
H I G H - W A V E - N U M B E R / F R E Q U E N C Y ATTENUATION 
OF W I N D - W A V E SPECTRA 

By M. Aziz Tayfun,1 Member, ASCE 

ABSTRACT: Properties of surface-elevation spectra representative of nonlinear deep-
water wind waves are examined theoretically. For a wave field characterized by 
second-order nonlinearities, expressions describing the spatial covariance and the 
directional wave-number spectrum of the surface geometry are derived. The nature 
of these quantities are then examined with emphasis on the high-wave-number 
attenuation of spectral amplitudes. It is found that, if the spectrum of the first-
order linear wave field decays as k~p toward the high-wave-number extreme, then 
the spectrum of the nonlinear wave field must decay as fc~p+2. This condition cou
pled with the saturation/equilibrium range concepts is shown to necessitate the 
existence of certain upper-limit asymptotes to the high-frequency attenuation of 
linear-wave spectra. Practical implications of this result are explored with reference 
to low-pass filtering of wave records, and the representation of Gaussian sea waves 
based on various empirical and/or theoretical forms of wind-wave spectra. 

INTRODUCTION 

An accurate description of the surface geometry and its statistics in a de
veloped wind-wave field requires knowledge of the surface-elevation spectra 
and associated ordinary moments. The development and the eventual shape 
of the spectrum under a given set of wind and fetch conditions depend on 
various processes such as wave-wave interactions, energy input from the 
wind, wave-breaking, and so on. Despite the progress made in recent de
cades, the current knowledge of these processes is perhaps still insufficient 
to predict the precise functional form that a wave spectrum will assume un
der a given set of circumstances. The fact that there exists not one unique 
form but a variety of different representations of wind-wave spectra, theo
retical or empirical, is apparently a result of this lack of complete under
standing. Thus, such representations are normally derived from dimensional 
analyses and/or similarity laws, and involve certain parameters, e.g. grav
ity, wind velocity, wind fetch, and so on. These parameters and thereby the 
explicit functional form are obtained by fitting an "ensemble" average of 
observed spectra, typically over a restricted range of frequencies. A case in 
point is the JONSWAP spectrum (Hasselman et al. 1973), which is a gen
eralized form of the Pierson-Moskowitz (P-M) spectrum, modified by a peak-
enhancement factor. The enhanced peak appears to be typical of wind-wave 
spectra under fetch-limited growth conditions. Hasselman et al. (1973) at
tempt to explain the presence and evolution of such pronounced peaks as a 
self-stabilizing feature of the resonant wave-wave interaction process. How
ever, the more accurate later calculations of Longuet-Higgins (1976) and Fox 
(1976) contradict this, and in fact suggest that such interactions should help 
attenuate rather than augment the spectral peak, making the spectrum broader. 
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Nevertheless, one frequently observed consistent property of wind-wave 
spectra is that their growth over frequencies and wave numbers sufficiently 
larger than those of the spectral peaks follows certain upper-limit asymp
totes, which fall off as w~<4~5) and fc~(7/2~4) in the gravity-wave range [see 
for example Forristall (1981), Kitaigorodski (1962, 1983), and Phillips (1958, 
1985)]. Phillips (1958) originally explained these asymptotes as saturation 
limits above which any excursion of the spectral density is relieved by break
ing. The additional theoretical insight developed since 1960, and the trend 
of the recent more accurate measurements forced Phillips (1985) to refor
mulate these upper-limit asymptotes to be consistent with a statistical equi
librium state determined by the balance among the various energy-transfer 
and dissipation processes operating in the gravity-wave range. The limiting 
shape of the sea surface implied by these types of saturation/equilibrium 
asymptotes is characterized by the occurrence of sharp wave crests that spo
radically break and form patches of foam or whitecaps. Evidently, the pres
ence of sharp crests renders the surface gradient discontinuous. Thus, the 
attenuation of the two-dimensional wave-number spectra in the form of 
£-(7/2~4) a t j^gg ^ j s entu-ejy consi stent with this reasoning (Phillips 1977; 
Glazman 1986). Not surprisingly, a variety of empirical or theoretical rep
resentations of wind-wave spectra, viz, the P-M, JONSWAP, and other forms 

N ' of one-dimensional frequency spectra have been formulated to fall off as 
jii w~(4~5) a t l a r g e co. 
j The physics of gravity waves are rather difficult because of the nonlinear 
I kinematic and dynamic conditions to be satisfied on the moving air-water 
I" interface, which is unknown a priori. The action of turbulent wind and the 
' resulting surface stresses complicate the situation further. Thus, the math-
, ematical models describing the propagation of deep-water wind waves are 
1 based on the perturbational solutions of the equations of free wave motion 

(Tick 1959; Hasselman 1962; Longuet-Higgins 1963; Weber and Barrick 1977). 
So, surface stresses are ignored, and the displacements from the mean sur-

