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ABSTRACT

A theoretical expression derived previously for describing the joint distribution of the envelope and phase
of second-order nonlinear waves is verified with wind wave measurements gathered in the North Sea. The
same distribution is explored further to obtain the marginal and conditional distributions of wave envelopes
and phases. The nature and implications of these are examined, with emphasis on the occurrence of large
waves and associated phases. It is shown that the wave phase distribution assumes two distinct forms
depending on whether envelope heights exceed the significant envelope height. For envelope heights
sufficiently larger than this threshold, the wave phase distribution approaches a simple limit form, indicating
that large surface displacements can occur only above the mean sea level. Comparisons with the North Sea
data confirm these theoretical results and indicate that large surface displacements and thus large waves
result from the random superposition of elementary spectral components enhanced by second-order non-
linear interactions. Further, large waves with higher and sharper crests do not display any secondary
maxima or minima. They appear more regular or “narrow banded” than relatively low waves, and their
heights and crests do not violate the Miche–Stokes-type upper limits. The results also suggest that third-
order nonlinearities do not affect the surface statistics in any discernable way.

1. Introduction

The surface displacement from the mean sea level
observed at a fixed point in time t admits a general
representation of the form �(t) � � cos�, where �(t) and
�(t) represent the wave envelope and wave phase, re-
spectively. These definitions are valid for linear and
nonlinear waves in general. In linear waves, � is Gauss-
ian and the probability density (PD) describing � and �
jointly assumes the well-known form (Longuet-Higgins
1957)

p�� � p�p� � �1�2��� exp���2�2�, �1�

where it is assumed that all elevations are scaled with
the root-mean-square � of �. Thus, � and � are statis-
tically independent, � by itself is uniformly random, say
in (�	, 	), and � is Rayleigh distributed. Several the-
oretical results of practical value including, most nota-
bly, the approximate form of the joint distribution of
zero-crossing amplitudes and periods in narrowband

seas follows from a more generalized form of Eq. (1)
describing the joint distribution of �, �, and first-order
derivatives (Longuet-Higgins 1957, 1975; Goda 1978).

In second-order nonlinear waves, � is non-Gaussian,
and the joint PD of � and � is modified as (Tayfun
1994)

p�� � p�|�p�,

�
1

2� �1 

�3

6
���2 � 4� cos��� exp���2�2�, �2�

where �3 � ��3
 and the angle brackets denote a sta-
tistical average. This result, valid for directional waves
in deep and shallower water depths, agrees with earlier
approximations derived under less general conditions
(Tayfun and Lo 1989, 1990; Tayfun 1990). It also
suggests a somewhat more complex structure in which
� and � are no longer statistically independent since
p�� � p�p�.

The derivation of Eq. (2), which requires a bivariate
Gram–Charlier series expansion of the joint statistics of
� and its Hilbert transform �̂ � � sin�, is elaborated
elsewhere and thus not repeated here (Tayfun 1994;
see also Tayfun and Lo 1990). A generalization to in-
clude the first-order derivatives of � and � in the joint
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statistics has not thus far been considered, nor is it con-
templated in this paper as it requires a cumbersome
four-variate Gram–Charlier series expansion of the
joint statistics of �, �̂, and associated first-order deriva-
tives.

Tayfun and Lo (1989, 1990) and Tayfun (1994) ex-
plored the marginal distributions describing � and � by
themselves and compared these to oceanic data and
simulations representative of deep water waves. The
oceanic data comprised a series of one-hourly measure-
ments gathered at a relatively poor sampling rate of 1
Hz in the Gulf of Mexico during the passage of Hurri-
cane Camille in 1969. The results indicated that the
second-order theoretical expressions describe the ob-
served distributions reasonably well, especially when
nonlinear effects are sufficiently pronounced and the
duration of measurements is of the order of several
hours. More recently, Rodriguez et al. (1998) and
Cherneva and Guedes Soares (2006) carried out further
comparisons, albeit only with wave phases. In particu-
lar, Rodriguez et al. (1998) examined several wave
phase histograms, each extracted from a single 20-min
time series gathered by a wave buoy. The nature of
these histograms appears contradictory to the theoret-
ical expectations in all cases, irrespective of whether the
observations represented nearly linear or nonlinear
waves. In contrast, the results of Cherneva and Guedes
Soares (2006) derived from somewhat longer series sug-
gest that the theoretical wave phase distribution de-
scribes the observed data well except in shallower water
depths where waves exhibit rather pronounced nonlin-
ear characteristics, plausibly due to shoaling and
higher-order nonlinear effects.

This study elaborates Eq. (2) further and compares it
with more recent measurements gathered at a relatively
shallow water depth in the North Sea. The same ex-
pression is then used to obtain a variety of theoretical
expressions describing the conditional distributions of �
and �, with emphasis on large surface displacements,
large waves, and the nature of associated phases. Some
limited comparisons similar to those in the aforemen-
tioned studies are also given as further verification of
theoretical results. Subsequently, and mostly because of
the current interest in exceptionally large waves, the
validity of Miche–Stokes-type upper bounds to large
wave heights and crests, and the possible effects of
third-order nonlinear corrections on the associated sta-
tistics are also examined to some extent.

2. North Sea data

The wind wave data that will be used for verifying
theoretical results comprise 9-h measurements gath-
ered at 4 Hz with a Baylor wave staff from the Meet-
post Noordwijk platform in 18-m average water depth
in the southern North Sea in January 1998 as part of the
Wave Crest Sensor Intercomparison Study (Forristall
et al. 2002). This data, hereafter referred to as WACSIS,
represents fairly energetic waves. Figure 1 suggests that
the spectral density of surface displacements tends to a
��4 power law over frequencies slightly larger than the
spectral peak frequency �p ≅ 0.665 rad s�1. Figure 2

FIG. 1. WACSIS: spectral density of surface displacements.

