
W A V E ENVELOPE AND RELATED SPECTRA 

By M . Aziz Tayfun1 and Jen-Men Lo,2 Members , ASCE 

ABSTRACT: Theoretical forms of spectra associated with the odd and even powers 
of the wave envelope are examined. It is shown that spectral densities for the even 
powers of the envelope admit exact forms, whereas those for the odd powers can 
only be expressed in series, involving first-, second-, and higher-order terms. The 
implications of these results are discussed and contrasted with a number of similar 
results stated in previous studies. Certain discrepancies and points of concern en
countered are clarified. The two leading terms to the envelope spectral density are 
then examined in detail and compared with simulated data typical of wide- and 
narrow-banded waves. It is found that the sum of these two leading terms would 
represent the envelope spectral density with sufficient accuracy for most purposes. 
As an alternative to the relatively complex analytical forms implied by envelope-
related spectra, the possibility of constructing more practical approximations is 
considered. 

INTRODUCTION 

In the analysis and synthesis of irregular sea waves, the sea surface dis
placement is treated as a Gaussian random process. The Gaussian model and 
its physical basis are well established at present, and therefore need no fur
ther elaboration here. One of the fundamental concepts that the Gaussian 
model leads to is the wave-envelope function, which provides a formal basis 
from which the statistical structure of wavefield parameters, e.g., ampli
tudes, crest-to-trough heights, and group properties of a wave record, can 
be deduced. For linear waves, and in certain cases for nonlinear waves, the 
envelope function has been used extensively and quite profitably to explore 
the nature of wave amplitudes and heights (see, e.g., Ochi 1982). Its ap
plication to the description of group properties of a wave record is somewhat 
more recent, and perhaps requires further research and development to bear 
fruit. 

The formation and properties of wave groups are of interest and known 
to play a principal part in a multitude of coastal and ocean engineering prob
lems. These include low-frequency motions and forces associated with 
moored vessels, the stability of fixed or floating structures, the occurrence 
of wave breaking, the formation of surf beats, the growth of low frequency 
energy and motions in the nearshore zone, and possible others (see, e.g., 
Pinkster 1984; Langley 1984, 1987; Donelan et al. 1972; Goda 1985; Bury 
1987). When the sea surface has narrow-banded spectral characteristics, the 
statistical description of most wave group properties can be derived with 
relative ease from the probability structure of the associated envelope. This 
structure is well known in terms of one- and two-time probability density 
functions and related moments (Rice 1944, 1945; Middleton 1960). Longuet-
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Higgins (1984) gives a recent survey of the subject, and presents further 
improvements on the available results. By and large, the quantitative appli
cation of wave group statistics to actual problems remains to be shown. 
Nonetheless, it is evident in theory that the nature of such statistics crucially 
depends on the oscillatory characteristics of the surface profile and its en
velope. These are, of course, described concisely by the corresponding spec
tral densities or, equivalently, covariance functions. 

In contrast with the probabilistic approach, other studies follow somewhat 
differing lines of thought to describe the wave group phenomenon. For in
stance, Funke and Mansard (1980) give persuasive arguments in favor of 
using the smoothed instantaneous wave energy history (SIWEH) and its spectral 
density, as an alternative to the envelope concept. Bitner-Gregersen and Gran 
(1983) consider the slowly varying part of squared surface displacements as 
a still more convenient alternative to the SIWEH approach. The quantity of 
interest in this case is proportional to the square of the wave envelope func
tion, and so has relevancy to the low-frequency motions and forces asso
ciated with moored vessels. Both concepts have physical appeal, and serve 
to delineate the presence of wave groups in a wave record quite effectively. 
Further, they can be extended to the more general case of directional seas 
(see, e.g., Pinkster 1984). Read and Sobey (1987) draw attention to the 
possibility of employing "phase spectra" of wave records in a search for 
potentially ordered structure. The aforementioned studies and similar others 
do not directly attempt to describe or deal with the probabilistic structure of 
wave groups, but they do rely on and utilize the spectral characteristics of 
the surface or its envelope as a basis to identify and/or quantify wave group-
iness. 