, ] ' face level are described in the form of a series. The leading term of the 
series, viz, the first-order solution, provides the bulk of the description, which 

j is assumed to be linear Gaussian. Nonlinearities are viewed as small depar-
' tures or perturbations from the Gaussian state. In theory, all nonlinear terms 

depend on, and thus must be solved in, terms of the first-order solution. 
But, the algebra is so prohibitive that explicit expressions exist only for the 

L second-order solution, representing the nonresonant forced waves generated 
by the first-order field. The resonant wave-wave interactions arise in the 

Hi higher orders, and are time-dependent. Fortunately, the temporal and spatial 
j scales over which the resonant interactions and other energy-transfer/dissi-
! pation processes assume importance are sufficiently large [see for example 

Id! Phillips (1977), Barrick and Weber (1977)] so that the perturbational solu-
lli tions to the second-order can provide a valid physical description for wind-

| generated waves under conditions of statistical equilibrium, for example, in 
the sense of Phillips (1985) and/or locally, namely, over spatial and time 
scales relatively small compared to those for which the aforementioned pro
cesses become dynamically significant. 

Oceanic observations of a variety of surface-wave properties, inclusive of 
those gathered under hurricane conditions, bear out the preceding viewpoint 
remarkably well. For instance, the departure of certain key surface statistics 
from the Gaussian norms can be predicted quite accurately by way of the 
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second-order solutions (Longuet-Higgms 1963; Tayfun and Lo 1989, 1990). 
Observed spectra often display secondary peaks at frequencies and wave 
numbers coincident with the second harmonics of those of the primary peaks. 
The second-order perturbational calculations by Tick (1959), Barrick and 
Weber (1977), and others also explain such features well, provided that the 
spectrum representative of the first-order wavefield has a sufficiently sharp 
maximum. 

One aspect that would be of interest but has so far remained essentially 
unexplored is the high-wave-number/frequency behavior of wind-wave spectra 
within the context of second-order pertubational theory. That is the principal 
purpose of the present study, and requires first the derivation of theoretical 
expressions describing the spatial covariance and thereby the two-dimen
sional wave-number spectrum of the surface geometry. Then, the attenuation 
of second-order spectral amplitudes toward the high-wave-number extreme 
must be determined, assuming initially that the wave-number spectrum rel
evant to the first-order Gaussian sea surface falls off as k~p. Once the latter 
objective is achieved, a simple reverse argument based on Phillips' (1958, 
1985) saturation- and equilibrium-range concepts can be used to establish 
the appropriate upper-limit asymptotes that first-order spectra should follow. 
The eventual goal would be to explore the practical implications of such 
asymptotes, for example, with reference to the low-pass filtering of wave 
records and to the representation of Gaussian sea waves based on certain 
empirical and/or theoretical forms of wind-wave spectra. 

PERTURBATIONAL MODEL 

The surface elevation from the mean level is given by 

T1 = t l (X,0 = T|, + T]2 (1) 

where x = (xux2) = horizontal coordinates fixed on the mean surface level; 
t = time; T|I and r\2 = the first- and second-order solutions, respectively. 
The first-order solution is linear Gaussian, and so can be described in the 
form 

N 

% = lim y a„ cos x„ (2) 

where x„ = k„-x - oo„f + (x„; k„ = horizontal wave-number vector with 
the modulus k„. = |k„|; w„ = frequency in rad/s; u.„ = random phases, uni
formly distributed over the interval (0,2ir); and a„ = amplitude of the nth 
spectral component. Evidently 

w» = Qk„ (3) 

where g = gravitational acceleration. 
The amplitude a„ can be related to various forms of the surface-elevation 

spectrum. For example, in the simplest case when T^ is observed at fixed x 
as a function of t only 

- a\ = S1((o„)A(o„ (4) 
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where Aco„ = discrete intervals of frequency such that Aco„ —> dia as TV —» 
°°; and Sj = one-dimensional frequency spectrum (density). If, on the other 
hand, t is fixed while T|J is viewed as a function of x, then 

- a2
n = >Mk„)Ak„ (5) 

where Ak„ = discrete elements of area over the horizontal wave-number 
plane such that Ak„ -> dk = dk}dk2 as N -> °°; k = (kuk2) with kt and k2 
designating the components of k in the x1 and x2 directions, respectively; 
and, \\ii = two-dimensional wave-number spectrum (density). It is often nec
essary to employ a polar description for the wave-number plane, in which 
case 

iW(k)rfk = ih(k)MW9 (6) 

with kx = k cos 9; kz = k sin 8; and 6 = tan"'(^2Ai) measured positive 
counterclockwise from the x,-axis. Finally 

dk f 
J,((o) = k — t i 

dm J 
S,(w) = k — «|/,(k)de (7) 

aw J 

The second-order solution is given by [see, for example, Longuet-Higgins 
(1963), Tayfun and Lo (1990)] 