FIG. 2. WACSIS: half-hourly variations of � and �3 (�avg �
0.981, �3avg � 0.231).
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shows the variations of � and �3 estimated from half-
hourly segments. The segmental � estimates differ from
the overall average �avg � 0.981 m by as much as
�17%; �3avg � 0.231 as an overall average, but the
half-hourly samples vary from 0.172 to 0.278. These
represent fairly significant nonstationary and nonlinear
characteristics. To compensate for nonstationarity at
least partially, all analyses will be based on half-hourly
segments, scaling the surface displacements in each seg-
ment with the corresponding � estimate.

3. Joint distribution of wave envelope and phase

For �3 � 0.3 as a hypothetical case, Fig. 3 shows
various contours of 2	p�� derived from Eq. (2). These
noticeably differ from similar contours of 2	p�� in lin-
ear waves since the latter would appear as straight par-
allel lines if plotted in the same figure. Also note that
p�� � 0 in � � {�c � |� | � 	, � � �m}, where

�c � cos�1��6��3���2 � 4��; � � �m, �3�

and �m is such that

1 �
�3

6
�m��m

2 � 4� � 0. �4�

In general, �m � 2 and readily follows by iteration from
�m, j
1 � [(6/�3) 
 4�m,j]

1/3, with j � 0, 1, 2, . . . and
�m,0 � 2. Clearly, the values of � and � in � lie above
the curves ��c. Oceanic values of �3 are typically less
than 0.3. Nonetheless, numerical computations for

0.05 � �3 � 0.5 indicate that the probability mass over
� is less than 10�3 in absolute value. So, no adjustment
is really necessary in Eq. (2) for practical applications.
The nonnegativity requirement will have more rel-
evance later in considering the conditional PD of �,
given �, whenever � � �m.

Figure 4 compares WACSIS with the theoretical con-
tours 2	p�� � 0.1, 0.2, . . . from Eq. (2). It appears that
the theoretical expression represents the observed data
reasonably well. The boundary curves ��c, the scatter
of wave phases and associated envelopes derived from
half-hourly segments of WACSIS are shown in Fig. 5
for � � 2. The theoretical curves ��c are for �3avg �
0.231, the overall average of 18 half-hourly segments. It
is observed that if � � �m, the physically realizable val-
ues of � tend to lie in (��c, �c). Further, �c → 	/2 for
� k 1, in which case � � 0 necessarily. So, relatively
large surface displacements are likely only above the
mean sea level. In linear waves, surface displacements
no matter how large are equally likely both above and
below the mean level.

Figure 5 also indicates the envelopes and phases as-
sociated with the two largest surface displacements, �1

and �2. The corresponding wave heights, envelopes,
phases, and conjugates are h1 � 9.270, �1 � 6.042, �1 �
�0.028, and �̂1 � �0.171 for �1 � 6.039; and h2 � 7.955,
�2 � 5.050, �2 � 0.347, and �̂2 � 1.715 for �2 � 4.749.
The largest four envelope heights in the figure congre-
gate around �1, the crest of the largest wave. In general,
large surface displacements do not occur simulta-

FIG. 3. Contours of 2	p�� � const from Eq. (2) and boundary
curves ��c of Eq. (3) for �3 � 0.3. FIG. 4. Contours of 2	p�� � const: WACSIS data compared to

predictions from Eq. (2).
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neously with largest envelope heights, but they would
do so if the associated phases also approach zero simul-
taneously, as for �1 and �1. The latter condition implies
the random superposition of a sufficiently large number
of wave components as their phases tend to zero simul-
taneously. In wind waves, linear or otherwise, this is the
most likely process that generates large surface dis-
placements and unusually large waves with scaled fea-
tures and proportions quite similar to the largest wave
in WACSIS, often referred to as freak or rogue waves.
The presence of second-order bound waves phase
locked to the freely propagating linear waves enhances
this process.

4. Marginal distributions

The marginal PDs describing � and � are given by

p� � �
��

�

p�� d� � � exp���2�2�, �5�

p� � �
0

�

p�� d� �
1

2�
�1 �

�3

6��

2
cos��. �6�

Evidently, p� is of the Rayleigh form, as in linear waves.
However, the nonlinear surface is vertically skewed
with higher sharper crests and shallower more rounded
troughs. Accordingly, envelope heights are higher over
wave crests and shallower over the troughs. Such sec-
ond-order distortions do not affect the marginal distri-

bution of wave envelopes. But, higher-order effects, in
particular third-order modulational instabilities in-
duced by four-wave quasi-resonant interactions among
free waves, can because they tend to amplify the wave
envelope over both wave crests and troughs symmetri-
cally. This tendency is predicted by the nonlinear
Schrödinger (NLS) equation or its modified form, the
Dysthe equation (Dysthe et al. 2003). As a result, p� can
deviate noticeably from the Rayleigh form in a system-
atic pattern when � � 2 (Socquet-Juglard et al. 2005;
Mori et al. 2007; Fedele 2008). However, Fig. 6 does not
suggest such a pattern, and the WACSIS data compares
favorably with Eqs. (5) and (6) for the most part. Dis-
crepancies between the envelopes observed and p� do
appear for � � 4 as the data become sparse.

Clearly, � � 0 for |� | � 	/2, and � � 0 otherwise.
Thus, from Eq. (6),

P
 � Pr�	 � 0� � �
|�|���2

p� d� �
1
2 �1 �

�3

3�2�
�,

�7�

P� � Pr�	 � 0� � 1 � P
 �
1
2 �1 


�3

3�2�
�. �8�

FIG. 6. The marginal densities of (a) wave envelopes and (b)
wave phases: WACSIS data compared to Eqs. (5) and (6) (solid
lines).

