude associated with a prescribed 
wave number locally rather than the optimal resolution or 
separation of the wave number itself. In the photooptical 
analysis of directional wave spectra it is plausible in principle 
to use a two-dimensional generalization of the recent tech- 
niques developed for the univariate spectral analysis of non- 
stationary and inhomogeneous processes [Priestley, 1966; 
Tayfun et al., 1975]. However, the complicated nature of the 
procedures involved in lhese techniques likewise suggests that 
the necessity of using them would eliminate some of the pre b- 
ent advantages of the photooptical techniques. 

This study examines the limitations on the accuracy of 
spectral computations based on a finite field size to determine 
a rationale for the selection of an optimal field size in shallow 
water. Under the assumptions of a first-order shallow' •ater 
wave theory and for spectra that can be characterized with a 
bandwidth measure, approximate expressions are derived for 
the resolution and smoothing errors associated with the 
general form of spectral estimates in a shallow water wave fie!d 
in which refraction and shoaling constitute the predomjna,nt 
inhomogeneity effects. Other incompletely understood effects 

ß 

of the varying water .depth such as bottom friction and per? 
colation are neglected. Attention is specifically directed 
accuracy limitations on the sample or raw spectral estimates 
without any special regard to their sampling fluctuations (or 
stability) simply because such a consideration becqmes irrele- 
vant if the accuracy of the sample estimates themselves i'•s not 
warranted. • 

SPECTRAL DEFINITIONS AND GENERAL FORM OF AN ESTIMATE 

Consider a spatially homogeneous area of the ocean in 
which the random surface displacement r/from the mean water 
level is observed as a function of space r = (x, y). The mean 
product 

Z(r) = Z(r, 0) = (r/(r*, to)(r/)tr* -F r, to)) (1) 

in which the angle brackets denote a complex conjugate, is 
defined as the two-dimensional spatial autocorrelation for the 
instantaneous free surface displacements [Phillips, !969]. 

The Fourier transform of Z(r) defines the wave number 
spectrum S(k): 

S(k) = (2•r) -: • Z(r) exp (•]r.r) dr (2) 
3469 
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where k = (/, n) denotes the wave number vector dr = dx dy as 
a shorthand notation, and an integration over the whole sur- 
face is implied. For the inverse of (2) we can write 

Z(r) = fk S(k) exp (ik.r) dk (3) 
in which dk =dl dn, and the integration is over all of the wave 
number space. It is seen from (2) that S(k) is a real nonnegative 
function, and from (3) with r = 0, 

z(0) - <1•1•> - s(k) • (4) 
Therefore the spectrum represents the density of contributions 
to the mean square displacement (I r/I •') per unit area of the k 
space. 

The spectrum can also be defined in terms of the Fourier 
components of the surface displacement itself. As a 
homogeneous process, r/(r, to) admits a Fourier-Stieltjes 
representation in the form [Phillips, 1969] 

r/(r) = fk exp (tlr.r) dAOr) (5) 
where it was assumed that to = 0 for simplicity and dA(k) is a 
zero-mean random process in the k space with orthogonal in- 
crements, such that 

(d•(k) (d•)(k*)) = 0 k • k* (6) 

(a•(k) (a•)(k*)) = S(k) & k = k* 

Hence the equation 

s(k) = (Id•(k)l:>/•k (7) 

defines the spectrum as the mean square Fourier amplitude of 
r/(r) per unit area of k space, and this definition is entirely con- 
sistent with (2), (3), and (4). 

The estimation of the spectrum $(k) through aerial 
photographic or stereophotogrammetric techniques [Stilwell 
and Pilon, 1974] is based on the analysis of a single photograph 
or a pair of overlapping stereophotographs of an area of the 
ocean surface. The analysis is therefore restricted to a finite do- 
main or boundaries corresponding in the simplest case to a 
square wave field of dimensions (L X L). With respect to an x, 
y coordinate system placed at the center of the wave field, the 
sample {r/(r) = r/(x, y); -L/2 < x, y < L/2} is regarded as one 
of the many possible realizations of the process r/(r). The 
general form of an estimate •q(k*) of S(k ) .at k* constructed 
from this sample can be expressed in terms of the squared 
modulus of a modified Fourier transform in the form 