T|2 = Tl2 + r\2 (8) 

where 
1 N N 

f\2 = lim - ^ 2 an,anKfn,n cos (x,„ ±x„) (9) 

# U = ^±(km,k„) = (kmknr
1/2[2Bln - (kra-k„ + £mfc„)] + (km + k„) .... (10) 

„± _ (km — £n ) (km • k„ + km k„) 
B-"~ (W±kl»?-K±K\ ( } 

COVARIANCE KERNELS AND SPECTRA 

Directional Waves 
Assume that r\ represents a statistically homogeneous wave field generated 

by steady winds blowing in the direction of the positive * raxis. The spatial 
covariance of T\ at points separated by a distance r is defined by 

Z(r) = <T|(x + r,0^i(x,0> (12) 

where ( ) = expected value operator. Equivalently 

Z(r) = J\|»(k) cos (k • r)dk (13) 

where IJJ = two-dimensional wave-number spectrum of i\. Since TI,, T|2» and 
% are mutually uncorrected, Z can be rewritten 

Z(r) = Z, + Z2 = Zi+ Z2
+ + Z2" (14) 

where Z1( Z2, and Zt = covariance of t\u r\2, and -qf, respectively. Ac
cordingly 
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i|/(k) = tyi + <|i2 = tyi + 4<2 + 4»2 (15) 

Evidently, i|i(k) = 0 unless k lies in the right half-plane in accord with the 
assumed wind direction. 

For the first-order field 

1 
Z, = lim V - a2

n cos (k„ • r) = JM/i(k) cos (k • r)rfk 
* - » „tt 2 

(16) 

which is consistent with the definition of \\ilt as was previously given by 
Eq. 5. 

The covariances of T|J have the form 
N N l\ V 

Xt = lim ^ E \-amanK*A cos [(k,„ ± k„)-r] (17) 

The derivation of ^ from Eq. 17 is fairly straightforward, but requires some 
care. For example, kn > 0 for any n since (n) = 0, so that setting k, = km 
+ k„ allows Z2 to be rewritten 

2-. 

Z\ = lim 2) 2 7 a„aj-nK]Lnt„ I cos (k, • r) (18) 

A comparison of the latter to Eq. 16 immediately leads to 

^ = \ J [*+(k " k'>k'rf^(k ~ k'W»i(k')<*' (19) 

where it is to be understood that k, —» k = (kuk2) and k„ -> k' = (k[,k2) 
as N -> oo; and / = {k': 0 < £[ < Â , oo < fc2 < oo}. 

In considering ZJ, let k, = km — k„ or k, = k„ — km depending on whether 
km cos 0OT > &„ cos 8„ or £m cos 6m ^ fc„ cos 6„, respectively. Thus 

2 

Z2 = lim Y T - anaj+„Kj+n:„ 

+ 2 ( 7 anan-jKn-j,n cos (k,- • r) (20) 

Now, set i = n — j & 1 so that w = /+_/ ' in the second sum within the 
square brackets, and then make use of the symmetry K^+j = KJ+jti to show 
that the two sums within the square brackets are identical. Consequently 

Z2 = lim 2 2 2) (~ anaj+nKJ+ntn 
j=i nSN-j \ 4 

cos(kyr) (21) 

and so 

+2 i/ir* k',k')]2>(<i(k + k')<W(k')dk' (22) 

where the region of integration with respect to k' = {k[,k2) is the right half-
plane on which 0 < k[ < °° and - » < fc2 < oo. 
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Bounds 
Following Longuet-Higgins (1963), it is convenient to define 

p = TT. (23a) 
2(knkn)

1/2 

c = cos 7 = cos (G„, - 6„) (23b) 

such that p & 1 in general, and —IT < y < it in the present case. Thus, Eq. 
10 can be rewritten 

TJ-2 =/± = p ± - (1 + c) + ^75 (24) 

(p ± 1) - P2 - - (1 + c) 

It is noticed that/+ = p and/_ = ~(p2 - 1)1/2 as 7 -» 0. These particular 
limits together with straightforward numerical evaluations of /± for varied 
values of 7 will yield 

max « „ ) 2 = (Km,„)\=0 = (km±k„)2 (25) 

—!T<7<1T 

and so 

[^±(k + k',k')]2 s i t 2 (26) 

Further, by way of Schwarz's inequality 

J\|»,(k ± k')«|»i(k')dk' =s /i|/2(k)rfk (27) 
Thus, the preceding upper bounds are substituted into Eqs. 19, 22, and i|/2 

= i|»2 + \\>2 to obtain 

0 < »|»2(k) < - k2 \ tf(k)dk .. (28) 

The variance of r\ is given by 

<in2> = Z(0) = Ji|i(k)dk (29) 
Equivalently 

W) = <TI2) + (r,2) = <tf> + <en2
+)2> + <(v)2> (30) 