FIG. 5. WACSIS: the scatter diagram of � and � � 2, boundary
curves ��c of Eq. (3), envelopes (�1 and �2), and phases associ-
ated with two largest waves and their crests (�1 and �2).
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The same results also follow from the distribution of �
expressed in a Gram–Charlier series to O(�3)
(Longuet-Higgins 1963). Evidently, P� � 1/2 and P
 �
1/2 for �3 � 0, implying that the sea surface stays
slightly longer below the mean sea level. In a zero-
mean time series of surface displacements sampled at a
uniform rate, P
 is simply the ratio of the number of
positive samples to the total number. Thus, given P
,
an estimate of �3 easily follows from Eq. (7) rewritten
as �3 ≅ 3�2	(1 � 2P
). For P
 ≅ 0.485 in WACSIS,
this expression gives �3 ≅ 0.226, which compares in this
case quite favorably with �3avg � 0.231 representing the
overall average of 18 half-hourly cubic moments of �.

5. Conditional distributions of envelope

To describe how the wave envelope is modified by
the surface skewness, it is necessary to consider the
conditional distributions of � coincident with the crest
(� � 0) and trough (� � 0) segments of the surface
profile, depicted in Fig. 7 as �
 and ��, respectively.
The PDs, say, p


� for �
 and p�
� for ��, are of the form

(see appendix A for derivations)

p�
��z� �

1

2P� �1 �
�3

3�
z�z2 � 4��p��z�. �9�

For z k 1, the corresponding exceedance distribution
(ED) Pr{�� � z} � E� is given by

E�
��z� �

E�

2P� �1 �
�3

3�
�z3 � z � z�1 
 O�z�3���,

�10�

where E� � Pr{� � z} � exp(�z2/2) represents the
Rayleigh ED appropriate to crest and trough ampli-
tudes in linear narrowband waves. In theory then, E


�

and E�
� represent similar approximations to the EDs of,

respectively, crest and trough amplitudes in nonlinear
narrowband waves. Al-Humoud et al. (2002) and
Cherneva et al. (2005) explored this possibility and
compared E�

� to measurements representative of rela-
tively broadband waves at deep and shallow waters.
These (and likewise similar comparisons with WACSIS,
not shown here for economy of space) indicate that
although E�

� represent trough amplitudes reasonably
well, E


� generally tends to underpredict the wave
crests.

In general, �
 
 �max and �� � �min, where �max �
max � � 0 and �min � min � � 0 define the local
positive maxima and negative minima. Thus, E


� (E�
� )

represents an upper (lower) bound to the ED of �max

(�min) over the low-to-medium range and tends to con-
verge to it over relatively large maxima (minima), just
as E� does in linear broadband waves (Cartwright and
Longuet-Higgins 1956). As a case in point, Fig. 8 com-
pares the EDs of 6550 positive maxima and 6156 nega-
tive minima extracted from WACSIS with the theoret-

FIG. 7. Sections �
 and �� of the wave envelope � coincident
with, respectively, the crest (� � 0) and trough (� � 0) segments
of the surface profile �.

FIG. 8. The distributions of positive maxima and negative
minima: WACSIS data (points) compared to the theoretical pre-
dictions E� (Rayleigh) and E�

� of Eq. (10).
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ical predictions E

� and E�

� . Both expressions follow
from Eq. (10) for z � 0, obviously, but E�

� is plotted for
z � 0. It is seen that the WACSIS data follow the
theoretically expected trends reasonably well except for
the largest five to six positive maxima.

6. Nature of exceedance frequency estimates

The PD of an exceedance estimate, say, E for the jth
largest value in a population of n independent identi-
cally distributed samples is of the form (cf. Tayfun and
Fedele 2007b)

pj �
n!

� j � 1�!�n � j�!
Ej�1�1 � E�n�j, �11�

where 0 � E � 1. The mean, standard deviation, and
the skewness coefficient of E are given, respectively, by

�E �
j

n 
 1
, �E ≅

�j

n 
 1
;

��E � �E�
3


�E
3 ≅

2

�j
.

�12�

The expression for �E is exact for j � 1, 2, . . . , n and
used in plotting the ED estimates in Fig. 8 and similar
others to follow later. The standard deviation and
skewness coefficient represent approximations valid for
large n and n k j. Thus, the coefficient of variation
given by � � �E /�E ≅ 1/�j indicates that the variability
of the ED estimates for the largest few samples is rather
large. In particular, for j � 5, � � 44%, and it increases
rapidly to 100% for j � 1 irrespective of how large n is.
Further, pj is positively skewed, and the skewness co-
efficient increases from about 0.82 for j � 5 to 2 for j �
1. So, the exceedance frequency estimates for the larg-
est few observations tend to be highly variable and
skewed toward values greater than �E. The latter ten-
dency is of particular relevance for large positive
maxima and wave crests since exceptionally large sur-
face displacements in nonlinear seas also tend to occur
only above the mean sea level. Consequently, discrep-
ancies often observed between the ED estimates for the
largest few surface displacements and theoretical pre-
dictions can be explained at least partially in terms of
their unstable nature and apparent tendency to occur at
relatively higher frequencies than we intuitively expect.

7. Conditional distributions of wave phase

The conditional PD of �, given �, follows from Eq.
(2) as

p�|� �
C1

2	 �1 

�3

6
���2 � 4� cos��, |� | � �c ,

�13�

where

C1 � �1, � � �m,

����c � tan�c�, � � �m,
�14�

with �m � 2 as in Eq. (4), and

�c � ��, 0 
 � � �m,

cos�1��6��3���2 � 4��, � � �m.

�15�

Now, using tan�c � sin�c /cos�c in Eq. (14) and ex-
pressing sin�c in terms of � from Eq. (15), it is easily
verified that as � → �, �c → 	/2, and Eq. (13) converges
to the limit form

p�|� � �1�2� cos�, |� | � ��2. �16�

The variation of p�|� with � is shown in Fig. 9 for �3 �
0.3. It is noticed that �s � 2 corresponds to the mean of
the 1/3 largest � values, traditionally referred to as the
significant value. Clearly, p�|� appears strikingly differ-

FIG. 9. The variation of conditional density of �, given �, with �
from Eq. (13) for �3 � 0.3: (a) � 
 �s � 2 and (b) � � �s.
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ent depending on if � � �s. For � � 0 and �s, p�|� � 1/2	
as in linear waves. For 0 � � � 2/�3 ≅ 1.15, p�|� devi-
ates from 1/2	 progressively up to 1.15. As � increases
further from 1.15 to �s, it converges back to 1/2	. So, for
� � �s, p�|� has a slight excess of phases over wave
troughs, where � � 0 and a corresponding deficiency
elsewhere. However, when � � �s, the opposite occurs
and p�|� shows an excess of phases over wave crests. In
particular, as � becomes larger, this excess increases
progressively, and p�|� converges to the limit form in
Eq. (16). Physically, the surface stays slightly longer
below the mean sea level if � � �s, whereas if � � �s, the
opposite occurs in an increasingly pronounced manner
as � becomes larger. The limit form suggests that ex-
ceptionally large surface displacements can occur only
above the mean sea level. This result is consistent with
the WACSIS data of Fig. 5.