$(k*) = g(r)r/(r) exp (--tlr*.r) dr (8) 

in which g(r) represents a real positive weighting function that 
incorporates the effects of the finite field size properly nor- 
malized so that 

(2•-) •' f• [g(r)] 2 dr = 1 (9) 
The simplest form of g(r), corresponding to a square field, is 
the two-dimensional boxcar function 

g(r) = g(x, y) = (2rœ) -• 

g(r) = g(x, y) = o 
Ixl, lyl < g/2 
Ixl, lyl > 

If we let 

G(k) = f• g(r) exp (--ik.r) dr (11) 
represent the Fourier transform of g(r), then it follows from 
(5), (6), (8), and' (11) that the expected value of •q(k*) can be 
written in the equivalent forms 

<$(k*)> = IG(k)l •'$(k* -- k) • 

= f• IG(k* -- k)l•'$(k) dk (12) 
Therefore the estimator •q(k*) is equivalent on the average to a 
smoothed or weighted integral of S(k) in the vicinity of k* and 
with weights proportional to IGI •'. For the boxcar function 
(10) the explicit form of these weights, given by 

•sin IL/2• • {S i nL/2• • IG(k)l• - (L/2r)2 !, IL/2 J '--nnL/2-J (13) 
corresponds to a bivariate generalization of the well-known 
Bartlett spectral window [Jenkins and Watts, 1969] and is 
characterized by a major central lobe over the range -2•r/L < 
l, n < 2 7r/L and by minor side lobes that decay as O(l -•) and 
O(n-•). 

FINITE FIELD SIZE AND RESOLUTION ERRORS 

The general objective in the spectral analysis of the sample 
In(x, y); Ixl, lyl -< El2} is to estimate the function S(k) as ac- 
curately as possible. In a manner of speaking, an estimate of 
S(k) at a prescribed wave number k* corresponds to looking at 
the spectrum in the vicinity of k* through a slit or window with 
a variable transmission I G(k)l •. The accuracy of the transmit- 
ted image as an estimate of S(k*) therefore depends very much 
on the effective width of the window, in that the narrower the 
width, the less the difference of the observed image from $(k*). 
On the other hand, the width of the window IGI • is inversely 
related to the field size L•; i.e., the larger the field size, the nar- 
rower the window width. In this manner, for very large values 
of L •, the spectral window I GI •- in effect behaves as a 
pseudo-delta function with respect to S, and it follows from (7) 
that as L 2 -, •o, (3'(k*))-, S(k*) asymptotically. However, the 
field size L • is always limited by various considerations such as 
data processing costs and the absence of homogeneity in addi- 
tion to several other physical constraints involved in aerial 
photographic techniques [Stilwell, 1969; Stilwell and Pilon, 
1974; Klernas et al., 1974]. Therefore the estimator 3'(k*) is in 
general an impression of S(k*) contaminated or distorted by 
the neighboring values over the finite width of the window 
I GI •. The error due to this distortion is the bias b of the es- 
timator 3' defined at a given k by 

0[3'] = (3) - S (14) 

Another term that is used for the same effect is resolution in 

analogy with a similar yet different concept in optics as- 
sociated with the problem of resolving lines in a spectrum. In 
that instance the spectrum consists of delta functions, and one 
is mainly interested in the separation or the resolution of the 
corresponding frequencies. In spectral analysis, however, the 
main concern is whether the quantity 3'(k*) is an accurate es- 
timate of S(k) at the prescribed wave number k*. The separa- 
tion of the wave number k* itself is irrelevant. Depending on 
how much or how little distortion is contributed to 3'(k*) from 
the neighboring values of S(k*) the estimator can be regarded 
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as a poorly resolved or well resolved image of S(k*). Hence in 
this sense the term resolution error is used as a synonym for 
the bias (14) [Blackman and Tukey, 1959; Priestley, 1962]. 