By virtue of Eqs. 17 and 25 
AT N /. \ 2 

0 < Zj(0) < lim 2 S 7 fl«fl-l*» ± *«l) (31> 
w-^~ m=i n=i \ 4 / 

Utilizing the dispersion relation gfc, = 002 for j = m and n, and expanding 
the right-hand side of Eq. 31 will give 

1 

2g 
where m, = the y'th ordinary moment of Su Thus 

((-ni)2) = Z?(0) s — (/n0/M4 ± /n2) (32) 

0 < <-n|> < - V (33) 
9 

This result and (T|2) = m0 can now be substituted into Eq. 30 to conclude 
that 
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m0 < On2) ^ mol 1 + — J (34) 

which will be of practical use later. 

Unidirectional Waves 
When all the spectral components propagate, say, in the positive x = Xi 

direction, then k = kt and K* = ±k in Eqs. 19 and 22. Thus, Aft reduces 
to 

k2 fk 

ti(k) = - Uk ~ k')Uk')dk' (35a) 
4 Jo 

k1 r 
<\>i(k) = - i|»i(ifc + k')tyi(.k')dk' (35b) 

2 Jo 

Further 

i|»i(fc - k')W)dk' = [iW(|* - k'\) - i|i,(fc + k'Miik'W (36) 

Jo Jo 

which can be used together with Eqs. 35a and 35b to obtain 

k2 r 
Uk) = - [Uk + k') + M\k - k'\)]Uk')dk' (37) 

4 Jo 
In the present case 

Zi(r) = >|>i(fc) cos krdk (38) 
Jo 

One can now make use of the convolution properties of cosine transforms 
[see, for example, Hildebrand (1976)] to show that the integral part of Eq. 
37 is the cosine transform of 2Z\. Clearly, then, \\i2 is the cosine transform 
of Z2 = —(l/2)d2(Z2)/dr2. Thus, the spatial covariance of r\ is given by 

1 d2 . 
Z(r) = Z1-- — (Z\) (39) 

2 dr 

Finally, the variance of m, follows from a combination of Eqs. 3, 7, 38, and 
39 as 

<-n2> = Z(0) = mil +—A (40) 

which is identical with the upper bound in the directional case (see Eq. 32). 
The frequency spectrum is of the form 

5(<o) = Si + S2 = S! + S2
+ + S2~ (41) 

where Si, S2, and St — frequency spectra associated with m,i, m,2, and inj, 
respectively. In contrast to the linear case, where Si and vjij are related to 
one another in a unique way by virtue of the dispersion equation co2 = gk, 
there is no such relationship that can be used to relate Sj to vJ/J. Thus, St 
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must be derived from the cosine transforms of the temporal covariances of 
T\2- That has already been done elsewhere [see for example Tick (1959) and 
Tayfun (1986)] and so need not be repeated here. For co > 0, the second-
order spectra are given by (Tayfun 1986) 

*-*f S:! = —; [(to')2 + (co - co')TSi(<o - a>').Sj(a>')da)' (42a) 

1 

2g2
J0 

The temporal covariance of t] at an arbitrary time lag T is 

S* = T l I Kw') - (w + w')2]25i(co + (o')Si(to'W (42fc) 

#(T) = (i\(x,t + T)j\(x,t)) = S(u>) cos co-rdco (43) 
Jo 

It is understood that R = Rt + R2, R2 = Rt + Rz, and that the temporal 
covariances R, and R2 are given by the cosine transforms of S, and S2, 
respectively. Now, let 

* I(T) = 5i(w) sin WTrfto (44) 
Jo 

and apply the convolution properties associated with the sine and cosine 
transforms (Hildebrand 1976) to Eqs. 42a and 42b to obtain 

2-

(45) tf(T) = *, + ~2 
9 

d" (d1 . 
Rla^Ri~WRi 

This is the correct form of a relation given by Tick (1959) some years ago. 
Notice that R(0) leads to Eq. 40 exactly, as is to be expected. 

HIGH-WAVE-NUMBER/FREQUENCY ATTENUATION 

Preliminaries 
In view of Eq. 28, assume that 

J>2(k)rfk < =o (46) 

It can then be shown that for an arbitrary small 8 > 0, there exists a wave 
number k0 such that 

i|*2dk = i|ifak - i|»fak < 8 (47) 

where / = {k:0 < k < k0, \%\ < IT/2} and J = {k:k > *b,|9| < ir/2}. To 
be more specific, let 

>|*i(k) = Ps(cos B)k~p (k»k*) (48) 

where p = a dimensional constant; k* = wave number of the spectrum peak; 
and s( ) = a directional spreading function. For p = 7/2, \\it reduces to 
Phillips' (1985) equilibrium-range spectrum, for which (3 is proportional to 
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the wind-friction speed. The substitution of Eq. 48 into the left-hand side 
of Eq. 47 gives 

kl("-l) > 
2(p - l )8 j_ £ s2dQ. (49) 

•n 

Thus, provided that;? > 1, it would be sufficient to choose &o so as to satisfy 
Eq. 49 for a given 8. 

