
Geophysical Journal International
Geophys. J. Int. (2013) doi: 10.1093/gji/ggt185

G
JI

S
ei

sm
ol

og
y

Excitation of microseisms: views from the normal-mode approach
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S U M M A R Y
Non-linear interaction of ocean waves is a widely accepted mechanism of microseism excita-
tion for frequencies approximately between 0.05 and 0.5 Hz. Longuet-Higgins published the
most influential paper on this subject in 1950 and his main contributions can be summarized
in two points; the first is on the double-frequency mechanism and the second is on the de-
pendency of excitation on ocean depth. The two results were derived for different media, the
first point for an incompressible liquid (ocean) and the second point for a compressible liquid
layer over an elastic half-space. The two features naturally come out in the normal-mode for-
mulae. We note, however, that the use of the Longuet-Higgins formula, that showed efficiency
of excitation based on ocean depth, is not suitable for interpreting land-based observations
because his formula was for displacement at ocean bottom. Reevaluation of this dependency
for a land-based observation shows similar results for the depth of maximum excitation, but
the sharpness of this peak is reduced significantly. Some recent observational studies tried to
identify the source area of excitation by using this ocean-depth dependency, but such a result
needs to be revised to a larger source region according to our results. We confirm that the
maximum excitation of microseisms exists and occurs when the ocean depth is about 2.7 km.
It is thus not surprising to find an efficient pelagic source for microseisms, although existence
of the wave–wave interaction in the source region is essential.

Key words: Non-linear differential equations; Surface waves and free oscillations;
Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Seismic noise makes up a significant portion of seismograms and
has been regarded as unwanted noise until about 10 yr ago. However,
recent developments in seismology have shown that useful infor-
mation about the Earth structure can be obtained from its analysis
(e.g. Campillo & Paul 2003; Sabra et al. 2005; Shapiro et al. 2005).
Its source of excitation is not well understood, however, and sources
may vary depending on the frequency band of seismic noise. We do
know, however, that the most dominant seismic noise, the micro-
seisms for frequencies approximately between 0.05 and 0.5 Hz, is
caused by ocean waves.

Longuet-Higgins (1950) has been the most influential paper on
the theory of microseism excitation by ocean waves. We examine
the same problems in this study by applying a seismic normal-mode
theory that has been developed after his paper (Gilbert 1970; Dahlen
& Tromp 1998). This was partly done by Tanimoto (2007) which
showed that the original pressure term by Longuet-Higgins (1950),
the famous double-frequency pressure term, naturally arises in the
normal-mode analysis. We will extend this analysis to a laterally
heterogeneous Earth by the JWKB approximation and examine the
other aspect of the results in Longuet-Higgins (1950), namely on
the influence of ocean depths for the excitation of microseisms. It

is essential to extend the theory to a laterally heterogeneous Earth
because the excitation source is in the ocean and most observations
are on land.

Recent numerical attempts to estimate microseism amplitudes
tend to use the original Longuet-Higgins’ formula, thus using a
formula for observation at ocean bottom (e.g. Kedar et al. 2008;
Ardhuin et al. 2011; Stutzmann et al. 2012), which possibly lead to
incorrect results. Evaluation of this incorrectness requires numerical
analysis, but modelling microseisms using a formula for an ocean-
bottom observation cannot be correct for land-based observations.

Longuet-Higgins (1950) stated clearly that the analysis that led
to his famous double-frequency pressure formula was valid in an
incompressible liquid but the assumption of incompressibility was
not justified for commonly observed microseisms. He extended the
theory to a compressible fluid layer over an elastic half-space and
showed that the excitation becomes a function of ocean depth. This
result is important as the excitation becomes the maximum for
a particular ocean depth. It has been used recently by Kedar et al.
(2008) to argue for a pelagic microseism source in the North Atlantic
Ocean and a claim for a relatively focused source. We will evaluate
how land-based observations could differ from those results.

The aims of this paper are twofold: one to extend the formulae to
a laterally heterogenous Earth so that we can evaluate the land-based
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observations and the other to examine the ocean-depth dependence
of efficiency of microseism excitation. We will summarize our ap-
proach in Section 2, and describe Longuet-Higgins’ derivation on
the optimum ocean depth and compare the differences by numerical
evaluation in Section 3. Conclusion will be in Section 4.