In practice, p�|� can be estimated from a surface time
series only if the condition “given �” is approximated as
“given � � �� � � � � 
 ��,” where �� represents a
small increment. The favorable comparisons of Eq. (13)
with WACSIS, shown in Fig. 10, are based on this ap-
proximation, using �� � 0.2 for � � 2, 3 and 3.5.

The PD of �, conditional on A � {� � �0}, is given by

p� |A � �
�0

�

p�� d�	�
�0

�

p� d� �
C2

2� �1 

�3

6
f��0� cos��,

�17�

where |� | � �* and

f��0� � �0
3 � �0 ���

2
exp��0

2

2 � erfc� �0

�2�,

�18�

C2 � �1, �0 � �*0,

����* � tan�*�, �0 � �*0,
�19�

with �*0 � 1.218 in general such that f (�*0 ) � 6/�3, and

�* � ��, 0 
 �0 � �*,

cos�1��6��3 f��0��, �0 � �*0.
�20�

In this case, �*0 follows as an iterative solution from

xj
1 �� 6
�3


 xj 
��

2
exp�xj

2

2 �erfc� xj

�2
��1�3

�21�

for j � 0, 1, 2, . . . , and x0 
 0.
Finally, the PD of �, conditional on B � {� � �0}, is

given by

p�|B � �
0

�0

p�� d�	�
0

�0

p� d� �
1

2� �1 �
�3

6
w��0� cos��,

�22�

where �0 � 0, |� | � 	, and

w��0� �
�0

3 � �0 
���2 exp��0
2 �2� erf��0 ��2 �

exp��0
2 �2� � 1

.

�23�

The variations of f and w with �0 are shown in Fig. 11.
It is seen that w 
 0 with a maximum 2.511 at �0 ≅ 1.539,
whereas f � 0 for 0 � �0 � 1.218 and f � 0, otherwise.
As �0 → 0, f → � �	/2, and p�|A → p� of Eq. (6). As
�0 → �, p�|A → (1/2) cos� of Eq. (16); and, if �0 ≅ 1.218,
then p�|A → 1/2	 for any �3. For �0 K 1, w � 0, and
p�|B � 1/2	. If, however, �0 � 4 approximately, then
w → �	/2 and so p�|B → p� of Eq. (6) also.

Figure 12 illustrates the variation of p�|A with �0 for
�3 � 0.3, and in Fig. 13 its comparisons with WACSIS.
Similarly, Figs. 14 and 15 show the variation of p�|B and

FIG. 10. The conditional density of �, given �: WACSIS data
compared to predictions (solid lines) from Eq. (13) for (a) � �
�s � 2, (b) � � 3, and (c) � � 3.5.
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its comparisons with WACSIS, respectively. Both sets
of comparisons confirm the relative validity of the the-
oretical expressions.

8. Large surface displacements

To elaborate the expectation that very large displace-
ments occur only above the mean sea level by way of
probabilistic formalism, let P


A � Pr{� � 0|A} with A �
{� � �0} as before. Since � � 0 occurs for |� | � 	/2, the
preceding conditional probability follows easily from
Eq. (17) by integrating it with respect to � over (�	/2,
	/2) as

PA

 �

C2

2 �1 

�3

3���0
3 � �0

���

2
exp��0

2

2 � erfc� �0

�2
���

�
C2

2 �1 

�3

3�
��0

3 � �0 � �0
� 1 
 O��0

� 3���;

�0 k 1. �24�

FIG. 11. The variations of functions f and w with �0 from Eqs.
(18) and (23), respectively.

FIG. 12. The variation of conditional density of �, given A �
{� � �0}, with �0 from Eq. (17) (solid lines) for �3 � 0.3: (a) �0 


1.218 and (b) �0 � 1.218.

FIG. 13. The conditional density of �, given A � {� � �0}:
WACSIS data compared to Eq. (17) (solid lines) for (a) �0 � �s �
2, (b) �0 � 3, and (c) �0 � 3.5.
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This expression compares with WACSIS quite favor-
ably, as shown in Fig. 16. Obviously, P�

A � Pr{� � 0|A}
is the complement of P


A, not shown in this figure. It is
also noticed that for �0 � 4, approximately, P


A ≅ 1, and
thus P�

A ≅ 0 in WACSIS. This is likewise predicted
reasonably well by the limit behavior of Eq. (24) for
large �0.

9. Large waves

a. Nature of large waves and associated phases

Let mj ( j � 0, 1, 2, . . .) denote the ordinary spectral
moments. Thus, m0 � �2, �m � m1 /m0 � spectral mean
frequency, and � � [(m0 /m2 /m2

1) � 1]1/2 � spectral
bandwidth. To the leading order of approximation, the
conditional distribution of �̇ �  �/ t, given �, is Gauss-
ian with mean �m and standard deviation ��m /�
(Longuet-Higgins 1957). Second-order nonlinearities
introduce corrections of O(�3) in these statistics, but
the actual comparisons with WACSIS indicate that
these are relatively insignificant and therefore ignored
in the present discussion. It follows, then, that for � k �,

Pr��̇ � 0� � �1�2�erfc�����2�,

≅ �����2	� exp���2�2�2� � 0.