The preceding brief review is not intended to be a comprehensive survey 
of all possible uses or benefits of the envelope concept, but it may serve to 
establish to some extent its relevance in a variety of engineering problems, 
particularly, in terms of the spectral characterization of various quantities 
that functionally depend on the wave envelope. So far, relatively little has 
been done in this direction. With the possible exception of the spectral den
sity associated with the squared wave envelope, which arise in connection 
with the low-frequency mooring forces (see, e.g., Pinkster 1974), theoretical 
forms of envelope-related spectra have not hitherto been examined system
atically. In fact, the only other reference to the theoretical form of a spectral 
density appropriate to the wave envelope itself is by Nolte and Hsu (1972), 
who suggested that the spectral densities of the envelope and its square differ 
only by a constant, and are therefore equivalent in a normalized form. The 
particular form proposed has since then appeared or been utilized in some 
studies (see, e.g., Goda 1976; Bury 1987), but has also been challenged on 
the grounds that it predicts a main spectral peak at zero frequency (Funke 
and Mansard 1980). 

The principal goal here is to examine the theoretical forms of spectral 
densities associated with various powers of the wave envelope, based on the 
premise that such theoretical forms correspond to the Fourier transforms of 
respective covariance kernels. The latter are known, but assume a power 
series form for the odd powers of the envelope. Therefore, the transform 
relations need to be applied in a termwise fashion to develop a series of 
approximations to the underlying spectral densities. The nature and impli
cations of these are discussed and contrasted with various other similar or 
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related results stated in some of the previous studies aforementioned. Certain 
discrepancies and points of concern which arise are clarified, In view of the 
relative complexity of analytical forms implied by envelope-related spectral 
densities, the possibility of constructing more practical approximations is 
explored. 

COVARIANCE KERNELS 

Definitions 
The surface displacement from the mean sea level is described as a func

tion of time t by the real part of 
N 

W = 7] + /f) = ^ CJ e x P U(Ujt + (Xj)] (1) 

where i = (—l)l/2; w, = frequency in rad/s; and, |x,- = random phases, 
uniformly distributed over the interval (0,2-rr). When TV is very large, then 
w/s become dense, and 

Cj = [2S(co;)Aco;]1/2 (2) 

where S = spectral density of r\; and, Aco, = discrete intervals of frequency. 
The imaginary part f| of Eq. 1 corresponds to the Hilbert transform of r\ 
(see, e.g., Tayfun and Lo 1989). 

The yth spectral moment is denoted by m, (j = 0, 1, 2, ...) so that m0 
= (r\2); d> = m,/m0 = the central or mean frequency of S; and, v = [(m0m2/ 
m2) — 1]1/2 represents a measure of spectral band width. 

The wave envelope or amplitude function is given by the modulus of W, 
i.e., 

A = (T,2 + f)2)1/2 (3) 

The odd and even statistical moments of A are (Papoulis 1965) 
1/2 

4 2 " + l \ = 1 1 ] 1 -X n „ _,_ n,„<2"+')/2 (A2"+1> = 1 - 1 1.3 . . . (2K + l)m<2"+ , , / 2 (4) 

(A2") = n\(2moy (5) 

where n = 0, 2, 2, 
The joint statistical moments of A, = A(t) and A2 = A(t + T) have the 

form (see, e.g., Middleton 1960) 

(ATA'D = (2mB)'"+nn rf 1 + ^ j r / l + y F\^-~, - 1 1; K2J (6) 

where m, n = 1, 2, 3, . . . ; T = gamma function; and F = Gauss hyper-
geometric series defined by (Abramowitz and Stegun 1965) 

v< , , T(c) " F(a + j)r(b + j) zj 
F(a,b; c; z) = >, (7) 

T(a)T(b)p0 T(c+j) j \ 

The argument K corresponds to the correction coefficient between A, and 
A\, and has the form 
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K2 = m; V + X2) (8) 

where 

f 
P(T) = 5(co) cos (co — CO)TJCO (9) 

Jo 

\ ( T ) = 5(w) sin (co - CJ)TC/CO (10) 
Jo 

Cross-Covariance and Covariance Kernels 
The cross-covariance kernel or function of A"' and A2 is defined by 

C„,„(T) = <A',"A2'> - (A'")(A"> ' (11) 

Clearly, when tti — n, the same expression gives the covariance kemal of 
A" and A". It can be verified from Eqs. 4 through 7 that 

