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Abstract

Groups of large nonlinear waves with sharper higher crests can pose hazards to ships,

induce harbor resonance and cause wave-overtopping of fixed and floating structures. Past

interest in wave groups has mostly been focused on the statistics and modeling of linear wave

groups. Studies on nonlinear wave groups are surprisingly few, and address deep water waves

only. Here, statistics of nonlinear wave crests and wave-crest groups in deep and transitional

water depths are considered, using an appropriate second-order representation for crest

heights and the continuous wave-envelope approach. In particular, theoretical expressions

describing the statistics of nonlinear wave crests and their groups are posed in the form of a

simple second-order transformation of well-known results on linear waves. Predictions from

the transformation so posed compare well with nonlinear wave data gathered in the North

Sea, and demonstrate that nonlinearities do affect the statistics of large wave crests and their

groups significantly.
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1. Introduction

Statistics of linear and nonlinear wave groups are of theoretical and practical
interest. Occurrences of runs of successive high waves with sharper higher crests pose
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hazards for fixed and floating structures, and increase their vulnerability to severe
damage, wave-overtopping or complete failure. Wave groups can also affect the
dynamics of surf beat, and induce resonance in harbors and possibly cause the
formation of unusually large or rogue waves (Stansell, 2004). Not surprisingly then,
statistics of wave groups have received ample attention based on two well-known
approaches: the wave-envelope approach (Rice, 1958; Longuet-Higgins, 1958) and
the Markov-chain approach (Kimura, 1980). In his classic review and analysis,
Longuet-Higgins (1984) shows that both approaches produce essentially similar
results in comparisons with observational data. Goda (2000) also presents a succinct
review of the discrete and continuous spectral versions of the Markov-chain
approach. An excellent review by Masson and Chandler (1993) critically examines
and compares both approaches, and discusses various modifications proposed by
Vanmarcke (1975), Goda (1976), Battjes and Van Vledder (1984), and others for
improving the consistency and accuracy of predicted statistics. For the continuous
spectral Markov-chain approach, Stansell et al. (2002) compare accuracies of
different techniques for estimating transition probabilities. Ochi and Sahinoglou
(1989) and Guizhen et al. (2004) develop refinements in the wave-envelope approach.

Sharper higher wave crests ubiquitous in rough seas can significantly alter the
surface geometry, fluid-flow patterns, and the attendant forces above the mean sea
level. These and other wave-induced phenomena cannot be formulated adequately in
terms of the statistics of wave heights and their groups. One reason for this is that
unlike wave crests, wave heights do not generally appear to be affected by
nonlinearities. Further, wave heights are not measured relative to a reference level
whereas wave crests are, typically with respect to the local mean sea level. These are
the principal justifications for studying nonlinear wave crests and their groups. But,
research on nonlinear wave groups has so far been sparse, consisting of just three
interesting studies. One of these is by Kriebel and Dawson (1991) based on the wave-
envelope approach; the second is an experimental study by Dawson et al. (1991) on
both linear and nonlinear wave groups; and, the third by Dawson et al. (1996) based
on an empirical version of Kimura’s (1980) discrete Markov-chain approach. All
three consider deep-water waves and further approximate the original second-order
narrow-band model (Tayfun, 1980, 1986) via series reversion. In this case, series
reversion introduces additional errors, and leads to theoretical expressions that
violate probabilistic principles. As a result, crest heights of large waves are over-
predicted unrealistically in transitional water depths and also in steep storm seas
in deep water (Askar and Tayfun, 1999; Forristall, 2000; Prevosto and Forristall,
2002; Wist et al., 2002). Unfortunately, most engineering interest lies in this range of
large waves.

This study first explores the relative validity of a specific narrow-band type
model for describing the statistics of nonlinear wave crests in deep and transitional
water depths. The recent extension by Fedele and Arena (2005) of Boccotti’s (2000)
linear quasi-deterministic theory for the limit form of high waves to second-order
unidirectional waves indicates that the model considered has general validity for
large waves irrespective of any bandwidth or directional constraints. Thus, the model
lends itself readily to a theoretical derivation of the statistics of nonlinear wave crests
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and crest groups over large waves in a fairly general context. In particular, given the
proposed nonlinear model, the statistics of nonlinear crests themselves follow rather
easily via a straightforward transformation of the Rayleigh law for linear wave
crests. It is shown that the same nonlinear model similarly poses a simple
transformation for predicting all group statistics associated with nonlinear wave
crests from those appropriate to linear wave envelopes, following Longuet-Higgins’
(1984) analysis and notation closely.

The crest-height definition used here and in all the references cited above refers to
the global maximum in the crest segment of a wave above the local mean sea level.
For linear or nonlinear waves, the statistics of such maxima are not known exactly.
Previous observations (Forristall, 2000; Stansell, 2004), and also the data eventually
analyzed here indicate a rather complicated bimodal structure. Observed histograms
typically display an initial narrow peak over the range of relatively low waves, and a
second more familiar wider peak over the mid range. At present, no theoretical or
empirical model can describe this complex statistical structure even roughly. All
models proposed for describing the statistics of nonlinear crest heights attempt to do
so over the range of high waves beyond the second mode where the principal
engineering interest lies. Thus, the particular form of the crest-height model
preferred here is further justified at least on the same premise. Since 1980s, several
other theoretical and semi-theoretical nonlinear crest-height models have been
proposed (Marthinsen and Winterstein, 1992; Tromans and Taylor, 1998; Prevosto
et al., 2000; Prevosto and Forristall, 2002; Arena and Fedele, 2002; Butler et al.,
2003; Fedele, 2004). Certainly, these models all provide valuable insight into the
effects of nonlinearities on wave crests. However, some are numerical or require
empirical data not readily available. Others involve either intricate analytics or
functional forms not amenable to practical applications or extensions to crest-group
statistics.

