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Instability of a viscous interface under horizontal oscillation
Emma Talib and Anne Juela�
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�Received 1 January 2007; accepted 22 June 2007; published online 18 September 2007�

The linear stability of superposed layers of viscous, immiscible fluids of different densities subject
to horizontal oscillations, is analyzed with a spectral collocation method and Floquet theory. We
focus on counterflowing layers, which arise when the horizontal volume-flux is conserved, resulting
in a streamwise pressure gradient. This model has been shown to accurately predict the onset of the
frozen wave observed experimentally �E. Talib, S. V. Jalikop, and A. Juel, J. Fluid Mech. 584, 45
�2007��. The numerical method enables us to gain new insights into the Kelvin–Helmholtz �KH�
mode usually associated with the frozen wave, and the harmonic modes of the parametric-resonant
instability, by resolving the flow for an exhaustive range of vibrational to viscous forces ratios and
viscosity contrasts. We show that the viscous model is essential to accurately predict the onset of
each mode of instability. We characterize the evolution of the neutral curves from the multiple
modes of the parametric-resonant instability to the single frozen wave mode encountered in the limit
of practical flows. We find that either the KH or the first resonant mode may persist when the fluid
parameters are varied toward this limit. Interestingly, these two modes exhibit opposite
dependencies on the viscosity contrast, which are understood by examining the eigenmodes near the
interface. © 2007 American Institute of Physics. �DOI: 10.1063/1.2762255�

I. INTRODUCTION

The periodic excitation of fluid interfaces can lead to a
wide variety of dynamics. Vertical oscillations, for instance,
may either destabilize or restabilize fluid interfaces. Faraday
waves are commonly observed at the interface between sta-
bly stratified fluids,1 while the Rayleigh–Taylor instability,
which arises when a denser liquid is placed on top of a
lighter one, may be suppressed by vertical oscillations.2 Os-
cillations applied parallel to the flow have also been found to
suppress instabilities, for example in a viscous film flowing
down an inclined plane.3 Similarly, Coward and
Papageorgiou4 showed that the inclusion of background
modulations parallel to a basic two-layer Couette flow could
stabilize long wavelength instabilities driven by viscosity
stratification, over a wide range of viscosity contrasts.

When superposed layers of immiscible fluids are oscil-
lated horizontally, they are accelerated differentially because
of their different densities. This results in a parallel, time-
periodic shear flow, which also depends significantly on the
viscosity contrast between the fluids.5 Interfacial instabilities
in the form of standing waves have been observed in both
cylindrical geometries6,7 and rectangular vessels,5,8–10 where
they are commonly referred to as frozen waves. In the rect-
angular vessel, the presence of end walls imposes a zero
horizontal volume-flux, resulting in a streamwise pressure
gradient which yields counterflowing fluid layers. Lyubimov
and Cherepanov11 examined the stability of superposed lay-
ers of inviscid fluids contained between horizontal oscillating
plates with a zero horizontal volume-flux. By decoupling fast
oscillatory motion from the mean flow in the limit of large

frequencies and vanishing amplitudes of forcing, they de-
rived, on average, a steady streamwise pressure gradient con-
tribution to the mean flow equations. Their linear stability
analysis yielded a dispersion relation analogous to the steady,
inviscid Kelvin–Helmholtz instability.12 For layer depths
larger than the capillary length, the most unstable mode ex-
hibits a finite wavelength determined by the capillary length.
Khenner et al.13 extended this inviscid analysis to arbitrary
frequencies and amplitudes of forcing. Similarly to Kelly14

who considered layers of infinite depth, they reduced the
inviscid linear stability problem to a Mathieu equation. Thus,
they found parametric resonant regions of instability associ-
ated with the intensification of the capillary-gravity waves at
the interface.

In this paper, we extend the above linear stability model
to include the effect of the viscosities of the liquids in layers
of finite depth. Our aim is to gain an overview of the modes
of instability arising in this system, and their sensitivity to
the viscosity contrast. As demonstrated by the excellent
quantitative agreement between experiments and computa-
tions for the onset of the short wavelength frozen wave,5 this
viscous model is sufficient to quantitatively predict the onset
of instability observed in a vessel with end walls �except in
the close vicinity of the walls�. In this limit, however, the
neutral curves exhibit only one mode of instability in con-
trast with the multiple resonant parametric modes presented
by Khenner et al.13 for a wide range of parameters.

In contrast with the Faraday instability,1 the existence of
a basic shear flow necessitates the numerical solution of the
linearized perturbation equations governing layers of finite
depth for perturbations of arbitrary wavenumber. Analytical
solutions have only be obtained in the specific limits of lay-
ers of infinite depth7 and long wavelength perturbations.15a�Electronic mail: anne.juel@manchester.ac.uk
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Kamachi and Honji15 investigated the stability to long wave-
length perturbations of two fluid layers subject to a time-
periodic horizontal pressure gradient in the limit of zero in-
terfacial tension. The configuration they considered differs
from our system in that the external oscillatory forcing was
imposed through the pressure gradient, so that their basic
flow was neither driven by the density contrast between the
layers, nor required to satisfy a zero horizontal volume-flux
condition. As a result, they found that layers of equal densi-
ties could become unstable provided they had different kine-
matic viscosities.

A numerical solution of the linear stability problem un-
der consideration in this paper was previously obtained for
arbitrary wavenumbers by Khenner et al.,13 using finite dif-
ferences to approximate the spatial dependence of the flow
and a Fourier expansion to resolve its time-dependence.
They focused on layers of equal viscosities, but could not
resolve low viscosity flows with nondimensional frequencies
�=�d2

2 /�2�360, where � is the angular frequency of forc-
ing, d2 is the depth of the upper layer, and �2 is the kinematic
viscosity of the upper layer. We employ a pseudospectral
discretization scheme to approximate the spatial dependence
of the perturbed flow field. Rather than integrating the result-
ing differential equation in time,3 we apply the fast iterative
scheme introduced by Or16 to calculate the marginal stability
thresholds. This method yields excellent resolution, and thus,
enables us to reach the low viscosity limit with values of
��4�104, as well as to investigate a wide range of viscos-
ity contrasts �1�N1=�2 /�1�3�104, where �1 is the kine-
matic viscosity of the lower layer�.

