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Narrow-Band Nonlinear Sea Waves 

M. AzIz TAYFUN 

College of Engineering and Petroleum, Kuwait University, Kuwait 

Probabilistic description of nonlinear waves with a narrow-band spectrum is simplified to a form in 
which each realization of the surface displacement becomes an amplitude-modulated Stokes wave with a 
mean frequency and random phase. Under appropriate conditions this simplification provides a conve- 
nient yet rigorous means of describing nonlinear effects on sea surface properties in a semiclosed or 
closed form. In particular, it is shown that surface displacements are non-Gaussian and skewed, as was 
previously predicted by the Gram-Charlier approximation; that wave heights are Rayleigh distributed, 
just as in the linear case; and that crests are non-Rayleigh. 

INTRODUCTION 

Although a great deal of recent progress has been made on 
the theory of nonlinear sea waves, the complicated form of 
higher-order corrections to linear first-order representation of 
a random sea surface impedes further development of the 
nonlinear theory in certain aspects. In particular, statistical 
properties and distributions relevant to a wave field, such as 
surface displacements, wave crests, and heights, do not appear 
to be amenable to a theoretical treatment in contrast with the 

linear theory, which asserts that the free surface is Gaussian, 
and wave heights and crests are Rayleigh distributed provided 
that the underlying spectrum is narrow band. The nonlinear- 
ity of the wave profile introduces a skewness to the Gaussian 
description of the free surface, a feature predicted by the 
Gram-Charlier series solution of Longuet-Higgins [1963]. On 
the other hand, the solution in terms of the Gram-Charlier se- 
ries is an approximation which remains to be fuRRy tested, and 
it does not appear likely that the theoretical understanding 
can be extended to other wave field properties, such as wave 
heights, crests, etc. At present, empirical or numerical simula- 
tion of some of these properties as demonstrated by R. T. 
Hudspeth (unpublished data, 1975) and Hudspeth and Chen 
[1979] constitutes a practical alternative to the analytical ap- 
proach. 

This paper is an attempt to simplify the probabilistic mod- 
eling of nonlinear random waves to a form which would be 
more amenable to numerical or theoretical treatments under 

appropriate conditions. Specitica!ly, when the first-order 
structure of sea surface is narrow-band Gaussian, the stochas- 
tic representation of the surface can be reduced to a familiar 
form in which each realization is an amplitude-modulated 
Stokian wave profile with a mean frequency and random 
phase. Derivation of probability densities of surface dis- 
placements, wave heights, and crests immediately follows 
from the physical picture provided by this simplification and 
by using standard statistical techniques. 

NARROW-BAND APPROXIMATION 

The surface displacement satisfying .the usual equations of 
free wave motion to second order in a unidirectional sea can 

be represented by [e.g., Longuet-Higgins, 1963] 
N 

•'•(X, 0 = Z Cn COS (Xn -[' •n) 
rt• ! 

N 

2 •,. CnCrn•On(•O n -- •Orn ) COS (In -- Xm "{' En -- Ern) 
g m,n_>rn 
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2g •' CnCm•On•Orn COS (In -- Xm "{' •n -- •rn) rt, m 

1 N 
'• -- Z CnCm•Orn 2 COS (Xn "• •n) COS (Xm "[' •rn) 

g rt,rtt 

where 

•On 2= gkn Xn = knx -- •Ont (2) 

and the •n denote random phases uniformly distributed over 
an interval of 2•r. 

The first-order spectrum is given by the leading term of (1), 
that is, 

1 
Z Cn 2 '• S({D) d{D •0 = ({D, {D '•' d{D) (3) 

The second-order corrections to (3) due to the remaining 
terms of (1) are negligible, being proportional to g-'-. The fih 
spectral moment is defined as 

o øø 1 •r 
In particular, go and/•,/go = •Oo represent the first-order vari- 
ance and mean frequency, respectively. The spectrum is con- 
sidered to be narrow band if [Longuet-Higgins, 1975] 

,; = ,Oo') - l << 1 (5) 

Under this condition we can write 

•' = Z Cn COS (In -[- En) = a(x, t) cos (Xo + q)) (6) 

where a(x, t) and qb(x, t) represent the amplitude and phase 
functions, respectively, defined by 

a exp (idp) -- Z Cn exp [i(Xn - Xo + en)] (7) 