2 N O R M A L - M O D E A P P ROA C H
A N D J W K B F O R M U L A

In this section, we summarize our normal-mode formulae for seis-
mic noise excitation. They are based on the formulae in Tanimoto
(2007) which was for a laterally homogeneous Earth and will be
extended to a laterally heterogeneous Earth by the JWKB approxi-
mation. This will be the basis for numerical evaluation in Section 3.

2.1 Normal-mode formula in spherical coordinate

In Tanimoto (2007), it was shown that the displacement wavefield
generated by interactions among ocean waves is given, in the Carte-
sian coordinate, by

u(t) = − Lx L y

(2π )2

∫ ∞

−∞
dk R(k)

∫ t

−∞
dτ

∫ ∞

−∞
dk′

× sin ω(t − τ )

ω
ρω′2U (0) cos(2ω′τ )a(k′)a(−k′), (1)

where u(t) is the displacement vector, LxLy is the source area with x
and y defining the horizontal plane, R(k) is an eigenfunction vector
of Rayleigh waves with horizontal wavenumber k = (kx, ky) and is
given by

R(k) =

⎡
⎢⎢⎢⎣

U (z)

V (z) ikx
k

V (z) iky

k

⎤
⎥⎥⎥⎦ ei(kx x+iky y), (2)

where the order is z, x and y components. The integration with
respect to τ exists in (1) because the excitation source is continuous
in time. The variables k′ and ω′ are the wavenumber and the angular
frequency of ocean waves and they are distinguished from those
of Rayleigh waves, ω and k, by the primes. a(k′) is the surface
amplitude of ocean waves with wavenumber k′ and a(k′)a(−k′)
means multiplication of amplitude of waves that propagate in the
opposite directions. ρ is density in the ocean and dispersion relation
for ocean waves, ω′2 = gk′ tanh (k′d), relates ω′ and k′ (k ′ = |k′|)
where d is the ocean depth. The excitation source is at x = y = z =
0 at the ocean surface. Strictly speaking, the source is within the
depth range of ocean waves which is typically 100 m (ocean waves
at period about 14 s), but considering the wavelength of excited
seismic waves, it can be treated to be at the surface. Since the
excitation source is essentially a single force at the surface of the
ocean, the integrand contains U(0) which is the surface value of
Rayleigh wave vertical eigenfunction.

In the formal normal-mode derivation, there emerges a horizon-
tal force term in the analysis (Tanimoto 2007, 2010; Webb 2007,
2009) but it is much smaller than the vertical force term in the mi-
croseism frequency band (approximately 0.05–0.5 Hz) and thus is
not considered in this paper.

In eq. (1), the Cartesian coordinate was used. We will convert
the above formula to a spherical one in this paper, as microseisms
are observed in a broad area and sphericity may not be ignored. In

terms of formula, only a few changes need to be made in the above
formula. First, the integral over k,

1

(2π )2

∫ ∞

−∞
dk R(k) (3)

will be replaced by a summation over normal modes∑
p

sp(x), (4)

where sp is an eigenfunction vector for the pth spheroidal mode. It
has the form (e.g. Dahlen & Tromp 1998)

sp(x) =
(

Un(r )Y m
l ,

Vn(r )√
l(l + 1)

∂Y m
l

∂θ
,

Vn(r )√
l(l + 1)

∂Y m
l

sin θ∂φ

)
, (5)

where the mode number p specifies a set of (n, l, m); n is the overtone
number and Y m

l is spherical harmonics with angular degree l and
angular order m.

Hereafter, we restrict to a vertical component for simplicity. Eq.
(1) becomes

uz(t) = −Lx L y

∑
p

Up(r )Up(r ′)Y m
l (θ, φ)Y m

l (θ ′, φ′)

×
∫ t

−∞
dτ

sin ωp(t − τ )

ωp

∫
dk′ρω′2 cos(2ω′τ )a(k′)a(−k′),

(6)

where (r, θ , φ) is the location of seismograph and (r′, θ ′, φ′) is the
source location.

The pressure generated by ocean waves was given by (Tanimoto
2007)

p(t) =
∫

dk′ρω′2 cos(2ωt) a(k′)a(−k′), (7)

which is equivalent to the Longuet-Higgins’ (1950) pressure for-
mula (in our notation). We introduce the single force (source) f(t)
by absorbing −LxLy in it, assuming the source area is small.

f (t) ≡ −Lx L y p(t). (8)

If we denote the Fourier spectra for this force by F(ω), we can write

F(ω) = −Lx L y

∫
dk′ iρωω′2

4ω′2 − ω2
a(k′)a(−k′), (9)

where we used the fact that Fourier transformation of cos (2ω′t) is
iω/(4ω′2 − ω2).