The model is formulated in Sec. II and details of the
numerical method are presented in Sec. III. When capillary
forces are significant compared to vibrational forces and the
density and viscosity contrasts are moderate, our model pre-
dicts a parametric instability with neutral curves comprising
successive resonant tongues. These are discussed by com-
parison with the linear stability predictions of the inviscid
model13 in Sec. IV A. The lowest order mode, commonly
referred to as the Kelvin–Helmholtz �KH� mode, undergoes a
transition from long to finite wavelength, which is addressed
in Sec. IV B, for arbitrary values of the viscosity contrast.
We show in Sec. IV C that the viscous model is essential to
predict the critical amplitude and most unstable wavenumber
of each resonant mode accurately, particularly when the vis-
cosity contrast is large. We find that the shape of the neutral
curves varies significantly with the relative influence of cap-
illary, gravity and vibrational forces. The thresholds of the
KH mode and the first resonant mode are often of the same
order, compared with the larger thresholds of the higher or-
der resonant instabilities. Thus, we focus on the evolution of
these two modes with changes in the fluid parameters in Sec.
IV D. In Sec. IV D 1, the decrease in capillary forces toward
the realistic values of the interfacial tension for which the
frozen wave is observed, indicates the persistence of the first
resonant mode and the disappearance of the KH mode usu-
ally associated with the frozen wave. The variation of the
density contrast in Sec. IV D 2 yields regions where either
mode is the most unstable and thus a value of R1=�2 /�1

�where �1 and �2 are the densities of the lower and upper

layer, respectively� for which the threshold of both instabili-
ties are the same. Thus, the dynamics may be affected by
nonlinear interactions between these linearly unstable
modes.17,18 Intriguingly, the two modes exhibit opposite de-
pendencies on the viscosity contrast. Only the KH mode,
which becomes increasingly unstable, persists for large val-
ues of N1. The respective instability mechanisms are eluci-
dated with the time-averaged perturbation stream functions
in Sec. IV D 3.

II. FORMULATION

A. Governing equations

A schematic diagram of the model is shown in Fig. 1.
We consider two superposed layers of incompressible and
immiscible fluids bounded above and below by rigid plates.
We choose a Cartesian coordinate system where x* is parallel
to the undeformed fluid interface, which lies at z*=0, and z*

is parallel to the acceleration of gravity. The plates are oscil-
lating sinusoidally, which in the frame of reference of the
moving plates, corresponds to a sinusoidal external accelera-
tion of the fluids in the x* direction. The superscript * denotes
dimensional variables. The denser fluid is placed in the lower
layer, so that the configuration is gravitationally stable. Each
fluid layer is characterized by a density �	, a kinematic vis-
cosity, �	 and a height, d	, where the subscripts 	=1,2 de-
notes the lower and upper layers, respectively. The interfacial
tension between the fluids is denoted by 
. Using d2, a�,
�−1, and �2a� /d2, where �2=�2�2 is the dynamic viscosity
of the upper layer, as length, velocity, time, and pressure
scales, respectively, the dimensionless equations governing
the two-layer flow, in the frame of reference of the oscillat-
ing boundaries, are

�
�v	

�t
+ A��v	. � �v	 = − R	 � p	 +

1

N	

�2v	 −
G0�

A
k̂

+ � cos�t�î , �1�

� . v	 = 0, �2�

where v	= �u	 ,w	� is the velocity in each layer.
�= ��d2

2� /�2 and A=a /d2 are the dimensionless frequency
and amplitude of oscillation, respectively, R	=�2 /�	 and
N	=�2 /�	, where R2=N2=1, are the ratios of densities and

FIG. 1. Schematic diagram of the two-layer fluid system in the frame of
reference of the oscillating rigid boundaries. The unperturbed interface
�dashed line� coincides with the x* axis and the perturbed interface is shown
with a solid line. The superscript * denotes dimensional variables.
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viscosities, respectively, and G0=g / �d2�2�=A2 Fr−1, where
Fr= �a��2 /gd2, is a modified inverse Froude number.

Since the rigid boundaries are stationary in the oscilla-
tory frame of reference, the no-slip conditions are given by

v1 = 0 at z = − d and v2 = 0 at z = 1, �3�

where d=d1 /d2 is the ratio of layer depths. The primitive
form of the interfacial conditions, comprising the kinematic
condition, the continuity of velocity, and the balance of nor-
mal and tangential stresses, at z=��x , t�, where � measures
the interfacial deformation, are expressed respectively as,

1

A

��

�t
+ �v1 . ��� = v1 . k̂ , �4�

v1 = v2, �5�

�n̂ . �1� . n̂ − �n̂ . �2� . n̂ =
�

WêA
� · n̂ , �6�

�t̂ . �1� . n̂ = �t̂ . �2� . n̂ , �7�

Wê= ��2d2
3�2� /
=We/A2, with We=�2�a��2d2 /
, is a

modified Weber number, �	 denotes the stress tensor in each
fluid expressed as

�	 = − p	I +
1

R	N	

��v	 + ��v	�T� ,

where I is the identity matrix. n̂ is the outward, normal unit
vector pointing from fluid 1 into fluid 2 and t̂ is the tangent,
unit vector on the interface given by n̂= �−�� /�x ,1��1
+ ��� /�x�2�−1/2 and t̂= �1,�� /�x��1+ ��� /�x�2�−1/2, respec-
tively.

In addition, following Refs. 11 and 13, we enforce a zero
net volume-flux in the x-direction,

�
−d

�

v1 · îdz + �
�

1

v2 · îdz = 0, �8�

in order to model the counterflowing layers generated in ves-
sels with endwalls.

B. Base flow solution

The base flow, �v̄	 , p̄	�, is periodic, parallel to the hori-
zontal boundaries and the interface remains unperturbed. It
takes the form,

ū	�z,t� = R�eit	A	em	z + i	SR	

�
− 1
 + B	e−m	z
� , �9�

FIG. 2. Base flow solution at t=0, cal-
culated for R1=0.49, G0=1.99�10−1,

Wê=2.0�102, d=1, and A=0.4 and
different upper layer viscosities so
that �N1 remains constant: �a� N1=1
and �=3.927�104; �b� N1=102

and �=3.927�102; �c� N1=103

and �=3.927�101; �d� N1=104 and
�=3.927. Note the thinness of the
boundary layers in the lower layer,
where the nondimensional frequency
is �1=�N1=3.927�104.
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p̄	�z,x,t� = R�−
G0�

R	A
z + Sxeit + C� , �10�

where m	=�i�N	 with i= �−1�1/2, the integration constants
A	, B	, and S are determined by imposing conditions �3�, �5�,
�7�, and �8� and C is an arbitrary constant. Their analytical
form is detailed in the Appendix. Examples of base flows at
t=0 are shown in Fig. 2 for four values of the viscosity ratio
N1=1, 100, 1000, and 10000. The profiles evolve consider-
ably in both layers despite the constant nondimensional fre-
quency in the lower layer, �1=�N1=3.927�104.