The first-order process *t, is asymptotically Gaussian as the 
number of terms, N, of cosine functions approaches infinity. 
Under this limiting condition it may be more appropriate to 
express (6) as a random Fourier- Stieltj es integral. However, in 
the actual application of (6) to gravity waves and other related 
phenomena the Gaussian approximation is satisfied remark- 
ably well for a finite sum of cosine terms [Lyon, 1970; Yang, 
1973]. In fact, if we do not concern ourselves with extremal 
statistics which depend highly on the tail ends of a distribu- 
tion, N could be as small as 20. Consequently, given that the 
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Fig. 1. Comparison of linear and nonlinear realizations with nar- 
row-band approximation for ko#o •/2 -- 0.2. 

probability structure of (6) is approximated by the Gaussian 
law, the amplitude process a(x, t) is Rayleigh distributed 
[Rice, 1954; Middleton, 1960], that is, 

fa(U) = (U//Jo) exp (- u2/2Ho) u >_ 0 (8) 

The expected number of crests per unit time is given by 
(2•r)-•4//•2) •/2 [Rice, 1954]. Since the expected number of 
crests over the mean period 2•r/0)o is •4//•20)o2) •/2 -• 1, it fol- 
lows from (5) that 

•2 -- •0•0 2 = POlO 2/•2 •4 - po0)o 4 '" po0)04• (9) 

Consider now the second term of (1). Its magnitude can be 
shown to be less than 

N N 2 Y. c•c•(• +,Oo)1,o• ,o4 + Y. c•c•(• ,Oo)1,o• ,o4 
g n,m n,m 

+ Y• c•c•(,o• - ,Oo)1,o• - ,04 -< 4mc•(l + •) (•0) 

where ko -- 0)02/g, and the right-hand side of the expression 
follows from the Schwarz inequality and (9). Therefore the 
contribution of the second term of (1) to *t is at most o(koP. oV). 
Next, by expanding the cosine term and letting 0)n ---- 0)n + 0)o 
-- 0)o and •0m ---- •0m + 0)O -- 0)O the third term of (1) can be writ- 
ten in the equivalent form 

2g o2a2(x, t) + E Cn(•On -- {DO) COS (Xn '•' En)] 2 n 

11 • Cn(0)n - 0)0) sin (Xn + en) (11) 

With the contribution of the last two terms of (11) being 
bounded by 2NkoP. o• by the Schwarz inequality, the third 
term of (1) reduces to 

-- « koa2( x, 0 '1- o(ko#,o 1•) (12) 

Similarly, by setting 0)m 2 • 0)m 2 "1- 0)02 -- 0)02 the last term of (1) 
can be shown to be 

koa2(x, t) COS 2 (Xo q- i•) q- o(ko#,ol•) (13) 

Finally, the substitution of the preceding approximations into 
(1) provides a narrow-band representation for • in the form 

rl(x, t) ---- a(x, t) cos (Xo + q•) 

q- « koa2(x, t) cos 2(Xo + q•) + o(kottoV) (14) 

Each realization of (14) is as an amplitude-modulated Sto- 
kian wave with a mean frequency 0)0, wave number ko -- 
0)o2/g, and phase q•. This interpretation offers certain advan- 
tages over the exact solution (1). One of these stems from the 
obvious similarity of (14) to a deterministic Stokes wave. 
Hence the physical effect of nonlinear corrections disguised in 
the complicated form of (1) is concisely represented by the 
second term of (14), which introduces a vertical asymmetry to 
the linear profile by causing crests to become narrower and 
sharper and troughs to become longer and shallower. Another 
advantage is the simple functional form, which is more ame- 
nable to numerical and theoretical analyses. In particular, 
probabilistic description of surface properties, such as dis- 
placements, wave crests, and heights, can be derived in a 
closed or semiclosed form by using standard techniques which 
evidently fail in view of the intricate form of the exact solu- 
tion (1). 

VALIDITY OF NARROW-BAND APPROXIMATION 

Before we attempt to examine the probabilistic description 
of various surface properties based on the narrow-band ap- 
proximation, it is prudent to assess the validity of such an ap- 
proximation. One possible means of achieving this objective is 
to simulate and compare explicit realizations of the exact and 
approximate solutions. Therefore in the following we may 
proceed to generate samples of the scaled process •/•,/2 in 
the time domain by using both (1) and (14). First, note that 
(14) can be rewritten in the quadratic form 