Thus, if � is sufficiently large, it is nearly certain that
�̇ � 0 and � increase monotonously. This tends to occur
in WACSIS in time intervals during which � � �s � 4�
approximately. Physically, the corresponding surface
displacements and thus relatively large waves appear
more regular or narrow band in the sense that they do

FIG. 15. The conditional density of �, given B � {� � �0}:
WACSIS data compared to Eq. (22) (solid lines) for (a) �0 � 5 and
(b) �0 � 2.

FIG. 14. The variation of conditional density of �, given B �
{� � �0}, with �0 from Eq. (22) (solid lines) for �3 � 0.3.

FIG. 16. Conditional probability P

A � Pr{� � 0 |� � �0}:

WACSIS data compared to Eq. (22) (solid line).

2792 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38



not display any secondary maxima or minima but a
single crest proceeded by a relatively deep trough, as
in Fig. 17, where � � �s around the largest wave of
WACSIS. Secondary extremes can occur only in time
intervals during which �̇ � 0 and phase reversals occur,
as shown in Fig. 18, for a short segment of the surface
time series near the beginning of WACSIS, where � �
�s, approximately.

b. Statistics of wave heights, crests, and troughs

In linear waves, the expected surface profile around
a large wave crest is described by the conditional mean
(cf. Lindgren 1972; Phillips et al. 1993; Boccotti 2000)

�	�t� |	0 k 1
 � ���t�, �25�

where ! is the normalized covariance kernel of �. As
t → 0, ! → 1, and �0 � �(0) → �, which is the large wave
crest. Further, if t* denotes the time at which the first
minimum !(t*) � a � 0 of ! occurs, then (Boccotti
2000)

	0 � � ≅ h��1 � a�, �26�

with h defined as the zero up or down crossing wave
height scaled with �. Second-order corrections modify
Eq. (25) as (Tayfun and Fedele 2007a; see also appen-
dix B)

�	�t� |	0 k 1
 � ���t� 

��t�

6
�2, �27�

where

	0 � �c � � 

�3

6
�2, �28�

represents the second-order wave crest, and �(t) is a
dimensionless kernel described in appendix B. In gen-
eral though, �(0) � �3 and !(0) � 1. As a result, Eq.
(27) converges to Eq. (28) as t → 0.

The theoretical expressions describing the EDs of h,
�c, and the corresponding second-order trough ampli-
tude, say, �t, are critically reviewed in Tayfun and

FIG. 17. (a) The surface profile � and (b) the variation of wave
phase � around the largest wave (abc) of WACSIS, where � �
�s � 2, approximately.

FIG. 18. A short segment of the WACSIS surface profile series
where � � �s � 2, approximately: (a) occurrences of secondary
maxima and minima and (b) associated wave-phase reversals
(shown as 1, 2, 3, and 4, where �̇ � 0 locally).
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Fedele (2007b).These include the following expres-
sions, valid for large waves:

Eh ��1 
 rm

2rm
exp�� h2

4�1 
 rm�
�, �29�

E�c
� exp�� 1

2 ��1 
 2��c � 1
�

�2�, �30�

E�t
� exp�� 1

2 ��t 

1
2

�� t
2�2�, �31�

where rm and � represent dimensionless wave height
and steepness parameters, respectively (cf. Tayfun
2006; Tayfun and Fedele 2007b). For WACSIS, rm �
0.699 and � � 0.099 (� � �F2 in Tayfun 2006). Figure
19 compares the WACSIS data with Eh, E�c

, E�t
, and

also with the narrowband Rayleigh limits, namely E� �
exp(��2/2) for linear crest and trough amplitudes and
E2� � exp(�h2/8) for wave heights, on the assumption
h ≅ 2�. The variability of the ED estimates for the larg-
est few values are indicated by ��E bands in the same
figure. Evidently, neither E� nor E2� represents the ob-
served trends quite satisfactorily. Nevertheless, it ap-
pears that the heights of larger waves tend to E2�, plau-
sibly because large waves are more like narrowband
waves and, to some extent, due to second-order correc-

tions (Tayfun and Fedele 2007b). In contrast, E�t
de-

scribes the trough amplitudes of all waves fairly accu-
rately. The comparisons between Eh and the observed
wave heights and, similarly, between E�c

and the wave
crests are also favorable for the most part, but some
discrepancies appear over large waves. This is particu-
larly so for the largest wave whose height and crest
exceed all the theoretical distributions noticeably. As
elaborated previously, such discrepancies do appear ev-
ery so often at least partially because of the relatively
unstable and positively skewed nature of the exceed-
ance frequency estimates associated with large surface
displacements.

In nonlinear waves, wave heights derived from zero
downcrossings can differ noticeably from the zero up-
crossing wave heights over large waves. Wave crests
remain the same in either definition, but the zero down-
crossing wave height is the sum of a crest and the pre-
ceding trough amplitude, which tends to be typically
shallower than the trough amplitude following the same
crest. Thus, zero downcrossing wave heights are often
smaller than the corresponding zero upcrossing heights
over large waves. This trend is seen clearly in the
WACSIS comparisons of Fig. 20, where the largest zero
downcrossing wave height observed is 8.10 as compared
to 9.27 for the largest zero upcrossing wave height. The
same figure also shows the crest heights derived from
the zero upcrossing wave heights via Eq. (26). Appar-

FIG. 19. Excedance distributions of zero up-crossing wave
heights (h), crest (�c) and trough (�t) amplitudes: WACSIS data
compared to Eh, E�c

, and E�t
[Eqs. (29), (30), and (31)], E� (Ray-

leigh ED) for linear crest and trough amplitudes, and E2� (Ray-
leigh ED) for narrowband wave heights (h � 2�). Vertical lines
indicate the theoretical ��E bands [Eq. (12)].