One issue of importance that arises in the applications of all results developed here
and elsewhere relates to the selection of a key parameter, often referred to as
steepness parameter. In essence, the steepness parameter characterizes the
nonlinearity of large waves and is closely associated with the vertical skewness of
the nonlinear sea surface. The efficacy of the present model, and the accuracy of
resulting statistics on wave crests and their groups depend largely on this parameter.
So, various ways of specifying it are considered in detail to determine an alternative
that is both simple and reasonably accurate for applications in deep and transitional
water depths. Eventually, the relative validity and accuracy of all results are verified
by comparisons with nonlinear wave data gathered in the North Sea.
2. Second-order random waves

2.1. General model and definitions

Consider directional waves propagating in water of locally uniform depth d. The
surface fluctuations from the mean sea level are expressed as Z ¼ Z1 þ Z2, where Z1 is
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the linear Gaussian component given by

Z1 ¼
XN

j¼1

aj cos ej, (1)

with ej ¼
~kj :~x� oj tþ dj, where t is time; ~x the horizontal position vector; ~kj ;oj and

dj define, respectively, the vector wave-number, radian frequency and random phase
of the jth component wavelet with amplitude aj. Wave-numbers and frequencies
satisfy the dispersion relationship o2

j ¼ gkj tanh kjd, and g � 9:81m=s2. The
nonlinear correction Z2 has the form

Z2 ¼
1

4

XN

i¼1

XN

j¼1

aiajfK
þ cosðei þ ejÞ þ K� cosðei � ejÞg, (2)

where K7 represent interaction coefficients. The explicit expressions for the latter are
given in Sharma and Dean (1979) and Forristall (2000).

The spectral density, say OðoÞ, of Z over the frequency o domain will also have the
form O ¼ O1 þ O2 with O1 and O2 representing the spectral densities of Z1 and Z2,
respectively. The ordinary moments of O1 are defined by

mj ¼

Z 1
0

ojO1ðoÞ do ðj ¼ 0; 1; 2; . . .Þ. (3)

In particular, m0 ¼ hZ21i, and

om ¼
m1

m0
, (4)

o0 ¼

ffiffiffiffiffiffi
m2

m0

r
, (5)

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0m2

m2
1

� 1

r
, (6)

define the spectral ‘mean’ frequency, mean zero-up-crossing frequency of Z1 and the
bandwidth of O1, respectively. The root-mean-square (rms) surface gradient or slope
of Z1 is given by

m ¼ hj~rZ1j
2i1=2 ¼

ffiffiffiffiffiffi
m4
p

g
, (7)

where ~r denotes the horizontal gradient operator.
In theory, the validity of the assumed form of Z requires that moo1. The same

parameter also serves as a relative measure of nonlinear corrections to Z and its
statistical properties (Tayfun, 1994). Evidently, Z1 is O(m0), whereas Z2 is O(m).
Accordingly, O2 and its contributions to O and its moments are O(m2). It follows
then that the spectral mean and zero-up-crossing frequencies associated with Z
are also given by om and o0, correct to O(m) and consistent with the results of
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Longuet-Higgins (1964) and Huang et al. (1985). Finally, the rms surface slope of Z is
also m, correct to the same order of accuracy.

2.2. Skewness coefficient and bounds

Let F1ð
~kÞ represent the wave-number spectral density of Z1. In the most general

case, the skewness coefficient l3 ¼ hZ3i=m
3=2
0 of Z can be expressed in the form

(Tayfun, 1994)

l3 ¼
3

2m
3=2
0

ZZ
ðKþ þ K�ÞF1ð

~kÞF1ð
~k
0
Þd~k d~k

0
(8)

correct to O(m). For unidirectional waves in deep water, Kþ ¼ k þ k0 ¼ ðo2 þ o02Þ=g

and K� ¼ �jk � k0j ¼ �jo2 � o02j=g. In this case, Eq. (8) assumes the simpler form

l3 ¼
3

2gm
3=2
0

ðIþ � I�Þ, (9)

where

Iþ ¼

ZZ
ðo2 þ o02ÞO1ðoÞO1ðo0Þ do do0 ¼ 2m2

0o
2
0, (10)

I� ¼

ZZ
jo2 � o02jO1ðoÞO1ðo0Þ do do0, (11)

and 0oo;o0o1. The preceding expressions can be easily combined to rewrite l3 as
(Longuet-Higgins, 1963)

l3 ¼
I

m
3=2
0

¼
6

gm
3=2
0

Z 1
0

Z o0

0

o2O1ðoÞO1ðo0Þ do do0. (12)

Now, note that ðo� o0Þ2pjo2 � o02j in I�. On this basis, it can be verified that
(see, e.g. Tayfun, 1986)

I�X

ZZ
ðo� o0Þ2O1ðoÞO1ðo0Þ do do0 ¼ 2m2

0o
2
mn

2. (13)

This result and Eq. (10) can now be substituted together with o2
0 ¼ ð1þ n2Þo2

m,
o2

m ¼ gkm and o2
0 ¼ gk0 in Eq. (9) to obtain

l3p3mm ¼ 3
m0

1þ n2
, (14)

where

mm ¼ m
1=2
0 km, (15)

m0 ¼ mmð1þ n2Þ ¼ m
1=2
0 k0 (16)

represent measures of surface slope or steepness. As n! 0 in deep water, then
mm ! m0. Thus, m0 corresponds to the narrow-band least-upper-bound (l.u.b.)
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considered previously in Tayfun and Al-Humoud (2002) and Tayfun (2004), except
for

ffiffiffi
2
p

that arises from the different scaling used in these references.
Proceeding further, consider I�again and note that jo2 � o02j ¼ ðoþ o0Þjo� o0j.

Under narrow-band conditions, oþ o0 � 2om. This approximation and Schwarz’s
inequality can now be used in Eq. (11) to obtain

I� � 2om

ZZ
jo� o0jO1ðoÞO1ðo0Þ do do0p2

ffiffiffi
2
p

m2
0o

2
mn. (17)

Substituting this approximation, Eq. (10) and o2
m ¼ gkm in Eq. (10) will lead to

l3X3mmð1� n
ffiffiffi
2
p
þ n2Þ. (18)

Thus,

3mmð1� n
ffiffiffi
2
p
þ n2Þpl3p3mm. (19)

Because mm ¼ m0=ð1þ n2Þ, this result can also be rewritten in terms of m0 and n as

3m0 1�
n
ffiffiffi
2
p

1þ n2

 !
pl3p3

m0
1þ n2

. (20)
2.3. Narrow-band model

The scaled surface elevation Ẑ ¼ Z=m
1=2
0 from the mean water level will be

approximated by

ẐðtÞ ¼ r cos wþ
1

2
m�r2 cos 2w, (21)

where the leading term is the first-order zero-mean Gaussian Ẑ1 ¼ Z1=m
1=2
0 exactly,

irrespective of directional or spectral properties, and the second term represents the
second-order nonlinear correction Ẑ2 ¼ Z2=m

1=2
0 , correct to Oðn0Þ in general. The

random function r(t) represents the linear wave amplitude or envelope scaled with
m

1=2
0 , and is Rayleigh-distributed. The total phase wðtÞ is uniformly random in (0, 2p).