C. Perturbation equations

According to Squire’s theorem, which was extended to
two layers by Hesla et al.,19 it is sufficient to consider only
two-dimensional disturbances to the base flow. This choice is
also justified by the experimental observation of a two-
dimensional frozen wave. In deriving the stability equations,
we express the governing Eqs. �1� and �2� in terms of the
stream function, 
	, defined as

u	 =
�
	

�z
, w	 = −

�
	

�x
,

and seek a normal-mode solution20 of the infinitesimally per-
turbed base flow of the form

�
	,p	,�� = �
̄	, p̄	,0� + ��	�z,t�,P	�z,t�,h�t��eikx + c.c.,

�11�

where k=2�d2 /�* is the dimensionless wavenumber of the
disturbance, �* is the dimensional wavelength, and c .c. de-
notes the complex conjugate. By substituting �11� into the
Navier-Stokes equations �1�, as well as the boundary and
interfacial conditions �3�–�8�, subtracting out the base state,
eliminating the pressure term, and neglecting higher order
terms, we obtain the following Orr-Sommerfeld equations
for the two-layer flow:

	�
�

�t
+ ikA�ū	
��	� − k2�	� − ikA�ū	��	

+
1

N	

�2k2�	� − k4�	 − �	�� = 0, �12�

where the prime ��� denotes partial differentiation with re-
spect to z. The no-slip boundary conditions become

�1 = 0, �1� = 0 at z = − d and �2 = 0, �2� = 0 at z = 1.

�13�

The interfacial conditions are posed at z=��x , t�, the un-
known position of the disturbed interface. However, since we
are interested in the linear stability of the undisturbed inter-
face, we can expand the flow variables and their
z-derivatives as a Taylor series in � about z=0, and retain
only the leading order terms in �. This approximation is valid
provided the Taylor series remains well ordered. The linear-
ized interfacial conditions, applied at z=0, become

1

A

�h

�t
+ ikū1h + ik�1 = 0, kinematic condition, �14�

�1� − �2� + h�ū1� − ū2�� = 0, continuity of velocity, �15�

�1 − �2 = 0, continuity of velocity, �16�

� �

R1

��1�

�t
−

ikA�

R1
ū1��1 +

ikA�

R1
ū1�1� +

3k2

N1R1
�1�

−
1

N1R1
�1� +

ikG0�

AR1
h� − ��

��2�

�t
− ikA�ū2��2

+ ikA�ū2�2� + 3k2�2� − �2� +
ikG0�

A
h� +

ik3�

Wê A
h

= 0, normal stress balance, �17�

�1� + hū1� + k2�1 − N1R1��2� + hū2� + k2�2�

= 0, tangential stress balance. �18�

III. NUMERICAL SOLUTION

The partial differential system �12�, with the associated
boundary and interfacial conditions �13�–�18�, is solved nu-
merically for arbitrary wavenumbers using a spectral collo-
cation scheme, and an iterative method based on Floquet
theory16 to resolve the time-dependence.

A. Spatial discretization

The solution of �12� is approximated by expanding
�	�z , t� as a Lagrange polynomial series, truncated at the
L	th term,

�	�z,t� 
 �̃	�z,t� = �
j=0

L	

�	j�t�Cj�z� , �19�

where �	j�t� are the unknown time-dependent amplitudes to
be determined, and Cj�z� are the Lagrange basis functions
defined by

Cj�z� = �
i=0,i�j

L	 z − zi

zj − zi
, j = 0,1, . . . ,L	, �20�

satisfying

Cj�zi� = �ij . �21�

In the spectral collocation method, the function �̃	�z , t� is
required to satisfy Eq. �12� exactly at L	+1 collocation
points zi. The collocation points are chosen to be the
Chebyshev-Gauss-Lobatto points defined on �−1,1�, in order
to achieve high resolution near the boundaries and the inter-
face. For this purpose, the lower and upper layers are
mapped onto Chebyshev space, �� �−1,1�, with the transfor-
mations

� =
2z + d

d
and � = 1 − 2z , �22�

respectively, so that the interface is placed at �=1. It follows
that the system of Eqs. �12�–�18� in � remains the same ex-
cept the nth derivative in z must be replaced by
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�n

�zn = q	
n �n

��n ,

where q1=2/d for fluid 1 and q2=−2 for fluid 2. Thus, �19�
becomes

�	��i,t� = �
j=0

L	

�	j�t�Cj��i�, i = 0,1, . . . ,L	, �23�

where

�i = cos	�i

L	



are the Chebyshev-Gauss-Lobatto collocation points, which
are the extrema of the L	th order Chebyshev polynomial
given by

TL	
��� = cos�L	 cos−1 �� .

The Lagrange basis polynomials based on the Chebyshev-
Gauss-Lobatto collocation points are defined by

Cj��� =
�− 1� j��2 − 1�TL	

� ���

c̄jL	
2�� − � j�

, j = 0,1, . . . ,L	,

where c̄0= c̄L	
=2 and c̄1= ¯ = c̄L	−1=1.

Differentiation of �	 with respect to � is expressed in
terms of the derivatives of the basis functions evaluated at
the collocation points,

�n

��n�	��i,t� = �
j=0

L	

�	j�t�Dij
n , �24�

where

Dij
n = q	

n �n

��n �Cj��i��, n � 1, i, j = 0,1, . . . ,L	.

i , j are the row and column indices of the nth order derivative
matrix Dij

n , respectively. The first order derivative matrix,
Dij, for the Chebyshev-Gauss-Lobatto collocation points can
be written in explicit form as

Dij =�
c̄i�− 1�i+j

c̄ j��i − � j�
if i � j ,

−
2L	

2 + 1

6
if i = j = L	,

2L	
2 + 1

6
if i = j = 0,

−
� j

2�1 − � j
2�

if 1 � i = j � L	 − 1.