Z •--' n/•Jl,o 1/2 = Z, q- « kollo'/2(z, 2 -- •,12) q- o(kollo,/2v) (15) 

where 

N 

Z, = #'0--1/2 E Cn COS (Xn q- En) (16) 
n•l 

'•1 •- # '0--1/2 E cn Sin (Xn q- •n) (17) 
n•l 

The simulation for the realizations of (1) and (15) proceeds by 
choosing a set of N random phases •n equally likely over the 
interval (0, 2•r) and by defining 

Ca = {2S(0)n)A0)n} ,/2 n ---- 1, ..., N (18) 

which represents a discretization of the continuous frequency 
range into N distinct bands of width A0) n and central fre- 
quency 0)n- AS an example, consider the spectral form 

$(•o) = (So/&O)(•o + &o - 1) 

S(0)) = -(So/A0))(0)- A0)- 1) 

1 - A0)_< 0)_< 1 

1 --<0)--< 1 + 
(19) 

with • = /•, = SoA0), /•2 = SoA0)(1 + A0)2/6), ko!• '/2 = 
(SoA0))'/2/g, and •2 = A0)2/6. The triangular form of (19) with 
height So, base width 2A0), and mean frequency 0)0-- I rad/s 
does not necessarily represent a general oceanic situation. 
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Fig. 2. Comparison of' linear and nonlinear realizations with nar- 
row-band approximation for ko/.•o •/:' -- 0.1. 

Rather, its functional form is convenient in allowing v: and 
ko/zo '/2 to vary in a simple manner. More familiar forms, such 
as Joint North Sea Wave Project and Pierson-Moskowitz 
spectra, are either too complex or have an invariant band- 
width •. 

Two sets of simulations, corresponding to kolzo •/2 -- 0.1 and 
0.2, were carried out with N = 20 and by varying Aw and 
thereby v: from 0.1 to 0.01 for each set. Some of the character- 
istic results are shown in Figures I and 2 together with the 
corresponding linear counterparts computed from (16). The 
comparison between the nonlinear simulations is very favor- 
able, particularly for small values of both v: and kolz? 2, for 
example, kolzo '/2 -- 0.1 and v: -- 0.01. Obviously, this is consis- 
tent with the requirement kolzo•/2v << 1 embedded in the nar- 
row-band approximation (15). For the same reason the com- 
parison becomes increasingly unfavorable for larger values of 
kolzo•/2v, for example, kolzo •/2 = 0.2 and v: = 0.1. Consequently, 
we can conclude that a narrow-band approximation to (1) in 
the form of (14) or (15) indeed has validity provided that 
kolao'/2v << 1. 

In analogy with ka in the deterministic Stokes theory the 
parameter kope '/2 here can be regarded as a measure of steep- 
ness for the free surface, particularly as v: --> 0. Obviously, this 
analogy becomes irrelevant as v: becomes large, because the 
free surface can no longer be described as an amplitude-mod- 
ulated wave form. For example, in a wind-generated wave 
field, where the spectral characteristics of the saturated free 
surface characterized with sporadic breaking and whitecap- 
ping is given by the Phillips spectrum S(w) -• w -sm 2 s-' at fre- 
quencies above, for example, w = w*, it can be shown that v > 
0.35, kope '/2 •- 0.9, and kope'/2v > 0.3 invariably. Therefore the 
applicability of the narrow-band approximation within a gen- 
eration area is questionable. However, as waves propagate out 
of the generation area, or in a decaying wave field, the spec- 
tral amplitudes are known to fall below the saturation range 
values in an increasing manner toward the high-frequency 
taft. Under these conditions, v: and kolzo •/2 are expected to be- 

come progressively small, suggesting that the narrow-band 
representation would be more appropriate for waves distant 
from a generation area. 

DISTRIBUTION OF SURFACE DISPLACEMENTS 

The second-order surface displacement (15) can be rewrit- 
ten as 

• = ,•/,• = •-' {z, + «•Co •o "• (z, • - Z-b} (20) 
where 

;]rms = •#'0 i/2 = (1 '[- ko 2 #,o)!/% !/2 (21) 

It can be verified that z, and œ, are zero-mean Gaussian with 
the joint density 

f,,,, (u,, u2) = (2•r)-' exp {-«(u, 2 + u2b} lull, lu:,l < oo (22) 

The cumulative distribution of • is defined as 

F c (u) = Prob {g _< u} 

= Prob {z, + « no •o '/: (z,: - •,:) -• •u} (:3) 

Using (22) and paying appropriate attention to the region of 
integration implied in (23), we obtain 

Fc (u) = (:•)-' f•i e-':/: {½rC[,•(,, u) + #] 
+ ere [,•(•, u) - #]} d, (:4) 

where 

fi = 1/2'/2 ko Po'/2 (25) 

a(u) = 0 u •> - fi/2 '/2 ¾ (26) 

a(u) = 2 '/: # {- (1 + 2 '/: yu #-')} 

otherwise, and 

,4 (•, u) = B(l + 2'/:yuB -' + •-:)'/: (27) 

•.•._ . * SIMULATION 
'*•".\ • THEORY 
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).3 • 
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Fig. 3. Probability density of surface displacement for koP. o •/2 -- 0.3. 
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Fig. 4. Probability density of linear and nonlinear crest heights. 