FIG. 20. Exceedance distributions of zero up- and down-
crossing wave heights (hu and hd), crests (�c), and crests estimated
from hu /(1 � a) [Eq. (26)] compared to Eh and E�c

[Eqs. (29) and
(30)].
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ently, these compare reasonably well with the nonlinear
crest heights actually observed in WACSIS. In theory,
Eq. (26) is valid for linear waves, but using the second-
order equation (28) instead yields in this case somewhat
larger crest heights than the actual (not shown in the
figure). Nonetheless, both expressions have some rel-
evance in exploring possible upper limits to wave crests.

c. Miche–Stokes limits

How large surface displacements and thus wave
heights and crests can really become is a difficult ques-
tion to answer, particularly based on the present sec-
ond-order model and higher-order approximations be-
cause they ignore surface stresses, wave breaking, and
turbulent dissipation. Yet, wind wave spectra tend to a
��4 power law over high frequencies, implying that the
surface gradients are discontinuous in the mean-square
sense. Physically, this means that some waves reach a
limiting steepness, display sharply cornered crests, and
some break, forming whitecaps. An approximate upper
limit to wave steepness and thus to wave heights is
defined by the Miche limit (Miche 1944), expressed in
the present notation by

hmax �
2�

7
tanhkd

�k
, �32�

where k � wavenumber and d � mean water depth. As
d → �, hmax converges to the well-known Stokes limit.

The applicability of the Miche–Stokes-type limits to
irregular waves has been the subject of numerous stud-
ies, reviewed in Tulin and Li (1992, and references
therein). The Miche–Stokes limits or their various re-
finements do not appear as consistent indicators of
wave breaking or its inception for irregular waves.
However, they do indicate an upper bound to the
heights of large waves, breaking or otherwise. Again,
this may be so at least partially because large waves
behave more like regular waves. Larger wave heights in
WACSIS, shown at the top of Fig. 21, versus the cor-
responding scaled zero upcrossing periods " � T/Tm,
where Tm � 2	/�m, do not violate Eq. (32). Similarly,
the bottom of the same figure shows the scatter of wave
crests and periods in comparison with the approximate
limits, �c,max1 and �c,max2, which follow from Eqs. (26)
and (28), respectively, by replacing h with hmax of Eq.
(32) as

�c,max1 ≅ hmax ��1 � a� �33�

and

�c,max2 ≅
hmax

1 � a �1 

�3

6
hmax

1 � a�. �34�

With a � �0.661 as an overall average in WACSIS,
neither one of these, not even the less conservative
approximation in Eq. (33), is violated by any large wave
crest. If � � �s approximately, some waves do exceed all
the upper limits somewhat. So, the Miche–Stokes limits
appear to be valid for relatively large waves as they
behave more like regular waves.

10. Third-order nonlinear corrections

a. Modulational instabilities

In weakly nonlinear waves, third-order corrections to
surface displacements, wave envelopes, and phases are
all O(�2

3) typically and, thus, negligible relative to sec-
ond-order corrections (Longuet-Higgins 1963; Tayfun
1990, 1994). This has been assumed so in developing the
present theoretical approximations. The favorable na-
ture of the WACSIS comparisons validates this as-
sumption to a great extent. However, third-order
modulational instabilities can under certain conditions
become at least as significant as second-order effects,
causing surface features and associated statistics to de-
viate from the second-order predictions. Such instabili-

FIG. 21. WACSIS: Scatter diagrams of (a) zero up-crossing
wave heights h and (b) wave crests �c vs zero up-crossing wave
periods " � T/Tm (Tm � 6.965 s) compared to the upper limits in
Eqs. (32), (33), and (34) (solid lines).
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ties are generated in wave tanks or numerically simu-
lated via NLS under somewhat contrived conditions
generally requiring that waves be long crested and
rather narrowband (Socquet-Juglard et al. 2005; On-
orato et al. 2006; Mori and Janssen 2006; Gramstad and
Trulsen 2007; Mori et al. 2007). It is questionable if
these conditions represent directionally spread broad-
band oceanic wind waves. What appears certain, how-
ever, is that NLS-type instabilities are not expected to
occur if the relative water depth kpd, where kp � wave-
number at the spectrum peak, is less than 1.363 (cf.
Onorato et al. 2006). This has particular relevance for
WACSIS as it represents waves in relatively shallow
water. Indeed, an analysis of kp values derived from the
spectra of half-hourly running series in WACSIS leads
to kpd values, all of which lie below the threshold
1.363, as shown in Fig. 22. Thus, it is unlikely if NLS-
type modulational instabilities have any relevance in
WACSIS.

b. Third-order effects on the statistics of wave
heights, envelopes, and phases

As briefly mentioned in section 4, third-order distor-
tions observed in the statistics of nonlinear waves, nu-
merically simulated or mechanically generated in wave
tanks, follow a fairly predictable and systematic pattern
that displays a progressive excess of large waves, start-
ing at wave height, envelope, and crest levels near their
significant values. This is predicted reasonably well by
third-order Gram–Charlier series describing the statis-
tics of long-crested narrowband waves (Tayfun 1990;
Mori et al. 2007; Tayfun and Fedele 2007b). In particu-
lar, the marginal ED of the wave envelope � is given by

E� � exp���2�2��1 

�

64
�2��2 � 4��, �35�

where # � �40 
 2�22 
 �04 and, for n � 0, 1, . . . , 4,

��4�n�n � �	4�n	̂n
 
 ��1�n�2�3 � n��n � 1�,

n � 0, 1, . . . , 4 �36�

represent the fourth-order normalized joint cumulants.
As � → 0, the marginal ED of the wave heights defined
as h ≅ 2� easily follows by a change of variables from
(35) as

Eh � exp��h2�8��1 

�

1024
h2�h2 � 16��. �37�

The leading terms in Eqs. (35) and (37) represent dif-
ferent forms of the Rayleigh ED, valid in general for

Eq. (35) but only for rather narrowband waves in the
latter case. The significant envelope and wave heights
are �s � 2 and hs � 4. So, Pr{� � �s} � Pr{h � hs} ≅
13.5% in either case. Further, notice that if # � O(1),
� � �s, and h � hs, then E� /exp(��2/2) � 1 and Eh /
exp(�h2/8) � 1, and both ratios increase monoto-
nously. Thus, Eqs. (35) and (37) and similar approxi-
mations in Tayfun and Fedele (2007b) for wave crests
and troughs all suggest that over the range where sig-
nificant values are exceeded by at least 13.5% largest
waves, third-order instabilities systematically amplify
wave envelopes, heights, and crest and trough ampli-
tudes noticeably and, if # � 1, approximately, well be-
yond the levels predicted by the linear or second-order
approximations. None of the present comparisons dis-
plays any data trend even remotely similar to this sys-
tematic pattern, which requires a much larger popula-
tion of unusually large waves than just a few. For
WACSIS as a whole, �40 ≅ 0.039, �22 ≅ 0.000, and # ≅
�0.008. Not surprisingly, these are all of O(�2

3) and
negligible in conformity with the weakly nonlinear sec-
ond-order theory.