Using the fact that time domain convolution becomes a simple
multiplication in the Fourier domain and the Fourier spectra of
sin (ωpt)/ωp is 1/(ωp

2 − ω2), we can write the Fourier spectra of
uz(t), uz(ω), as

uz(ω) =
∑

p

F(ω)

ω2
p − ω2

Up(r )Up(r ′)Y m
l (θ, φ)Y m

l (θ ′, φ′), (10)

where the primed location (r′, θ ′, φ′) is the source location and
(r, θ , φ) is the receiver location.

This is the normal-mode formula for microseisms in a layered
laterally homogeneous Earth.

2.2 JWKB formula

Typical microseism observations are made by seismographs on land.
Since the excitation is in the ocean, seismic waves naturally go
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Non-linear excitation analysis of microseisms 3

through laterally varying structure. We will obtain the JWKB for-
mula that will be an extension of the formula (10). The deriva-
tion was already summarized by Dahlen & Tromp (1998) and we
will simply follow their procedure. The main parts on this topic
in Dahlen & Tromp (1998) were originally published in Tromp &
Dahlen (1992a,b, 1993).

For a laterally homogeneous Earth, Dahlen & Tromp (1998)
showed that the Green’s tensor in the frequency domain can be
written

G(x, x′; ω) =
∑

p

1

ω2
p − ω2

sp(x)sp(x′). (11)

For a vertical displacement due to a vertical force (source), we can
write

Gzz(ω) =
∑

p

1

ω2
p − ω2

Up(r )Up(r ′)Y m
l (θ, φ)Y m

l (θ ′, φ′), (12)

which is essentially the same with (10) except for the source term
F(ω).

This eq. (12) is for a laterally homogeneous Earth. Extending it to
a laterally smoothly varying medium and restricting to a propagating
wave, Dahlen & Tromp (1998) derived the JWKB formula

Gzz(x, x′) =
∑
rays

U (r )U ′(r ′)√
8πkR(r )SR(x, x′)

expi(
∫ R

S kRdl−M π
2 + π

4 ), (13)

where kR is the wavenumber vector along a propagation path (kR =
|kR|) and SR(x, x′) is the geometrical spreading factor for each ray.
We now distinguish eigenfunctions at the source (U ′) and at the
receiver (U) by using the prime because Earth structure differs lat-
erally. This formula is for an elastic case. The effects of attenuation
requires addition of an exponential term to this formula. The sum-
mation indicates contributions from multipaths and higher modes.
M is the Maslov index, counting the number of caustics along a ray
path.

As the difference between (10) and (12) is only due to the term
F(ω), we can immediately write down our solution for vertical
displacement spectra

uz(ω) = F(ω)
∑
rays

U (r )U ′(r ′)√
8πkR(r )SR(x, x′)

expi(
∫ R

S kRdl−M π
2 + π

4 ) . (14)

This is the JWKB formula for a microseism source in the frequency
domain.

3 O C E A N D E P T H D E P E N D E N C E

Now we focus on the ocean depth dependency of microseism ex-
citation. We summarize the Longuet-Higgins’ result first and then
discuss our normal-mode formula.

3.1 Longuet-Higgins’ approach

By analysing the case of a compressible liquid layer (ocean) over
an elastic half-space, Longuet-Higgins (1950) showed that the ef-
ficiency of microseism excitation varies with ocean depth. In the
context of this paper, an important point is that he used a displace-
ment formula at ocean bottom. This makes the use of his formula
unsuitable for the interpretation of many microseism observations
as most seismographs are on land.

Longuet-Higgins (1950) derived a formula for the ocean-bottom
displacement for a medium with a homogeneous liquid layer over
an elastic half-space. The excitation source was a point source at
the surface of the liquid layer. The displacement at ocean bottom

was expressed as (eq. 178 in Longuet-Higgins, 1950, but using our
notation for angular frequency and wavenumber)

W (ω, r )eiωt = − 1

2π

∫ ∞

0

J0(kr )kdk

ρ2ω2G(ω, k)
eiωt , (15)

where J0 is the Bessel function of zeroth order, k is the wavenumber,
r is the horizontal distance, ρ2 is the density of the elastic (lower)
half-space and G(ω, k) is the characteristic function for the medium.
The zeroes of G(ω, k) determine the dispersion relation for surface
waves. He refers to them as Stoneley waves instead of surface waves.
In current literatures, Stoneley modes often refer to modes that are
trapped at a discontinuity but in his derivation the modes contain all
surface wave modes as the function G is complete for the medium
that had a homogeneous liquid layer over an elastic homogeneous
half-space.

