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On Narrow-Band Representation of Ocean Waves 
2. Simulations 

M. Azlz TAYFUN 

Civil Engineering Department, College of Engineering and Petroleum, Kuwait University 

In paper 1 (Tayfun, this issue) we derived two narrow-band type representations for nonlinear waves 
and obtained theoretical expressions for the key statistics of the corresponding surface elevations, 
namely, the variance, skewness, and kurtosis. The nature of these statistics and the underlying probability 
structure were examined qualitatively with particular emphasis on the effects of the spectrum bandwidth. 
In this paper we explore the reliability of these results quantitatively. Proceeding via the Monte Carlo 
approach and finite Fourier transform techniques, we generate extensive samples of surface time history 
with preassigned spectral and statistical properties. Each sample is synthesized from a systematic super- 
position of the first-order linear field and the second-order corrections, consisting of shortwave and 
long-wave modulations, respectively. This approach enables us to demonstrate explicitly the individual 
as well as combined effects of second-order nonlinearities on the probability distribution and statistics of 
the surface elevation. In the final analysis we find that the simulated results compare favorably with the 
theoretical predictions and confirm the validity of various qualitative arguments put forward in paper 1. 

1. INTRODUCTION 

In the companion paper [Tayfun, this issue], hereinafter 
referred to as paper 1, we reviewed the effects of second-order 
nonlinearities on the spectrum and statistical properties of 
unidirectional waves in deep water. Under the usual assump- 
tion that such a wave field is weakly nonlinear, the surface 
elevation with respect to the mean sea level is described in the 
form r/= r/1 + r/2, where r/1 and r/2 denote the first-order linear 
field and the second-order nonresonant interactions induced 

by r/l, respectively. The latter is decomposed further into two 
components, r/2.s and r/2.•, representing the shortwave and 
long-wave modulations. In essence, r/2. s imposes a vertical 
asymmetry on r/l. and r/2a causes relatively long period fluctu- 
ations in the mean sea level. 

From a practical viewpoint it appears that both modula- 
tions can have profound effects on the observation, forecast, 
and interpretation of principal wave characteristics and on the 
dynamic behavior of fixed or floating marine structures. 
Therefore a theoretical understanding of the effects of r/2.s and 
r/2a on the statistical distribution of sea surface elevations is of 
considerable interest. To achieve this objective in the most 
general case is difficult because of the mathematics involved. 
Nonetheless, in the special case when the frequency spectrum 
of the surface is narrow banded, one can make some progress 
toward a relatively simple theory. This line of thought eventu- 
ally led us to the derivation of two narrow-band repre- 
sentations of r/. 

The frequency spectrum $ (in particular, its bandwidth v) 
plays a central role in determining the surface properties. This 
role becomes still more evident in the two models of paper 1, 
which approximate the "exact" form of r/ to O(v ø) and O(v), 
respectively. The principal advantage of these models is that 
they are relatively simple to deal with, so that we can deter- 
mine the effects of r/2,s and r/2,t on the physical structure and 
probability density of r/ quite easily. In particular, the prob- 
ability density of r/has the usual form of the Gram-Charlier 
series [Longuet-Higgins, 1963], but the key statistical parame- 
ters required in this form, namely, the variance %, skewness 
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;•3, and kurtosis 24, are given in terms of simpler expressions. 
To be specific, we have to O(v) 

tr,• = rnol/2(1 + «52) •/2 (1) 
3 

')'3 -- 2-•' • 5(1 + }•2)-3/2(1 -- y) (2) 
2, = 6•2(1 + •2)- 2(1 - 2•) (3) 

where 7 is O(v) and is related to the spectral shape. Moreover, 
0 • • • •v, so that •3 and •½ given by (2) and (3) satisfy the 
following inequalities: 

23,• • 23 • 23.• (4) 

24,• • 2• • 2•,. (5) 

where 

3 -3/2(1 x/•v) (6) •3,/ = 2'•'7• 5(1 + «52) -- 
;•4., -- 652( 1 + «52) - 2( 1 - 2x/•v) 

and the upper bounds 

(7) 

3 

'•3,u = 2-•'• 5(1 + «52) - 3/2 (8) 
652( 1 + «52) - 2 (9) 

represent the limiting forms of 23 and 24 when v-} 0. These 
limits and (1) are also appropriate to and follow from the 
simpler model, which is O(v ø) and does not take into account 
any contribution from r/2.v The parameter 5 is a measure of 
wave steepness. We define it in the form 5 = (k)(2rno) 1/2, 
where rno 1/2 denotes the first-order variance and (k) denotes 
the spectral mean wave number. Oceanic observations suggest 
that 0 < 5 < 0.2 [Huang et al., 1981], although this range is 
likely to be somewhat biased against extreme seas. 

