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Numerical Simulation of Run-Up by Variable Transformation*

Hiroshi Takedat

Abstract:

A new method for the simulation of run-up using a variable transformation that

fixes the shoreline is developed. This method uses equations expressed in the Eulerian de-

scription, but requires no artificial conditions at the shoreline.

Hence, it may represent the

real phenomenon more accurately than existing methods in which artificial conditions or

extrapolation are needed.

In a one-dimensional example the numerical solution is found to

agree with analytic one very well. The method can easily be extended to two dimensions

if the shoreline can be transformed into lines that intersect each other at right angles.

1. Introduction

In many numerical simulations of oceanic
phenomena, some difficulty arises when the sea
surface or a density interface intersects a slope.
A typical example is tsunami run-up on dry
land. Although many numerical simulations of
tsunami have been attempted, they cannot easily
be carried out because the shoreline is not fixed
in space but moves with time.

There are three main methods to deal with
such phenomena. The most commonly used is
a method in which one approximates continuous
topography by a series of discontinuous horizon-
tal steps. This method requires an artificial
condition at the shoreline which does not exist
in the original equations. The methods by Aida
(1977), Aida and Hatori (1982, 1983), Houston
and Butler (1979), and Iwasaki and Mano (1979)
belong to this category. The second is a method
in which one extrapolates the velocity at the
shoreline using the values at inner points. Hibberd
and Peregrine (1979) used this method. These
two methods, which are based on equations in the
Fulerian description, avoid the computational
difficulty at the shoreline by introducing an
artificial assumption or approximation. Hence,
we cannot have much confidence in their accu-
racy because computational errors most often
occur at the shoreline. The third is a method
based on equations expressed in the Lagrangian
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description, which was used by Goto and Shuto
(1978, 1979). Although no artificial assumption
is required at the shoreline in this method, it
is necessary to derive long-wave equations and
to consider viscosity in the equations, which are
derived by the Eulerian approach.

In the present paper we introduce a method
in which the shoreline is fixed by using a vari-
able transformation. This method uses equa-
tions in the Eulerian description, but requires
neither artificial assumptions nor extrapolation
at the shoreline. Hence, we may anticipate
that the present method may represent the run-
up phenomena very accurately.

2. Basic equations in one-dimension

We use the long-wave equations governing
hydrostatic motion of an inviscid, homogeneous,
and incompressible water (with surface elevation
7 above its undisturbed level z=0) overlying
the sea floor ==—h (Fig. 1). Denoting the
direction in which the sea extends by x, we

]

Fig. 1. Sketch of the one-dimensional case.
The water overlies the sea floor z=
—h(z) and has a free surface at height
» above its undisturbed level z=0.
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have the equations in one dimension:

2.0

where

D_a, .3
D ot Yoz

is the Lagrangian derivative (with time # and
velocity in the z-direction #), and ¢ is the ac-
celeration due to gravity.

We transform the independent variables z
and ¢ by

X={l/lt)}x,
T=t,
where [(#) is the shoreline position (Fig. 1) and

o=1(0). By this transformation, the region 0
LzxLI() is transformed onto the region 0<x

<Iy which does not vary with time. The gov-
erning Eq. (2.1) are changed into
Du , 07
Dy Dh 3_77
5T= " DT l (H+77)3X, (2.2b)
where
D a 2
o7 e TVix
with

U=l'u—(uw/DX,
I'=1/1

is the Lagrangian derivative in the X-T plane,
and #; is the value of u at the shoreline z=I/
(z=1lo). In the X-T plane, the depth 2 and
the shoreline position I are dependent variables,
which are determined by the equations

HX, T)=hz)=h{/InX), (2. 2¢)
%: u, (2.2d)

where H denotes the depth in the transformed
plane.

3. Finite difference scheme

We use the “‘path line method”’ (see Appen-
dix A) in order to prevent nonlinear instability
and apply the ‘“‘forward-backward scheme’ (see
Appendix B) with respect to time.

Finite difference in space at the shoreline
must be treated carefully. At the shoreline
we cannot avoid the use of an uncentered
difference for 7 when we predict #; by using
Eq. (2.2a). As a result, false reflection would
occur at the boundary and the finite difference
solution would soon diverge unless a special
technique is introduced. False reflection occurs
as a result of the fact that values previously
computed by the uncentered difference are then
used in the next step of calculation of space
difference and a slight error in the former is
magnified in the latter calculation leading to
divergence (see Appendix C for details). Iere,
we adopt the meshes as shown in Fig. 2 to
prevent false reflection. The meshes are stag-
gered except at the shoreline ¢=I (where ¢ de-
notes the grid point), and at ¢=7I both = and »
are specified. For these meshes we need not
use #r(=u;) in the space differences and hence,
false reflection will not occur. (When the path
line method is not used, the value of ;7 is used
in the calculation of the nonlinear term (Udxu)r1.
This, however, will hardly affect the solution
because U is almost zero near the boundary.)
We can determine » at the shoreline by letting
it equal H (at X=1I;), which can be computed
by Egs. (2.2¢) and (2.2d).