The explicit evaluation of F r or its derivative, which is the 
probability density fr of interest here, requires numerical in- 
tegration. Hence as an illustrative case we let kogo •/•- -- 0.3 
with the inherent assumption that kogo •/'- v << I by virtue of v 
<< 1. The construction of f; proceeds by computing first F; 
with the well-known trapezoidal scheme followed by forward 
finite differentiation over the interval from ? -- -4 to ? -- 6, 
using base points equally spaced by step size A? -- 10 -3. The 
resulting theoretical density f; is displayed in Figure 3. Also 
shown for comparison in the same figure is the corresponding 
empirical density based on 10 n realizations of •' computed 
through (20). 

An approximation to f; in terms of the Gram-Charlier se- 
ries is [Longuet-Higgins, 1963] 

fr (u) -- (2•r)-'/'-e -"'/'- (1 + • X3 H3 + • •H• + • X3'- He) (28) 

where 

H3 -- u 3 - 3u 

H4 -- u 4 - 6u 2 .4- 3 (29) 

H• --- u • - 15u • + 45u'- - 15 

and the coefficients of skewhess and kurtosis corresponding to 
(20) are 

h3 -- 3¾-3ko •,/2 (30) 

= 37 + 6:o + 3no - 3 

respectively. The above approximation is also shown in Fig- 
ure 3 for the case kogo •/'- = 0.3 together with the theoretical re- 
suit and the Gaussian density corresponding to the linear 
process z• -- ,/!/• •/'- for comparison. First of all, it is evident 
that the probability structure of the nonlinear process •' repre- 
sented by either the theoretical density or the Gram-Charlier 
approximation is significantly different from the Gaussian de- 
scription. This difference is in the form of a skewhess imposed 

on the symmetrical Gaussian form resulting in less likely large 
negative values and more likely higher positive values of the 
surface displacement, which is entirely consistent with the ver- 
tical asymmetry of the nonlinear profile with sharper nar- 
rower crests and longer shallower troughs than those of the 
linear profile. Recent studies on the probability distribution of 
the surface displacements, for example, by Huang and Long 

[1979], confirm the validity of this basic skew structure based 
on extensive empirical field and laboratory data. Huang and 
Long [1979] also examine in detail the accuracy of Gram- 
Charlief type expansions, with the conclusion that the particu- 
lar type (28) proposed by Longuet-Higgins [1963] works well. 
This conclusion is also supported here based on the com- 
parison between the Gram-Charlier approximation and the 
exact solution. It is observed, however, that there are a few 
points of concern. The first is the negative range of the Gram- 
Charlief approximation at large negative values of the surface 
displacement, which is not meaningful and, as was noted by 
Huang and Long [1979], introduces a negative bias. Therefore 
in applications this bias must be corrected by shifting, normal- 
izing, and centering the expansion to zero mean. Clearly, 
these operations require a considerable amount of numerical 
effort, implying that the proper application of the Gram- 
Charlief approximation is not as straightforward as its simple 
functional form might suggest. A second point of concern 
arises also in practice from the possibility that the estimates of 
h3 and/h based on field or laboratory data can be unreliable 
because of sampling fluctuations. This point of concern is not 
materialized here simply because the coefficients h3 and • in- 
cluded in the expansion (28) are exact. 