It is evident that in order to examine specifically the resolu- 
tion error (14) of an estimator corresponding to a particular 
window an explicit knowledge of the spectrum S(k) is re- 
quired. Obviously, this is possible only in an artificially con- 
structed hypothetical case. In empirical spectral analysis, the 
most we can hope to gather a priori is some rough information 
on the general characteristics of the spectrum. It is therefore 
natural to seek a usable expression for the resolution (14) 
based on an approximate knowledge of the spectrum. Hence if 
it is assumed that S(k) is smooth relative to the spectral win- 
dow IGI over its effective width, we may expand S(k* - k) in 
(12) as a joint Taylor series in l and n, neglecting the powers 
higher than the second order. Then recognizing that [ G(k)[ 2 is 
always an even function, (12) is approximately reduced to 

(•q(k*)> "• S(k*) + «&• •S(k*) (•) 
where 

V 2 -- P2/p12 + P2/ptI2 (16) 

and the parameter 

is a measure of the effective width of[ G[ 2. The Bartlett spectral 
window (13) taken as a whole has an infinite width. However, 
since its contribution to (12) is essentially from the major 
central lobe, we will use the conventional approximation 
[Priestley, 1966; Polis, 1974] 

L[f •'/• (•inuL/ (sinvL/ dr} 
= 2/z (lS) 

The function 

E•(k*) = [(•(k*)} -- S(k*)l/S(k*) • •[Bo/B(k*)] 2 

defines relative resolution error in which 

S(k) = I S(k)/V •s&)l '/• (20) 
Finally, the maximum relative resolution error over all wave 
numbers k is given from (18) and (19) by 

E• = max E•(k)• •(Bo/B) 2 (21) 
k 

where 

B = min B(k) (22) 
k 

An examination of (19) and (21) indicates that the most 
serious resolution error will occur where the curvature of S(k) 
is pronounced, as it is at local maxima and minima. In general 
the exact value of the quantity B is unknown. However, a 
generalization of the bandwidth concept in the univariate 
spectral analysis suggests that for a spectrum characterized by 
a dominant peak, B is related to the physical bandwidth defined 
in terms of the half-power points of the dominant spectral 
peak, as is schematically illustrated in Figure 1 [Priestley, 
1962; Priestley, 1966; Tayfun et al., 1975]. Therefore for a 
sharply peaked spectrum, B is small (narrow band), and for a 
relatively smooth spectrum, B is correspondingly large (wide 
band). For spectra that can be characterized as such, (21) im- 

S (k) = constant 

? ./ \ 

/ /x / / 
/ /// 

?/ ///' S(k) = S/max / 2 
\/ 
• • ---"' / B=W/2 

spectral bandwidth B. 

plies that the resolution accuracy of the associated sample 
spectral estimates is O(Bs:/B' ). In other words, by noting from 
(18) that Bs -• 2/L we can say that a spectral computation in 
which the field size satisfies the condition (LB)' >> 2 will 
provide useful estimates with high resolution, whereas hardly 
any meaning can be attached to those for which (LB) 2 _< 2, or 
equivalently En >- 100%. Thus the condition 

(LB)' > 2 (23) 

constitutes a limiting accuracy criterion for spectral computa- 
tions in homogeneous wave fields and in inhomogeneous 
regimes as well if the spatial variation of wave characteristics is 
reasonably slow over the field size. 

INHOMOGENEITY AND SMOOTHING ERRORS 

IN SHALLOW WATER 

In shallow water, where wave characteristics change con- 
tinuously with the varying depth of water, the wave number 
spectrum has a spatially inhomogeneous nature. For a shallow 
water wave field in which refraction and shoaling constitute 
the predominant bottom effects, the nature of this in- 
homogeneity is well-defined [Longuet-Higgins, 1956; Collins, 
1972]. If S'(k') = S'(l', n') denotes the homogeneous deepwater 
spectrum before refraction and S(k) = S(l, n) denotes the 
spectrum after refraction in shallow water, then S is related to 
S' by 

S(k) = S'(k') (24) 

where the shallow water wave number k = (l 2 q- r/2) x/2 is a 
function of the deepwater k' = (l '2 + n'2) x/2 and the local water 
depth D = D(r) in the form 

k tanh kD = k' (25) 

The direction 0 with respect to the local isobaths obeys Snell's 
law, 

k cos 0 = const (26) 

The preceding definitions physically imply that a contour of 
energy density $'(k') = const in deep water is transformed into 
a contour of $(k) = const in shallow water, though the shape 
and the magnitude of the area enclosed by the contour may 
change. Therefore the shallow water wave energy S(k) dk as- 
sociated with the wave numbers in a small region dk of the local 
k space is no longer the same as S'(k') dk' but is related to it by 
the transformation 