Both r/2.s and r/2.• are 0(5), but they have exactly opposite 
effects on 23 and 24. Specifically, r/2, s tends to increase 23 and 
24, whereas r/2 a reduces them both. However, this happens in 
a manner quite dependent on the spectrum bandwidth be- 
cause r/2.• is also O(v). This simply means that when the spec- 
trum has a wide bandwidth so that v is O(1), the effect of r/2a is 
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comparable to and tends to neutralize that of r]2,s. In this case 
we suspect that the skewness and excess associated with the 
surface density will both be slight. Conversely, when the spec- 
trum bandwidth is very narrow so that v 2 << 1, the effect of 
is essentially negligible, and so the surface density correspond- 
ing to the same steepness must display a more pronounced 
positive skewness and larger excess at the mode. 

Because all the preceding qualitative arguments and theo- 
retical results follow from the narrow-band approximations, 
their validity and quantitative accuracy need to be verified 
with respect to the predictions implied by the exact form of r/. 
Provided that such a verification proves favorable, one would 
ultimately hope to relate the theoretical results to actual ob- 
servations. Therefore our immediate goal is to explore the 
quantitative reliability of the statistics %, ,t 3 and ,14 by com- 
paring them with those to be derived from the exact form of r/ 
for various values of • and v. Further, we aim to examine the 
probability densities of r/2, s and r/2,t and their individual and 
combined effects on the distribution of surface elevations as an 

explicit demonstration of the qualitative arguments put for- 
ward in paper 1. We will achieve these objectives most con- 
veniently by simulating sample series of the surface elevation 
via the Monte Carlo approach, coupled with the finite Fourier 
transform (FFT) technique. This procedure is known to be 
remarkably efficient for constructing extensive samples with 
preassigned statistical properties that conform to the assump- 
tions of the underlying theory. 

2. SIMULATIONS 

We assume that the first-order spectral density S has the 
Wallops form [Huang et al., 1981-], which is given by equation 
(37) of paper 1 and has the following properties: 

./m'¾ i/4 I'm - j - 1) - 1 m.i=mocop'•[.• -) F•, 4 /F(m4 ) (10) 
v2=I•(m•-3)l•(m; 1)/I-'2(m • 2) -- 1 (11) 
K2 = I-'(m • 5)I-'(m • 1)/1-'2(m • 3) -- 1 (12) 
(co) =cov(m/4),/4F(m•2)/F(m • 1) (13) 

• = (k) (2mo) •/2 = (co)2 (1 + v 2) (2mo) •/2 (14) 

mo = fiQ2cop-44 (m- ,)/4m-(m-')/½F(m-l) 4 (15) 

We will consider three sets of simulations corresponding to 
= = 0.1, = = 0.2, and = = 0.3, respectively. For each set, m = 5, 
6, ..., 20, so that v varies from a maximum of 0.42 to 0.12, 
approximately. Because the Wallops shape is defined for 
0 < o < • and behaves as o -• at high frequencies, • • • at 
m = 5. This result is typical of most theoretical representations 
of wind wave spectra and must be regarded as an artifact. In 

spectral area over (co*, co)is less than fmo = 
Choosing co* = 2• rad/s is convenient for FFT and also as- 
sures that firno _< 10 -3 m 2. Therefore at least 99.99% of the 
total spectral mass is accounted for in all cases. As will be 
shown in section 3, this particular cutoff frequency has essen- 
tially no influence on v for all rn _> 5 or on •c for rn > 6 but 
renders •c bounded at rn = 5. 

