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Abstract. Spheroidal fundamental mode oscillations of the Earth for frequencies 
between 2 and 7 mHz (millihertz) are observed even on seismically quiet days. Two 
hypotheses of the cause of these oscillations are investigated: •he cumulative effect 
of small earthquakes and atmospheric pressure variations. The cumulative effect of 
earthquakes, assuming that earthquakes follow the Gutenberg-Richter law, is shown 
to be 1-2 orders of magnitude too small. The observed amplitudes of modes require 
an equivalent earthquake of magnitude 6.0 everyday, which cannot be achieved by 
summing up contributions from small earthquakes. The hypothesis of atmospheric 
excitation is favored because of the discovery of seasonal variations in stacked 
modal amplitudes for spheroidal modes between 0S20 and 0S40. It is also evaluated 
by comparing observed modal amplitudes with theoretical amplitudes, derived 
from a s•ochastic normal mode theory. The source of excitation is atmospheric 
pressure variations, which indicate turbulent motion of the atmosphere for the 
frequency range of interest and are estimated by barometer data. The observed 
modal amplitudes can be matched by the stochastic norlnal mode theory, indicating 
that a•mospheric pressure variation is large enough to excite solid Earth normal 
modes up to the observed amplitudes. Therefore two lines of evidence, detection of 
seasonal variations and approximate match of overall modal amplitudes, support the 
hypothesis that the continuous background oscillations are excited by atmospheric 
pressure variations. 

1. Introduction 

It is well known that the Earth oscillates at character- 
istic resonant frequencies after large earthquakes. But 
it has been shown recently, much to our surprise, that 
the Earth may be oscillating continuously, regardless 
of the occurrence of large earthquakes. Evidence was 
pointed out by various groups based on different data; 
Nawa et al. [1998] have shown evidence from a super- 
conducting gravimeter in Antarctica, Suda et al. [1998] 
from the International Deployment of Accelerometers 
(IDA) gravimeter data, Tanimoto et al. [1998] from the 
IDA gravimeter data [Agnew et al., 1986] and the Geo- 
scope broadband seismic data [Roult and Montagner, 
1994], and Kobayashi and Nishida [1998] from the In- 
corporated Research Institutions for Seismology (IRIS), 
Global Seismic Network (GSN) broadband seismic data. 

While the initial claim by Nawa et al. [1998] was 
made for superconducting gravi•neter data for a fre- 
quency range between 0.3 mHz and 5 mHz, signals from 
a slightly different frequency range, between 2 and 7 
mHz, can be confirmed by conventional broadband seis- 
mometer records. Plates la and lb show Fourier spec- 
tral amplitudes at two Geoscope stations, KIP (Kipapa) 
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and CAN (Canberra). Spectral amplitudes of accelera- 
tion from each day over 3-4 years are plotted vertically 
with three colors: blue, yellow, and red denote ampli- 
tudes of acceleration less than 0.4 nGal, between 0.4 
and 2 nGal, and above 2 nGal, respectively. Fundamen- 
tal spheroidal mode eigenfrequencies of the Preli•ninary 
Reference Earth model (PREM) [Dziewonski and An- 
derson, 1981], are shown by arrows on the lefthand side, 
and their range is from 0S22 to oS32. In both plates, 
horizontal (yellow) stripes are observed almost continu- 
ously at the eigenfrequencies of fundamental spheroidal 
modes. While occasional high seismic activity produces 
red and yellow regions and tends to bury the yellow 
stripes due to background oscillations, the yellow hor- 
izontal stripes can be identified through the years and 
suggests that these modes exist irrespective of (large) 
earthquake occurrence. 

The aim of this paper is to examine the cause of these 
oscillations by focusing on two hypotheses. The first 
hypothesis is excitation of these modes by cumulative 
effects of small earthquakes. The Earth, being an ac- 
tive planet, has many small earthquakes that are not 
reported in standard earthquake catalogues. It thus 
seems natural to consider cumulative effects of small 
earthquakes for the excitation of normal modes. We will 
demonstrate, however, that such effects are too small 
and are also incompatible with some aspects of the ob- 
servations. $uda et al. [1998], Tanimoto et al. [1998], 
and Kobayashi and Nishida [1998] pointed this out re- 
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Plate 1. (a) Spectral amplitude at KIP for frequencies between 3 mHz and 4 mHz during the 
period between 1989 and 1992. For each day, there is a vertical line. Three different colors, blue, 
yellow, and red, denote three different levels of amplitudes, and indicate amplitudes less than 0.4 
nGal, between 0.4 and 2 nGal, and larger than 2 nGal, respectively. On days of large earthquakes 
and their subsequent few days, vertical red lines appear. The arrows on the left-hand side of the 
figure indicate the eigenfrequencies of fundamental spheroidal modes of the Preliminary reference 
eEarth model (PREM). Angular degrees of modes are from 22 to 32. Yellow horizontal stripes 
are seen at the eigenfrequencies of modes and suggest that they are continuously excited modes. 
(b) Same as Plate la, except that this is for CAN for the period between 1991 and 1993. 
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cently. We add two more arguments against this hy- 
pothesis to strengthen this conclusion and, at the same 
time, to clarify the underlying assumptions in the argu- 
ments. 

The second hypothesis is the excitation by atmo- 
spheric pressure variations; the atmosphere applies pres- 
sure variations everywhere on the surface of the Earth, 
continuously in time. While such effects may be small 
locally, integrated effects for the entire globe may ex- 
cite normal modes. This hypothesis is favored in this 
paper, particularly because average modal amplitudes 
for fundamental modes 0•e20-0•e40 show seasonal vari- 
ations; high amplitudes are seen in June-August and 
December-February, and low amplitudes are seen in 
March-May and September-November. Generally speak- 
ing, amplitudes are high in summer and winter when ei- 
ther the north pole or the south pole is pointing toward 
the Sun and are low in spring and autmnn. It would be 
hard to imagine that sources in the solid Earth such as 
earthquakes could create such seasonal patterns. 

Quantitative evaluation of the atmospheric hypothe- 
sis is also pursued in this paper, which requires a ver- 
sion of normal mode theory that is different from previ- 
ous terrestrial normal mode analyses [e.g., Gilbert, 1971; 
$aito, 1967; Dahlen, 1968]. This is due to the stochastic 
nature of atmospheric pressure variations for frequen- 
cies above 0.5 mHz. Since force by atmospheric tur- 
bulence is stochastic, a stochastic excitation theory of 
the Earth's oscillations, developed by Tanimoto [1999], 
is applied. Input for the force term, that is, the pres- 
sure variations at the surface, is derived from barom- 
eter data for this purpose. We collect barometer data 
from U.S. Geological Survey (USGS) and Terrascope 
networks, which show similar behavior among various 
stations for average pressure and their variations. It 
is shown that a good quantitative match between the 
observed modal amplitudes and theory can be achieved 
with the use of estimated pressure variations. 