C„,„(T) = C„,,„(T) = C ,„ , „ ( -T) (12) 

The covariance kernel for the odd powers of A, and A2 follows from the 
substitution of Eqs. 4 through 7 into Eq. 11 as 

C„,„(T) = - ( 2 » 0 ' T 4 i + - £ K * (13) 
TT \ 2 / , t t L 0 + 1)! J 

where « = 1 , 3 , 5 , In particular, setting n = 1 in the preceding expres
sion will yield the covariance kernel of the envelope itself in the form 

C|,i (T) = - OT0TTK2( 1 + — K2 + — K4 + . . . ) (14) 
8 V 16 64 / 

The Gauss hypergeometric series of Eq. 6 reduces to a polynomial of 
degree j in K2 when m/2 or n/2 is equal to j = 0, 1, 2, . . . (see, e.g., 
Abramowitz and Stegun 1965). Consequently, the cross-covariance kernel 
for the even powers of A, and A2 can be expressed in the form 

C2m,2„(T) = m\n\(2moy
+" ^ ( ' " ) ( "_ )(x2)m~J (15) 

where m = 1, 2, 3, . . . , and n > m - 1. When m = 1, one obtains 

C2.2„(T) = (2/«0)"
+1 nT(n + 1)K2 (« = 1, 2, 3, . . . ) (16) 

In particular, setting n = 1 in this expression gives the covariance kernal of 
A2 and A2 as 

C 2 2 ( T ) = 4m2
K

2 (17) 

In all the preceding results, it is understood that K = K(T). What is more 
significant, however, is the observation that the covariance kernels for the 
even powers of A, and A2 reduce to polynomials in K2, whereas those for 
the odd powers are in the form of a power series in K2. A S T —> 0, K(0) -» 
1, and 
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m + n\ 
r i i + — 

m n \ \ 2 
F\ — , - - ; l; 1 = (18) 

1 2 2 / / m\ ( n\ 

in Eq. 6. Now Cu can be used as a case in point to show that, as T —» 0, 
Eq. 14 converges to the variance of A exactly, i.e., 

Var (A) = (A2) ~ (A)2 = - m0(A - TT) (19) 

However, if the leading term of Eq. 14 is considered only, the variance is 
given by W0TT/8 as compared to Eq. 19. Evidently, the first term accounts 
for nearly 91.50% of the total variance. The inclusion of the second term 
makes this figure 97.22%, and that of third 98.64%. Therefore, the total 
contribution of all other terms not shown in Eq. 14 to the variance of A is 
less than 1.4%. 

TRANSFORM RELATIONS AND SPECTRA 

By virtue of Eq. 12, the (cross) spectral density, say, •*?„,„ associated with 
A'" and A\ corresponds to the Fourier cosine transform of Cm,„, i.e., 

2 f 
*•„, „(«>) = - C,„„(T) cos COT^T (20) 

IT Jo 

such that 

C„,,„(T) = I MVnCw) COS WT<i(0 (21) 

Jo 

The even moments of i|),„,„ are 

M'if = co2^,„,„(co)rfco = (-lyC^X = o (22) 
Jo 

where j = 0, 1, 2, . . . , and the last equality follows from Eq. 21 , with 
C(2,]J representing the 2j'th derivative with respect to T. 

It is evident that the explicit evaluation of Wm „ requires the cosine trans
form of Cm,„. The latter is either a polynomial or a power series of K2. Since 
a typical term in either case is proportional to K2" (« = 1, 2, 3, . . . ) , let the 
corresponding transform be defined by 

2 f" 2 
G2„(u>) = ~ K2"(T) cos COT^T (23) 

IT Jo 
It is shown in Appendix I that the preceeding can be rewritten in the re
cursive form 

G2„ = - G2(«)[G2„-2(|w - co|) + G2„-2(" + o>)]rfM (24) 
2 JO 
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where n = 2, 3, . . . , and 

2 r 
G2(o>) = — S(u)S(u + u)du (25) 

m„ Jo 

It is now a matter of straightforward substitution to develop explicit expres
sion for *,„,„. For instance, the simplest case of interest here would follow 
from Eqs. 16 and 25 as 

^2.2„(o) = 2"+2m"~xnT(n + 1) S(u)S(u + is>)du (26) 
Jo 

where n = 1, 2, 3, . . . . When n = 1, this gives the spectral density asso
ciated with A2 as 