In transitional depths, the dimensionless parameter m� is proportional to the rms

surface slope. In deep water, m� ! m, correct to Oðn0Þ.
Since hẐi ¼ 0 and hẐ2i ¼ 1, correct to O(m�), the skewness coefficient of Ẑ is given

to the same order by

l3 ¼ hẐ
3
i ¼ 3m�. (22)

Thus, Eq. (21) can be rewritten in the equivalent form

Ẑ ¼ r cos wþ
1

6
l3r2 cos 2w. (23)
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3. Statistics of nonlinear crest heights and groups

3.1. Crest heights

The probability density function (pdf) and exceedance probability distribution
(epd) of r are given, respectively, by

prðrÞ ¼ r expð�r2=2Þ, (24)

ErðrÞ ¼ expð�r2=2Þ, (25)

where rX0 by definition. Nonlinear crests and troughs, say, y and y� scaled with
m

1=2
0 would then follow from Eqs. (21) and (23) with w ¼ 0 as

y ¼ rþ
1

2
m�r2 ¼ rþ

1

6
l3r2, (26)

y� ¼ r�
1

2
m�r2 ¼ r�

1

6
l3r2. (27)

It should be noted that the expressions recently derived by Fedele and Arena
(2005) for describing crests and troughs of unidirectional waves in deep water are
identical to the preceding equations. Apparently, Fedele and Arena did not recognize
this, and presented their results (cf. Eqs. (13) and (14) in Fedele and Arena, 2005) in
terms of a double integral identical to l3 in Eq. (9). In other words, Eqs. (26) and (27)
are valid for unidirectional seas in deep water for r441 irrespective of any
bandwidth constraints. Further, the Fedele–Arena derivation can easily be general-
ized to directional seas in deep or transitional water depths to show that the same
expressions have in fact general validity for r441, with l3 given by Eq. (8). The
comparisons of various theoretical results based on Eq. (26) with oceanic data will
later show that the crest-height model considered here is indeed valid under general
conditions for r41.25 approximately.

The pdf and epd of y can be expressed as

pðyÞ ¼
prðrÞ

1þ m�r
; y ¼ r 1þ

1

2
m�r

� �
, (28)

EðyÞ ¼ ErðrÞ; y ¼ r 1þ
1

2
m�r

� �
. (29)

Further, the conditional mean y1/n of y, given that y4yn ¼ E�1ð1=nÞ is of the form

y1=n ¼ r1=n þ m�½1þ lnðnÞ� ðn ¼ 1; 2; . . .Þ, (30)

where

r1=n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðnÞ

p
þ n

ffiffiffiffi
p
2

r
erfc f

ffiffiffiffiffiffiffiffiffiffi
lnðnÞ

p
g (31)

represents the conditional mean of r, given that r4rn ¼ E�1r ð1=nÞ, and erfc is the
complementary error function (Abramowitz and Stegun, 1968). As an example of
practical interest, consider the case where n ¼ 3. For this case, Eqs. (30) and (31) lead
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to y1=3=r1=3 ¼ 1þ 1:0483m�. This result then suggests that when m�E0.08–0.10 as a
typical range in stormy seas, nonlinearities amplify ‘significant’ crest heights by
about 8–10% above the expected linear values.

3.2. Crest groups

Viewed as functions of time t, Eqs. (26) and (27) describe the upper and lower
envelopes of Ẑ, respectively. Of present interest is the upper envelope and, in specific,
its number of up-crossings of a given level y per unit time, more simply referred to as
the level or threshold up-crossing rate. It has the general form (Rice, 1958):

Ny ¼

Z 1
0

pðy; _yÞ _y d _y ¼

Z 1
0

pðyÞpð _yjyÞ _y d _y, (32)

where _y is the time derivative of y, pðy; _yÞ represents the joint pdf of y and _y, and
pðyj _yÞ is the conditional pdf of y, given _y. The latter follows from Eq. (26) as

_y ¼ _rð1þ m�rÞ. (33)

Now, let p_rð_rÞ and p_r=rð_rjrÞ represent, respectively, the marginal and conditional
pdf of _r, given r. Since r and _r are statistically independent, p_r=rð_rjrÞ ¼ p_rð_rÞ. On this
basis, it is easily verified that

pðyÞpð _yjyÞ _y d _y ¼
prðrÞ

1þ m�r
p_r=rð_rjrÞ_rð1þ m�rÞ d_r ¼ prðrÞp_rð_rÞ_r d_r, (34)

where (see, e.g. Rice, 1958; Longuet-Higgins, 1984)

p_rð_rÞ ¼
1

nom

ffiffiffiffiffiffi
2p
p exp �

_r2

2n2o2
m

� �
; �1o_ro1. (35)

Substituting Eqs. (34) and (35) in Eq. (32) will yield

Ny ¼ Nr ¼
nomffiffiffiffiffiffi
2p
p prðrÞ; y ¼ r 1þ

1

2
m�r

� �
, (36)

where Nr represents the up-crossings rate of level r by the linear envelope, as in
Longuet-Higgins (1984). As a principal and yet strikingly simple result, Eq. (36)
suggests that the up-crossing rate Ny of level y ¼ rð1þ m�r=2Þ by the nonlinear
envelope is given by the up-crossing rate Nr of level r by the linear envelope. It is then
immediate from this and Longuet-Higgins (1984) that the mean number Gy of waves
between groups with crest heights higher than y is given by

Gy ¼ Gr ¼
o0

nom

ffiffiffiffiffiffi
2p
p

1

prðrÞ
; y ¼ r 1þ

1

2
m�r

� �
, (37)

where o0 represents the mean zero-up-crossing frequency of the nonlinear envelope,
correct to O(m�), as was previously mentioned in Section 2.1. Finally, the average
number Hy of waves in a group with crest heights above y can be expressed as