In developing the stochastic normal mode theory, we 
take a view that the atmosphere is separate from the 
solid Earth. We regard the atmosphere as the ex- 
ternal source that applies the (surface) force on the 
solid Earth. This approach is different from the cou- 
pled mode approach developed by PVatada [1995] and 
Lognonn• et al. [1998] for the analysis of volcanic explo- 
sion data, which views the media as a system consisting 
of the atmosphere and the solid Earth. This difference 
is not important for our conclusions, however, because 
we are primarily interested in fundamental mode oscil- 
lations of the Earth. Fundamental modes must have 

oscillating counterparts in the atmosphere, but atmo- 
spheric contributions to the modal mass (defined later) 
are much smaller than contributions by the solid Earth. 
Since the modal mass determines the level of excitation, 
the two different views should yield basically the same 
ans•ver. 

In section 2 we will discuss seismic (spectral ampli- 
tude) data, which are the basic data to be explained by 
the theory, and barometer data, which will be used to 
estimate the source of excitation for the atmospheric ex- 

citation hypothesis. We will then discuss, in section 3, 
the cumulative effects of earthquakes and the reasons 
why we do not consider it to be a viable hypothesis. 
In section 4 we show evidence of seasonal variations in 

stacked (averaged)modal amplitude data. In section 5 
we evaluate the excitation hypothesis quantitatively by 
atmospheric pressure variations. Discussions will fol- 
low in section 6. In this paper we will focus on these 
two mechanisms and will not discuss the effect of slow 

or silent earthquakes [Beroza and Jordan, 1990]. We 
do not question the existence of such earthquakes, but 
they would not likely create continuous oscillations with 
seasonal variations. 

2. Data 

We first discuss modal amplitude measurements for 
Geoscope and IRIS GSN data, which constitute the ba- 
sic data set in this study. Acceleration amplitudes of 
spheroidal modes between 3 mHz and 7 mHz are esti- 
mated from this analysis. We then describe barometer 
data from USGS and Terrascope which will be used to 
estimate pressure variations on the surface. A model of 
pressure variation is constructed from this analysis and 
will be used for a theoretical estimate of normal mode 

amplitudes in the next section. 

2.1. Modal Amplitudes 

The basic data to be fit by theory are modal ampli- 
tudes measured at six broadband seismic stations; they 
consist of two Geoscope stations (KIP and CAN), and 
four IRIS GSN stations (PAS, HRV, PFO, and SUR). 
Locations of stations are given in the top six rows of 
Table 1. We measure modal amplitudes following the 
basic procedure described by Tanimoto et al. [1998]. 
The main idea is to exclude earthquake effects as much 
as possible from the data and then measure the av- 
erage spectra from the remaining time periods. The 
procedure for excluding earthquake effects consists of 
a two-step process: (1) use of earthquake catalogues to 
remove the days of large earthquakes and the subsquent 
3-5 days, depending on the size of the earthquakes, and 
(2) visual examination in order to remove data that are 
affected by local (small) earthquakes. We ensure that 
no hint of earthquakes is found in the data through this 
process. We then compute the Fourier spectral ampli- 
tudes for each of the 1-day length data to generate the 
averaze spectral amplitude. Technically, we perform 
the following analysis; for each seismically quiet day, 
we compute 

4/0 U(o•)- 7 w(t)u(t)e-i•tdt' (1) 
where w(t) is the Harming window, u(t) is the 1-day 
time series, and ce is the angular frequency. The coeffi- 
cient 4/T exists so that if u(t) has a sinusoidal form of 
A cos(oct) or A sin(cet), the spectral amplitudes become 
equal to A = IU(o•)l for the frequency range of interest. 
We then remove instrument response effects from 
by division, convert it to units of acceleration, and then 
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Table 1. Geographic Location of Stations 

Station Latitude, (deg N) Longitude, (deg E) Altitude, (m) Analyzed Instrument 
CAN -35.321 148.999 651 STS-1 
KIP 21.423 -158.015 70 STS-1 
H RV 42.506 -71.558 180 STS- 1 
PAS 34.148 -118.172 250 STS-1 
PFO 33.609 -116.455 1250 STS-1 and Barometer 
SUR -32.380 20.818 1770 STS-1 
INU 35.350 137.029 132 STS-1 
GSC 35.303 -116.808 990 STS-1 and Barometer 
ESK 55.317 -3.205 242 STS-1 

B D F B - 15.64 -48.01 1195 Barometer 
BOSA -28.61 25.55 1280 Barometer 
D BIC 6.67 -4.86 125 Barometer 
LBTB - 25.02 25.60 1128 Barometer 
PLCA -40.73 -70.55 1050 Barometer 

stack the records. Examples from two IRIS stations, 
PAS and HRV, are shown in Figure 1. 

There are two aspects to be noted in these stacked 
spectra; the first is the low frequency, with a rising trend 
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Figure 1. Stacked spectral amplitudes from seismi- 
cally quiet days at PAS and HRV. Background trends, 
shown in the figure by dashed lines, are removed when 
modal amplitudes are estimated. Modal amplitudes are 
measured for all spheroidal fundamental modes between 
3 mHz and 7 mHz. 

toward lower frequencies below 3 mHz. The other is a 
sequence of fundamental mode peaks between 3 and 
7 mHz, clearly emerging above the background trend 
exactly at the eigenfrequencies of normal znodes. 

The rising background noise level is almost certainly 
caused by gravitational attraction of temporarily chang- 
ing atmospheric mass near a station. This mechanism 
predicts good correlation between a seismometer and 
a barometer which are colocated at the same station. 
Available data indicate some correlation, and Ziirn and 

Widmer [1995] took advantage of this fact to reduce 
long period noise from seismic data. Note that be- 
fore Ziirn and Widmer [1995], correlation was observed 
mainly in the tidal frequency band, typically for fre- 
quencies less than 0.1 mHz [e.g., Warburton and Good- 
kind, 1977, 1978; Miiller and Ziirn, 1983; Crossley et 
al., 1995], but existence of such correlations in the mil- 
lihertz range had not been demonstrated. Terrascope 
provides a unique array of such colocated barometers 
and broadband seismometers, from which we also con- 
firmed existence of such correlations. Tanimoto [1999] 
discussed a different view, which claimed that surface 
pressure fluctuation due to turbulent atmosphere con- 
tributes to this rising trend. In view of the good corre- 
lation between barometers and seismometers, this view 
should be rejected. However, the theoretical formula- 
tion for the stochastic excitation of normal modes of 

Tanimoto [1999] may be of some value and is actually 
used in a later section. 