Up-3 . Uz ur—y up

Fig. 2. Arrangement of grid points for «
and » near the shoreline. Solid circles
denote those for » and open circles those
for 7.

‘We further transform the coordinates in order
to gain more accuracy near the shoreline:

X=R(£),
RE)=C—-a)+{(a—1)/L} &,
By this transformation, the mesh size 4X de-
creases linearly as £ increases (the mesh size 4&

is constant). Then we finally have the finite
difference equations
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=4 ATw”,
H=ho(REN/ 1),
77in+1:770(11_1_11,7&1 +Han_ATl'n(770n_{_Hﬂn)
(Gee)a"/ (dR(EaM)/dE)
u" M =" = ATV (0ep) i/ (dR(E)/dED

where 4T is the time interval and &: is the
finite difference quotient corresponding to 9/8€.
For the space derivatives, the centered differ-
ences at the inner points are used, but at i=1,
for example, the third-order uncentered differ-
ence is used:

Gen)i=(11pr—18p1-1+ Ypr-2—2pr-3) / (64E) .

4. A numerical example

Let us consider the case of a constant slope
as an example and compare the numerical solu-
tion with the analytic one obtained by Carrier
and Greenspan (1958). The distribution of sur-
{face elevation expressed by Eq. (3.1) in Carrier
and Greenspan (1958) is adopted as the initial
condition. The initial velocity is assumed to be
zero everywhere. In the computaion, all the
variables are non-dimensionalized after Carrier
and Greenspan (1958). The time interval d¢(=
47) i1s 0.005, the grid points for » and u are
both 51, and @=0.1. At the seaward boundary
(x=X=0), the analytic solution is used.

Figure 3 shows the arrangement of grid points
for » near the shoreline at £=0 to 0.5 at inter-
vals of 0.1 with the elevation of the slope A(x)
=z. Figure 4 is a comparison of the profiles
of (a) » and (b) u near the shoreline at :=0 to
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0.5 at intervals of 0.05 between the numerical
(solid lines) and the analytic (dotted lines) solu-
tions. Figure 5 shows the pofiles of (a) 7 and
(b) # in the entire computational region at z=
1.5 to 3.5 at intervals of 0.5 (dotted and solid
line curves as in Fig. 4). Figure 6 shows time
variation of the shoreline position and the ve-
locity at the shoreline in both the computa-
tional (solid lines) and the analytic (dotted lines)
solutions. These figures show that the numeri-
cal solution agrees quite well with the analytic
one except in the vicinity of t=4.5 and 9 in
Fig. 6, where the former oscillates slightly.
This is because an error which was produced
near the shoreline propagates towards the deep
sea and is reflected at the seaward boundary

Fig. 3. Arrangement of grid points for sur-
face elevation near the shoreline at ¢=0
to 0.5 at intervals of 0.1. Numbers of
grid points for » and » are both 51,
4:=0.005 and a=0.1.

Fig. 4. Comparison of numerical solution (solid lines) with the analytic
one (dotted lines) expressed by Eq. (3.1) in Carrier and Greenspan
(1958) with £=0.2. Distributions of surface elevation 7 (left) and
velocity « near the shoreline (right) are plotted at =0 to 0.5 at inter-

vals of 0.05.
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Fig. 5. Plot of the numerical (solid lines) and the analytic (dotted lines)
solutions in the entire computational region at z=1.5 to 3.5 at inter-

vals of 0.5.

Fig. 6. Comparison of the shoreline varia-
bles (shoreline position / and shoreline
velocity #z) between the numerical and
analytic solutions. The former is shown
by solid lines and the latter by dotted
lines.

where the analytic solution is used. We can
actually see in Fig. 5 that an error with a small
wavelength is reflected at the seaward boundary
and propagates towards the shoreline. In the
phenomena of run-up, the error, whose ampli-
tude is small in the deep sea, may rapidly be-
come larger as it propagates in the shallower
sea. The magnitude of such error, of course,
depends on the smoothness of the phenomena.
Since the initial profile in this example was not
smooth near the shoreline, a comparatively large
error was produced. In simulations of actual
phenomena, however, in which motions are
usually smoother than this example and a vis-
cous effect is present, the error due to reflec-
tion would be minimized and would not con-
stitute a serious problem.