Hy ¼ GrErðrÞ ¼
o0

nom

ffiffiffiffiffiffi
2p
p

1

r
; y ¼ r 1þ

1

2
m�r

� �
. (38)
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As m� ! 0, y! r, and the preceding results simply converge to the statistics
appropriate to linear waves. Since o0 ¼ ð1þ n2Þ1=2om in general, they can also be
expressed all in terms of the bandwidth parameter n, as in Longuet-Higgins (1984).
This will not be done here for functional simplicity. Clearly, all results as they
are given above in terms of the actual parameters n, om and o0 apply to the upper
wave envelope. So, to translate them into statistics of discrete wave-crest groups,
these three parameters will have to be replaced, as in Longuet-Higgins (1984), with
the values determined from the surface spectral density band-passed over frequencies
within the interval ð0:5op; 1:5opÞ, where op stands for the spectral-peak frequency.
4. Parameter l�

4.1. Estimating m� from observed l3

Assume for the moment that Eq. (21) is valid, and thus Eq. (26) describes the
nonlinear crest heights exactly. This presupposes that m� is either known or can be
derived from Eq. (22), given an estimate of l3. In theory, this rationale appears quite
sensible since l3 can be estimated rather easily from a wave record. In practice,
however, it raises at least two immediate points of concern. First, l3 derived from a
wave record tends to be an unstable statistic because of its sensitivity to local trends
and/or the presence of an exceptionally large wave in the record. Second, estimating
l3 from a wave record treated as a whole yields an estimate of m� representative of all
waves whereas models of the type considered here are really appropriate to the crest
heights of large waves. So, l3 and thus m� would have to be estimated from the
surface time history representing relatively high waves under steady sea-state
conditions. Though conceptually simple, this approach is neither practical nor
predictive since it necessitates wave-by-wave analyses of wave records.

4.2. Estimating m� from upper bounds of l3

In directional deep-water waves, the skewness coefficient satisfies the condition
(Longuet-Higgins, 1963)

0:44
I

m
3=2
0

pl3p1:01
I

m
3=2
0

, (39)

where I is defined as in Eq. (12). The results in Section 2.2 can now be coupled with
Eq. (39) to further improve the upper and lower bounds to l3, and thus to m� in the
form

mlbpm� ¼
l3
3
pmub, (40)

where

mlb ¼ 0:44mmð1� n
ffiffiffi
2
p
þ n2Þ; mub ¼ 1:01mm � mm. (41)
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As n! 0, mm ! m0, and Eq. (40) leads to the narrow-band l.u.b. l3 � 3m0, as
mentioned previously. If m� is replaced by m0 in Eq. (26), then the resulting
distribution E and conditional mean y1/n tend to describe the statistics of large wave
crests in storm seas reasonably well, in particular, locally over relatively short
periods of time, say, approximately during 1 h of observations coincident with the
peak storm conditions (Tayfun and Al-Humoud, 2002; Tayfun, 2004). In the more
general case, the upper bound is given by l3 � 3mm, and setting m� ¼ mub � mm

renders the present model identical with the original narrow-band model (Tayfun
1980, 1886; Askar and Tayfun, 1999). In describing wave crests over relatively long
periods of time, say over several hours under steady sea-state conditions, setting
m� � mm tends to yield predictions that compare more closely with the observed
statistics, as will be shown later.

4.3. Estimating m� from Forristall’s Weibull model

In the most general case of waves at transitional water depths, the functional form
of the skewness coefficient in Eq. (8) presents complexities (Forristall, 2000) in that it
does not appear amenable to further simplifications nor does it allow any upper or
lower bound considerations as easily as is possible in deep water. Thus, as an
alternate approach for estimating m�, consider the third moment of y, which follows
to O(m�) from Eq. (26) as

hy3i ¼ 3

ffiffiffi
p
2

r
þ 12m�. (42)

Thus, given an estimate of hy3i, this equation can be solved to obtain

m� ¼
1

12
hy3i � 3

ffiffiffi
p
2

r� �
. (43)

Clearly, hy3i can be estimated from a wave record directly, restricting attention to crest
heights over high waves. The shortcoming of this is that the resulting model can no
longer be regarded as a predictive model as it relies on the observed crests themselves.

A more practical approach is to appeal to one of several formulations proposed
for the distribution of crest heights in transitional water depths. These include the
models in Marthinsen and Winterstein (1992), Prevosto et al. (2000), Forristall
(2000), and Prevosto and Forristall (2002). For the purpose of estimating hy3i in
directional seas, the most general of these is Forristall’s two-parameter Weibull
distribution fitted to simulated second-order wave crests in unidirectional (2D) and
directional (3D) seas. Forristall’s Weibull pdf and epd for crest heights scaled with
m

1=2
0 are given in the present notation by

pðyÞ ¼
b
4a

y

4a

� �b�1
exp �

y

4a

� �b� �
, (44)

EðyÞ ¼ exp �
y

4a

� �b� �
, (45)
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where a and b represent parameters. As a! 1=2
ffiffiffi
2
p

and b! 2, the Weibull model
leads to the Rayleigh limits in Eqs. (24) and (25).

The conditional mean y1=n associated with the Weibull model can be expressed as

y1=n ¼ 4a ðln nÞ1=b þ n
1

b
G

1

b

� �
1� P

1

b
; ln n

� �� �� 	
, (46)

where n ¼ 1,2,y, and G and P stand for the gamma and incomplete gamma
functions, respectively (Abramowitz and Stegun, 1968). Further, the third-order
moment of y as a Weibull-distributed variable is given by

hy3i ¼
3ð4aÞ3

b
G

3

b

� �
. (47)

Upon substitution in Eq. (43), this yields

m� ¼ 16
a3

b
G

3

b

� �
�

1

4

ffiffiffi
p
2

r
(48)

and thus allows Forristall’s Weibull fit to be coupled with the present model.
Because Forristall’s Weibull model is empirical and not based on an explicit

functional representation of the sea surface or wave crests, it does not readily lend
itself to the derivation of any statistics on wave-crest groups. But, coupling it with
the present crest-height model in the manner described does. Further, preliminary
comparisons with observational data showed that the theoretical predictions based
on m� estimated from hy3i of Forristall’s Weibull model describe the crest heights of
high waves surprisingly well. In theory, m� can also be estimated using the lower- or
higher-order moments of y. However, the lower-order moments yield smaller m�

values, and thus lead to theoretical predictions that underestimate the observed crest
heights noticeably. And, the higher-order moments yield much larger m� values that
overestimate the observed trends significantly.
4.4. Weibull parameters a and b