�25�

Higher order derivatives are multiple powers of Dij, that is,

q	
n �n

��n �Cj��i�� = q	
nDij

n = q	
n�Dij�n, �26�

where �Dij�n is the nth power of the matrix element Dij.
Following Lanczos’s method,21 the governing equations

�12� are evaluated at �=�i,

���q	
2Dij

2 − k2Iij��� ��	j

�t
�

= � 1

L	

q	
4Dij

4 − 	 2

L	

k2 + ikA�ū	i
q	
2Dij

2

+ 	 1

L	

k4 + ik3A�ū	i + ikA�ū	i� 
Iij���	j� , �27�

where i=2,3 , . . . ,L	−2, j=0,1 , . . . ,L	 and I is the identity
matrix, and the boundary conditions �13�–�18� are evaluated
at the boundary collocation points �=1 and �=−1,

�IL	j���	j� = 0, �28�

�q	DL	j���	j� = 0, �29�

1

A

�h

�t
= �− ikI0j,− ikū10���1j

h
� , �30�

�q1D0j,− q2D0j, ū10� − ū20� ���1j

�2j

h
� = 0, �31�

�I0j,− I0j���1j

�2j
� = 0, �32�

� �

R1
q1D0j,− �q2D0j,0����1j/�t

��2j/�t

�h/�t
�

= � 1

N1R1
�q1

3D0j
3 − 3k2q1D0j� −

i

R1
kA�ū10q1D0j

+ ikA�ū10� I0j,− q2
3D0j

3 + 3k2q2D0j + ikA�ū20q2D0j

− ikA�ū20� I0j,
ik

A 		1 −
1

R1

G0� − k2 �

Wê

���1j

�2j

h
� ,

�33�

� 1

N1R1
�q1

2D0j
2 + k2I0j�,− �q2

2D0j
2 + k2I0j�,

1

N1R1
ū10� − ū20� �

���1j

�2j

h
� = 0. �34�

Thus, we obtain an �L1+L2+3�� �L1+L2+3� system of
the form

B
�x

�t
= �M0 + M�t��x , �35�

where x is the unknown vector

x�t� = ��10,�11, . . . ,�1L1
,�20,�21, . . . ,�2L2

,h�T�t� ,

M�t�=Ms sin�t�+Mc cos�t� is a 2�-periodic matrix, and B
and M0 are constant coefficient matrices.
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B. Temporal solution

The Floquet problem �35� is solved using a fast iterative
scheme based upon the Newton-Raphson method that was
developed by Or16 for a viscous single layer under oscillating
shear. According to Floquet theory,22 the solution of �35� is
of the form

x�t� = Z�t�exp��t� , �36�

where Z�t� is a 2�-periodic vector function and � is the
Floquet exponent. Z�t� is expanded as a complex Fourier
series, truncated at order K, so that

x�t� = �
n=−K

K

xneint+�t, �37�

where �=�r+ i�i and xn are constant vector coefficients, and
substituted into the differential Eq. �35�. We focused on har-
monic solutions with �i=0 because subharmonic solutions
are not generally found in this system due to constraints
imposed by the conjugate-translation symmetry.23 By substi-
tuting solution �37� into Eq. �35� and employing the iterative
procedure of Or,16 we obtained the following polynomial ei-
genvalue equation of order K+1 on x0,

��M0 − B�� + �M*R−1��� + MR1�����x0 = 0, �38�

where M= 1
2 �Mc+ iMs� and M* denotes the complex conju-

gate of M. Within the formulation of �38� we have used the
following recurrence relations: for 1�n�K−1,

xn = Rnxn−1, Rn = − �M0 − B�in + �� + MRn+1�−1M*,

x−n = R−nx−�n−1�, R−n = − �M0 − B�− in + ��

+ M*R−�n+1��−1M ,

and for n=K,

xK = RKxK−1, RK = − �M0 − B�iK + ���−1M*,

x−K = R−Kx−�K−1�, R−K = − �M0 − B�− iK + ���−1M*.

Equation �38� admits a nontrivial solution if and only if the
determinant vanishes.

To locate the critical values of A, Ac, on the marginal

stability curve, we fixed �� ,R1 ,N1 ,Wê,G0 ,d ,k ,�i=0� and
incremented the value of A from A0=0.001 until we identi-
fied the value of A for which the growth rate, �r, satisfying
Eq. �38�, first crossed zero. �r was obtained by iteration of a
suitable initial guess, �guess=2. This value was found to be
suitable for the entire parameter range investigated, since the
system was only solved up to the point of marginal stability,
i.e., for values of A, A0�A�Ac. By iterating on �guess, we
evaluated successive values of the determinant and deter-
mined an estimate of �r accurate to two decimal places,
�approx, at which the determinant first crossed zero. The ap-
plication of a Newton-Raphson iteration to �approx yielded �r

for each value of A. Once the first zero-crossing of �r was
located, the associated eigenvector x0 was evaluated using
singular value decomposition �x0 is the singular vector cor-
responding to the smallest singular value�.

In order to reconstruct the stream function in each layer,
�	, the solution vector, x�t�, was formed using Eq. �37� and
the relevant component part substituted into Eq. �23�. The
remaining Fourier vector components, −K�xn�K, were de-
termined using the recurrence relations give above.

C. Convergence tests and validation of the code

All numerical computations were carried out in
MATLAB. Each linear stability result was checked for con-
vergence by consecutively increasing the number of Fourier
modes and the number of Chebyshev modes in the lower and
upper layers by 2. The calculations were subsequently per-
formed with the minimum number of Fourier and Chebyshev
modes required to reach linear stability results accurate to the
third decimal point. The number of Chebyshev polynomials
required for a converged solution increased with the nondi-
mensional frequencies in each layer, �2=� and �1=�N1,
because the boundary layer thicknesses are reduced. The
spacing of the Gauss–Lobatto–Chebyshev collocation points
near the boundaries is O�M	

−2�, and it was found that at
least one collocation point had to lie within the boundary
layer to ensure the convergence of the solution. The results
presented in this paper were calculated for 74�N1�148,
30�N2�90, and K=14. The code was validated by success-
fully reproducing several known results for both oscillatory
single-layer and two-layer flows. The stability results ob-
tained using the Chebyshev collocation code were found to
be in excellent agreement with those of Ref. 13 in the limit
of large viscosities ���250�. We were also able to repro-
duce Or’s16 results by setting the upper layer flow parameters
to that of air ��2=15.11�10−6 m2 s−1 and �2=1.29 kg m−3�,
and omitting condition �8�.
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FIG. 3. Marginal stability curves showing the critical amplitude, Ac, against
the wavenumber, k for 3.6�102���104. The other parameter values are