In the analysis of modal amplitude data, we will pro- 
ceed with the assumption that background noise and 
modal signals are independent. Some questions may 
be raised on this point. Our analysis is mainly based 
on our belief that the background noise above 3 mHz 
is not caused by the atmosphere, while signals (modal 
peaks) are caused by the atmospheric pressure varia- 
tions. Noise in ground acceleration measurements, be- 
low 3 mHz, is clearly controlled by the atmosphere and 
has an inverse frequency trend (l/f), similar to the 
trend in barometer spectra. Noise above 3 mHz, how- 
ever, changes its character and becomes fiat up to about 
50 mHz (with a possible broad small peak in between). 
On the other hand, barometer spectra show the contin- 
ued inverse frequency trend (l/f) for frequencies much 
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above 3 mHz, which we confirmed at least up to 10 
mHz. Clearly, this change in the noise trend in ground 
acceleration suggests a change in the controlling mech- 
anism of noise at about 3 mHz, that is, something other 
than the atmosphere causes ground motion noise above 
3 mHz; if the modes were excited by atmospheric pres- 
sure variations, they should naturally be independent 
from the background noise, and the following analysis 
would be justified. This view is not, obviously, model 
independent and may require further scrutiny in the fu- 
ture. 

Under the assumption of independence, we first de- 

rive the smooth noise level as shown in Figure 1 by the 
dashed lines. Let us denote it by UN(w) (dashed line) 
and the stacked spectral amplitude by U(w) Modal ß 

amplitudes are then obtained by v/U2(w)- U•v(O: ) at 
each eigenfrequency of modes, assuming the two signals 
are independent phenomena. Measured modal ampli- 
tudes by this procedure are given in Table I and are 
also plotted in Figure 8 with theoretical curves. 

2.2. Barometer Data 

We analyze barometer data in order to construct a 
model of pressure variations as a function of frequency. 
This model is used for evaluation of atmospheric effects. 
We examined three Terrascope stations (ISA, GSC, and 
PFO) and five USGS stations (BDFB, BOSA, DBIC, 
LBTB, and PLCA), all of which have high-frequency 
barometer data, sampled at every second. Their loca- 
tions are given in Table I and are from various parts of 
the world. 

Figure 2a shows the spectral amplitudes at GSC for 
frequencies between 0.1 mHz and 10 mHz. The first 20 
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Figure 2a. Fourier spectral amplitude of barometer 
data at GSC (Terrascope) for the first 20 days of 1994. 
Two arrows are at 0.5 mttz and 1 mI-Iz; the energy- 
containing eddies must exist near these frequencies and 
turbulent energy cascades toward higher frequencies. 
The 1/f trend is consistent with the I(olmogorov scal- 
ing of turbulence. 
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Figure 2b. Correlations among nearby barometer sta- 
tions (Terrascope) for various narro•v (+0.1 mttz) fre- 
quency bands. Station distances vary from 157 km to 
297 kin. There exist virtually no correlations for fre- 
quencies above 0.1 mHz. Surface pressure variation is 
a stochastic source with short correlation distance. 

days of 1994 were analyzed to generate this spectrum. 
Selection of other time intervals generates similar am- 
plitude behavior. Above a frequency of about 0.5 mHz, 
the spectral amplitudes typically show a 1If decreasing 
trend, a consistent feature at all other stations. They 
also show very rapidly changing amplitude variations 
above frequency 0.5 mHz, suggesting very complex be- 
haviors of atmospheric motion. VVe speculate that this 
is related to turbulence in the atmospheric boundary 
layer, which should have 1/f pressure variations on the 
average, if it follows the Kolmogorov (Monin-Obukhov) 
scaling law [e.g., Termekes and Lumley, 1972, Landau 
and Lifshitz, 1987]. Similar behavior of wind veloc- 
ity data is often reported in the meteorological liter- 
ature [e.g., Kaimal and Finnigan, 1994; Garratt, 1992; 
Panofsky and Dutton, 1984]. As expected for spectra 
related to turbulence, correlation analyses among close 
stations such as GSC, ISA and PFO show very little 
correlation (Figure 2b), and yet they all seem to have 
approximately similar spectral amplitude behavior on 
the average. In other words, phase shows very little co- 
herence, but averaged amplitude data show systematic 
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Figure 3a. Average pressure spectra from five USGS stations are shown by solid lines, and the 
average model, which we constructed with fixed 1If trend, is shown by circles. The 1If trend is 
predicted by Kolmogorov scaling and fits the data well, although the data deviate from it slightly. 
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Figure 3b. Average pressure variations from five USGS stations. They describe standard error 
about the average pressure given in Figure 3a. The model is shown by squares. As predicted by 
Kohnogorov scaling, pressure variations also have 1/f trend. 
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1/f behavior at all stations, which is consistent with 
the picture of fully developed turbulence. 

These observations suggest that energy-containing 
eddies exist near i mHz and turbulent energy cascades 
toward higher frequencies. However, the precise fre- 
quency of the energy-containing eddies is hard to deter- 
mine observationally. As we discuss in later sections, 
this will bring in some uncertainties for theoretical es- 
timation of modal amplitudes. 

Figure 3a shows average spectral amplitudes of barom- 
eter data for five USGS stations. We computed the 
Fourier spectra for each day for 2-3 years worth of data 
and took an average of all the data for each station. It 
is clear that pressure shows a 1/f trend as the scaling 
law implies. The best fit 1/f trend is shown by circles 
and its formula is given by P(f) - 0.52/f, where P is 
in Pascals and f is in millihertz. 

Pressure variations about the average pressure (es- 
timated above) are substantial as Figure 2a indicates. 
They are equivalent to the standard errors of pressure 
about the mean given by the above formula. They are 
shown in Figure 3b, which also has a 1/f trend, as the 
Kolmogorov scaling predicts. The best fit to these data 
is shown by squares in the figure and its formula is given 
by P(f)= 0.32/f with the same units. These pressure 
variations are used for the source of atmospheric exci- 
tation in the theoretical modal amplitude estimate. 

In obtaining average pressure and pressure variation 
models, given by the two formulas above, the data were 
corrected for the station altitudes. Altitude correc- 

tion amounts to multiplying the spectral amplitudes by 
exp(z/Hs), where z is the altitude of the station and 
H8 is the scale height of the atmosphere and follows 
from the following model: We assume a simple static 
atmospheric model which has the density distribution 
given by 

p = poe -z/H• (2) 
where P0 is the surface density and the surface is z = O. 
Pressure at altitude z is obtained by the integration 

= pg& = (3) 

The ratio of pressure at altitude z and at altitude 0 is 
given by e -z/HS. Correction by this term is typically 
0-15(station altitudes are about 0-1500 m) and shrinks 
the scatter in data. The data in Figures 3a and 3b (solid 
lines) are all referenced to z = 0 by this procedure. 