DISTRIBUTION OF CREST HEIGHTS 

Crest heights or, equivalently, maxima associated with the 
nonlinear wave process (14) are given in a dimensionless form 
by 

•c -- & + (1/2 •/') ko •/'-&'- (32) 

where & -- a/arms with arm• ---- (2•) •/•- corresponds to the scaled 
crest height in the linear case. The probability distribution of 
& is the well-known Rayleigh law, that is, 

fa (u) -- 2u exp (-u 2) u >• 0 (33) 

The density of •c in this case follows easily from (32), (33), and 
the relation 

f • (w) = (du/d•)f •(u)l.._•-,{• (34) 
as 

I• (w) = 2/• {1 - (1 + 2w/•-') -'/'} 

ß exp {-/T[-I + (1 + 2w/•-')'/'] '} w >_ o (35) 

with/• defined by (25). 
The probability density represented by (35) is shown in Fig- 

ure 4 for ko!•o •/'- -- 0.28 and 0.14 together with the conven- 
tional Rayleigh form for comparison. It is evident that the 
densities associated with the nonlinear waves differ from the 

Rayleigh form in an increasing manner as kopo •/'- becomes 
large. The general character of this difference is in the form of 
a spreading of the density mass toward the higher crests, 
which is again consistent with the vertical asymmetry of the 
nonlinear waves with sharper and larger crests than the linear 
counterparts, that is, •, - & -- (l/2•/')ko!•o •/'- &'- >• O. The area 
under a density curve to the right of a specified abscissa repre- 
sents the probability with which the specified level will be ex- 
ceeded. This probability, simply known as the exceedance 
probability, is of primary concern in the design of ocean struc- 
tures such as offshore platforms, breakwaters, and sea walls. 
What is suggested by the results here is that the Rayleigh den- 
sity underestimates exceedance probabilities associated with 
higher crests of engineering design concern. 
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Fig. 5. Envelopes of linear and nonlinear surface displacements for 
koP. o •/2 -- 0.1 and • -- 0.01. 

DISTRIBUTION OF WAVE HEIGHTS 

The maximum • defined by (32) is a temporally and spa- 
tially homogeneous random process. As such it represents an 
envelope for each realization of the scaled nonlinear process 
;l/(2po) '/2 above still water level. Similarly, each temporal or 
spatial realization of 

•, -- -ti + (1/2 •/2) ko/•o I/2•2 (36) 

is an envelope of surface displacements below still water level. 
It is well known in the linear case ;/,/(2po) '/: that the corre- 
sponding envelopes are ti and -ti, respectively. The linear and 
nonlinear envelopes defined in the preceding manner can be 
simulated explicitly, using (32), (36), and 

(37) 

This is illustrated in the time domain for the case k01tto •/2 = 0.1 
and v • -- 0.01 in Figure 5, together with the corresponding re- 
alizations of the scaled processes •//(2go) •/2 and •/•/(2go) •/2. 

The local wave height at a fixed x or t is defined as the dif- 
ference between the upper and lower envelopes. Hence in the 
linear case it is given in a scaled form by 

•-- H/Hrms-- & (38) 

where H = 2a and H,n• -- 2(2po) !/2. In contrast with the linear 
case the envelopes •½ and •, are not symmetric with respect to 
still water level. However, both are displaced upward by an 
equal amount (1/2•/•)kol•o•/•d • so that their difference is ex- 
actly the same as that in the linear counterpart. Therefore the 
scaled nonlinear wave height remains identical with • and is 
distributed according to the Rayleigh probability law (33). 

Numerous field observations confirm the validity of the the- 
oretical Rayleigh law, particularly for low and medium wave 
height ranges. However, a discrepancy between empirical data 
and the theory is often noted toward the high wave taft, the 
theory overpredicting the observations. Forristall [1978] attrib- 
utes this discrepancy to the nonlinear, non-Gaussian, and 

skewed nature of the free surface. On the basis of the preced- 
ing results it is evident that these characteristics do not di- 
rectly result in reducing wave heights in a manner consistent 
with field observations. A more plausible mechanism is wave 
breaking, which is a nonlinear effect not directly accounted 
for in the analytical wave models currently available. 

CONCLUDING REMARKS 

Waves distant from a generation area can be approximated 
in terms of an amplitude-modulated Stokian wave process 
provided that the underlying first-order spectrum is narrow 
band. In contrast with the intricate complexity of exact non- 
linear solutions, such an approximation constitutes a simpler 
formulation to study numerically or analytically the nonlinear 
effects on the statistical description of wave field properties. 
This was demonstrated here with a number of results on the 

probability distribution of various surface properties. In par- 
ticular, it was shown that surface displacements can be de- 
scribed exactly to be non-Gaussian and skewed, wave heights 
are distributed according to the Rayleigh probability law, and 
crests are non-Rayleigh, unlike their linear counterparts. 

The proposed approximation can easily be extended to 
other kinematic and dynamic properties of a wave field. Con- 
sequently, it should prove to be a useful concept in the statisti- 
cal modeling of nonlinear waves both in theory and in appli- 
cations under appropriate conditions. 
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