When k ' G J and k G J so that k > k0 > k' invariably 

|k ± k'| = [k2 ± 2kk' cos (0 - 6') + (k')2]1/2 = k 1 ±0 
k' 

(50) 

where 0( ) = of order of ( ). Similarly, the cosine of the angle between k 
± k ' and k ' is given by 

+ (k ± k') • k' 
c* = :— = cos (6 - 6') 

k ± k'lk" 
1 ± 0 1 I (51) 

Further, if km and k„ are replaced respectively with |k ± k' | and k' in Eq. 
23a, then 

(52) 
1 k 

P = 
2 \k 

1 ± O 

Thus, it can be verified, after some algebra, from Eqs. 24, 51 , and 52 that 

[ ^ ( k ± k ' ,k ' ) ] 2 = k2 cos2(6 - 6') 1 ± 0 1 I 
A ' / 2 1 

(53) 

If Eq. 48 is valid, then 

i|»,(k ± k') = Pi(cos 4f)\\i ± k'|-" (54) 

where it is understood tha tp > 1, |k ± k' | » &*, and §r = the direction 
of k ± k ' . Evidently, 

+ k cos 6 ± k' cos 6' 
cos 4> = — = cos i 1 ± O 

k' 

|k ± k'| 

The substitution of Eqs. 50 and 55 into Eq. 54 gives 

iW(k ± k') = |3.s(cos 6)Jt" 1 ± O 

(55) 

(56) 

Result 
Examine now i|>2 = ipa" + ^2 for k > ICQ » k*. By virtue of Eqs. 53 and 

56 

i|/2 = - 3i(cos 0 ) r p + 2 J cos2(6 - 9')«|ii(k') 1 ± O 

A 1/2-

dk'. (57) 

Thus, if i|ij attenuates as k~p, then I)J2 and so i|> must attenuate as k~~p+2. 
Now, let 4* stand for the total spectrum actually observed to that it de

scribes the joint contribution of the linear and nonlinear spectral components 

389 

J. Waterway, Port, Coastal, Ocean Eng. 1990.116:381-398.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
E

O
R

G
IA

 T
E

C
H

 L
IB

R
A

R
Y

 o
n 

06
/2

1/
14

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



of all orders. Evidently, if i|> follows an upper-limit asymptote that attenuates 
as k~p, then i|i2 must fall off at least just as fast. Accordingly, the first-order 
spectrum v̂  must attenuate at least as fast as k~(p+2). This in turn would 
immediately imply, by virtue of Eq. 7, that the first-order frequency spec
trum St also must attenuate at least as fast as w~i2p+1) for <o » w* = (g&*)1/2. 
In particular, if the wave number and frequency spectra representative of a 
developed wind-wave field follow the saturation (equilibrium) type upper 
limits k~4(k~1/2) and aT5(<o_4), then the corresponding first-order spectra must 
fall off at least as fast as k~6(k~n/2) and o)_9(o)~8), respectively. 

Example 
As a simple illustrative case, consider a unidirectional wave field and as

sume that the first-order spectrum is given, in a dimensionless and normal
ized form, by 

Si(u) = —S,(wa>*) = Cpu~p exp 
m0 ~4w4 

(58) 

where u = w/co*; Cp = 4(p/4)(p-1)/7r[(/7 - l)/4]; and V = gamma func
tion. For p = 5, Eq. 58 reduces to the Pierson-Moskowitz spectrum; and, 
ior p arbitrary, it gives the Wallops spectrum of Huang et al. (1981). How
ever, in the present case, p > 8 necessarily. 

The second-order spectra will follow from Eqs. 42a and 42b simply as 
2 r" 

& = T \ K"')2 + <" ~ WffS^u - «')5i(«')rf"' (59a) 
8 Jo 
2 f" 

§2~ = 7 [(M')2 ~ (" + M')2]2^i(" + u'%{u')du' (596) 
4 Jo 

where a = k*(2m0)
1/2 and, S* = (b)*/m0)St. In the most general case, the 

parameter a can be shown to be proportional to the rms surface slope (|ViQi|2)1/2 

= ml'2/g, where V = horizontal gradient operator. 
The moments of S, have the form 

ftij = m0(»
JJ -

m 
'p-j-1 

(60) 

Itcan be shown [see for example Tayfun (1986)] that the total areas under 
Si are given exactly by the upper bounds in Eq. 32. Thus 

1 
<tif> 2g2 

and so, 

m4 

m2\ P 2 : — J = - or 
m0 

rttP ~ 3 

AT2' 