R1=5�10−1, N1=1, G0=1.60�10−1, Wê=6.25 and d=1. The inviscid pre-
diction of Ref. 13 is plotted for comparison with a gray line. Note that these
flow parameters are the same as in Ref. 13 �Fig. 7�.
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IV. RESULTS

A. Parametric instability

We determined the critical value of the amplitude of os-
cillation, Ac, at which the parallel shear flow becomes un-
stable to standing waves of wavenumber k. A series of neu-
tral stability curves is shown in Fig. 3 for fluids of equal but
decreasing viscosities, i.e., N1=1 and increasing �. Whereas
Khenner et al.13 were unable to resolve calculations for
��3.6�102, the pseudospectral method employed here al-
lows us to reach values of up to �=4�104, which is the
largest value presented in this paper. Each curve separates
the �Ac ,k�-plane into a region of stable solutions �below the
curve� and unstable �growing� harmonic solutions �above the

curve�. As � increases, the marginal stability curves con-
verge toward the stability boundaries of the inviscid model,13

which are shown with gray lines in Fig. 3. The inviscid sta-
bility boundaries were obtained by Floquet analysis of the
Mathieu equation13 and comprise a succession of tongues
of harmonic response, i.e., of the same period as that of
the external oscillatory drive. The long wavelength mode
�k0=0.001, which was the minimum value of k used in the
calculations� in Fig. 3 is primarily due to the average effect
of the oscillatory drive and is associated with a Kelvin–
Helmholtz instability mechanism.13 The tongues �centered on
the modes k1 and k2� delimit the first two regions of resonant
response of the flow. As Ac tends to zero, the resonant re-
sponse approaches a single Fourier mode, while at finite Ac

results from the superposition of several Fourier modes; see
Fig. 5�a�. The convergence of the viscous stability results
toward the inviscid result as � increases suggests a similar
parametric instability in the viscous model. Although the
long-wavelength KH instability is virtually independent of
viscosity, the resonant response at finite wavelength, cen-
tered on the modes k1 and k2, is strongly stabilized by in-
creasing the viscosity of both layers, and the most unstable
wavenumbers k1 and k2 are displaced toward higher values
of k. This dependence on viscosity is similar to that uncov-
ered by Kumar and Tuckerman1 in their stability analysis of
the Faraday problem with equal viscosity layers.

In Fig. 4, the neutral curve plotted in Fig. 3 for
�=360 is extended to wavenumbers up to k=10. It exhibits
a succession of local minima at k0 ,k1 . . .k6, including a long-
wavelength KH instability and six resonant tongues. The
time dependence of the solution at the first four minima is
shown in Fig. 5�a�. In the presence of viscosity, Ac is finite at
each local minimum, and the temporal dependence of the
neutral solution is a superposition of several Fourier modes.
The temporal response for the instability modes k0 and k1 is

FIG. 4. Neutral curve showing the first seven instability tongues
�k0 ,k1 , . . . k6� for �=3.6�102, R1=5�10−1, N1=1, G0=1.60�10−1,

Wê=6.25, and d=1.

FIG. 5. �a� Interface height versus time: time-series of the eigenfunction at the modes k0–k3 in Fig. 4. �b� Time-averaged perturbation stream functions at the
modes k0–k3 in Fig. 4.
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approximately sinusoidal, whereas Fourier modes of up to
order three and five contribute significantly to the time-
dependence of the response of the instability modes k2 and
k3, respectively. The form of the time-averaged perturbation
stream function, whose physically significant real part is
plotted in Fig. 5�b�, changes continuously with k. The stream
function at k0 exhibits on average a single peak across the
two layers, centered near the interface, which indicates on
average a single vortex acting to deform the interface. The
peaks in the perturbation stream functions of the modes k1

and k2 indicate the presence of counter-rotating vortices on
either side of the interface, so that the interfacial deformation
is driven on average by the net difference in vorticity on both
sides �see Sec. IV D 3 for further details on the interpretation
of the stream function plots�. The instability corresponding
to k3 has a more complex structure, whereby co-rotating vor-
tices in each layer are separated by a thin, counter-rotating
vortex near the interface in the upper layer. Although the
perturbation is distributed across the entire channel in the
case of the long-wavelength mode �k0�, the peaks are in-
creasingly concentrated near the interface for higher values
of k, so that the instability is clearly interfacial, similarly to
the “soft” wave uncovered by Kamachi and Honji.15

In Fig. 4, the mode k0 corresponds to the absolute mini-
mum of the neutral stability curve and thus, a long-
wavelength instability is excited at onset. While the thresh-
olds of the modes kn�n�2� are always higher than that of k1,
either k0 or k1 may be the most unstable modes depending on
the values of parameters. We examine this competition in
further detail in Sec. IV D.

B. Long versus finite wave instability

Depending on the choice of parameters, the mode k0

may be found at k=0.001 �the minimum value of k for which
calculations were performed, i.e. long wavelength� or at
k�0.001 �finite wavelength�. An example is given in Fig. 6

where k0=0.001 for Wê=9.18, but k0�0.001 for Wê=15.3.

A selection criterion was established by Khenner et al.13 for
finite-depth layers of inviscid fluids. In our notation, if
H=d2 /�
 / ���1−�2�g� is the layer height scaled by the cap-
illary length �H is also the capillary wavenumber in our for-
mulation�, finite wavelength KH instabilities are only found
if H��3 and

Wê � Wê* =
64�H2 − 3�2�1 + R1�2

9H2�1 − R1�3G0
3 .

Our calculations suggest that this criterion remains valid for
the viscous analysis when N1=1. When N1�1, however, we
find that this criterion is no longer strictly valid. For ex-

ample, for Wê=10, R1=4.90�10−1, N1=102, G0=1.99
�10−1, �=1.57�102, and d=1.0 �see Fig. 9 below�,
H=1.43��3 but k0=0.3�0.001. This is not surprising since
the viscosity contrast affects the most unstable wavenumber
of the frozen wave significantly �see Ref. 5, Fig. 7�. The
effect of the viscosity contrast on the neutral curves is dis-
cussed further in Secs. IV C and IV D 3.