From this formula, he derived the next formula (eq. 186 in
Longuet-Higgins 1950) for the spectral amplitude which has been
quoted often

W̄ = ω1/2

ρ2β
5/2
2 (2πr )1/2

[
N∑

m=1

c2
m

]1/2

, (16)

which contains contributions from fundamental modes to the
(N − 1)th higher mode. Residue contributions for surface wave
poles, yield the terms ci (i = 1, 2, . . . , m). From the variations of ci

(i = 1, 2, . . . ) with ocean depth, he pointed out that the excitation
of microseisms vary with ocean depth. For the fundamental-mode
Rayleigh waves, his relation for the most efficient ocean depth is

d = 0.85
β2

ω
. (17)

If β2 = 3.2 (km s−1), for example, the maximum excitation of
secondary microseisms (0.15 Hz) occur for an ocean depth of 2.9
(km). For the next three higher modes, he showed that 0.85 has to be
replaced by 2.7, 4.1 and 6.3, respectively, although for most obser-
vations, the fundamental modes are most relevant to the discussion
as the excitation source is shallow.

3.2 Numerical comparison

Eq. (14) shows that the main difference between an ocean-bottom
observation and an on-land observation will arise from the differ-
ence for U(r)U ′(r′). We now suppose that the radius at the ocean
surface and at the receiver on land are both r = R. If the ocean depth
is d, the Longuet-Higgins’ formula corresponds to the case when this
term is U ′(R)U ′(R − d). We assume that the ocean-bottom site for
observation has the same oceanic structure with the source location.
For a land-based observation site, this term becomes U ′(R)U(R).

In this section, we numerically compare these terms. We will com-
pute the eigenfunctions of oceanic structure with different ocean
depths from 0 to 10 km. Beneath the ocean, we keep the same solid
Earth structure with PREM (Preliminary Reference Earth Model;
Dziewonski & Anderson 1981). For a structure on land, we use the
average structure for an SCEC CVM model (Southern California
Earthquake Center Community Velocity Model 3.0; Kohler et al.
2003).

Fig. 1 shows a comparison of the two terms at 0.15 Hz, the dom-
inant frequency of the secondary microseisms. For different thick-
nesses of the oceanic layer, we computed Rayleigh wave eigen-
frequencies and eigenfunctions, and numerically evaluated the two
terms. Both curves were normalized by the maximum of each curve.

We note the two main differences; the first is that the values for
observation at ocean bottom (solid) show a much sharper peak, as a
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4 T. Tanimoto

Figure 1. Comparison of displacements generated at ocean bottom and
on land. Most microseism observations are on land, thus the dash curve
should apply. Longuet-Higgins’ formula (1950) was for displacement at
ocean bottom. In this case, the peak (as a function of ocean depth) becomes
very sharp.

function of ocean depth, than the values for a land-based observation
(dash). The second is that the ocean depth for the maximum peak
differs slightly. The peak for the ocean-bottom displacement is at
2.3 km while the peak for the land-based observation is at 2.7 km.

The reason for these differences can come from in the values for
U ′(R − d), the ocean-bottom values for a vertical eigenfunctions,
and the values for U(R), the surface eigenfunction values of a re-
ceiver side on land. The difference between them is caused by the
existence of an oceanic (liquid) layer on top which shows up in the
shape of U ′(R − d). Fig. 2 shows the variations of U ′(R − d) at
four different frequencies 0.05, 0.10, 0.15 and 0.20 Hz. This figure
shows how the ocean-bottom values U ′(R − d) change with differ-

Figure 2. The reason for the sharpness in peak in Fig. 1 is in the term
U(R − d), the vertical eigenfunction at ocean bottom. The values at four
frequencies are shown. All show rapid drop-off beyond a certain depth. For
0.15 Hz, a sharp drop-off occurs when the ocean depth exceeds about 2 km.
Multiplication of this function will make the peak sharper and also move the
peak to smaller ocean depth (Fig. 1, solid). There is no such feature in the
values U(R), the surface value of eigenfucntion for a continental structure.

ent thickness of oceans. The values of U ′(R − d) are 1 for shallow
oceans but they sharply decrease beyond a certain ocean depth. In
the case of 0.15 Hz (red), the values of U ′(R − d) change sharply be-
yond the ocean depth 2 km. The eigenfunction values at an on-land
site, U(R), do not have such features. This sharp change contributes
to the two features in Fig. 1 described earlier; first, a peak in Fig. 1
becomes sharper because the right side of the peak drops off due to
this feature in U ′(R − d). And second, a slight change of the peak
depth towards a shallower depth (2.3 from 2.7 km) occurs, because
of the same rapid fall on the deeper ocean side.