3. Small-Earthquake Effects 

Since the Earth is a tectonically active planet, it may 
seem natural to consider cumulative effects of small 

earthquakes to be the cause of these continuous oscil- 
lations. An order of magnitude argument against this 
hypothesis was presented by Tanimoto et al., [1998] and 
Kobayashi and Nishida [1998]. Suda et al. [1998] also 
presented some arguments against it based on the cal- 
culations for all Harvard moment tensor solutions. We 
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Amplitudes of 0S26 at KIP are plotted Figure 4a. 
against the cumulative moment of each day. Raw data 
are shown at bottom. The top panel shows the median 
and variance (L1 norm) estimated from the raw data. 
Data with earthquakes larger than 10 is Nm show lin- 
ear trend; this is because low-frequency amplitudes are 
proportional to moment. This linearity is approximated 
by the dashed line. Amplitudes of this mode become 
fiat for earthquakes below about 10 is Nm. This con- 
tinues to seismically quiet days, whose amplitudes are 
indicated by the arrows. 

add two more arguments against this hypothesis in this 
section; the first set of evidence in section 3.1 does not 
seem to have been pointed out by others. The sec- 
ond argument overlaps, to some extent, with the ar- 
guments already presented by others but is presented 
here for clarity. The main conclusion is that as long 
as the Gutenberg-Richter law for magnitude-frequency 
relation holds for small earthquakes, with a b value of 
about 1, the cumulative effect of small earthquakes can- 
not be the cause of these oscillations. 

3.1. Plot of A26 Versus Moment 

The first argument is purely observational. Figures 
4a and 4b show the plot of measured acceleration ampli- 
tude of the mode 0S• (hereafter A•) against the (cu- 
mulative) moment of each day. The Harvard moment 
tensor catalogue [Dziewonski and Woodhouse, 1983] was 
used for moment calculations for each day. Raw data 
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Figure 4b. Same as Figure 4a, except for CAN. The 
same flattening trend is seen in this figure. 

are plotted at the bottom, and the median and variance 
(L1 norm) are shown in the top panel. 

For days with large earthquakes (larger than about 
1018 Nm), there is clearly a linear trend in Figures 4a 
and 4b, which show a log-log plot of moment versus A20. 
The linear range spans from about 1018 to 1021 Nm. 
The dashed line in the figures is drawn as a reference 
and fits the trend in the data. The formula for this 

dashed line is given by 

A20 = 100(nGal) 1021 Mo (4) 
where Mo is moment in Nm and yields A20 - 100 nGal 
at Mo = 1021 Nm. Because this mode is in the low- 
frequency band (about 3 mHz), the amplitude should 
be proportional to moment. Theoretically, this trend 
should continue to the small-moment range. We have 
applied corrections to this theoretical line for moments 
below 2 x 101' Nm, because there is more than one 
earthquake per day on the average. This effect changes 
the gradient of the dashed line to a shallower gradient 
below this moment. 

One of the most striking observational features in Fig- 
ures 4a and 4b is the flattening trend of the amplitudes 
below 10 ls Nm. It is not only constant for days with 
smaller earthquakes (down to 5 x 101ø Nm) but con- 
tinues to the level derived from seismically quiet days. 

The arrows denote the average amplitude for seismi- 
cally quiet days and are obtained from data in Figures 
5a and 5b. Figures 5a and 5b show modal amplitude 
measurements of oS2o from seismically quiet days by 
solid and open circles; solid circles are average (acceler- 
ation) amplitudes for oS2o computed by averaging over 
4-0.02 mHz about the (PREM) eigenfrequency of the 
mode. Open circles are background amplitudes, mea- 
sured from the same spectra for the frequency range 
between the eigenfrequency of 0S25 and that of 0S20, 
again averaging over 4-0.02 mHz. Averages for solid 
circles and open circles are denoted by the solid and 
dashed lines, respectively, and they are shown by the 
arrows in Figures 4a and 4b. 

These results suggest that, regardless of the size of 
earthquakes, as long as earthquakes are below 10 ls Nm, 
this mode (0S20) is excited at the observed level. Inde- 
pendent and equivalent evidence was reported by Ek- 
strSm [1998], who gave a more precise threshold of mag- 
nitude 5.8. This feature, especially its constancy in am- 
plitude, is not likely to be explained by the cumulative 
effect of small earthquakes. It seems more natural to in- 
terpret that some mechanism, other than earthquakes, 
is controlling the amplitudes of this mode; this mecha- 
nism must be an almost, constant process in time, and 
only when large earthquakes occur (larger than 10 ls 
Nm) is it overwhelmed by earthquake effects. 

3.2. Cumulative Effect of Small Earthquakes 

Figures 4a and 4b show earthquake effects by the 
dashed lines, but they are not cumulative effects. Cu- 
mulative effects must be evaluated by integrating from 
small earthquakes to a certain upper threshold in mag- 
nitude, with the weighting given by the number of 
earthquakes n(M) as a function of magnitude M. Let 
us assume the form of the Gutenberg-Richter law for 
n(M), 

log n(M) = a- bM. (5) 
•3;e assume b = 1.0 and determine a by the fact that 
there is approximately one earthquake for M > 8 per 
year. Then we obtain 

In 10 10s_sl (6) 
for n(M) per day. The amplitude-moment formula (4) 
can be converted to the amplitude-magnitude formula 
by using the moment (Mo in Nm)-magnitude (M) for- 
mula 

log10/1Io = 1.53I + 9.0. (7) 

The cumulative effect of small earthquakes should then 
be bounded by 

;•r n(M)A(M)dM • 5.5 x 10 ø'SMr-s (8) 
where the unit for amplitude is nGal and Mr is the 
maximum magnitude for the cumulative effects to be 
calculated. Note that this formula assumes perfectly 
constructive effects; if random contributions from each 
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Figure 5a. Average accelerations of a spheroidal mode 0S20 on seismically quiet days (solid 
circles) for KIP. Background noise was measured by integrat, ing the frequency range between 
0S2s and 0S20 (see text, for details). This mode 0S26 is above the noise level on most seismically 
quiet days, although there are a few exceptions. 

earthquake are considered, V/,Z(Jkl) rather than n(M) 
should be used in the estimation. However, since we are 
interested in bounding the effects of sinall earthquakes, 
we use the above formula. 

According to the formula (8), the cumulative effect 
of earthquakes up to magnitude 5 (Mr = 5) is 0.017 
(nGal), while the observed amplitudes are about 0.2-0.4 
nGal. Therefore the cumulative effect of small earth- 

quakes is more than an order of magnitude too small to 
explain the observed amplitude of oscillations. 

Combined with the constant amplitude observation 
for moment below about 1018 Nm, it is very unlikely 
that the cumulative effect of small earthquakes can ex- 
plain the observed oscillations. Contradiction of this 
statement would require evidence for the violation of the 

Gutenberg-Richter frequency-magnitude relation for small 
earthquakes. However, the required b value change in 
the Gutenberg-Richter formula is quite large; for exam- 
ple, in order to explain the constant amplitude observa- 
tion in section 3.1, there must be a reduction of b value 
from a typical value of 1 to about 0.3. This drastic 
change goes against most, evidence accumulated by mi- 
croearthquake studies, which typically report a b value 
of about 1 down to the negative magnitude range. 