^2.:((o) = 8 S(u)S(u + u)du (27) 
Jo 

This is entirely consistent with previous results (Pinkster 1984). In contrast, 
the spectral density 1P„„ (n = 1, 3, 5, . . .) associated with the odd powers 
of A can only be expressed in the form 

*».«(w) = E -%(.^) • (28) 

where „*, (j = 1, 2, 3, . . .) denotes the cosine transform of the j'th of Eq. 
13, which is proportional to KV. AS a result, „ ^ can be expressed in terms 
of „^}_i and „^! through the recursive use of Eqs. 24 and 25. For example, 
the spectral density WU1 of A itself becomes 

*i,i(w) = ,^i(w) + ,¥2(a>) + !^3((o) + (29) 

where j1?!, ^ 2 , etc. correspond to the transforms associated with the first, 
second, etc. terms of Eq. 14, so that 

« f 1^1= S(u)S(u + (o)du (30) 
4m„ Jo 

1*2 = " l * l ( M ) t l * l ( | M - «>|) + 1*1 (" + « ) ]</« (31 ) 
4TT?W0 J0 

1*3 = I * I ( M ) [ I * 2 ( | « - »|) + i * 2 (« + «»)]</« (32) 
1" " , , Jo 

Clearly, ,^ , is a convolution type functional of the surface spectral density 
S. The remaining terms 1

1?2. 1*3, etc. correspond in turn to further convo
lutions of ,M?,. In practice, all of these need to be computed numerically. 
Note, however, that the contribution of each term to the total spectral content 
diminishes fairly rapidly as its order increases. To be precise, e.g., 

i¥, doi = -m„ (33) 
Jo 8 
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7T 

I 1*2^(0 = — m „ (34) 
o ' 2 8 

,*3rf(o = m0 (35) 
o 512 

/ 325TT\ 
(1*4 + 1^5 + • • .)du> = 2mA 1 (36) 

0 V 1,024/ 

These represent respectively 91.50%, 5.72%, 1.42%, and 1.36% of the total 
spectral content, as was previously mentioned. This observation coupled with 
the nature of convolution operations, which tend to spread the spectral mass 
over all frequencies, suggests that it may in essence be sufficient to confine 
attention to the first few terms of Eqs. 28 and 29. 

COMPARISONS WITH PREVIOUS RESULTS 

Nolte and Hsu (1972) suggested that the spectral densities of A and A2 

differ by a constant, and are therefore equivalent in the normalized form 

S(u)S(u + u>)du 

(37) 

S2(u)du 

In view of Eqs. 27 and 30, it is clear that the suggested form is identical 
with ^2,2 and ^ 1 , normalized by the maxima at co = 0. However, ,1P1 rep
resents only the first approximation to tp1?1. Therefore, Eq. 37 is strictly 
appropriate to A2, not to A. 

Funke and Mansard (1980) challenged the validity of Eq. 37 on the grounds 
that it predicts a maximum at co = 0. They prefer to consider the SIWEH 
spectral density, and observe that highly periodic wave group phenomena 
lead to a peak in that density at non-zero frequencies. They argue further 
that the SIWEH spectral density is also affected by the phase differences 
(x,+„ — fji, between adjacent frequency components u>j+n and co, in Eq. 1, 
suggesting how the "phase spectrum" of wave trains may be related to the 
grouping phenomeon. The SIWEH is defined by 

E(t) = fc(T)T| (f + j)dT (38) 

where h represents a window or weighting function such that h a 0, h(t) 
= h{—T), and 

f 
h(T)dj = 1 (39) 

Clearly, (E) = ma. If T| is zero-mean Gaussian and admits a representation 
of the Same form as the real part of Eq. 1, then it can be shown after some 
algebra that the covariance kernel of E is given by 
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CE(r) = (E(t)E(t + T)> - ml 

= 2m2„ h{u)h(v)R2(T + v - u)dudv (40) 

where 

R(T) = (r\(t)-t\(t + T)) = S(o>) cos COTY/CO (41) 
JO 

The SIWEH spectral density follows from the Fourier transform of Eq. 40, 
after some straightforward algebra, as 

^E(a>) = jff(co)|2 S(u)[S(\u - w|) + S(u + u>)]du (42) 
Jo 

where co > 0, and 

H(w) = II(T) exp (-;coT)rfT (43) 

It may be of interest to note that the integral part of Eq. 42 is simply twice 
the spectral density of r\2. What is more significant, however, is the fact 
that, since H(u>), < H(0), M?£ has a maximum at co = 0 exactly, and is not 
affected by any phase differences of any sort. 