The long wavelength instability is virtually independent

of individual changes in Wê, �, and N1, but depends
strongly on the value of the modified inverse Froude number,
G0, indicating that gravity acts to stabilize long wavelength
perturbations. Thus, an increase in the frequency of forcing

�, which corresponds to increasing � and Wê, while de-
creasing G0, destabilizes the limit of small k more strongly
than the resonant modes at higher k, whose most unstable
wavenumbers also increase significantly with frequency �see
Fig. 7�. Thus, in the limit of large frequencies, the KH insta-
bility �mode k0� is observed at the onset, thus validating the
results of the time-averaged model of Lyubimov and
Cherepanov.11 A similar decrease of the threshold of the long
wave instability with increasing frequency was also found by
Kamachi and Honji.15
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FIG. 6. Neutral curves for Wê=9.18 and 15.3. The other parameter values
are R1=4.90�10−1, N1=102, �=2.11�102, G0=2.91�10−1, and d=1. The
corresponding inviscid results �Ref. 13� are plotted for comparison with gray
lines.

FIG. 7. Neutral curves for increasing frequencies of forcing: �—� �=1.1

�103, G0=1.16�10−2, Wê=2.29�102, �–·–� �=1.4�103, G0=6.5�10−3,

Wê=4.08�102, �¯� �=1.6�103, G0=4.9�10−3, Wê=5.40�102. The
other parameter values are N1=100, R1=4.90�10−1, and d=1.
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C. Fluids of unequal viscosities

In experimental flows5,10,9 the viscosities of the fluids are
generally different, and the viscosity ratio can be large. Thus,
we focus hereafter on the general case where N1�1. Talib
et al.5 have shown that the instability threshold is surpris-
ingly reduced over a wide range of viscosity contrasts, when
N1 is raised by increasing the viscosity of either layer. Over
the range of N1 investigated in Ref. 5, 1�N1�6�104, the
nonmonotonic variation of the most unstable critical ampli-
tude and wavenumber with N1 is reflected in the average
perturbation stream function. The neutral curves shown in
Fig. 8 are for increasing viscosity contrasts achieved by in-
creasing the viscosity of the upper layer similarly to Ref. 5,
so that 50�N1�103 and 3.17�102���16. The value of
the wavenumber k1 increases with viscosity contrast. This
effect is much stronger than when both viscosities were in-
creased simultaneously in Fig. 3, i.e., � reduced with
N1=1. Thus, the inviscid theory is unsuitable to model para-
metric instabilities in viscous layers, since it can neither pre-
dict the instability threshold, nor the value of the most un-
stable wavenumber of the parametric modes.

It is interesting to note that we have not been able to find
any set of parameters corresponding to realistic fluid proper-
ties, where the neutral curve comprises more than a single
minimum. The parameters chosen for all the calculations
shown above correspond to physically unrealizable fluid
properties. In order to achieve the moderate values of the

modified Weber number �Wê�750� necessary for multiple
resonances to emerge while retaining experimentally practi-
cal frequencies of forcing, the interfacial tension has to be at
least one to two orders of magnitude larger than that mea-
sured in common pairs of liquids. In Sec. IV D, we investi-
gate the changes in the neutral curves when the physical

parameters R1, Wê, and N1 are varied, and determine limits
where the multiple minima vanish.

D. Parameter study of the finite-wave instabilities

The large number of nondimensional groups �7� govern-
ing the dynamics prohibits an exhaustive investigation of
linear solution classes. In order to establish the physical
significance of the k0 and k1 modes, it is convenient to re-
strict our attention to flows based on the physical properties
of a perfluorinated liquid �Flutec PP9� in the lower layer
��1=1.973�103 kg m−3, �1=2.0�10−6 m2 s−1� and silicone
oil in the upper layer ��2=9.670�102 kg m−3, �2=2.0
�10−4 m2 s−1�. The interfacial tension between the layers is
taken to be 
=4.0�10−3 N m−1, from the measurements of
interfacial tensions for similar pairs of fluids.5,10 Layer
heights of d1=d2=0.05 m and an angular velocity of
�=10� rad s−1 yield the following nondimensional param-

eters: R1=4.90�10−1, Wê=2.98�104, N1=102, G0=1.99
�10−1, �=3.927�102 and d=1.0. For these values of pa-
rameters, the neutral curve �Ac ,k� exhibits a single minimum
at a nonzero value of k. In order for local minima corre-
sponding to the k0 and k1 modes to emerge, the interfacial

tension needs to be significantly increased so that Wê�7.5
�102 �see Sec. IV C�. We choose 
=5.96�10−1 N m−1

�which is approximately two orders of magnitude larger than
the interfacial tension measured between Flutec PP9 and sili-

cone oil�, i.e., Wê=2.0�102, and investigate the evolution
of the k0 and k1 instabilities with changes in the density
contrast �R1� and viscosity contrast �N1 and ��.

1. Dependence on interfacial tension

For 
=5.965�10−1 N m−1 �Wê=200� and 
=1.988

�10−1 N m−1 �Wê=600�, which correspond to unphysically
large values of the interfacial tension, both the modes k0 and
k1 are found in the neutral curves shown in Fig. 9�a�. An
examination of the eigenmodes reveals that for 
=1.193

�10−1 N m−1 �Wê=1000� and 
=5.965�10−2 N m−1

�Wê=2000�, only the k1 mode remains. Note that all the
critical amplitudes converge to the same value as k tends to
zero. This is because long wavelength perturbations of the
interface are virtually independent of interfacial tension,
which like viscosity, predominantly acts on the growth of
short wavelength disturbances. Note also the presence of the
k2 mode for 
=5.965�10−1 N m−1. The minimum of the
neutral curve indicating this parametric-resonance mode van-
ishes for decreasing values of 
.

As seen in Fig. 9�c�, the wavenumber of the KH mode
�k0� remains approximately constant with respect to the cap-
illary wavenumber denoted by H=d2�g��1−�2� /
, while the
relative wavenumber k1 /H increases monotonically with 
.
Although the dimensional critical amplitudes of the modes k0

and k1, denoted by a0 and a1, respectively, and shown in Fig.
9�b�, both decrease as 
 is reduced, a0 decays rapidly and
converges towards a1, until it vanishes for 
�2.0
�10−1 N m−1. Thus, the k1 mode is the most unstable over
the entire range of 
 investigated. Note that it is the k1 mode
which persists when 
 is reduced toward experimental values
�first point in Figs. 9�b� and 9�c��, rather than the k0 mode
generally associated with the KH instability.11,13

FIG. 8. Neutral curves for Wê=9.18 and fluid layers of unequal viscosities.
The viscosity contrast is increased by increasing the viscosity of the upper
layer. Thus, N1 increases and � decreases. The other parameter values are
R1=4.90�10−1, G0=2.91�10−1, and d=1. The inviscid result �Ref. 13� is
plotted for comparison with a gray line.
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2. Density contrast