Forristall’s Weibull fit to 2D simulations lead to

a2 ¼
1

2
ffiffiffi
2
p þ 0:2892S1 þ 0:1060Ur, (49)

b2 ¼ 2� 2:1597S1 þ 0:0968Ur2 (50)

and, for 3D simulations,

a3 ¼
1

2
ffiffiffi
2
p þ 0:2568S1 þ 0:0800Ur, (51)

b3 ¼ 2� 1:7912S1 � 0:5302Urþ 0:284Ur2, (52)
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where S1 and Ur are steepness and Ursell parameters. In the present notation,

S1 ¼
2

p
m

1=2
0

d
qm, (53)

Ur ¼
4

q2
1

m
1=2
0

d
, (54)

where qm ¼ kmd ¼ o2
md=g and q1 ¼ k1d such that

qm ¼ q1 tanh q1. (55)

Forristall’s results suggest that 2D simulations describe the observed data better in
deep water, whereas 3D simulations do so in shallow water where the skewness
coefficient l3 becomes larger than the values predicted by the 2D random-wave
model. On this basis, the parameter m� sought for modeling wave crests correctly
corresponds to the larger of the two values that follow from Eq. (48) with (a2, b2)
and (a3, b3), respectively. Hereafter, these will be differentiated and referred to as mF2

and mF3, respectively.

4.5. Range of validity

The second-order deterministic Stokes representation is valid at transitional
depths if the Ursell parameter satisfies the condition (Peregrine, 1972)

Ur ¼
H

q2d
p2, (56)

where H represents wave height and q ¼ kd. Dean and Dalrymple (1998) further
show that the more stringent condition Urp2

3
has to be satisfied to exclude the

occurrence of anomalous bumps or negative maxima in wave troughs. This rationale
does not apply to irregular waves, and need not be considered here. However, wave
heights tend to be bounded by an upper limit (Miche, 1944). An equivalent
expression for this limit is given by

H

d
p

2p
7

tanh q

q
. (57)

Now, if the maximum ratio H/d given by the right-hand side equality in the
preceding expression is substituted in Eq. (56), then both conditions will be satisfied
for values of qXqmin, where

q3
min ¼

p
7
tanh qmin (58)

with the solution qmin ¼ 0.6305.
The preceding results do not generally apply to directionally spread irregular

waves. However, they should have some bearing on long-crested irregular waves if H

and k are interpreted as zero-up-crossing properties. For instance, if H � 2m
1=2
0 r is

substituted in Eq. (57), it can be rearranged and expressed in the equivalent form

rprmax ¼
d

m
1=2
0

q2
min � 0:4

d

m
1=2
0

. (59)
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Theoretically, this condition restricts the range of validity of r as a Rayleigh-
distributed variable with no upper bound. For example, setting d=m

1=2
0 ¼ 10 leads to

the restricted range 0orprmaxE4. The probability that r44 is not exactly 0, but
follows from Eq. (25) as Er(4) ¼ 3.4� 10�4. If larger wave heights at lower
probabilities of occurrence than this are of concern, then the Rayleigh law may have
to be modified to satisfy the Miche condition. For most applications where
d=m

1=2
0 410, the indicated probability levels are sufficiently low to have any

significant effect on the results derived from the Rayleigh approximation. The
experimental results of Doering and Donelan (1993) on irregular waves shoaling on
seabed slopes as large as 1

5
lend strong support to this rationale. Thus, the theoretical

approximations considered above should be valid for q140.630 or, equivalently,
when qm40.352 at transitional water depths, provided that d=m

1=2
0 410 approxi-

mately.
Forristall’s definition of S1 is based on depth-dependent parameters except for qm.

Evidently, the latter can be expressed in terms of q1 so that the Miche condition on
S1 becomes

S1pmaxS1 ¼
1
7
tanh2 q1. (60)

In deep water where q1 !1;maxS1!
1
7
� 0:1428 as an upper bound, well-known

as the Stokes limiting steepness. As q1! qmin in shallower depths, maxS1! 0:0445
as a lower bound. The corresponding range of the Ursell parameter is then given by
0oUro10:062 m

1=2
0 =d. Consequently, Forristall’s Weibull model satisfies the Ursell

and Miche conditions both, if

0:0445oS1o
1

7
, (61)

0oUro10:062
m

1=2
0

d
. (62)

Assuming further that d=m
1=2
0 410, the preceding results lead to the following

approximate bounds on the allowable values of a and b:

1

2
ffiffiffi
2
p oa2o0:4731; 1:6915ob2o2, (63)

1

2
ffiffiffi
2
p oa3o0:4455; 1:6743ob3o2. (64)

The values of the parameters mF2 and mF3 that follow from these and Eq. (48) are

shown in Fig. 1 for various values of d=m
1=2
0 . It may be noticed that for d=m

1=2
0 given,

mF3 derived from 3D parameters is slightly larger for qmpq�, where q� is indicated
with hollow circular points in the figure. For qm4q*, 2D parameters yield the larger

mF2 values in general. As d=m
1=2
0 increases from 10 to 50, q� decreases from 1.108 to

0.856, respectively.
The present upper bound can also be rewritten as mm ¼ ðm

1=2
0 =dÞqm. This then

permits a comparison between mm and mF2, as is shown in Fig. 2. It is seen that for
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m
1=2
0 =dX20, mm still serves as an upper bound to m� in transitional depths, provided

that qmXqy, where qy decreases from 1.90 to 1.62 as the ratio m
1=2
0 =d increases from

20 to 50.
5. Kriebel–Dawson model

5.1. Probability structure

In Kriebel and Dawson (1991, 1993), the probability structure of y is derived from
a reversion of Eq. (26) to express r as a function of y in the form

r ¼ y�
1

2
m�y2. (65)

Using this in standard probability transformations and retaining only terms to O(m�)
in algebraic expressions will give the pdf and epd of y in the present notation as

pðyÞ ¼ y 1�
3

2
m�y

� �
exp �

1

2
y2ð1� m�yÞ

� �
, (66)
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EðyÞ ¼ exp �
1

2
y2ð1� m�yÞ

� �
. (67)

Evidently, p is not normalized as a proper pdf. It also becomes negative for y42
3
m�.