S(k) dk = S'(k')J(k, k') dk' (27) 
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in which the Jacobian 

J(k, k') = O(l, n)/O(F, (28) 

represents the local stretching of k coordinates. It follows then 
that the mean square displacement or the total wave energy 
per unit of horizontal area 

(29) 

is space dependent. 
Consider now_the problem of estimating the spectrum S(k) 

in shallow water from a sample of finite field size (L X L). As 
an estimator of S(k) at a prescribed k we can write, similar to 
(8), 

•(k) = ./• g(r)r/(r) exp (-- ik.r) dr (30) 
in which it is assumed that the sample r/(r) is symmetrically 
located with respect to the point of interest where D(r) = D. 
An application of Parseval's theorem to (30) yields 

It is evident that the expected value of this quantity physically 
corresponds to a weighted integral or a smoothing of the wave 
energy over the sample space (L X L). This, however, is given 
from (29) by 

<llnllb = (2r) • f • [g(r)]•S(k) dk dr 

,,.y, n 

shallow water; S( I, n) 

L 

deep water; St( I', n' ) 
Fig. 2. Definition sketch (plan). 

Ok/Ok' = (tanh kD Jr- kD sech 2 kD) -• (38) 

Ok'lOt'= l'/k' = sin 0' (39) 

it is easily verified that the maximum (>0) and the minimum 
(=0) of (35) occur, respectively, with the spectral components 
propagating normal (0 t = •'/2) and parallel (0 t = 0) to the 
isobaths, as is expected. Obviously, the maximum smoothing 
error that is of interest here is associated with the shallow 

water waves characterized by small ktD values. Therefore by 
using (36)-(39) with O' = •'/2 and the shallow water wave ap- 
proximation [Longuet-Higgins, 1956] 

Ok'/Ok = tanh kD + kD sech 2 kD "' 2(k'D) x/2 (40) 

A comparison of (29), (31), and (32) indicates that 3'(k) dk is an 
estimator of 

in (35), the maximum spatial smoothing error denoted by Es is 
approximately given by 

[S(k) dk]a,g = S•(k'){(2•r)2f•[g(r)]2J(k,k•)dr}clk ' (33) 
rather than S(k) dk = S'(k')J(k, k') dk'. Since S'(k') dk' is 
space independent, [S(k) dk]avg corresponds to a spatially 
smoothed image or a weighted average of the true energy S(k) 
dk over the sample space (L X L). Therefore in addition to the 
aforementioned errors in resolution a shallow water spectral 
estimator is subject to inherent errors as a result of this spatial 
smoothing. In an obvious manner, the function 

J[S(k) dk]a,•, -- S(k) dkJ/S(k) dk (34) 

represents a relative measure for such errors. 
To obtain a usable approximation to (34) in the following, 

we consider a shallow water topography with isobaths locally 

I bli2 fL/2 Es '•' • D -•/2 dx -- 1 (41) 
•- L/2 

Noting from Figure 3 that D(x) = -rnx + I), we finally obtain 

2/5 [( Lm)•/2 ( Lm•/21 J Ess' • I q-• -- 1 -- •/ j -- I (42) 
Equation (42) indicates that as L increases from zero up to a 

physically feasible maximum of 2O/m, the smoothing error Es 
increases nonuniformly from zero to 40%, approximately. For 
m • 0 or D • m, corresponding to a spatially homogeneous 
shallow water field with uniform depth or a homogeneous 
deepwater wave field, respectively, the error Es • 0, as is ex- 
pected. 

OPTIMAL SHALLOW WATER FIELD SIZE 

parallel to the shore and with a mean slope rn = -dD/dx as The preceding discussion suggests that errors in resolution 
shown in Figures 2 and 3 and use the boxcar form (10) in the and spatial smoothing should both be considered as criteria 
smoothing function [g(r)] a. Under these conditions, J(k, k t) = for the accuracy of a sample spectral estimate in shallow water. 
Ol/Ol', and (34) is simplified to 