(61) 
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FIG. 1. Illustrative Examples for High-Frequency Attenuation of Spectra S, and 
S, + S2 in a Dimensionless Form: (a) S, <* or8; (b) S, « ia'9 

<-n?> p - 5 
(62) 

which is the specific form assumed by <|'Vx|1|
2> in the unidirectional case 

here. 
Now, consider two specific cases corresponding to p = 8 and p = 9, 

respectively. It is assumed that m0 = 10 m2 and co* = 0.66 rad/s in either 
case. Thus, a — 0.2, which is typical of extreme seas generated by intense 
hurricanes (Tayfun and Lo 1989, 1990). The results computed numerically 
using Eqs. 58_, 59a, and 59b are given in Fig. 1, which shows 51( S2 = 
S2" + S2 and § = §!+ S2 for both cases. It is seen that when 5i « u~*(u~9), 
then S oc u~4(u~s) for M > 10, approximately. Clearly, the energy-containing 
part of 5 located over frequencies near K* = w/w* = 1 is primarily deter
mined by §1. Except for the relatively minor increase of the spectral area in 
the low-frequency range, which is largely due to 57, the influence of Sf on 
S] is negligible up to about u = 2. For_w > 2, the spectral area does increase 
noticeably, in particular, due to the St contribution. However, despite the 
extreme case implied by a = 0.2, it can be verified from Eq. 62 with p = 
8(9) that the total area under S2 is only 5.33 (4.50%) of the unit area under 
•Si. Further, Eq. 61 indicates that more than 87% of the area under S2 in 
either case is due to the S+ contribution. Thus, S2 is the predominant com
ponent of S2 for deep-water waves. 
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IMPLICATIONS 

The most obvious physical effect of nonlinearities manifests itself in the 
form of sharp wave crests on the sea surface. Evidently, these features are 
an inherent property of developed wind-wave fields whose spectra display 
the saturation-equilibrium-type upper-limit asymptotes in the gravity-wave 
range. Thus, empirical/theoretical spectra, for example, the JONSWAP, P-
M, and other forms of one-dimensional frequency spectra that fall off as 
co~<4~5) at large w, are in essence representative of nonlinear seas and so can 
not be used to describe linear Gaussian waves without due modification. For 
such spectra, high-order ordinary moments tend to be divergent and cause 
complications in the interpretation of surface-wave characteristics [see for 
example Glazman (1986), Nath and Yeh (1987)]. 

It appears that sharp corners and crests are relatively small-scale high-
frequency features of a developed wind-wave field. The large-scale or pre
dominant structure of the surface geometry is determined mostly by the 
linear spectral components that make up the energy-containing part of the 
spectrum over frequencies clustered around the spectral peak. Thus, if at
tention is to be focused on the first-order surface structure, it may be nec
essary to modify actual spectra accordingly. In theory, this requires an it
erative solution of certain integral equations, viz, Eqs. 19 and 22 for ty^k), 
assuming initially that the actual spectrum can be substituted for i|>(k). Ob
viously, this approach is neither practical nor often feasible, for the simple 
reason that most actual observations and theoretical forms of spectra are 
restricted to the one-dimensional frequency domain. Thus, one is forced to 
resort to the use of low-pass filters as a practical alternative. 

Filters that attenuate high frequencies and pass low frequencies relatively 
unchanged are commonly referred to as low-pass, or smoothing, filters. The 
so-called ideal low-pass filter truncates all frequencies above a prescribed 
frequency to,, and leaves untouched the frequencies below that. Typically, 
the suppression of high-frequency components yields a surface profile with 
smoother, less erratic appearance. Of course, the sharper crests are smoothed 
out more than the rounded troughs, so that a first consequence of low-pass
ing is to reduce the deviation of surface statistics from the Gaussian norms. 
To the leading first-order of accuracy in the rms surface slope, the key mea
sure of this deviation is the skewness coefficient \ 3 = (t]3)/(f]2)3/2. It is known 
(Longuet-Higgins 1963) that in general 

0.44n(oo) s X3 < 1 .Oin(a>) (63) 

where 

fi(wc) = - (M,r3/2 co2S(io)S(co')rtWa>' (64a) 
9 Jo Jo 

J«(DC 

u>}S(<a)dm (646) 
o 

such that, as coc -» oo, M. —>. M} = jth ordinary moment of S; and, fl(°°) = 
X.3 exactly in the unidirectional case. Further, S = Su correct to 0(a). Thus, 
S and Sx are interchangeable, and that would leave the preceding relations 
unchanged to 0(a). Now, note that 
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a>2jS(o))S(o>')dudm' < - M0M2J (65) 
o Jo 2 

which can be used to verify that for any u>c > 0 

— 0(wc) ^ — 5(coc)M2(M0)-
3/2 > 0 (66) 

du>c 2g 

Thus, ft is a monotonously increasing function of coc, suggesting that the 
skewness can be reduced significantly if coc is chosen sufficiently small, for 
example, as close to to* as possible without affecting the energy-containing 
part 5! of S appreciably. 