Bitner-Gregersen and Gran (1983) considered the slowly varying part of 
T|2 as an alternative to the SIWEH. In terms of A and the phase 4> of W, r\ 
= A cos 4>, and so 

T!2 = (A cos ()>)2 = - A2 - - A2 cos 2$ (44) 

Hence, the slowly varying part is represented by the first term on the right, 
i.e., A / 2 , whose co variance kernel follows from Eq. 17 as W!2K2(T). The 
corresponding spectral density has the form 

2 S(u)S(u + u>)du (45) 
o 

which is identical with the result previously given by Pinkster (1984). In
terestingly, the same concept can easily be extended to nonlinear waves un
der certain simplifying assumptions. Specifically, if the free surface is long-
crested and has narrow-band spectral characteristics, then (Tayfun 1986; Tayfun 
and Lo 1989) 

r\ ~ A cos 4> + - A2 k cos 2cj> (46) 

to second-order or approximation, with k = &>2/g correct to Oiy). The slowly 
varying part of T]2 in this case is 

^[x +^A2k2J (47) 
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with the covariance kernel 

(48) 

(49) 

1 

4 

Th 

c ., ,fY> + - /t2C, , M + — k4C,, M 
^ — - 2 " N ' 1 6 • v J 

e latter can be rewritten, utilizing Eqs. 

2 2 1 + 2a2 + a4( 1 + - K2) 

where 

a = Almsk = (2m0)
U2k 

15 through 17, as 

(50) 

and represents a measure of wave steepness or nonlinearity. Typically, 0 < 
a < 0.3 (Huang et al. 1981a; Shum and Melville 1984). It can easily be 
shown that, to 0(v), a corresponds to the root-mean-square wave steepness. 
In the present context a — v, so that terms of 0(a4) are negligible. On this 
basis, the spectral density associated with the slowly varying part of T|2 is 
given by 

2(1 + 2a2) S(u)S(u + b>)du (51) 
Jo 

Evidently, the effect of second-order nonlinearities is reflected in the con
stant factor (1 + 2a2) which serves to amplify each spectral amplitude by 
the fractional amount 2a2 as a nonlinear correction. 

ENVELOPE SPECTRAL DENSITY 

It is worthwhile to explore further the nature of the spectral density ^P,,, 
associated with A itself corresponding to some typical sea surface conditions. 
This is most conveniently done by specifying first the density S, from which 
i^! and thereby {^2, and other terms of ^ u would follow by numerical 
integration. The spectral density S is then utilized to generate via fast Fourier 
transform (FFT) time series of T), f|, and therefore a sample of the envelope 
function A from Eq. 3. The latter is processed further to remove its mean, 
and the usual FFT procedures are then employed to construct estimates of 
the underlying envelope spectral density ^PM. These can subsequently be 
compared with the theoretical quantities, e.g., ^ and ^x + ^ 2 , to which 
the following analysis will be confined. 

Spectral Density of Surface Displacements 
The spectral density of the sea surface displacements is assumed to be of 

the form 
4-1 

5(co) = p — exp (52) 

where u>f, = frequency of the spectral peak; 7 = parameter which controls 
the spectral shape, particularly the bandwidth v; and, (3 = parameter with 
dimensions m2s. The above form is identical to the Wallops spectral density 
(Huang et al. 1981b) for which the parameter (3 depends on the equilibrium-
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CO/COp 