In theory, Ep1 and it must monotonously decrease to 0 as y!1. In fact, it
increases for y42

3
m�, and exceeds 1 eventually. At least one obvious drawback of all

this is that ordinary and conditional moments of y such as y1/n cannot be derived
from either p or E.
5.2. Group statistics

The principal statistics on wave-crest groups that follow from the Kriebel–
Dawson approximations can be expressed in present notation as

Ny ¼
nomffiffiffiffiffiffi
2p
p

pðyÞ

1� m�y
, (68)

Gy ¼
o0

nom

ffiffiffiffiffiffi
2p
p

ð1� m�yÞ
yð1� 3m�y=2Þ

EðyÞ, (69)
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Hy ¼
o0

nom

ffiffiffiffiffiffi
2p
p

1� m�y
yð1� 3m�y=2Þ

. (70)

The preceding expressions are identical to Eqs. (25), (26) and (31) in Kriebel and
Dawson (1991), except for o0=

ffiffiffiffiffiffi
2p
p

included in Eqs. (69) and (70) for later
comparison with the present results.

5.3. Parameter m�

For narrow-band long-crested waves at transitional depths, the steepness
parameter can be expressed, correct to Oðn0Þ, in the form

m� ¼ m1f d, (71)

where m1 ¼ m
1=2
0 k1, k1 relates to the spectral mean frequency om via dispersion

Eq. (55) as before, and f d ¼ D1 þD2 represents a dimensionless depth function in which

D1 ¼
1

2

4n� 1

n2 tanh q1 � q1

, (72)

D2 ¼
cosh q1ð2þ cosh 2q1Þ

2 sinh3 q1

(73)

with n ¼ ½1þ ð2q1= sinh 2q1Þ�=2. The factors D1 and D2 arise from the frequency-
difference and frequency-sum terms, viz. K�and K+ in Eq. (2), as n! 0. These were
derived originally by Marthinsen and Winterstein (1992). In a similar and somewhat
more general context, they are defined in Prevosto et al. (2000) as 2cdiff and 2csum,
respectively. Although their functional forms differ in appearance from one another
as given in these references and here, they reduce with some straightforward algebra
exactly to the somewhat simpler and more familiar forms given above.

The steepness parameter in Kriebel and Dawson (1993) is defined as

m� ¼ mKD ¼ mmf 2, (74)

where f 2 ¼ D2 þD3, with D2 as defined before, and

D3 ¼ �
1

sinh 2q1

. (75)

Clearly, f2 is formulated in analogy with the deterministic Stokes theory (see, e.g.,
Dean and Dalrymple, 1993). In deep water where both qm and q1 become large,
f 2! 1 and m� ! mm as lower bounds. But, f241 generally, and it becomes
increasingly large in shallower water depths. The principal reason for this
discrepancy is that the ‘randomized’ adaptations of the deterministic Stokes theory
for periodic waves of permanent form do not always lead to physically and
theoretically consistent representations of irregular waves (Tayfun, 1986; Marthin-
sen and Winterstein, 1992; Prevosto and Forristall, 2002). This appears to be the case
for the Kriebel–Dawson model at transitional depths, and also for other models
similarly proposed since early 1980s (Arhan and Plaisted, 1981; Huang et al., 1983;
Arena and Fedele, 2002; Dawson, 2004). In the present case, D1 and D3 differ
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substantially, and so do f d ¼ D1 þD2 and f 2 ¼ D2 þD3, as shown in Fig. 3.
Clearly, f2 over predicts the depth effects relative to fd rather noticeably. Over the
valid range q14qmin � 0:63, 0.755pfdp1 whereas 1pf 2p7 approximately. These
would suggest by way of l3 ¼ 3m� that the Kriebel–Dawson formulation can give
unrealistically large values of l3 at transitional water depths.
6. Verification and comparisons

6.1. Data and principal parameters

Of the two data sets analyzed in the following, the first comprises 9 h of
measurements gathered during a severe storm in January, 1993 with a Marex radar
from the Tern platform located in the northern North Sea in 167m water depth. The
second set represents 5 h of measurements gathered in January, 1998 with a Baylor
wave staff from Meetpost Noordwijk in 18m average water depth in the southern
North Sea. Forristall (2000) elaborates the nature of the first data. The second data
set is fromWave Crest Sensor Intercomparison Study (WACSIS ). Further details on
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WACSIS are given in Forristall et al. (2002). For brevity, these data will be referred
to as TERN and WACSIS.

Physical specifics relevant to both sites and data, and the principal statistical and
spectral parameters required by the models considered here are summarized in
Tables 1–4. For simplicity, all results based on the Rayleigh law for scaled linear
crests (r) and their groups are labeled as ‘Ray’. Similarly, Forristall’s 2D and 3D
Weibull models and the Kriebel–Dawson model appropriate to nonlinear scaled
crests (y) are labeled as F-2D, F-3D, and K–D, respectively, and all the present
model predictions as T-R.

The statistics and spectral parameters summarized in the tables were derived from
the analysis of each record treated as a whole, with the spectral estimates based on
600 degrees-of-freedom for TERN and 500 for WACSIS. The variations of m

1=2
0

observed over hourly segments in both records typically remain within75–8% of the
overall averages in Table 1. Thus, the sea states during both measurements appear to
be fairly steady. The values of qm and q1 in Table 1 suggest that TERN is essentially a
deep-water situation, whereas WACSIS represents a sea state in transitional waters.
The parameters S1, Ur, a and b for F-2D and F-3D are shown in Table 2.

The values of m� observed and implied by different models are summarized in
Table 3. The values of m� ¼ l3/3 (data) in the first row simply follow from the
Table 1

Specifics and observed parameters of TERN and WACSIS

Description TERN WACSIS

Water depth d (m) 167 18

Record length TR (s) 32,400 18,000

Sampling rate (Hz) 5.12 4

Wave count 3173 2668

m
1=2
0 (m) 3.0240 1.0379

l3 0.1738 0.2369

Tm ¼ 2p/om (s) 11.27 7.11

qm 5.2939 1.4329

q1 5.2939 1.5641

Table 2

Parameters in Forristall’s models for TERN and WACSIS

Parameter TERN WACSIS

F-2D F-3D F-2D F-3D

S1 0.0610 0.0616 0.0526 0.0524

Ur 0.0026 0.0026 0.0943 0.0943

a 0.3715a 0.3696 0.3788a 0.3746

b 1.8683a 1.8883 1.8873a 1.8586

aUsed in predictions of pdfs and epds by the Weibull model.
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Table 3

Steepness parameter m� in various crest-height models

m� (Model) TERN WACSIS

l3/3 (data) 0.0579 0.0790

mF2 (F-2D) 0.0793a 0.0979a

mF3 (F-3D) 0.0684 0.0918

mKD (K–D) 0.0958b 0.1188b

mub � mm (upper bound) 0.0958a 0.0902

aUsed in T-R model predictions.
bUsed in K–D model predictions.