The density contrast is varied by changing the density of
the lower layer, �1, which yields a change in the nondimen-
sional parameter R1=�2 /�1 only. A series of four neutral
curves �Ac ,k� are shown in Fig. 10�a�. The shape of the
neutral curves evolves considerably when R1 is decreased
from 0.58 to 0.1. For R1=0.58 and 0.4, there are two local
minima corresponding to the modes of instability k0 and k1,
but for R1=0.2 and 0.1 only the local minimum associated
with k1 remains. Detailed plots of the critical amplitudes and
wavenumbers of the modes k0 and k1 are shown in Figs.
10�b� and 10�c�. A0 and A1 both increase monotonically
when the density contrast is reduced, i.e., R1 increases. The
mode k1 is generally the onset mode except for fluids of
nearly equal densities �R1=0.9�, where the mode k0 is most
unstable. The crossover of the �Ac ,R1� curves occurs be-
tween R1=0.8 and 0.9, so nonlinear mode interaction may
prevail in this region.17,18 Note that for R1=1, there is no
flow nor instability.

While the wavenumber of the mode k0 remains close to
the capillary wavenumber H, the wavenumber of k1 de-
creases strongly to values below that of H when R1 is de-
creased, resulting in the disappearance of the mode k0 for
R1�0.3. Although the threshold of the mode k1 decreases
monotonically over the entire range of R1 investigated, the

neutral curve shown in Fig. 10�a� for R1=0.1 is located
mostly above that for R1=0.2, and thus indicates a tendency
towards restabilization as R1 decreases strongly. Although
the density contrast enables the relative acceleration of the
fluid layers, the stable density stratification also induces sta-
bilizing buoyancy forces. Thus, decreasing R1 lowers the in-
stability threshold except for small values of R1, i.e., very
different densities, where the flow is increasingly stabilized.
A qualitatively similar dependence of the instability thresh-
old on R1 is predicted by Ref. 11 in the case of the time-
averaged counterflow of inviscid fluids in the limit of high
frequencies and vanishing amplitudes of forcing.

3. Viscosity contrast

The most intriguing behavior is found when varying the
viscosity contrast. As in Sec. IV C, we choose to increase the
viscosity contrast by increasing the viscosity of the upper
layer beyond that of the lower layer, which is kept constant.
This leads to a combined increase in N1 and decrease in �.
This means that the nondimensional frequency �analogous to
a Reynolds number divided by A� in the upper layer,
�2=�, decreases while the nondimensional frequency in the
lower layer, �1=�N1 remains constant.

In Fig. 11�a�, neutral curves calculated for increasing
viscosity contrasts indicate that the k1 mode is increasingly

FIG. 9. �a� Neutral curves �Ac ,k� for

Wê=2�102, 6�102, 1�103, and 2
�103. �b� Dependence of the dimen-
sional critical amplitudes of the modes
k0 and k1 on interfacial tension. �c�
Dependence on interfacial tension of
k0 and k1 relative to the capillary
wavenumber. The other parameter val-
ues are R1=4.90�10−1, N1=102,
G0=1.99�10−1, �=1.57�102, and
d=1.0. The first point in both �b�
and �c� corresponds to the experimen-
tal value of the interfacial tension
for Flutec PP9 and silicone oil dis-
cussed in Sec. IV D, 
=4

�10−1 N m−1 �Wê=2.98�104�.
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stabilized, but also that it vanishes beyond N1=750. The
threshold of the k0 mode, however, decreases as the viscosity
contrast is raised. A more detailed picture of these dynamics
is presented in Figs. 11�b� and 11�c�, where the critical am-
plitudes and wavenumbers of the modes k0 and k1 are plotted
against N1. In fact, A0 exhibits a nonmonotonic dependence
on N1 with four regions of distinct dynamics similar to those
uncovered by Talib et al.5 The flow becomes successively
more stable, unstable and stable again as N1 is increased, and
the four regions of distinct dynamics are reflected in the
variation of the critical wavenumber of k0 with N1. The k0

mode is only weakly sensitive to variations in the viscosity
contrast for values of N1�102, while for 102�N1�104 its
threshold decreases sharply. By contrast, the k1 mode is
strongly damped when increasing N1 within the interval
1�N1�5�102. It is then destabilized within 5�102�N1

�7.5�102 and vanishes beyond N1=750. Thus, the mode of
instability at onset is k1 up to N1�3.25�102, and k0 beyond
this value �see Fig. 11�b��. Note that the wavenumber of k1

varies significantly more than that of the mode k0, which
remains close to the capillary wavenumber H.

The nonmonotonic dependence of the onset of instabili-
ties cannot be correlated to simple features of the base flow
profiles shown in Fig. 2. In these, the thickness of the inter-
facial boundary layer remains approximately constant in the

lower layer since �1=�N1 is constant, while it increases
monotonically in the upper layer with the reduction in �2

=�. In order to gain insight into the opposite variations of
the instability thresholds with increasing viscosity contrast, it
is useful to examine the unstable eigenmodes. The time-
averaged perturbation stream functions of the marginally
unstable modes k0 and k1 are shown in Fig. 12 for increasing
values of N1. We choose to represent them for −0.04�z
�0.04 since the modes of instability are interfacial. The
peaks in the perturbation stream functions indicate the pres-
ence of vortices, which are counter-rotating if the peaks are
of opposite sign. This is illustrated in Fig. 13, where contour
plots of the data shown in Fig. 12�a� are shown over one
wavelength of the instability. Dark �light� shades correspond
to negative �positive� values of the stream function respec-
tively, while the medium gray horizontal and vertical lines
indicate the locations where the stream function is equal to
zero. In the case of the mode k1 �Fig. 12�a� and Fig. 13�,
there are counter-rotating vortices present on either side of
the interface, which is located at z=0. In the lower layer
�z�0�, the amplitude of the stream function peak hardly
changes with N1. In the upper layer �z�0�, however, the
initially small stream function peak increases by a factor of
approximately 2.5 for 10�N1�400 to reach values of simi-

FIG. 10. �a� Neutral curves �Ac ,k� for
R1=0.58, 0.4, 0.2, and 0.1. �b� Depen-
dence of the critical amplitude of the
modes k0 and k1 on the density con-
trast. �c� Dependence of k0 and k1

on the density contrast. The other pa-

rameter values are Wê=2.0�102,
N1=102, G0=1.99�10−1, �=1.57
�102, and d=1.0.
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lar magnitude to those in the lower layer. As a result, the net
deformation of the interface is sharply reduced, since the
deformation resulting from the presence of the lower vortex
is increasingly cancelled by that of the upper one, which is
counter-rotating. The sharp increase in the critical wavenum-
ber with N1 appears to be governed by the thickness of the
lower layer vortex, which becomes increasingly localized
near the interface as N1 increases from N1=10 to N1=400
�see Fig. 13�. The concentration of vorticity near the inter-
face in the lower layer is accompanied by the emergence of a

secondary vortex which is visible for N1=400 in Fig. 13.
Thus, as the viscosity ratio is increased to N1=400, the
stream function of the k1 mode shown in Fig. 12�a� smoothly
changes to resemble that of the k0 mode shown in Fig. 12�b�.