Now by using the identity 

Ol/Ol' = Ol/Ok Ok/Ok' Ok'/Ol' 

with 

at/Ok = k/l = [1 -- (k'/k) 2 cos 2 0'1-1/2 

(36) 2 

(37) Fig. 3. Definition sketch (profile). 
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Moreover, it is evident that these criteria have conflicting re- 
quirements concerning the sample size for an accurate 
analysis; i.e., in order to decrease errors in resolution ER we 
must take as large a field size as feasible, whereas to reduce the 
smoothing error Es we must consider as small a field size as 
possible. Therefore choosing the sample size L so as to 
minimize both errors simultaneously suggests itself as an 
overall optimality criterion. Using (18), (21), and (42), we can 
write this criterion in terms of a dimensionless field size L* = 
Lrn/21) and a dimensionless bandwidth B* = Bl)/rn as 

Evain(B*) = min [Es(L*) q- E•e(L*, B*)] 
0<L*<I • 

= min {L*-•[(1 q- L*) •/2 
0<L*<I 

--(1 -- L*)•/2I- 1 q-«(L'B*) -2} (43) 

The numerical solution of the preceding equation for the op- 
timal value of L* and the associated errors Emi, = (ER + Es), 
E•, and Es are presented in Figure 4 as functions of B*. The 
results indicat0 that for a shallow water wave situation in 
which B* > 10 the errbr• E•[-•(4B*) -x] and Es[-•(4B*) -x] have 
equal but negligible significance, implying that an accurate 
computation of •q(k) is very much assured. The corresponding 
optimal value of the dimensionless field size is approximately 
given by 

Lopt* •- (2/B*) •/2 

Es, E,, Emi n (%) 
o 5o lOO 

I I 

ld 

-2 

Emin 

-3 

10 , I . 
0 0.5 

opt 

eq. 44 

Emin: E s+ E• 

I]opt = rn Lopt/2•) 
B'=Bb/m 

I I I 

Fig. 4. Dimensionless optimal shallow water field size (Lovt*) and 
the associated errors in resolution (ER) and spatial smoothing (Es) as 
functions of the dimensionless spectral bandwidth (B*). 

On the other hand, for decreasing values of B*, both errors 
become increasingly significant. For B* < 1 and approxi- 
mately corresponding to the values Lovt* > 0.95, the combined 
effect (Emi,) of the errors Ea and Es becomes so serious that a 
sample spectral estimator 3:(k) is no longer meaningful. For a 
given depth to slope ratio (D/m) the preceding results based on 
the dimensionless bandwidth B* = Bl)/m apply to wide band 
and narrow band spectra characterized with the large and 
small B values, respectively. In the limiting case, for the 
bandwidth B -• 0, corresponding to a wave field that consists 
of a regular wave train or a dominant swell, the estimation of 
the wave number spectrum via spectral analysis is clearly un- 
warranted. 

SUMMARY AND CONCLUSIONS 

In homogeneous wave fields, resolution constitutes the basic 
accuracy criterion for spectral computations based on a finite 
field size. As such this criterion embodies a condition of 

limiting accuracy which in principle suggests that the accuracy 
of spectral estimates increases as the field size is chosen 
progressively larger than a lower bound that is dependent on 
the bandwidth measure of the estimated spectrum. 

In shallow water wave regimes in which the wave number 
spectrum has a spatially inhomogeneous nature the accuracy 
of spectral computations is limited further by an inherent 
spatial smoothing error. Under conditions in which refraction 

(44) and shoaling are the primary inhomogeneity effects the 
smoothing error increases with the increasing field size. The 
fact that spectral resolution and spatial smoothing place con- 
flicting requirements on the choice of the field size for an ac- 
curate analysis prescribes the optimal field size as that which 
minimizes the combined effects of these errors. 

The numerical solutions for the optimal shallow water field 
size and the associated errors in resolution and spatial 
smoothing have been presented in a readily usable graph form. 
The general character of these results indicates that the 
feasibility and limiting accuracy of shallow water spectral 
computations depend very much on the bandwidth B of the 
spectrum in question, the local depth/), and the mean bottom 
slope rn. For the values of (BD/m) approximately smaller than 
1 the overall magnitude of the error (_> 100%) associated with 
the estimates implies that the spectral analysis of the shallow 
water wave field is hardly meaningful. It should, however, be 
pointed out that these conclusions are conservatively based on 
the shallow water peak spectral components. A spectral com- 
putation that is feasible and accurate for such major spectral 
components implicitly warrants better quality estimates for the 
other components of the spectrum. 
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