FIG. 1. Spectra of Surface Displacements and Corresponding Estimates of En
velope Spectra for (a) v ~ 0.4, and (to) v = 0.2 

range constant, gravitational acceleration, and cop. 
Two cases are considered: For the first case 7 = 5, and p = 10 m2s; and, 

for the second 7 = 10, and p = 56 m2s. Correspondingly, Eq. 52 implies 
a constant value of ma — 2 m2 for both cases, but v — 0.4 for the first case, 
and co — 0.2 for the second, typical of (wide band) wind seas and (narrow 
band) swell conditions, respectively. The frequencies are scaled with respect 
to Wp. Therefore, the results would be independent of cop. In both cases, 
simulated series of t\, -f), and A comprise 2 = 8,192 points sampled at a 
rate of 0.5 s. The high-frequency cut-off of S is taken as co/cop = 2-rr, en
suring that better than 99.9% of the total spectral area is accounted for in 
both cases. 
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Q 

a. 
CO 

co/cop 

FIG. 2. Theoretical Forms of , * , + ,¥2 (top), ,¥, (middle), and ,¥2 (bottom) for 
(a) v = 0.4, and (b)v = 0.2 

Results 
The theoretical surface spectra and the corresponding estimates of enve

lope spectra derived from simulations are shown in Fig. 1. The estimates 
represent smooth values with 200 degrees of freedom, obtained by block-
averaging each raw estimate symmetrically over the neighboring values. It 
is evident that, the narrower the surface spectral density, the more concen
trated and peaked around the origin the envelope spectral density becomes. 

The theoretical predictions of , ^ 1 , 1*P,
2, and C&i + ,^2 arc shown in Fig. 

2. The nature of these results seems self-evident and perhaps needs no elab-

525 

J. Waterway, Port, Coastal, Ocean Eng. 1989.115:515-533.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
am

br
id

ge
 U

ni
ve

rs
ity

 o
n 

07
/1

2/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



<J-> 

CO/COp 

FIG. 3. Comparison of ,¥, + tW2 with Estimates of Envelope Spectra for (a) v= 
0.4, and (b) v = 0.2 

oration. It should be emphasized that the spectral peak occurs at oo = 0, and 
that the second approximation tends to sharpen this peak more as the band 
width of the surface density becomes narrower. 

The comparisons between the estimates of envelope spectral density ^ M 
derived from numerical simulations and the corresponding theoretical sums 
jipj + xyr2 a r e given in Fig. 3. In both cases, the estimates compare favor
ably with the theoretical predictions. It appears then that the envelope spec
tral density ^ , , is well approximated by the sum of the two leading terms, 
,% and ,^2. 

APPROXIMATIONS 

The relatively complex analytic forms associated with envelope-related 
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spectra suggest that it may be worthwhile to consider the possibility of ap
proximating them with more practical expressions. One such possibility pre
sents itself immediately in view of the basic nature of envelope-related spec
tra. To be specific, any spectarl density associated with the wave envelope 
involves the typical term 

S(u)S(u + (o)du (53) 

either by itselt as the principal functional form or as the leading approxi
mation. Therefore, it can be argued that spectral densities such as ^„ „ {n = 
1, 3, 5, . . .) and ^2/,,2„ (« = 2, 3, 4, . . .) associated with the odd and certain 
even powers of A can be approximated with sufficient accuracy for practical 
purposes by the above functional form, provided that it is normalized to have 
the same total area as the spectral density under consideration does. The 
total area under ^„,„ (« = 1, 2, 3, . . .) is Mnf = C„,„(0) from Eq. 22, 
whereas the area under the approximating form can be verified to be ml/2. 
Therefore, 

*„,„(&>) = 2m;2M"-" S(u)S(u + (x>)du (54) 
Jo 

corresponds to the proposed approximation, where n = 1, 2, 3, . . . ; and, 

MY = r - + i (2mJ. (55) 

The 2nd-order moments of \P„in and ^f„i„ will follow from Eqs. 22 and 54 
as (see, Appendix II) 

MY = 2<o VAC" (56) 

MY = - wV«r(K + 1)(2OTJ" (57) 

where n = 1, 2, 3, . . . as before. Note that 

_ MY _ nT{n + 1) 
r" ~~ MY ~ n 

(58) 

which can be used as a rough figure of merit to judge how $?„_„ fares in 
approximating ^„„. When n = 2, #2.2 = ^2,2 identically so that r2 = 1. 
For any other n ^ 2, r„ > 1, implying that the approximate form tends to 
underestimate the theoretical moments M]'" fory = 1, 2, 3, — This con
stitutes a point of some concern in theory, but can perhaps be tolerated in 
practical applications involving relatively small values of n. 