These results indicate that a land-based observation of micro-
seisms should show dependence on ocean depths but the effects
are much more milder than indicated by the Longuet-Higgins’ for-
mula. It follows that an identification of a source area, using this
information on ocean depths, becomes much broader than that indi-
cated by Kedar et al. (2008). However, the location of the maximum
excitation should not be affected very much.

3.3 The most efficient ocean depth for excitation

While our formula differs from the Longuet-Higgins’ formula, our
results confirm an important aspect of his results. That is on the
existence of most efficient ocean depth for the excitation of mi-
croseisms. In Fig. 3, we show the depth dependence of the term
U ′(R)U(R) at four frequencies. They are for land-based observa-
tions. The curve for 0.15 Hz (red) is the same with the dash line in
Fig. 1. The peak for 0.15 Hz is found when the ocean depth is 2.7 km.
While this value could change for different solid Earth structures,
this result suggests that the most efficient excitation occurs when
the depth of ocean is around 2–3 km.

This statement only applies to the microseisms at 0.15 Hz, the
dominant microseisms in the Earth. For different frequencies, the
optimum ocean depths for the excitation vary; they are 2.0 km for
0.20 Hz, 4.0 km for 0.10 Hz and 7.7 km for 0.05 Hz (Fig. 3 and
Table 1). In general, the optimum ocean depth becomes larger for
lower frequency noise.

Figure 3. Ocean depth effects by our formula at four frequencies. It is
important that there is an optimum ocean depth for microseism excitation.
At 0.15 Hz, the peak emerges at 2.7 km (of ocean depth) for a PREM-like
solid structure. For different frequencies, the peak ocean depth varies. The
widths of the peaks are much broader than what were predicted by the
Longuet-Higgins’ formula.
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Table 1. Ocean depths of the most efficient excitation of microseisms at
four frequencies. The maximum amplitudes occur at 0.15 Hz. Our results
were numerically obtained. Longuet-Higgins’ results were computed using
his formula h = 0.85β2/ω using β2 = 3.2 (km s−1).

Frequency (Hz) Our estimates (km) Longuet-Higgins formula (km)

0.05 7.7 8.7
0.10 4.0 4.3
0.15 2.7 2.9
0.20 2.0 2.2

Numerical predictions for the most efficient ocean depths do
not differ very much from Longuet-Higgins (1950) values. Table 1
compares the values for the most efficient ocean depths from the
eigenfunctions and the values predicted by the formula d 0.85β2/ω

(0.85 is from Longuet-Higgins 1950). β2 is the S-wave velocity
of the underlying solid half-space. We used β2 = 3.2 (km s−1) for
Table 1 which was the S-wave velocity at the top of the solid layer
in our model. The difference for 0.05 Hz is larger than other cases
but within the main microseism frequency range (0.10–0.20 Hz),
the differences are only about 0.2–0.3 km. They basically confirm
Longuet-Higgins’ results although his results were derived for a
very simple structure.

4 C O N C LU S I O N

By deriving an independent normal-mode theory for the excitation
of microseisms, we evaluated the main conclusions by Longuet-
Higgins (1950). The importance of wave-wave interactions and the
double frequency mechanism naturally emerge in the normal mode
theory.

Excitation of microseisms varies with ocean depth. The maxi-
mum excitation occurs for an ocean depth of 2.7 km for a PREM-like
solid Earth structure, basically supporting Longuet-Higgins’ (1950)
conclusion derived for a simple layer over a half-space medium.
Differences are found in the width of the peak or the sensitivity of
excitation to ocean depths. These differences arose from the fact
that Longuet-Higgins (1950) used a formula for displacement at the
ocean bottom. For land-based seismograph data, depth dependence
is much less sharper than his results indicated. An estimate for a
source area, based on the Longuet-Higgins’ formula (1950), needs
some revision and the source area should become larger than pre-
vious estimates. Overall locations of the source area, however, are
not likely to be affected very much.
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