4. Seasonal Variation 

Confirmation of seasonal variations in modal ampli- 
tudes is important because it constrains the range of 
possible excitation sources. This is particularly impor- 
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Figure 5b. Same as Figure 5a, except at CAN. There are more exceptions for this station, but, 
overall, 0S26 seems to be excited on most days. 
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tant since most processes in the solid Earth do not show 
seasonal variations. Such an observation would suggest 
that the source is in the atmosphere or in the oceans. 
However, all of our initial efforts to detect such vari- 
ations for a single mode failed, due probably to a low 
signal to noise ratio in the data. It became possible to 
detect seasonal variations only after we began to exam- 
ine average modal amplitudes for modes between 0S20 
and 0S40. 

Since modal peaks such as those in Figure I have 
relatively constant amplitudes, a simple averaging pro- 
cedure would not introduce bias toward any particular 
modes; thus we simply took an average of 21 spheroidal 
modes from 0S20 to 0S40. Technically, we proceeded as 
follows: Starting from the Fourier spectra computed for 
each day, we isolated each mode by using the eigenfre- 
quencies from an Earth model PREM. We took spectral 
amplitudes within 4-0.01 mHz of each eigenfrequency of 
PREM and averaging 21 modes. Modal peaks are not 
exactly at the eigenfrequencies of PREM due to the 
fact that PREM is only an approximation to the av- 
erage Earth model and also because the Earth's three- 
dimensional structure introduces eigenfrequency shifts 
for various geographic locations. Taking the average 
over the range 4-0.1 mHz seems to alleviate this prob- 
lem. We then collected these averaged modal ampli- 
tudes for 21 modes from quiet days and examined their 
statistical behaviors; Figure 6a shows the results from 
nine stations, listed in the top nine rows of Table 1. 
A bell-shaped distribution of the data is found for all 
nine stations with a little skewhess and some outliers. 
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Figure 6b. Seasonal variations in averaged modal am- 
plitudes. Average modal amplitudes for modes between 
052o and 0540 are plotted. The bottom panel shows the 
results from nine stations, given in the top nine rows of 
Table 1. When the poles are toward the Sun (summer 
and winter), amplitudes are higher. 
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Figure 6a. Distribution of averaged modal ampli- 
tudes. The number of data within 0.5 ngal range is 
plotted. Analyses are performed for the data in the 
bell-shaped regions. In the case of SUR we set the up- 
per limit as 0.7 nGal. Differences in the means are 
related to differences in background noise levels, but 
they are subtracted out in the analysis for the seasonal 
variations. 

It is generally easy to identify the extent of bell-shaped 
regions; the only exception may be SUR, for which we 
assigned the upper limit of 0.7 nGal (a change to 0.75 
nGal does not alter the result very much). We focused 
on data from bell-shaped regions, binned the data ac- 
cording to months, subtracted the average for each sta- 
tion, and applied statistical analysis. Differences in the 
mean values among nine stations may result from dif- 
ferences in the background noise level (dashed lines in 
Figure 1), but they are subtracted out in the analysis. 
We examined variations about the means for this paper. 

Figure 6b shows the monthly averages of data. In 
the top panel, monthly averages and their standard 
errors from all stations are given by circles and error 
bars. Error bars represent one standard error, sug- 
gesting that these variations are resolved but perhaps 
marginally. In the bottom panel, lines shown for each 
station in monthly averages demonstrate that all sta- 
tions contain very similar seasonal variation patterns; 
high amplitudes are observed in June-July-August and 
December-January-February, and low amplitudes are 
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observed in March-April-May and September-October- 
November. Peak-to-peak variations of these amplitudes 
are 5-10the average modal amplitudes, approximately 
agreeing with seasonal pressure variations in barometer 
data. While there are some differences from station to 

station, this seasonal variation pattern seems to hold 
for seven stations in the Northern Hemisphere as well 
as two stations in the Southern Hemisphere. This result 
suggests that when either the north pole or the south 
pole is pointing toward the Sun, these oscillations are 
excited at higher amplitudes. The real cause of this pat- 
tern may be the occurrence of winter in some parts of 
the world, either in the Northern Hemisphere or in the 
Southern Hemisphere, since average atmospheric pres- 
sure variation in each hemisphere is known to have a 
maximum in winter and a minimum in summer [Peixoto 
and Oort, 1992]. 

5. Atmospheric Excitation 

In this section we examine the atmospheric excitation 
hypothesis, using the estimated pressure wriations as 
the source of excitation. We present the formula, dis- 
cuss the sensitivity of some parameters to the accelera- 
tion amplitudes, and compare the theoretical estimates 
to the data. The main conclusion is that atmospheric 
pressure variations can excite normal modes to the ob- 
served level. 

5.1. Background and Basic Formula 

In order to excite normal modes at frequencies of a 
few millihertz by the atmosphere, the atmosphere must 
supply energy in this frequency band. As we discussed 
above with Figures 2a and 2b, atmospheric motion in 
this frequency band indicates turbulent motion. There- 
fore the source of excitation must be a stochastic force, 
and the theory must take into account such a feature 
of the source. Tanimoto [1999] considered a problem of 
normal mode excitation by a stochastic source, which 
we basically follow in this paper. Its main conclusion 
can be summarized as follows. Let ui(t) be the dis- 
placement; then ui(t) can be written as a summation of 
normal modes as 

u,(t) = Z an(t)u[n)' (9) 

where an(t) is the excitation coefficient for the nth nor- 
mal mode and • © is the eigenfunction. If a global 'a i 

stochastic force is applied at the surface of the Earth, 
the excitation coefficient can be written by 

<1 

where R is the radius of the Earth, Ir• is the normal- 
ization of an eigenfunction, f]' and f]" are the spa- 
tial integration variables on the surface of the Earth, 
and t' and t" are the time integration variables. Q• 
is the attenuation parameter for the nth mode, w• is 
its eigenfrequency, and the force (pressure) correlation 
< f(t', V•)f(t ", V") • is the source of excitation. There 
are two sp•'•tial variables and two temporal variables be- 
cause spatial correlation and temporal correlation are 
the keys to this problem. The existence of this tempo- 
ral correlation term distinguishes our formulation from 
that in the work by Kobayashi and Nishida [1998], al- 
though it is not the only difference. 