Table 4

Observed and band-pass spectral parameters

Parameter TERN WACSIS

Observed Band-passa Observed Band-passa

n 0.6287 0.1373 0.4896 0.1474

om (rad/s) 0.5575 0.4785 0.8837 0.7333

o0 (rad/s) 0.6586 0.4830 0.9839 0.7472

aUsed in all models for predicting group statistics.
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estimates of l3 in Table 1. They are noticeably smaller than all model m� values. This
is expected to be so because the sample estimates of l3 and thus m� (data) represent
all waves, whereas the theoretical models and associated m� are biased toward large
waves. The values m� ¼ mF2 required for theoretical predictions are dictated by the F-
2D model for use in T-R for both TERN and WACSIS. The values of m� ¼ mKD for
the K–D model are derived from Eq. (74). For TERN, mKD ¼ 0:0958 is identical with
mm, as it should be since K–D in deep water is based on the original narrow-band
model (Tayfun, 1980) modified via series reversion. For WACSIS, mKD ¼ 0.1188 is
large due to the relatively large value of the depth-factor f2 ¼ 1.318 in this case. The
band-pass values of n, om and o0 required in all model predictions of group statistics
are given in Table 4.

The variations of mub � mm ,mF2, m1b and the actual m� ¼ l3/3 values estimated
from 30-min segmental estimates of l3, m0, om and n are shown in Fig. 4 for TERN.
Clearly, these results confirm the validity of m1b and mub � mm ¼ mKD as lower and
upper bounds for the values observed. Further, it is seen that mF2 approximates the
observed peak values rather closely. It also correlates almost perfectly with mm, but is
about 15–20% smaller than mm.

6.2. Miche limit and Ursell condition

The scatter of scaled wave heights H/2m01/2Er and associated zero-up-crossing
wave periods T/Tm scaled with the spectral ‘mean’ period Tm ¼ 2p/om is shown in



ARTICLE IN PRESS

0.01

0.03

0.05

0.07

0.09

0.11

0
Time (h)

�*
 =

 �
3 

/ 3
  

�lb

TERN �*

1 2 3 4 5 6 7 8 9

�F2

�ub ≈ �m = �KD

Fig. 4. Theoretical and observed m� from 30-min overlapping segments in TERN.

M. Aziz Tayfun / Ocean Engineering 33 (2006) 1589–16221608
Fig. 5 for TERN and in Fig. 6 for WACSIS. The theoretical upper limit of Eq. (57) is
indicated in both figures as ‘Miche lim’. Evidently, the upper limit rmax in Eq. (59)
should also be consistent with the Miche limit. For TERN, rmax ¼ 22.08 and lies far
above the top range of Fig. 5. But, for WACSIS, rmax ¼ 6.94, as shown by the
dashed horizontal line in Fig. 6. All considered, both figures demonstrate the efficacy
of the Miche limit satisfactorily, except over rather low wave heights and periods.

The Ursell condition Uro2 has relevance for WACSIS only, as TERN consists
mostly of deep-water waves. The scatter of Ur versus H/2m1/2 in WACSIS is plotted
in Fig. 7, where it is seen that Uro0.41 for all waves.

6.3. Validity of present model

The conditional mean hrjLi of r, given L ¼ fr�dr=2oro rþdr=2g, converges to r

as dr! 0. Assuming that Eqs. (26) and (27) are valid, then the ratios of the
conditional means of y and y�, given L and droo1, to r will admit the following
approximations:

hyjLi
r
� 1þ

1

2
m� r , (76)
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hy�jLi
r
� 1�

1

2
m� r . (77)

Simple as they are, these expressions provide a reasonably effective means of gauging
the validity of the present nonlinear model relative to observational data. For TERN
and WACSIS, the observed values of the left-hand side ratios in Eqs. (76) and (77)
are plotted in Figs. 8 and 9, where dr ¼ 0.1 uniformly for 0o rp3:5, and dr40:1 for
r43:5 as data become sparse toward the high-wave extreme. Linear regressions on
the observed ratios and the theoretical predictions that follow from the right-hand
sides of the same equations with mF2 ¼ 0.0793 for TERN, and mF2 ¼ 0.0979 for
WACSIS from Table 3 are also shown in the same figures. The intercepts of the
regression lines in both cases are specified as 1 to exclude the excess over very low
waves. For the most part, the theoretical predictions in both cases approximate the
regression lines closely and describe the observed data reasonably well. Large
deviations from the models do appear over very high waves as the observed data
become sparse and yield highly variable estimates.

It should be noted that for the upper bound mub � mm ¼ 0:0958 in TERN, the
theoretically predicted ratios are given by 1� 0:0479 r. Although these are not
shown in Fig. 8 for clarity of presentation, it is evident that they compare with
the regressions lines 1� 0:0454 r more favorably than 1� 0:0397 r based on
mF2 ¼ 0.0793. Further, both Figs. 8 and 9 show that for any r, crest and trough
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heights form nearly perfect mirror images of one another with respect to a horizontal
line drawn through the intercept at 1. This confirms the expectation that on average,
second-order nonlinearities shift wave crests and troughs upward through the same
incremental distance.
6.4. Comparisons of crest-height pdfs

The observed pdfs in TERN and WACSIS are shown in Figs. 10 and 11 in
comparisons with the theoretical pdfs from Ray, F-2D, K–D and T-R . In either
case, it is observed that F-2D and T-R describe the data fairly well for y41.25. The
theoretical pdf from T-R based on the upper bound mm ¼ 0.0958 is also shown in
Fig. 10 for TERN. The latter pdf differs very little from the T-R pdf based on
mF2 ¼ 0.0793. However, the K–D pdfs overestimate the data noticeably for y42.5–3
in both cases.