For wave phases, third-order corrections similarly
contribute to Eq. (6) several additional terms propor-
tional to �mn, where m, n � 0, 1, . . . , 4, such that m 

n � 4. As a result, the marginal PD of � assumes a
somewhat unwieldy form in the most general case.
However, if �31 � �13 � 0 as it appears to be the case in
relatively long-crested narrowband waves (cf. Tayfun
1990; Mori and Janssen 2006), then Eq. (6) is modified
as (Tayfun 1990)

FIG. 22. WACSIS: the temporal variation of relative water
depth kpd derived from the spectral estimates of half-hourly run-
ning surface series (avg kpd � 1.13).
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2�p� � 1 �
�3

6��

2
cos�



�40

24
�8 cos4� � 12 cos2� 
 3�



�22

4
�8 cos2� sin2� � 1�



�04

24
�8 sin4� � 12 sin2� 
 3�. �38�

If �22 ≅ �40 /3 and �04 ≅ �40 also, as in Mori & Janssen
(2006), then # → #app � 8�40 /3 and Eq. (38) converges
to Eq. (6) appropriate to second-order waves. For
WACSIS as a whole, �31 ≅ �31 ≅ �0.006 and # ≅ #app,
very nearly, as shown in Fig. 23. So, Eq. (38) does in fact
reduce to Eq. (6) as a further confirmation that third-
order effects do not affect the wave phase statistics of
WACSIS.

c. An alternate approach

The premise that surface displacements are rendered
vertically skew mainly by second-order bound modes
offers an alternate approach for exploring if any third-
order NLS-type instabilities are manifest in a wind
wave record. Generally, second-order bound modes do
not significantly affect the fourth-order cumulants,
whereas third-order modulational instabilities can since

they tend to amplify wave envelopes symmetrically, as
predicted by the NLS-type formulations (Socquet-
Juglard et al. 2005; Mori and Janssen 2006, Gramstad
and Trulsen 2007). Second-order corrections are intro-
duced in the eventual solutions via the reconstruction
formulae (cf. Socquet-Juglard 2005). All this, therefore,
suggests that, if a wave record is rendered “nonskew”
or vertically symmetric, then the resulting statistics
should essentially reflect the effects of third-order
quasi-resonant instabilities, if any.

To obtain a nonskew representation, say, �̃ of �, con-
sider the second-order expression

	̃ � 	 �
�3

6
�	2 � 	̂2�. �39�

The application of Eq. (39) in WACSIS, based on the
half-hourly estimates of �3 in Fig. 2, gives �0.014 �

��̃3
 � 0.027 and ��̃3
 � 0.008 as an overall average as
compared to �3 � 0.231 for �. The root mean square of
�̃, wave height parameter rm, and all joint cumulants of
�̃ and its Hilbert transform remain practically the same
as those of � and �̂. However, � � 0 since �̃ is in
essence “linearized.”

What the preceding analysis physically leads to is de-
picted in Fig. 24, showing short coincident segments of
�, �̃, and the second-order correction �3(�2 � �̂2)/6
removed from � to obtain �̃ around the largest wave of
WACSIS. In Fig. 25 the distributions of zero upcrossing
wave heights are compared as well as crest and trough

FIG. 23. WACSIS: temporal variations of # � �40 
 2�22 
 �04

and #app � 8�40 /3 estimated from half-hourly running averages.

FIG. 24. The surface profile � (thin solid line), nonskew series �̃
(points), and second-order correction �3(�2 � �̂2)/6 (thick solid
line) around the largest wave of WACSIS.
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amplitudes of �̃ with Eh from Eq. (29), E2� and E�.
Generally, second-order effects do not affect the statis-
tics of the heights of oceanic waves significantly (Tay-
fun and Fedele 2007b). A comparison of Fig. 19 or Fig.
20 with Fig. 25 suggests that this is essentially so in
WACSIS also. The observed heights are well repre-
sented by either Eh or E2� over larger waves, and the
largest wave no longer appears so freakish as it does in
Fig. 19. More significantly, E� for linear waves now
describes the crest and trough amplitudes in �̃ fairly
well. These results indicate unequivocally that third-
order modulational instabilities do not have any dis-
cernable relevance in WACSIS. So, the linearization
procedure described above appears to offer a fairly ef-
fective and straightforward means of exploring if such
instabilities do, in fact, affect the statistics of oceanic
wind waves or not.

11. Conclusions

The validity of theoretical approximations developed
for describing the joint, marginal, and conditional sta-
tistics of the envelope and phase of wind waves is con-
firmed by the WACSIS comparisons. The theoretical
results suggest that wave phase statistics and the nature
of surface displacements tend to differ appreciably but

predictably, depending on whether envelope elevations
exceed the significant envelope height. For envelope
elevations sufficiently larger than this threshold, wave
phase distributions approach a simple limit form, indi-
cating that large surface displacements can occur only
above the mean sea level. This is likewise confirmed by
the WACSIS data.

Larger waves appear more regular or narrow
banded, and their heights and crests do not exceed the
Miche–Stokes-type upper limits. This seems so even for
unusually large waves often referred to as freak or
rogue waves with scaled features and proportions simi-
lar to the largest wave captured by the WACSIS mea-
surements. The random superposition of spectral com-
ponents enhanced by the presence of second-order
bound modes appears as the most likely mechanism
that generates large surface displacements and thus
such large waves under oceanic conditions.