In order to utilize the FFT technique in the simulations, we 
consider the complex process W defined by equation (19) of 
paper 1 as a function of t at x = 0, rewriting it as 

N-1 

W(nA) = • Cj exp (i%nA) n = 0, 1, ..., N - 1 (16) 
j=O 

where A represents the sampling time interval, % = 2•:j/NA, 
and 

Cj-- [2S(coj)fco] 1/2 exp (--ie) (17) 
for j = 1, 2,-.., (N/2)- 1 and equals zero otherwise. Here 
fro = 2•r/NA, and ej denotes the random phases uniformly dis- 
tributed over (0, 2rr). The derivative of (16) with respect to 
t = nA is 

N-1 

Wtt(nA) = - y', coj2Cj exp (icojnA) (18) 
j=O 

The second-order corrections are defined in terms of r/• and 
its Hilbert transform r• in the form 

1 

f]2,s = • (qlql.tt- YllYll,tt) (19) 
1 

r/2, , = • m[r•,,..- ,O,..] (20) 
Since 

W(nA) = r/,(nA) + ir•,(nA) 

W,,(nA) = r/,.tt(nA)+ ir•,.,,(nA) 

(21) 

(22) 

all the quantities required by (19) readily follow from the real 
and imaginary parts of W and W, via FFT, provided that N 
is an integral power of 2. To obtain r/2.•, one needs to calculate 
the Hilbert transform of, say, 

1 

y = • (r•rl•,tt - rl•r•,,,) (23) 
This is accomplished through a two-step procedure [Tayfun, 
1983] whereby we first invert y to compute 

N-1 

Y• = N -• • y(nA) exp (--ico.inA ) (24) 
n=0 

Then the Hilbert transform of y, i.e., r/2,t, is given by 
N-1 

3)(nA) = • G•Y• exp (icosnA) (25) 
j=0 

where Gj = -i, i, or 0, depending on j < N/2, j > N/2, or 
practice, empirical spectra are limited to a high-frequency j = O, respectively. 
cutoff, say co*, such that the spectral area beyond co* has 
essentially negligible contribution to rn0- In all the cases to be 
considered here, we set rn0 = 10rn2. For a particular =, this 
enables us to determine cop from (13) and fi from (15). So far as 
the contribution of the spectral area over (co*, co) is con- 
cerned, the most critical case corresponds to = = 0.3 and 
rn = 5, with cop _• 0.576 rad/s and fi _• 0.057. For rn = 5 the 

The results to be discussed in the following section were 
derived from simulations based on a repeated application of 
the preceding procedure with N = 2 •3 = 8192 and A = 0.5 s. 
For each case where • and rn are fixed, the estimates of the 
corresponding statistics and probability densities are obtained 
from an ensemble of 20 realizations of r/•, r/2.s , and r/2,v In 
other words, the same FFT procedure is repeated 20 times, 
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Fig. 1. The parameters v, •c, and 7. Solid curves show theoretical 
predictions appropriate to the full Wallops spectrum, solid circles 
show •c based on the Wallops form with a high-frequency cutoff at 
co = 2• rad/s, and open circles show 7. 

each time employing a different set of random phases 
Therefore a n, 23 , 24, and all the probability density estimates 
relevant to r/l, r/2,s, etc. are in fact derived from a total of 
20 x 8192 = 163,840 data points for each case. 

Recall that 23 and 24 depend on various mean products of 
r/l, r/2,s, and r/2,t. Therefore any sampling or simulation error 
associated with these mean products will lead to errors in the 
estimates of 23 and 24 to be derived from a simulated series of 
/•1 q-•2,s or r/= r/1 + /72,s q- /•2,1' The most significant source 
of such errors is the mean products involving r/1 by itself, 
namely, the third and fourth moments of r/1. In theory, 
(r/13) = 0 and (r/14) = 3a,• 4, so that the skewness and kur- 
tosis of r/1 are both zero. Nevertheless, a simulated series of r/ 
will typically yield (r/13) = •ilO',tt 3 and (r/14) = (3 + •2)O'r/t 4, 
where gl and •2 reflect the joint effect of simulation and sam- 
pling errors. One can show that these in turn cause errors of 
the form 51(a,•/O'r/) 3 and •2(O'r/t/O'r/) 4, respectively, in 2 3 and/14 
computed from a simulated series of r/= r/1 + r/2,s + r/2,t. In 
the case of 23 and /l 4 corresponding to r/1 + r/2,s, the errors 
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Fig. 3. The skewness coefficient 23 and associated bounds. Solid 
curves show theoretical 23 based on the narrow-band model (equa- 
tion (2)) to O(v), dashed curves show the lower bound 23, t given by (6), 
and dashed lines show the upper bound 23, u given by (8) and appro- 
priate to the narrow-band model to O(vø). Also shown are numerical 
results derived from simulated series of r/1 + r/2,s (crosses) and 
+ r/2. • + r/2. t (solid circles). 

have the same forms, except that a,is replaced with the rms 
value of r/1 + r/2,s. We found that such errors could be rela- 
tively significant in certain cases and accordingly correc[ed all 
the estimates 23 and 23 to be discussed in the following. 