The basic premise of low-pass filtering is thus to modify the actual spec
trum and the associated moments so that various statistics of the large-scale 
surface geometry can be interpreted within the Gaussian norms. The prac
tical support and applications of this concept are found in the studies of Nolte 
and Hsu (1979), Longuet-Higgins (1984), and Glazman (1986). Evidently, 
low-passing can be done either directly in the frequency domain or, some
what indirectly, in the time domain by partial averaging, depending to a 
certain extent on the nature of the eventual objective. In either case, the 
concept has immediate physical appeal and seems to work well. However, 
its major premise remains largely intuitive. Various decisions as to the ex
plicit functional forms of frequency, or time-domain, filters, their effective 
widths, upper cutoff frequencies, and so on are mainly based on heuristic 
formalism rather than guided by the physics of nonlinear random waves. 
Thus, it may be worthwhile to explore if the perturbational results can be 
used to guide some of these decisions. 

So far, the nature of third-order moments did imply that the more S is 
low-passed, the better it would be in terms of reducing (in3) and so the skew
ness coefficient. Evidently, the present results provide two more specific 
criteria that should be satisfied. One of these implies that if the actual spec
trum falls off as <o~4(aT5), then the spectrum representative of the large-scale 
Gaussian structure must fall off at least as fast as a)~8(w~9). The second 
criterion is embedded in Eq. 34, which can be rewritten in the equivalent 
form 

o < ^ ^ « 2 > «"> 
vni) 

where (|VTH|2) = m4/g
2, as was noted previously. In the most general case 

(|VT||2) S: (|Vifii|2), and since (r\2) s (-n2), the preceding criterion becomes 

0 < WtJrt s a> (68) 
vn > 

which requires that the fractional reduction in the total spectral area due to 
filtering lie within the indicated bounds. Unless low-pass filtering is per
formed improperly, the lower bound is a foregone conclusion. Thus, the 
upper bound is of relevance here, but it requires knowledge of max (|Vr||2) 
in a developed wind-wave field. Theoretical considerations and the trend of 
field observations at wind speeds greater than 10 m/s enable Phillips (1985) 
to suggest 0.06 as a possible upper-limit asymptote to (|VT||2). If this is in-
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deed so, then the second criterion will simplify to 

(tl2> - <!)?> 

<-n2> 
< 0.06 (69) 

Suppose now that the actual spectrum S is approximated by the same di-
mensionless form, say S, as that given by the right-hand side of Eq. 58 with 
p = 4 or p = 5. Further, let h(t) = a low-pass filter, and H(w) = frequency 
response of h. Thus, the filtered T), its spectrum, and mean-square value will 
be given respectively by 

r\(t) = h(t - t')f\(t')dt' (70a) 

S(o>) = \H\2S(u) . (70b) 

(r\2) = S(w)dw . (70c) 

If low-passing is to be performed directly on S, the simplest filter forms 
that will lead to a modified S consistent with the nature of nonlinear cor
rections and the first criterion are given by 

\H\2 = 1, (0 < u < Uc) (71a) 

\H\2 = P j , (K > ue) (71b) 

where u = co/to* as before; q > 4; and the transitional value uc = o)/wc is 
chosen so as to satisfy the second criterion and, perhaps, the condition uc 
5: 2. Thus, with (f\2) replacing (rfi) in Eq. 69, the second criterion reduces 
to 

1 - I - J S(u)du < 0.06 (72) 

Because S < Cpu~p in the present case, Eq. 72 yields 

UP-1 > ^ ( 7 3 ) 

0.06(p - 1)(« + p - 1) 

For q = 4, Eq. 73 requires that MC > 2.18 for p = 4, and that uc > 1.80 
for p = 5. If the additional condition uc 2 2 is to be satisfied, then it would 
be necessary to set uc > 2 in the latter case. For the limit q —> °° representing 
an ideal low-pass filter, it is required that uc > 2.62 for/? = 4, and that uc 
S: 2.14 for p = 5. Thus, the lower bound in each case is in fact the optimal 
value of uc for that particular case. 

The same criteria may also be of relevance in the real-time smoothing of 
wave records, for which the functional form and the effective width of h 
need be specified. For example, the partial-averaging filter used by Glazman 
(1986) 

h(t) = ? (kl < D (74) 
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with the frequency response H = sin (wT/2)/(a>T/2) clearly violates the first 
criterion, since H2 does not attenuate sufficiently fast. In contrast, the tri
angular form 

Kt) = 2-(l-2lf), (k|<l) (75) 

with H = [sin (wr/4)/(cor/4)]2 is consistent with the first criterion, because 
H2 falls off as aT4. It will conform to the second criterion also, if the filter 
width T is chosen so that 

S{u)du > 0.94 (76) 
Jo 

The optimal T is that for which the equality holds. That solution may in 
general require a trial-and-error type numerical evaluation, which will not 
be pursued here. 