Further analyses and the linearization of WACSIS all
indicate that third-order NLS-type instabilities have no
discernable effect on the surface statistics. Indeed, the
nature of similar statistics observed in more extensive
measurements representative of oceanic storm waves
far more energetic than WACSIS is also entirely con-
sistent with this conclusion (cf. Forristall 2000, 2007; Tay-
fun and Fedele 2007b). The largest wave in WACSIS
would not have appeared so unusual had the measure-
ments been maintained sufficiently longer or if many
more wave probes had been deployed to gather an en-
semble of simultaneous measurements. Because of the
highly unstable nature of statistics associated with the
largest observations, a sample population of about 5000
waves gathered at a fixed point in time may not always
be adequate for reliably estimating the frequency of
occurrence of the largest wave in a population.
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APPENDIX A

Derivations of p�
� and E�

�

Let A
 � {� � 0} � { |� | � 	/2} and A� � {� � 0} �
{	/2 � |� | � 	}. The conditional PDs p


� and p�
� , given

A
 and A�, respectively, follow from probabilistic defi-
nitions as

p�
��z� � �

A�

p����, z� d�
�
A�

p� d�. �A1�

FIG. 25. Exceedance distributions of zero up-crossing wave
heights (h), crest (�c), and trough (�t) amplitudes extracted from
the nonskew series �̃ of WACSIS compared to Eh [Eq. (29)] for
wave heights, E2� (Rayleigh ED) for narrowband wave heights
(h ≅ 2�), and E� (Rayleigh ED) for linear crest and trough am-
plitudes.
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Integrating Eq. (2) with respect to � ∈ A
 for p

� and

� ∈ A� for p�
� gives

�
A�

p����, z� d� �
p�

2 �1 �
�3

3�
z�z2 � 4��, �A2�

where p� � z exp(�z2/2). And, from Eq. (6),

�
A�

p� d� � P� �
1
2 �1 $

�3

3�2�
�, �A3�

as previously given in Eqs. (7) and (8). The substitution
of the preceding results in (A1) leads to p�

� in the form
of Eq. (9). Integrating the latter over (z, �) gives the
corresponding ED Pr{�� � z} as

E�
� �

E�

2P� �1 �
�3

3��z3 � z

���

2
exp�z2

2 � erfc� z

�2
��� , �A4�

where E� � Pr{� � z} � exp(�z2/2). For z k 1, we can
use the expansion

��

2
exp�z2

2 � erfc� z

�2� �
1
z �1 �

1

z2 

3

z4 � · · ·�
�A5�

in (A4) to obtain Eq. (10) readily.
Numerical comparisons for �3 � 0.3 show that

Eqs. (10) and (A4) are practically the same for z � 1,
approximately. Further, E� � 0 for z � z*, where
z*(z*2 � 1) ≅ 3	/�3, suggesting that negative minima
less than �z* are not physically realizable. The com-
parison of E� with the negative minima �min of
WACSIS in Fig. 8 seems consistent with this conjecture.

APPENDIX B

Expected Profile of Nonlinear Waves

Consider � � �1 
 �2, where �1 and �2, respectively,
represent the linear first-order surface displacement
and the second-order correction. Explicitly,

	1�t� � � cos��t 
 ��k�� dZ�k�, �B1�

	2�t� �
1
4 ���K
 cos�
 
 K� cos��� dZ�k� dZ�k��

�B2�

in which %(k) � independent random phases distribut-
ed uniformly in (0, 2	), k � vector wavenumber with
modulus k such that �2 � gk tanhkd, d � water depth,
Z(k) � random spectral amplitudes with orthogonal
increments, and � |dZ | 2
 � S(k) dk: S(k) � directional
spectrum, &� � (� � �')t 
 %(k) � %(k'), and K� �
K�(k, k') represent the interaction kernels associated
with second-order bound waves (cf. Forristall 2000). On
the assumption that � is zero mean and scaled with �,
the zero-order moment of S is unity. So, the skewness
coefficient of � is given to the leading order by (cf.
Tayfun 1994)

�3 � �	3
 �
3
2 �� �K
 
 K��S�k�S�k�� dk dk �.

�B3�

Assume for the moment that second-order correc-
tions are negligible, so that � � �1, and �0 � �(0) k 1
represents a large wave crest. Then, the expected pro-
file of �(t), conditional on �(0) k 1, is given by
(Lindgren 1972; Phillips et al. 1993; Boccotti 2000)

�	�t� |	0 k 1
 � ���t� � �� cos��t�S�k� dk, �B4�

where �0 � � represents the Rayleigh-distributed wave
crest, and ! the normalized covariance kernel of �.
Now, notice that (B4) follows from Eq. (B1), setting
% � 0 and dZ � �S(k) dk. Introducing the same substi-
tutions in Eq. (B2) likewise leads to

�	2�t� |	0 k 1
 �
�2

4 �� �K
 cos�



 K� cos���S�k�S�k�� dk dk�,

�B5�

where (� � (� 
 �')t for brevity. Next, we substitute
the kernel

��t� �
3
2 ���K
 cos�
 
 K� cos���S�k�S�k�� dk dk�

�B6�

in Eq. (B5) and add the resulting expression to (B4) to
obtain Eq. (27). A comparison of Eqs. (B3) and (B6)
shows that �(t) � �(0) � �3, in general. Thus, setting
t � 0 in Eq. (27) reduces it to Eq. (28).

Evidently, Eq. (27) satisfies the equations of wave
motion to second order as a deterministic solution, just
as � � �1 
 �2 does as a random solution, in general.
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Further, the extension of the preceding results to the
expected structure of � as a three-dimensional surface
simply requires that ! and � be defined more generally
as functions of both temporal and spatial variables in a
manner consistent with the random spectral represen-
tations of �1 and �2 in the most general case.
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