As an explicit demonstration of the proposed approximations, consider the 
spectral density ^ u of A. In this case, n = 1, and so r, — 1.16, as compared 
to, e.g., r3 ~ 1.06, and r4 — 1.09 corresponding to n = 3 and 4, respec
tively. The approximating spectral density is 
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CO/COp 

FIG. 4. Comparison of Approximation yu (dashed) with Theory ¥,,, = ^t + , * 2 

+ ,% (continuous) for (a) v = 0.4, (b) v = 0.2, and (c) v = = 0.12 

¥ , , (co) = 5(i<)5(« + co)dM . (59) 

Again assume that S has the Wallops form given by Eq. 52, with the same 
high-frequency cut-off co/o)p = 2TT. ^ M follows from Eq. 59 by numerical 
integration, and will be compared this time with the sum of the first three 
terms of tytA, i.e., 1^

f, + ,̂ P2 + ,M>3. Considering three cases corresponding 
to 7 = 5, 10, and 20 (v == 0.4, 0.2, and 0.12) with m0 = 2 m2 as before, 
the comparison between ^f

1, and the respective theoretical sums will be as 
shown in Fig. 4. It is apparent that the approximations tend to overpredict 
the spectral amplitudes near the origin to some extent, and accordingly dis
play a slight but persistent deficiency toward the high-frequency tail. 
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SUMMARY AND CONCLUSIONS 

The theoretical spectral densities associated with various powers of the 
wave envelope were examined. It was shown that the spectral densities for 
the even powers of the envelope admit exact forms, whereas those for the 
odd powers lead to a series of terms each of which needs to be calculated 
numerically from a convolution type functional of the surface spectral den
sity. Then, the spectral density of the envelope itself was examined in detail, 
showing that the first term is the most significant, and accounts for nearly 
91.50% of the whole spectral content; the inclusion of the second term im
proves this further by 5.72%; and, all the remaining terms contribute less 
than 2.80%. Therefore, it can be argued that the representation of the en
velope spectral density by the sum of the two leading terms, with the ap
propriate normalization to 100%, should be sufficiently accurate for most 
purposes. 

The basic nature of envelope-related spectra also implies that some of 
these theoretical forms can functionally be approximated with sufficient ac
curacy for practical purposes by the leading term only, provided that the 
latter is properly normalized to have the same theoretical zeroth-order mo
ment. An explicit application of this concept to the envelope spectral density 
itself gave reasonable results, which tend to suggest that the proposed ap
proximation might be all that is needed in practice. 

ACKNOWLEDGMENTS 

This study was supported by Kuwait Foundation for the Advancement of 
Sciences under grant 87-06-01. Thanks are due to Layla Raad from Kuwait 
Institute for Scientific Research for computer work and graphics, and to Daisy 
Mathew for typography. The writers also acknowledge various useful com
ments by reviewers. 

APPENDIX I. COSINE TRANSFORM OF K2" 

By virtue of Eq. 23 

K2"(T) = G2„(w) cos coTdco (60) 
Jo 

In particular, 

K2(T) = G2(co) cos COTAO (61) 
Jo 

Setting K2" = K 2 " - 2 K2, and replacing K2 with Eq. 61 , Eq. 23 can be rewritten 
as 

G2„ = —I G2(U)K2" 2 (T) cos in cos andudr (62) 
T Jo Jo 

where 

1 1 
cos MT cos COT = - cos \u ~ co T H— cos (u + CO)T (63) 

2 2 
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which is substituted in Eq. 62 to obtain Eq. 24. 
Clearly, if G2 is known, then G2„ (n = 2, 3, . . . ) will follow from the 

recursive use of Eq. 24. To obtain G2, Eqs. 8 through 10 are combined to 
give 

m2
0K

2(r) = S(u)S(v) cos (« - v^dudv (64) 
Jo Jo 

Let co = u — v in integrating with respect to u to obtain 

W»K2(T) = S(v)S(v + co) cos wrdwdv = / , + I2 (65) 
Jv=0 Jw = -u 

where 

r r 
I\ = I S(u)S(u + co) cos undud(M (66) 

Jo Jo 

r r 
h = I 5(w)5(w + co) cos undiodv (67) 

Jt'=0 Ji»=-v 
First, set co = -co in 72, then interchange the order of integration, and finally 
replace v — co in the resulting expression with u to verify that I, = I2. There
fore, m„K2 = 2/,, and so 

K2(T) = | G2(co) cos COTJCO (68) 
'0 

where G2(co) is given by Eq. 25. 