SUMMARY AND CONCLUSIONS 

The high-wave-number/frequency properties of wind-wave spectra were 
theoretically examined within the context of second-order perturbational so
lutions. The results suggests that if observed spectra follow certain saturation 
(equilibrium) type of upper-limit asymptotes that attenuate as a)~5(aT4), then 
the first-order Gaussian structure of the sea surface must be characterized 
by spectra that fall off at least as fast as ar9(&r8). 

Physically, nonlinearities manifest themselves in the form of sharp crests 
on the sea surface. Such features are an inherent property of developed wind-
wave fields whose spectra tend to display the saturation-equilibrium-type up
per-limit asymptotes in the gravity-wave range. It can thus be concluded 
further that empirical and/or theoretical spectral forms that fall off as a)~(4~5> 

at large to are in essence representative of nonlinear wind waves, and so 
cannot directly be used to describe Gaussian wave fields. 

An accurate interpretation of predominant or large-scale surface-wave 
properties and associated statistics within the Gaussian norms may require 
the actual spectra to be modified in the high-frequency range. In practice, 
this often involves low-passing of observed spectra, but it also raises awk
ward questions as to the nature of filters that can be employed in such a 
process. In this respect, the present results provide two fairly specific cri
teria. One of these requires the low-pass frequency response to fall off as 
o)~2 or faster, and the other restricts the filtered spectral area to remain within 
certain bounds. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

an = amplitude of nth spectral component; 
B„,n = coefficient in second-order solutions, defined by Eq. 11; 

Cp = proportionality constant in frequency spectra; 
c,^ = cosines of angles between km and k„, and k ± k' and k', 

respectively; 
f± = function defined by Eq. 24; 
g = gravitational acceleration; 
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H,h = low-pass filters in frequency and time domain; 
I, J, J = regions of integration in Eqs. 19 and 47; 

i,j = summation indices or subscripts; 
K%„ = ^ '±(k,„,k„), coefficient in second-order solutions, given by 

Eq. 10; 
k = modulus of k; 

k* = spectral-peak wave number; 
Iq, = wave number defined by Eq. 49; 
k = (fci.fcO, horizontal wave-number vector; 

km ,k„ = wave number of mth and nth spectral components; 
Mj,Mj = jth ordinary moments of S and S; 

m = summation index or subscript; 
ttij = j th ordinary moment of S^, 
N = total number of frequency components in T^; 

0{) = of order of ( ); 
p,q = decay exponents for spectra and filters, respectively; 

R,Ri,R2 = temporal covariance functions of t], r\lt and i\2; 
Rt,R^ — components of R2; 

Ri = Hilbert transform of R^, 
r,r = horizontal displacement vector and its modulus, respectively; 
S,S = frequency spectrum of j], and its dimensionless form, re

spectively; 
Sj,S_2 = frequency spectra of ^ and %; 
Si,S2 = dimensionless forms of 5 t and S2; 

S_2,S2 = components of Sz; 
S2, S2 = dimensionless forms of S2; 

S = low-passed spectrum S; 
s (cos 8) = directional spreading function; 

T = time-domain width of low-pass filter; 
t = time; 

u = frequency scaled with respect to spectral-peak frequency; 
uc = scaled transitional or upper-cutoff frequency; 

M# = scaled spectral-peak frequency ( = 1); 
x = (xux2), horizontal position vector; 

Z,Zi,Z2 = spatial covariance functions of -r\, t i i , and i\2> 
Z2,Z2 = components of Z2 ; 

a = steepness parameter; 
(3 = a dimensional constant in frequency spectra; 
r = gamma function; 
7 = -Bm — 8„, a n g l e b e t w e e n k m a n d k„; 
8 = an arbitrary small constant; 

•n,f| = sea surface elevation and its filtered form, respectively; 
t^i, TJ2 = first- and second-order solutions for % 

"<]2>t\2 = components of %; 
8,8m,6„ = directions of k , km, k„, respectively; 

u,„ = random phase of nth spectral component in %; 
X3 = skewness coefficient of -n; 
p = ratio defined by Eq. 23a; 
T = time lag; 

(f)* = direction of k ± k ' ; 
Xn = total phase of nth spectral component in T^; 
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(p,^!, *|#2 = wave-number spectra of r\, %, and %; 
M .^2 = wave-number spectra of i\t and T|2 , respectively; 

O = skewness coefficient of unidirectional T\ as a function of toc: 
w = circular frequency in rad/s; 

(oc = upper-cutoff frequency; 
cora,co„ = frequencies of mth and nth spectral components; 

co* = Vgfc*. spectral-peak frequency; and 
E = belongs to or is an element of. 
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