Indeed, the perturbation stream function of the k0 mode
�Fig. 12�b�� comprises diffuse co-rotating vortices in both
layers, separated by a concentrated counter-rotating vortex
right below the interface. We do not show the streamline
representation in this case, as it is not well suited to visualize
changes in the very thin interfacial vortex present near the

FIG. 11. �a� Neutral curves �Ac ,k� for
�N1=2.5�102 ,�=1.57�102�, �7.5
�102 ,5.24�101�, �1.0�103 ,3.93
�101�, and �2.5�103 ,1.57�101�.
These successive parameter values are
obtained by increasing the viscosity of
the upper layer, and thus raising the
viscosity contrast. �b� Dependence of
the critical amplitudes of the modes k0

and k1 on the viscosity contrast. �c�
Dependence of k0 and k1 on the vis-
cosity contrast. The other parameter

values are R1=4.90�10−1, Wê=2
�102, G0=1.99�10−1, and d=1.0.

FIG. 12. Time-averaged perturbation
stream functions in the vicinity of the
interface �plotted for 0.4�z�0.4�: �a�
k1 mode with N1=10, 100, 340, and
400; �b� k0 mode with N1=100, 400,
7500, and 5000.
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interface in the lower layer. The considerable growth of the
stream function peak corresponding to this lower layer vor-
tex with N1 for 102�N1�7.5�102 leads to a significant
increase of the difference in magnitude of the disturbances
on either side of the interface. Thus, the net deformation of
the interface is sharply increased. For N1=5�103, the flow
has entered a different regime whereby the lower layer per-
turbation remains unchanged but the upper layer perturbation
is reduced. This yields a continued increase of the difference
in magnitude of the disturbances on either side of the inter-
face. Thus, the threshold of the k0 instability continues to
exhibit a sharp reduction with increasing N1. The depen-
dence of the k0 mode on the viscosity contrast discussed here
is analogous to that of the frozen wave instability investi-
gated by Talib et al.5 and we refer to their paper for a com-
prehensive discussion.

V. CONCLUSION

Horizontally oscillating viscous interfaces can be lin-
early unstable to a Kelvin–Helmholtz mode and successive
parametric-resonance modes. The viscous model is essential
to predict the onset of each mode of instability accurately,
particularly in the limit of large viscosity contrasts. Since the
large number of nondimensional groups prohibits an exhaus-

tive investigation of the linear solution classes, we have fo-
cused on characterizing the evolution of the neutral curves
from exhibiting multiple resonances to only a single mini-

mum, as found in the limit of practical flows. When Wê is
increased toward experimental values, the first resonant
mode is found to persist, rather than the Kelvin–Helmholtz
mode usually associated with the frozen wave observed ex-
perimentally. Depending on the value of the density contrast
R1, either the Kelvin–Helmholtz or the first resonant mode
may be the most unstable, and similar critical parameters in
the limit of small density contrasts suggest the possibility of
nonlinear mode interaction. Interestingly, the two modes ex-
hibit opposite dependencies on the viscosity contrast with a
sharp stabilization of the first resonant mode, while the
threshold of the Kelvin–Helmholtz mode exhibits a sharp
reduction, analogously to the frozen wave instability dis-
cussed in Ref. 5.
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FIG. 13. Normalized streamline con-
tour plots �over one wavelength
2� /kc�, calculated using the data
shown in Fig. 12�a�. Dark �light� gray
shades denote negative �positive� val-
ues, respectively, while the horizontal
and vertical �medium gray� lines indi-
cate where the stream function is equal
to zero. Thus, these plots indicate the
presence of counter-rotating vortices
on either side of the interface, which is
located at z=0. Their most striking
feature is the narrowing of the lower
layer vortex near the interface as N1

increases, which correlates with the
sharp rise in the wavenumber seen in
Fig. 11�c�.
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APPENDIX: INTEGRATION CONSTANTS
OF THE BASE FLOW SOLUTION

The integration constants A1, B1, A2, B2, and S of the
base flow solution, determined by substitution of the base
flow solution into the boundary conditions, take the follow-
ing form:

A1 = − i	SR1

�
− 1
em1d − B1e2m1d,

A2 = − i	 S

�
− 1
e−m2 − B2e−2m2,

B1 =

B2�1 − e−2m2� + i�e−m2 − em1d� +
iSR1

�
�em1d − 1� −

iS

�
�e−m2 − 1�

�1 − e2m1d�
,

B2 = �S�2i

�
m1R1em1d −

i

�
m1R1�1 + e2m1d� −

i

�
m1�e−m2 − 1��1 + e2m1d� −

i

�
NRm2e−m2�1 − e2m1d�� + �iNRm2e−m2�1 − e2m1d�

+ im1e−m2�1 + e2m1d� − 2em1d�� � ��NRm2�1 + e−2m2��1 − e2m1d� − m1�1 + e2m1d��1 − e−2m2���−1 =
SE + F

D
,

where E, F, and D correspond to the terms in the three square brackets,

S = 	2im1m2 − im2�em1d − 1� − im1�1 − e−m2� + im2H�e−m2 − em1d� −
GF

D

 � 	 i

�
m1m2�R1 + 1� −

i

�
m1�1 − e−m2�

−
i

�
m2R1�em1d − 1� +

i

�
m2H�R1�1 − em1d� + �e−m2 − 1�� +

GE

D

−1

,

where

G = m1�1 − e−m2�2 −
m2�1 − em1d�2�1 − e−2m2�

�1 − e2m1d�
,

and

H =
�1 − em1d�2

�1 − e2m1d�
.
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