3. RESULTS AND COMPARISONS 

The theoretical forms of v and tc based on (11) and (12) and 
appropriate to the full Wallops spectrum are shown in Figure 
1. Also included here is a comparison between v and to/2, 
which confirms the assertion of paper 1 that tc _• 2• when 
v 2 << 1. We have shown the values of tc corresponding to the 
Wallops form with the high-frequency cutoff to*= 2z• with 
points in the same figure. It is evident that the cutoff modifies 
the behavior of tc at and near m- 5 but has essentially no 

Fig. 2. 
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Comparisons between the exact (solid curves), the narrow-band (dashed lines), and the simulated (solid circles) 
values of a• scaled with a• = m o 1/2. 
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Fig. 4. The coefficient of kurtosis 2,• and associated bounds. Solid curves show theoretical ;•,• based on the narrow- 
band model (equation (3)) to O(v), dashed curves show the lower bound ;•,•,t given by (7), and dashed lines show the upper 
bound ,•,•,u given by (9) and appropriate to the narrow-band model to O(vø). Also shown are numerical results derived from 
simulated series of • + •2,• (crosses) and • + •2,• + •,t (solid circles). 

influence on it for m > 6. In the case of v the cutoff has almost 

no effect, and all values fall on the theoretical curve. Therefore 
they are not shown separately, for clarity of presentation. In 
the same figure we also show the parameter 7, which is defined 
explicitly by equations (53a) and (55) of paper 1 and will be 
used later to evaluate (2) and (3) here. It is noted that over the 
range of v considered, the difference between 7 and v is less 
than + 10%. Furthermore, the calculations corresponding to 
• = 0.1, 0.2, and 0.3 all gave the same set of identical values of 
7 shown in Figure 1. Therefore it appears that 7 -• v irrespec- 
tive of •. 

The theoretical and simulated results relevant to the vari- 

ance o-, scaled with o-,• are shown in Figure 2. The theoretical 
results include the predictions based on the exact expression 
(40) of paper 1 and those of the narrow-band approximation 
(1) here. Evidently, the simulations compare very favorably 
with the exact theory, but the discrepancy between the 
narrow-band predictions and the exact theory is quite sub- 
stantial, especially at or near m = 5 (v-• 0.42). For example, 
when • = 0.3, the narrow-band approximation gives a,/a,• -• 
1.022. In other words, the effect of nonlinearities is reflected by 
an increase of 2.2% in the rms value of the surface elevation. 

The exact theory predicts an increase of about 6%. Therefore 
the narrow-band approximation does rather poorly, underesti- 
mating the effect of nonlinearities on a, by nearly 200%. A 
similar comparison for y = 0.1 and • = 0.2 essentially leads to 
the same conclusion. However, as the spectrum becomes 
narrow banded, e.g., when m > 10 (v < 0.20), the situation im- 
proves markedly. When m- 10, in particular, the narrow- 
band approximations suggest that a,/a,•-• 1.022, 1.010, and 
1.002(5) for • = 0.3, 0.2, and 0.1, respectively. The correspond- 
ing values predicted with the exact theory are a,/a,, -• 1.027, 
1.012, and 1.003. In all the three cases now, the narrow-band 
approximation underestimates the effect of nonlinearities on 
a, by less than 20"/0 relative to the exact theory. For larger 
values of m the same type of comparison becomes even more 
favorable. Therefore it would be reasonable to contend that 

the narrow-band approximation does fairly well in predicting 
a, for m > 10 (v < 0.20). 