In the most general case the force term has contribu- 
tions from various wavelength components and can be 
written [e.g., Goldreich and Keeley, 1977] 

< f(t', ff)f(t", >= 

fo'"' d-•P•(Q"Q")G•(t"t")H•(""Q")' (11) 
where the integration with respect to wavelength is per- 
formed from 0 to the scale height of the atmosphere, 
for which we use H• = 8.7 km in this paper. The ex- 
act upper limit does not affect the final results because 
the integrand decreases to a small value well before this 
upper limit is reached, at least for the range of modes 
of our interest. P• is the power and is the square of 
pressure variations, G•(t',t" is the temporal correla- 
tion function, and H• (W, W') is the spatial correlation 
function; all are functions of wavelength ,X. The rela- 
tionship for pressure variations, obtained in section 2, 
is used for P•; the Kohnogorov scaling law provides the 
wavelength dependence of the integrand in the above 
formula and has the following features [e.g., Landa• 
and Lifshitz, 1987; Frisch, 1995; Termekes and Lumley, 
1972]: 

X 2/3 
- , 

where PH is the pressure variation at the longest wave- 
length, which is equal to the scale height H,. The char- 
acteristic time for various sizes of turbulent eddies is 

given by rx = 2X/vx for wavelength X. The longest 
characteristic time is for the wavelength equal to the 
scale height H, and is given by rH = 2H,/vH, (for this 
period, we write rH instead of rH,). Velocity at wave- 
lengths X and velocity at H are related by vX/VH, = 
(A/H,) 1/a. Using the ratio rX/rH = (X/Hs) 2/a, the 
above pressure relation can be converted to 

P• - PH r•, (13) 
TH 

which then becomes a relation in the frequency domain 
(period). There is thus a one-to-one correspondence 
between the waveler_gth of an eddy and its frequency, 
although it is nonlinear. 

For the time correlation function, we assume the form 

G(t' t") - exp{-(t'- t") 2 , (k,r/5)2 }, (14) 
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where we dropped ,X from r and maintain this conven- 
tion hereafter. This functional form has been used in 

heleoseismology for the last 20 years [e.g., Goldreich and 
Keeley, 1977; markciteBalmforth, 1992] for the stochas- 
tic excitation of Sun's normal modes by turbulent con- 
vection. Division by 5 is introduced here, because two 
sinusoids with the same periodicity r lose correlation 
if they are shifted by r/4. At a time shift of r/5, the 
correlation becomes about l/e; since we assume the ex- 
ponential form, we adopt this factor. However, because 
there are obviously some uncertainties in this parame- 
ter, we introduce k•, which is a constant of order unity. 
We will examine the sensitivity of this parameter on the 
theoretical estimates in the next section. 

For the spatial correlation function, we simply assume 
Hx = 1 if the distance between two points, • and •" 
is less than the wavelength •, and Hx - 0 otherwise. 
As the subscript indicates, it changes with wavelength. 
MathematicMly, we express this as 

_ - ") =x 
(15) 

Again we introduced a factor of order unity, k•, and 
examine its sensitivity in the final results. 

Under these •sumptions we can evaluate the inte- 
gr•s in (10) (see the appendix). Since the data are 
vertical component seismograms and are given in units 
of acceleration, the formula for the vertical acceleration 
is given here: 

292 
(••)•/•M,• • •00 ' 

where •I• is •he mod• m•s and is defined in •his paper 
by 

- 
- 

U• and V• are the verticM •nd horizontal eigenfunctions 
of a spheroid• mode [e.g., A• and Richards 1980]. 

ß 
large bu• deviates from it when x is sraM1 (see equation 
(24) in the appendix). Generally• if the frequency is 
dose to 1/•H, i• deviates from 1, but quickly reaches • 
for high-frequency modes. 

5.•. •ensitivity 

In the formula for acceleration amplitude (16)• there 
are b•ically three uncertain parameters; the firs• is the 
low-frequency cutoff, 1/•, tha• corresponds to the fie- 
quency of the l•rgest scale of the eddy. The other two 
•re •r •nd •u, two constants introduced in considera- 
tion of the temporal correlation and the spatial correla- 
tion. Among •hese •hree parameters, the sensifivi W of 
•u on •he acceleration is relatively e•y •o predict, since 
acceleration is simply proportional to •. The depen* 
deuce of the other parameters is harder to understand 
intuitively. 
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Figure ?. Sensitivity analyses for (top) 7' H and (bot- 
tom) k•. 

Figure 7 shows the sensitivity of rH (top) and of k• 
(bottom) to the acceleration estimate given by (16). In 
the discussion of barometer data, we showed that it is 
difficult to determine at which frequency the energy- 
containing eddy exists (1/rH). Figure 2a seems to in- 
dicate that it starts near 1 mHz but with large uncer- 
tainty. In the top panel of Figure 7, in order to ex- 
amine how the choice of this parameter affects modal 
amplitudes, we show three different cases of 1/rH: 0.5 
mHz (solid line), 0.75 mHz (short-dashed line), and 1 
mHz (long-dashed line). Both k• and ku are fixed at 
1.0 (k• = ku = 1.0). Pressure variations at these fre- 
quencies are computed by P(f) = 0.a2/f. This figure 
basically shows two features; one is that as 1/rH is in- 
creased, the peaks move toward higher frequencies. The 
other feature is that the change in amplitude is less than 
30-40and is much smaller than the effects of k•, shown 
in the bottom panel. 

The bottom panel shows the results when k• was var- 
ied as k• - 1.2, 1.0, and 0.8, while 1/rH was fixed at 
0.75 mHz and ku at 1. In the acceleration formula, k• 

appears in the coefficient as k• s/2 in addition to the 
argument of the function F(). The figure indicates that 
a decrease of k• from 1.2 to 0.8 increases the amplitudes 
by about a factor of 2, while the locations of peaks move 
toward higher frequencies. 

It is clear that these parameters introduce some un- 
certainties into the estimates of acceleration amplitudes. 
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Figure 8. Three different cases of k• and r• are compared with modal amplitude data (solid 
circles). In each panel, three curves correspond to different values of kn (see text). The best fit is 
achieved by the bottom panel, which has the energy-containing eddy at frequency 2 mHz. Overall, 
stochastic atmospheric pressure fluctuation can generate 0.2-0.4 nGal of modal amplitudes and 
supports the atmospheric excitation hypothesis. 

Variations of a factor of 2-3 may be introduced into the 
acceleration estimates within the reasonable range of 
these parameters. Therefore we conclude that this the- 
ory does not have precise predictive capability. Rather, 
it basically provides order of magnitude estimates for 
excited modal amplitudes. Considering the constra/nts 
(pressure range) provided by barometer data, however, 
it would be hard to change the estimates by an order of 
magnitude. 