For yo1.25, all model predictions compare poorly with the data. The waves for
which yo1.25 comprise about 50% of the whole wave count in both cases. The
observed pdfs typically display a bimodal or doubly peaked structure previously
alluded to in the introduction. This appears more pronounced in TERN with a
wider spectral bandwidth and far more energetic waves than WACSIS. The initial
peak is indicative of an excess in crest heights over low waves. Simulations with
linear and nonlinear 2D waves showed that such excesses arise from data with wide-
band spectral characteristics. TERN and WACSIS represent wide-band waves,
with the observed spectral densities in both cases decaying as o�4 for o44op

approximately.
6.5. Comparisons of epds and conditional means

The observed epds and conditional means y1/n are shown in Figs. 12 and 13 for
TERN, and in Figs. 14 and 15 for WACSIS. The theoretical predictions from all
models are included in these figures, except for y1/n from K–D. The predictions of T-
R based on the upper bound mm ¼ 0.0958 are also in Figs. 12 and 13 for TERN for
comparison. The epd plots in Figs. 12 and 14 have a semi-logarithmic form,
emphasizing the data trends toward the high-wave extreme. Clearly, the F-2D and T-
R models describe the data fairly well in all cases, whereas the comparisons in both
Figs. 12 and 14 indicate that the K–D model does rather poorly. In general, T-R
predictions based on mF2 match the observed trends somewhat better over the range
of high waves where the F-2D model has a tendency to under predict the data
slightly. Also, if the K–D model were modified in the manner described in Forristall
(2000) and Forristall and Prevosto (2002), the resulting predictions would improve
for TERN noticeably, but they would become still worse for WACSIS. A clear
discrepancy between all model predictions and data trends does arise over the very
extreme tail where the data are sparse and display a systematic bias for rather large
values. This is most noticeable in Figs. 14 and 15 for WACSIS, which contains an
extremely large crest corresponding to the largest outlier in Fig. 14.
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6.6. Statistics of crest groups

The total number of up-crossings of level y in a record of length TR is given by
NyTR. The observed values of NyTR and the corresponding theoretical predictions
Ray, T-R and K–D are shown in Figs. 16 and 17 for TERN and WACSIS,
respectively. Similar comparisons between the observed Gy, Hy and the correspond-
ing theoretical predictions are likewise given in Figs. 18 and 19 for Gy, and in Figs. 20
and 21 for Hy. The observed statistics are based on threshold levels at uniform
increments of Dy ¼ 0.2. In all cases, the general trend of the observed statistics are
represented quite favorably by the T-R model predictions based on mF2 for both
TERN and WACSIS. The T-R model predictions based on mm for TERN describe
the data reasonably well also, but not always as consistently as the T-R predictions
based on mF2 do, for example, as in Figs. 16 and 18. All models yield similar
predictions that compare favorably with the data for yo2 approximately. But, Ray
and K–D models deviate progressively from the observed trends at higher threshold
levels. However, some discrepancies between the observed data and all models do
appear also when yo2. For example, in Fig. 16 for TERN, all models systematically
underestimate the number of actual up-crossings. Arguably, this can be explained in
terms of the wide-band or simply ‘noisy’ nature of wave envelopes, and thus their
tendency to ‘split’ wave groups (Masson and Chandler, 1993). In nonlinear waves
with sharper higher crests and flatter shallower troughs, splitting of wave-crest
groups by the wave envelope is likely to occur more frequently. Band-passing the
spectral density over (0.5op, 1.5op) does help reduce splitting, but it does not entirely
eliminate it in all cases. Evidently, the discrepancies in NyTR of Fig. 16 due to
splitting also carry over to Figs. 18 and 20 for TERN, but they do not appear to
affect the comparisons of Gy and Hy to the same extent as in Fig. 16.
7. Conclusions

The effects of nonlinearities on the statistics of wave crests and their groups were
considered, using the continuous envelope approach and a specific second-order
nonlinear model appropriate to large waves. The model is simple, and yet quite
effective in that it allows all nonlinear crest-height and crest-group statistics to be
predicted by way of a quadratic transformation of well-known results on linear
waves. If the key parameter representing wave steepness and thus nonlinearity is
specified in accord with Forristall’s (2000) simulations, then the proposed model and
the theoretical expressions derived from it describe the observed statistics quite well
over high waves in both deep and transitional water depths. Apparently, the upper-
bound form of the steepness parameter derived in this study presents a somewhat
simpler alternative in deep water, and leads to predictions that also compare
favorably with the observed data.

The model previously proposed by Kriebel and Dawson (1991, 1993) describes the
observed statistics reasonably well over low waves, as all other linear and nonlinear
models do, but it does rather poorly over high waves. In deep water, this is largely



ARTICLE IN PRESS

1

10

100

1000

0 2 4
y

N
y 

T
B

WACSIS

K - D

T-R �F2

Ray

3 51

Fig. 17. Same as Fig. 16 but for WACSIS.

1

10

100

1000

0 3 5
y

N
y 

T
R

TERN

K - D

T-R �m

T-R �F2

Ray

1 2 4

Fig. 16. Total number of up-crossings: model predictions versus TERN.

M. Aziz Tayfun / Ocean Engineering 33 (2006) 1589–1622 1617



ARTICLE IN PRESS

1

10

100

1000

0 2 4
y

G
y

WACSIS

Ray

T-R �F2

K - D

1 3 5

Fig. 19. Mean run lengths corresponding to Fig. 17: model predictions versus WACSIS.

1

10

100

1000

0 2

y

G
y

TERN

Ray

T-R �F2

T-R �m

K - D

1 3 4

Fig. 18. Mean run lengths corresponding to Fig. 16: model predictions versus TERN.

M. Aziz Tayfun / Ocean Engineering 33 (2006) 1589–16221618



ARTICLE IN PRESS

1

10

0

y

H
y

WACSIS

K - D

T-R �F2

Ray

1 2 3 4

Fig. 21. Mean length of high runs corresponding to Fig. 19: model predictions versus WACSIS.

1

10

0
y

H
y

TERN

K - D

T-R �m

T-R �F2

Ray

1 2 3 4

Fig. 20. Mean length of high runs corresponding to Fig. 18: model predictions versus TERN.

M. Aziz Tayfun / Ocean Engineering 33 (2006) 1589–1622 1619



ARTICLE IN PRESS

M. Aziz Tayfun / Ocean Engineering 33 (2006) 1589–16221620
because of errors arising from the series-reversion employed in their derivations. At
transitional depths, additional errors arise from representing the finite-depth effects
in analogy with the deterministic Stokes theory. This approach does not lead to a
correct representation of irregular waves in transitional waters.
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