The results on the coefficients of skewness and kurtosis are 

presented in Figures 3 and 4, respectively. Each figure con- 
tains the theoretical predictions derived from the narrow-band 

approximation (equation (2) or (3) as appropriate), the corre- 
sponding upper and lower bounds, and the simulated results 
relevant to r/1 + r/2,s and r/1 + r/2, s + r/2, •. Recall that the upper 
bounds are identical with the predictions of the narrow-band 
model to O(vø), which excludes r/2,t. Therefore they are to be 
compared with the simulations corresponding to r/1 + r/2,s. 
The comparison between the simulated results and the predic- 
tions based on the narrow-band approximations is quite fa- 
vorable, particularly when •--0.1. For • = 0.2 and •- 0.3 
the comparison is still good nearly in all cases when m > 8 
(v < 0.25), but some discrepancy becomes evident at or near 
m- 5, corresponding to relatively large values of v. In this 
region the narrow-band approximations tend to overestimate 
'•'3 and underestimate 24. In comparing the values of 2 3 and 24 
corresponding to the r/1 + r/2,• and r/= r/1 + r/:,• + r/:,t simula- 
tions, the opposing effects o{ • r/2,s and r/2, t are observed very 
clearly' the presence of r/2.t reduces the skewness and kurtosis 
of r/due to r/2,• in an increasing manner with the larger values 
of wave steepness and spectral bandwidth. For example, when 
• = 0.2-0.3 and m -• 5 (v _• 0.42), the reduction of 23 is nearly 
200%, and that of 24 is at least 100%. 

In order to provide an explicit comparison between the 
marginal probability densities of r/2,• and r/2,t and the Gaus- 
sian structure of r/l, we show in Figure 5 the results derived 
from simulated series of r/l, r/2, •, and •2,l. Note here that all 
elevations are normalized with respect to a,•--mo 1/2, and 
:z = 0.3 as an extreme case. The numerical estimates for the 

density of r/1 are shown as discrete points (open circles) for 
m - 5 only. As can be expected, these fit the standard Gaus- 
sian curve very favorably. Obviously then, the same curve also 
serves as a basis of reference in all other cases considered. The 

concentration of the probability masses about the mean level 
(origin) is indicative of the relative contribution of r/l, r/2, •, and 
r/2. t to the total surface displacement r/. For this particular 
case, r/2.• is quite significant and has a symmetrical density 
that is not much influenced by the spectrum bandwidth. In 
contrast, the density of t]2,/ is negatively skew and is very 
much affected by the spectral width. These observations are 
consistent with the fact that r/2,• is at least O(•) and has a zero 
third-order moment and that r/2,t is at most O(v) and the 
corresponding third-order moment is negative and O(v3). 
Therefore when the spectrum is relatively broad (e.g., m- 5 
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Fig. 5. The comparison between the simulated probability densities of •/1, 1/2,s, and 1/2,1 scaled with %, = rno 1/2 (cz -- 0.3). 

and v = 0.42), r/2,s and /12,l have nearly the same order of 
magnitude, and the corresponding densities look fairly similar. 
The main discrepancy between the two densities is the nega- 
tive skewhess associated with r/2,/, which simply implies that 
large modulations of the mean level due to r/2,t are likely to be 
more negative than positive. In examining the cases corre- 
sponding to m = 10, 15, and 20 (v _• 0.20, 0.15, and 0.12), we 
see that when the spectrum becomes increasingly narrow, both 
the relative importance of and the skewness associated with 
•12,l rapidly diminish, while r/2,sremains essentially the same. 

The results illustrating the individual and combined effects 
of r/2,s and r/2,t on the probability density of the surface eleva- 
tion r/are shown in Figure 6 for • = 0.3. The standard Gaus- 
sian curve appropriate to rl•/%• is also included in the same 

figure for comparison. There are primarily two sets of results 
shown here, representing the estimates derived from the nu- 
merically simulated series of r/• + r/2,s and r/= r/• + r/2,s + r/2,t , 
each scaled with respect to its own rms value. The comparison 
between these two sets in essence demonstrates explicitly that 
•vhen the spectrum is broad, as it is in the case with m- 5 
(v _• 0.42), the skewness and excess associated with the density 
of r/ are both relatively small owing to the presence of the 
long-wave component r/2,t. Toward the other extreme, where 
m- 20 (v _• 0.12), n2, t gradually disappears from the picture, 
and the skewness and excess increase in a manner solely deter- 
mined by r/2,s. Finally, all simulated densities were also com- 
pared with the predictions of the Gram-Charlier series by in- 
serting in equation (39) of paper 1 those values of 23 and 24 
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Fig. 6. The comparison between the simulated probability densities corresponding to the linear profile r/1 (solid 
curves), r/1 + r/2.s (open circles), and r/= r/1 + r/2.s + r/2.t (solid circles). The predictions of the Gram-Charlier series are 
shown for m = 5 only (dashed curves). Each elevation is scaled with respect to its own rms value, and 0• = 0.3. 

appropriate to each case. A typical example of this compari- 
son is shown in Figure 6 for m = 5. Though no comparison is 
given for the remaining cases m = 10, 15, and 20 for clarity of 
presentation, all the simulated density estimates were in excel- 
lent agreement with equation (39) of paper 1. 