5.3. Comparison Between Theory and Data 
Since the sensitivity analysis shows unavoidable un- 

certa/nties of our estimates by a factor of 2-3, we do 
not attempt to exactly fit spectral amplitude data by 
theory. Instead, we present a few different cases of typ- 

ical parameter ranges and discuss comparisons between 
theory and observation. In evaluating the formula (16), 
except for the three parameters we vary, we fixed the 
scale height of the atmosphere H8 = 8.7 km, the Earth's 
radius R- 6371 km, pressure variations Ps computed 
by P = 0.32/f, and modal parameters (eigenfrequency 
w,, its modal mass JkI•, and its attenuation parameter 
Q,) to those of the standard Earth model PREM. 

Figure 8 shows three plots, each of which contains 
three different cases of theoretical predictions. From 
top to bottom, k• is held at 1.0 (k• = 1.0) and 1/r• is 
varied as 1/r, = 1.0 mHz (top), 1.5 mHz (middle), and 
2.0 mHz (bottom). In each panel, three cases of kn are 
given by a solid line, a short-dashed line, and a long- 
dashed line, the values being kn = 1, 2, and 4. In all 
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Table 2. Modal Amplitudes at Six Stations 

Mode CAN KIP PAS HRV PFO SUR 
0 S 20 0.29 0.27 0.31 0.35 0.31 0.25 
0 S 21 0.18 0.24 0.23 0.30 0.29 0.39 
0 $ 22 0.34 0.32 0.28 0.34 0.29 0.47 
0 $ 23 0.40 0.24 0.30 0.30 0.31 0.31 
0 $ 24 0.26 0.24 0.28 0.28 0.27 0.43 
0 $ 25 0.35 0.39 0.31 0.32 0.39 0.39 
0 S 26 0.33 0.41 0.35 0.30 0.08 0.34 
0 S 27 0.37 0.29 0.30 0.33 0.20 0.23 
0 S 28 0.37 0.38 0.36 0.27 0.41 0.34 
0 $ 29 0.33 0.36 0.35 0.34 0.29 0.37 
0 $ 30 0.36 0.35 0.20 0.29 0.30 0.33 
0 $ 31 0.26 0.31 0.31 0.31 0.42 0.29 
0 $ 32 0.36 0.41 0.32 0.33 0.54 0.26 
0 $ 33 0.31 0.33 0.34 0.35 0.43 0.27 
0 $ 34 0.27 0.35 0.28 0.26 0.39 0.41 
0 $ 35 0.23 0.40 0.31 0.31 0.26 0.37 
0 S 36 0.32 0.35 0.34 0.37 0.26 0.42 

0 $ 37 0.38 0.47 0.37 0.35 0.54 0.44 
0 $ 38 0.27 0.40 0.41 0.29 0.40 0.41 
0 $ 39 0.39 0.29 0.38 0.28 0.50 0.37 
0 $ 40 0.22 0.44 0.36 0.27 0.23 0.40 
0 S 41 0.33 0.38 0.42 0.27 0.30 0.44 
0 S 42 0.34 0.32 0.31 0.23 0.30 0.40 

0 $ 43 0.37 0.28 0.27 0.23 0.40 0.31 
0 $ 44 0.31 0.39 0.30 0.26 0.38 0.30 
0 $ 45 0.35 0.29 0.34 0.25 0.37 0.48 
0 S 46 0.25 0.36 0.35 0.25 0.43 0.36 
0 $ 47 0.23 0.35 0.40 0.12 0.26 0.35 

0 $ 48 0.35 0.24 0.16 0.22 0.21 0.32 
0 $ 49 0.18 0.34 0.15 0.16 0.18 0.35 
0 $ 50 0.36 0.23 0.29 0.28 0.41 0.25 
0 $ 51 0.18 0.40 0.27 0.28 0.32 0.30 
0 $ 52 0.25 0.48 0.24 0.24 0.26 0.21 
0 S 53 0.27 0.41 0.29 0.21 0.27 0.24 
0 S 54 0.00 0.05 0.23 0.14 0.05 0.28 

Data are in nanoGals. 

cases the smaller the k•, the smaller the acceleration 
amplitude. The observed modal amplitudes from six 
stations (Table 2) are plotted by circles with error bars. 

The match between theory and data is generally good 
in these plots, in particular, the bottom panel. They 
demonstrate that atmospheric pressure change at the 
surface is capable of exciting solid Earth normal modes 
up to the level of about 0.2-0.4 (nGal). They also sug- 
gest that in order to fit the overall frequency trend in the 
data, the frequency of energy-containing eddies (1/r•) 
should be close to 2 mHz rather than 0.5 or 1 mHz. 

We thus conclude that the stochastic atmospheric ex- 
citation theory can explain amplitudes of continuously 
excited normal modes. Even though the observed at- 
mospheric pressures are incoherent at a short distance 
of 150 km (and probably at an even shorter distance 
about 20-30 km), they are sufficient, to excite the oscil- 
lations of the Earth through the stochastic excitation 
process. 

6. Discussion 

We mainly discuss two subjects here. The first will 
deal with possible future observations which can reduce 
uncertainties in our theory. The second deals with the 

differences between our theory and the theory presented 
by Kobayashi and Nishida [1998]. 

6.1. Future Observation 

While the theory presented in this paper can gener- 
ally explain modal amplitudes, it does contain a few im- 
portant assumptions which should be tested by data in 
the future. These are mainly associated with the three 
parameters we introduced in the above discussion, r•, 
k•, and k•, for which we have very few observational 
constraints. 

The most critical parameter among them is clem'ly 
k• because of the k• -'•/2 dependence in the final for- 
mula (1õ). It is certainly desirable for this parameter 
(on temporal correlation) to be constrained observation- 
ally by barometer data. However, this is hard to do at 
present, because our theory requires the temporal cor- 
relation function as a function of wavelength. The ex- 
pected correlation disappears at a distance of about 10 
km, which is comparable to the scale height of the atmo- 
sphere. This suggests that we need to install barometers 
at an interval of 2-3 km or less in order to constrain this 

parameter. At present, all available barometer data (to 
us) are separated by about 100 km and do not provide 
useful information on this parameter. 

A similar argument applies to spatial correlation (or 
the parameter k•), although this is less sensitive to the 
final result because of • dependence on amplitude. 
It is obvious that if we want to better constrain those 

parameters and sharpen our theoretical estimates, we 
would need a much denser array of barometer data. 

6.2. Comparison With Previous Study 

Recently, Kobayashi and Nishida [1998] presented a 
similar argument on the atmospheric excitation of nor- 
mal modes. Our main conclusion does not differ from 

theirs, although our approaches and the final formulas 
differ and thus necessitate making some comments. 

In terms of the large-scale picture, the questions we 
attempted to solve were actually (slightly) different. 
This paper and that of Tanimoto [1999] sought the solu- 
tion of expected normal mode excitation when stochas- 
tic force acts on the surface of the Earth. Kobayashi 
and Nishida [1998] solved for the surface acceleration 
formula when a steady state is assumed for the balance 
of energy between the energy from the atmosphere to 
a mode and the energy dissipated through oscillations. 
Such a steady state is not assumed in our approach, 
although the results led toward that direction because 
of the statistical behavior of atmospheric pressure. Be- 
cause of this difference in the questions, the two ap- 
proaches can obviously lead to different results (formu- 
las). In the following we list some of our observations 
on the differences and our thoughts on them. 