5. Application to two-dimensional problems
The method for one dimension can easily be

¥=Lixt)

<]

Fig. 7. Sketch showing the topography in
two-dimensions.

applied to two dimensions if the shoreline can
be transformed into lines that intersect each
other at right angles. (The geometry shown in
Fig. 7 corresponds to this case.) In this case,
the transformation
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X=0L/ICy, t),
Y:LD/L(x: t) )
T=¢,

results in the following derivatives:

o .0 S(YL)
9 {z'Y— }ay ,

Pyl oY
' a(Xl) 0
@“{ aY }8X+L '
o f’__ﬁi__ii
% T TmiX T oY
D D, 0
DT 6T+UX 57
where
U'=L/l,
L'=Io/L,
X fre 2 3D
U= lu;+lu {LXE?Y aX}v,
Y a(YL)} ,
V__Lw_{ ax/ By jATET

Using the above transformation, we can trans-
form the governing equations and can solve
them in a similar way to the one-dimensional
case.

6. Conclusions and discussion

A new method for the simulation of run-up
using a variable transformation that fixes the
shoreline was developed. This method differs
from existing ones in that it requires neither
artificial assumptions nor extrapolations. The
numerical solution by this method was found to
agree well with the analytic one in a one-
dimensional example. The present method can
easily be extended to two dimensions if the
shoreline can be transformed into lines that
intersect each other at right angles.

General geometries can be handled if the
transformation in Section 5 is used after map-
ping the region onto a rectangle by the ‘‘grid
generation’ technique (Thompson ez. al., 1974)V.
If the form of the boundary varies rapidly in
time, the computational region must be mapped
onto the rectangle again during the calculation
before the boundary form becomes double-valued.

D This idea was suggested by Dr, Motoyasu Miyata.

Although we have only considered a baro-
tropic ocean so far, we can also apply the pre-
sent method to a layered ocean in which the
density interface intersects the shelf slope in a
similar manner. In addition the method can
also be applied to a continuosly stratified ocean
and to the general equations in which the
hydrostatic approximation is not valid, using the
transformation that fixes the sea surface.
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Appendix A. Path line method

The path line method is a modified version
of the ‘‘characteristic method”’ (MacCormack,
1978; MacCormack and Lomax, 1979). In the
former method, the time is integrated only
along the path line in contrast to the latter ap-
proach in which it is integrated along all the
characteristic paths. This simplified method is
good enough to prevent nonlinear instability.
The path line is determined from the equations

thrl
udt=2z;— Lot
th

U= {1 (Trs1—Za) Fttx 1" (Ta—ax) } /dzc,

where the superscript # denotes the value at
the n-th step and the subscript a denotes the
value on the path line. The value of k is

chosen so that the path line lies between xx
n+1l

. t R
and zry: (Fig. 8). The integral St" udt is ap-
proximated in a suitable way. Here, we take
"4t (4t is the time interval) at the first step
and (zu,"+u;"*) /(24t) at the second step,

ns+1 step » * - X
’
e
’
e
S/
Q/
n step » Y A— . x
Xy Ya Xyt

Fig. 8, Sketch showing location of path
line between xx and zii:.

where u;"*'* is a temporary value computed
by using the finite difference equation for Eq.
(2.2a) at the first step.

Appendix B. Forward-backward scheme

The forward-backward scheme (Fischer, 1959)
is one in which the forward (Euler) scheme is
applied to one of the two long-wave equations
and after that, the backward scheme is applied
to the other equation. In the present Eq. (2.2)
where the depth 4 is also a dependent variable
in the momentum equation, the forward scheme
must be applied to the continuity equation.

The forward-backward scheme has the dis-
advantage that it is unstable when it is used
for the advection term in nonlinear equations.
However, such a problem does not arise if it
is used in the ‘“‘path line method’” (Appendix A),
because in that case the advection terms do not
appear explicitly in the finite difference equations.

The forward-backward scheme is essentially
the same as the leap-frog scheme. In addition,
it is stable and neutral with time steps twice as
large as those allowed by the CFL criterion for
the leap-frog scheme (Ames, 1969). It becomes,
therefore, a very good scheme if it is combined
with the path line method. (See Mesinger and
Arakawa (1976) for more detailed explanation
about the forward-backward scheme.)

Appendix C. The cause of computational in-

stability at the boundary

We will show that the error in the finite dif-
ference solution increases greatly through the
space derivative term, and as a result computa-
tional instability may occur.