4. CONCLUDING REMARKS 

The predictions based on the narrow-band approximation 
to O(v) compare very favorably with those derived from the 
simulations of the second-order "exact" theory, especially for 
small values of wave steepness and narrow-band spectra. As- 
suming that a particular sea state can be modeled with the 
Wallops spectral form, it appears that the proposed model is 
capable of presenting the main principles implied by the exact 
theory in a simple manner and that it provides fairly accurate 
quantitative results when m > 10 (v < 0.20). 

The data presented by Huang et al. [1981] and Liu [1983] 
indicate that 5 < m < 11 for a number of actual wind wave 

spectra. This probably gives us a reasonable estimate on the 
likely range of m values that would be expected for wind 
waves within a generation area. On this basis and because we 
also ignored wave directionality and surface stresses, the 
quantitative accuracy of the model within the generation area 
is open to question. However, as waves propagate out of the 
generation area, not only is their spectral form likely to 
become progressively more narrow banded, but also their di- 
rectional spread will tend to be narrow beamed. Therefore we 
expect that the narrow-band representation would be more 
appropriate to such cases. 

We restricted attention to deep water waves only and there- 

fore ignored the effects of finite water depths on the probabil- 
ity structure and the key statistics of the surface elevation. In 
finite water the mathematics becomes considerably difficult to 
handle in the same systematic manner as the one demon- 
strated in paper 1, and a primarily numerical approach may 
have to be employed. Past studies elaborate different aspects 
of the overall problem and provide us with partial answers. 
Some of these appear to be contrary to one another as well as 
to certain implications of the present study. For example, 
Tick's [1961] results suggest that spectral amplitudes typically 
associated with the long-wave modulation are enhanced sub- 
stantially because of shoaling as waves advance toward shal- 
lower depths. In view of this, the present results would imply 
that the surface skewness should decrease as the water depth 
decreases. This would certainly agree with the conclusions of 
Sharma and Dean [1979]. However, it is less certain what 
happens when the problem is treated under a more realistic 
setting that would include wave refraction and its conse- 
quences on directional spectra. For example, a limited number 
of results derived by Tuah and Hudspeth [1985] indicate that 
the skewness is always positive and increases considerably as 
the water depth decreases. If so, the density of surface eleva- 
tions of shallow water wind waves would typically display a 
highly asymmetric form, in agreement with some observations 
[Bitner, 1980; Huang et al., 1983]. In retrospect, it is evident 
that the general problem is of considerable theoretical and 
practical interest and requires further research. 

The random phase simulation scheme is one of two prin- 
cipal approaches presently available where the simulation 
consists of summing a finite number N of Fourier compo- 
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nents. The alternative is a random coefficient scheme in which 

the component amplitudes represent independent Gaussian 
variates. For the former scheme, the underlying probability 
density becomes asymptotically Gaussian as N--, c•, whereas 
for the latter it is already Gaussian for any N. A recent article 
by Tucker et al. [1984] presents a critical review of both 
schemes and contends that the random phase approach does 
not correctly simulate wave characteristics for a Gaussian sea 
state but that the random coefficient scheme does. This con- 
tention is demonstrated to some extent with reference to sev- 

eral case studies on wave group characteristics and with a 
specific simulation example, in which N is 900 for the random 
coefficients and 100 for the random phase scheme. It is true 
that with the random phase scheme, problems and inaccura- 
cies can arise in simulating wave group characteristics if N is 
relatively small. Nonetheless, it is also known that when N is 
sufficiently large (as it is in the present case), both schemes are 
essentially identical and yield the same results [Elgar et al., 
1984]. Evidently, this is confirmed further here by the fact that 
the simulated results compare very favorably with theory 
when they are expected to 
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