First of all, Kobayashi and Nishida [1998] theory does 
not contain the temporal correlation term. It appears 
to us that temporal correlation is an important prop- 
erty in atmospheric turbulence (or pressure variations). 
Depending on the temporal correlation function, ampli- 
tudes of excited modes would differ by almost an order 
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of magnitude. Their theory is equivalent to assuming 
it to be one for all wavelengths, while our theory uses a 
smaller number (described by the exponential function 
used for Gx(t',t")). This term should also introduce 
frequency dependence of amplitudes. 

Second, Kobayashi and Nishida [1998] started with a 
formula that shows the balance of energy between work 
done by the atmosphere on a particular mode and the 
kinetic energy of the same mode. In view of the strain 
energy and the gravitational energy, this may not be 
justified; although this difference may amount to only a 
small factor. They also used surface particle velocity in 
expressing the kinetic energy of a mode, which should 
also introduce a small discrepancy because modal am- 
plitudes decrease with depth. 

Third, our formula (16) shows that acceleration am- 
plitude is proportional to vr-•, whereas their theory 
shows amplitude is proportional to Q. Since modal Q 
values are about 200-300, this would lead to a significant 
difference for modal amplitudes. This difference also 
originates in the basic assumptions of our approaches. 
In our theory it seems inescapable that the formula will 
have x/ZJ dependence, because a stochastic theory in- 
volves computation of an ensemble which would always 
lead to a term proportional to Q for a decaying sinu- 
sold; modal amplitude for acceleration (and for velocity 
and displacement) is proportional to its square root and 
thus a • term must emerge from such an analysis. 
Q dependence in the work by Kobayashi and Nishida 
[1998] originates in the assumption that in order to have 
the steady state, energy input for a mode must be pro- 
portional to a;E/Q, where E is the kinetic energy of a 
mode. Their result directly follows from this assump- 
tion. 

Fourth, the pressure value that Kobayashi and Nishida 
[19981 used for the Earth (17 Pa at 1/rs, their Table 
1) is more than an order of magnitude larger than the 
observed pressures from barometer data. Correction on 
this point will make theoretical estimates based on their 
formula smaller than observation by an order of magni- 
tude. 

Those differences indicate that the two approaches 
(theories) are quite different. While both reached qual- 
itatively the same conclusion, that the atmosphere can 
excite normal modes of the Earth at the observed level, 
this may be more of a coincidence. 

7. Conclusions 

The main points of this paper can be summarized as 
follows: 

1. Even for days without effects from earthquakes 
larger than the moment 10 •8 Nm, fundamental 
spheroidal modes between 3 and 7 mHz are ob- 
served almost every day and have acceleration am- 
plitudes of about 0.2-0.4 nGal. This requires an 
equivalent earthquake of magnitude 6.0 every day. 

2. The cumulative effect of small earthquakes is sim- 
ply too small to explain the observed amplitudes. 
This argument fails if large deviation from the 

Gutenberg-Richter magnitude-frequency law oc- 
curs for small earthquakes, but such a violation is 
not very likely. Also the cumulative effect cannot 
explain the constancy of observed modal ampli- 
tudes below the moment about 10 •s Nm; in prin- 
ciple, if the b value is as low as 0.3, this could 
be explained, but such a low value is inconsistent 
with previous microearthquake studies. 

Seasonal variation is detected in average modal 
amplitude data for 21 spheroidal modes between 
0S20 and 0S40. High amplitudes are seen in June- 
August and in December-February when either 
the north pole or the south pole is pointing toward 
the Sun. The critical cause may be the occurrence 
of winter in some parts of the world, since atmo- 
spheric pressure (henrispherical average) is known 
to have a maximum in winter and a minimum in 

summer. Because of the detection of this varia- 

tion, the excitation source is not likely to be in 
the solid Earth. 

. The observed modal amplitudes can be quanti- 
tatively matched by the stochastic normal mode 
theory, using the observed atmospheric pressure 
variation as input. Even though the atmospheric 
surface pressure is spatially incoherent, globally 
applied random pressure fluctuation is sufficient 
to generate normal modes to the observed level 
through the stochastic excitation process. 

Appendix: Evaluation of Integrals 
In the analytical evaluation of the integrals, the most 

difficult part is in evaluating the following integral K: 

K • dr' dt"e- •-¾Y (2t-t'-t") 

sin 0;(t t') sin w(t - t") e- . X 2 
•2 ' ' . (18) 

This integral can be evaluated by changing the integra- 
tion variables from t ' and t" to t+ and t_ defined by 
t+ = (t' + t")/2 and t_ = (t' - t")/2. Then it becomes 

K = •-• dr_ dt+e 
4t 2 

x {cos 2•t_ - cos 2•(t - t+)}e- . -'r. (19) 

Complete analytical evaluation is straightforward from 
this formula. However, if we can assume Q >> 1, which 
is true for Earth's fundamental spheroidal modes (typ- 
ically 200-300), the expression becomes much simpler. 
Keeping only the terms with O(Q), we obtain 

ß 

This formula will allow us to remove two integrations 
with respect to t' and t" in (10). Combined with the 
assumption on the spatial integration (15), we obtain 
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< lanl 2 •ra/2Q•R2 k•k• •s 

The integration with respect to F/ simply produces 
Un 2 + l(l + 1)1/•. The integration with respect to • is 
converted to one with respect to r by using the relation 

r A 
. (22) 

This integration with respect to r can be analytically 
evaluated by using 

drr s e -at2 = (1- e - - oz 3 

Ol2T•-t c•r• _ ½- )o 
2 

By defining the function F() by 

(23) 

• 22 F(x)- 1-e -•-xe -•---e -• (24) 2 ' 

we obtain the expression (16) after some lengthy but 
straightforward algebra. 

In the above derivation it may appear that setting 
the upper integration limit as Hs in (21) is rather ar- 
bitrary and is not necessarily justified. It turns out, 
however, that the final result is not sensitive to this up- 
per limit. This is because the integrand contains an 
exponentially decaying term for long wavelengths and 
decreases to a very small number well before & = Hs is 
reached. This can also be confirmed in the transformed 

integration with respect to r in (23). For modes with 
eigenfrequencies above 2 mHz, the exponentially decay- 
ing term exp(-ar•/) becomes so small that this integral 
is well approximated by the first term only (1/a a on 
the right-hand side); this is equivalent to saying that 
the upper limit in (21) is insensitive to the final result 
or it is sufficiently large. This statement does not apply 
to low-frequency modes below 1 mHz, but the observed 
continuous oscillations are all above 2 mHz. 
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