APPENDIX II. SECOND MOMENTS OF ^P,,,,, AND ^„,„ 

By definition and using Eq. 54, the second moment of SE',,,,, is 

M"i" = 2m~2M"0-" u2S(u)S(u + u)dudo) (69) 
Jo Jo 

Let u + co = v, and doi = dv to rewrite Eq. 69 as 

Mni" = 2m0
 2Mnf | | (v - ufS(u)S(v)dudv 

= m„ 2M''J' | | (v - u)2S(u)S(v)dudv (70) 

Now, note that v — u = (t; — co) — (« — co), which can be substituted in 
the double integral above to show that it equals 2(m0cov)2 identically, and 
therefore Eq. 55 follows immediately. 

The second moment of P̂„ „ follows from Eq. 22 as 

Mi" = | co2^„>co = - CS(0) (71) 

530 

J. Waterway, Port, Coastal, Ocean Eng. 1989.115:515-533.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
am

br
id

ge
 U

ni
ve

rs
ity

 o
n 

07
/1

2/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



n\ d1 I n n 

where 

C S ( T ) = (2m0)"Y2( 1 + -\ ~ Fl ~ , - j 1; K2 I (72) 

In general (Abramowitz and Stegun 1965 

d2 a{a + \)b(b + 1) /dz\2 

—r F ( a , fo; c; z) = — F(a + 2, b + 2; c + 2; z) — 
</T2 C(C + 1) \di 

ab d z 
+ — F(a + \,b+ 1; c + 1; z) — (73) 

c dt 

As T —» 0, K 2 ( 0 ) = 1, and it can be verified from Eqs. 8 through 10 that 

^ K 2 ( 0 ) 
— — = 0 (74) 

AT 

rfV(O) 
-2G>2v2 (75) 

AT 

The substitution of Eqs. 72 through 75 in Eqs. 71 now gives Eq. 57 for 
MT. 
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APPENDIX IV. NOTATION 

The following symbols are used in this paper: 

A(t) 
C,„,„(T) 

CJ 
F 

G2„(co) 
//(CO) 

A(T) 

k 

Mr 
mj 

o( ) 
R(T) 

i'n 

5(o>) 
t 

u,v 
W 
a 

P 
r 
7 

T1.T| 

K2(T) 

= 
= 
= 
= 

= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 

wave envelope or amplitude function; 
cross-covariance kernel of A"'(t) and A"(t + T); 
amplitude of jth-frequency component; 
F(a, b; c; z), Gauss hypergeometric function with arguments 
a, b, c, and z; 
cosine transform of K2"(T); 
Fourier transform of h{i); 
window or weighting function; 
spectral mean wave number; 
y'th moment of iir,„„ defined by Eq. 22; 
j th moment of spectral density of sea surface displacement 
about origin; 
of order of ( ); 
correlation fucntion of sea surface displacements in time; 
ratio defined by Eq. 58; 
spectral density of sea surface displacements; 
time; 
dummy variables of integration; 
complex envelope defined by Eq. 1; 
steepness parameter; 
one of parameters for Wallops spectral form; 
gamma function; 
one of parameters for Wallops spectral form; 
sea surface displacement, and its Hilbert transform, respec
tively; 
autocorrelation coefficient between A2(t) and A2(t + T); 
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\(T) 

M-y 
V 

-e
-

P(T) 
T 

^,„„(to) 
*»,»(») 
„^(co) 
¥£(o>) 

CO 

cop 

CO 

Acoj 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

function defined by Eq. 10; 
random phase of jth frequency component; 
spectral bandwidth parameter; 
argument of W (total wave phase function); 
function defined by Eq. 9; 
time lag; 
(cross) spectral density associated with A'"{t) and A"(t + T); 
approximation for ^^(to) (n = 1, 2, 3, . . . ) ; 
jth term of ¥„,„(co) (n = 1, 3, 5, . . . ) ; 
SIWEH spectral density; 
wave radian frequency; 
frequency of spectral maximum; 
spectral mean frequency; and 
frequency increment associated with _/'th-frequency compo-
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