As an example we take the first-order wave
equation:

ou(z, t) — Julx, t)

o oz (€D

where ¢ is a constant. Denoting finite differ-
ence quotients for 8/6¢ and 9/0xz by &, and 4,
and the difference solution by U, we have the
finite difference equation for Eq.(C1):

.U )" =c(0: U™ (C2)

Moreover, we define the error in the finite
difference solution and the truncation errors in
space and time by
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Er=U"—u® »
2= (0ou) " — (Ou/0x)" ()
&= (0,0) " — (Ou/08) ™,

respectively. From Egs. (Cl1) and (C3), we
have

(Bg) "= c(Bz1) " —cei™, (CH
where

Cfin:CEIin"Etin

is the truncation error in the difference equa-
tion.
We try to express the error in the solution

E;" in terms of the truncation error ¢. From
Eqgs. (C2), (C3) and (C4), we obtain
(6tE)i"=c(0:E) "+ c&™ . (Ch5)

For simplicity, we use the Euler scheme for
the time. Then we have, from Eq. (Cb), the
recurrence formula for E:

Eirt = E+ d(8.E) i+ des® (Céa)

where

d=cdt. (C6b)

Since E;° are zero, we obtain the following
equations for E;!, E;, and E;® from Eq. (C6a):
El=de,
Ef=d(e+e:!) +d2(0.6)4°,
Ef=d(e" ' +e2) +d?(2(6,6):%+ (628):1)
+d?(82(62¢))° .

Hence, we assume the following expression
for E:™:

Eyre id’“{(ﬁr)"‘lngaﬂ-mem} L (CTa)
k=1 m=0 T

where

<<6z)k~15m)i= (51 . (5;(5;E7n)) .. )i s
=1, (C7b)

atv k=1,

On substituting Eq. (C7) into Eq. (C6a), we

obtain, after some rearrangement,

n n -k
Eev=[d E ent 22400 B (aemn
m=0 k=0 m=0

+akn,m)em+5n+l—k}+ dn+l<5£)n50] .

ZCS)

The condition that Eq. (C8) reduces to Eq.
(C7) with n—n+1 yields

(an+j’m — Clk—ln'm + (Z};n’m

(2<k<n, 0<m<n—k) . CPH

Using Eq. (C7) with the relation (C9), we
can estimate the magnitude of the error in the
solution E in terms of the truncation error e.

We further put &™=~¢; to simplify the discus-
sion. Then Egs. (C7) and (C9) reduce to

Er={ 2 dvac @), (Clow
k=1 7
At =A" 4+ Ary®
(n>3, 2<k<n—1), (C10b)
where
-
A= ank“'m . (C10c)

Since Ai"=n and A,"=1 hold according to
Egs. (C7b) and (ClOc), we obtain from the
relation (C10b)

Ax"=,Cs (C11)

where ,Cr denotes the number of the combina-
tion.

If we use the centered difference at all grid
points (on the assumption that the computa-
tional region is infinite), we can derive the
equations

((6)%e®);=00dx*) (k=0,1,2,...), (Ci2)

because the truncation error for the space deri-
vative

o~ Adx? f 3 Azt [ Pu
(&)= (‘a}:a)ﬁs—z(—axs)ﬁ

has the same coefficients at all the points. On
the other hand, if we use the first-order un-
centered scheme at the boundary point I, 7.e.,
if we assume

(8:6%) 1= (1 —¢"r1) /dz

x__dx %u +Ax2(_a_3_zi B
er= 2!(6.1:2 TR
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we can derive, after some calculations,

((02)%e") 1= O(dz*¥)

(k=0,1,2,...). (C13)

The above equations show that the term
((6:)%*)1 becomes very large for large k, com-
pared with the case where the centered differ-
ence is used at all grid points. Since the pro-
duct of @& and Ax" expressed by Egs. (C6b)
and (Cl1) can also be large for large » and K,
the error at the boundary Er* in Eq. (Cl0a)
will be enormous as » increases. As a result,
the numerical solution will soon diverge. This
is the essence of false reflection at the boundary.
(It is noteworthy that computational instability
at the outflow boundary results for the same
reason.)

An alternative and more intuitive explana-
tion of false reflection is as follows. A slight
error generated near the boundary as a result
of using a different kind of finite difference is
enlarged when it is used in the following step
of space difference calculation (i.e., by dividing

by the small value 4x).

Even when the second-order difference is used
at the boundary, the above conclusion still holds.
(This is the reason why accuracy is not im-
proved and computational instability cannot be
prevented even if the second-order uncentered
difference is used at the outflow boundary.)

For the truncation error in the time deriva-
tive, we can derive the equations

((8)%);=0(de) (k=0,1,2,...),
((8)%et) ;= O(dedx"*) (hk=1,2,3,...)

corresponding to Egs. (Cl12) and (CI13), re-
spectively. These equations show that the error
Er also becomes greater because of the trunca-
tion error in the time derivative.

The above result leads to the conclusion that
computational instability at the boundary can
be prevented if the value calculated by the
uncentered difference is not used in the calcula-
tion of any space derivatives in the following
step.
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