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RAYLEIGH WAVE SCATTERING AT A BASIN TYPE HETEROGENEITY 

RHdiger Sze lwis 

Institut fHr Geophysik, Universit•t Hamburg, Federal Republic of Germany 

Abstract. Rayleigh waves are investigated 
numerically on a subsurface model composed of a 
layer over a substratum, and a basin embedded in 
the layer. The basin elastic parameters are 
varied to obtain three laterally heterogeneous 
models of different velocity contrast between the 
basin and the layer. The wave incident upon the 
basin is defined to be a pure fundamental mode 
having wavelengths comparable to the basin dimen- 
sions. Analysis of the wave transmitted reveals 
mode conversion, i.e., higher mode excitation 
which is increasingly important with increased 
velocity contrast. In terms of (rate of transport 
of) energy, the contribution of the first higher 
mode (being the only higher mode in the analysis 
interval) is relatively small, which differs from 
earlier results for the case of Love waves. To 

enable direct comparison, a fundamental Love mode 
having spectral properties analogous to the 
Rayleigh wave, is propagated across the subsur- 
face models of the present paper. Hence, the 
discrepancy between the two waves basically 
arises from the structure of the subsurface 

transfer functions. The fraction of modal energy 
transmitted across the basin proves a sensitive 
indicator of the velocity contrast, showing simi- 
larity in amount and frequency dependence for 
Rayleigh and Love waves. In terms of modal ampli- 
tudes, conventionally considered in practice, the 
first higher mode contribution (due to mode con- 
version) is roughly comparable to the fundamental 
mode contribution, for both transmitted waves. It 
implies that the amplitude spectrum of the trans- 
mitted surface wave is modulated in the horizon- 

tal direction. The effect adds to the spectral 
distortion due to reflection at the basin. Hence, 
standard interpretation based upon a laterally 
homogeneous model, of measurements in corre- 
sponding regions, may be significantly biased. 

Introduction 

Surface waves have been applied to investiga- 
tions of the crustal structure and of shallow 

earthquakes. Numerous investigations have 
inverted the dispersion information to yield the 
velocity distribution with depth. More recently, 
anelasticity and earthquake source parameters 
have been determined by inversion of the ampli- 
tude information over an extended frequency 
range. 

Tsai and Aki [1970] have developed a method 
of using surface wave spectra from shallow 
earthquakes for focal depth determination. 
Observed amplitude spectra were explained in 
terms of a point force system located at differ- 
ent depths of a layered model. The results 
agreed with findings from body wave travel 
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times. Effects of scattering due to lateral 
heterogeneities or of attenuation due to anelas- 
ticity were neglected. A more detailed knowledge 
of the propagation effects would have permitted 
the seismic moment in addition to the focal 

depth. Cheng and Mitchell [•98•3 have used the 
shape of Rayleigh wave amplitude spectra for 
inversion of crustal Q structure. Mode spectra 
obtained from relatively short wave paths in the 
United States, were explained in terms of a 
layer (corresponding to the upper crust) over a 
substratum. Kijko and Mitchell [19833 have 
applied the method in the Barents shelf region. 
Again, the observations were explained by means 
of a two-layer crustal model. A higher resolu- 
tion was not possible due to uncertainties in 
the source parameters and the effects of lateral 
heterogeneities along the path of propagation. 

These examples demonstrate the restrictions 
of surface wave interpretation in terms of the 
classical plane-layered model, and the need for 
quantitative evidence about scattering due to 
near-surface lateral heterogeneities. At present, 
scattering of surface waves is not well known. 
Theoretical approaches are difficult, and have 
been confined to highly idealized models. 
Bukchin and Levshin [•980] have obtained an 
approximate solution to the propagation of Love 
waves across a vertical discontinuity by appli- 
cation of the Green's function technique. Their 
method overcomes the usual restriction that the 
waves transmitted and reflected can be described 

completely by superposition of normal modes. For 
a step-like increase in thickness of a two-layer 
model, it was found that (i) the amplitude ratio 
between transmitted body waves and surface waves 
is about one tenth; (ii) the amplitudes of 
reflected body waves and surface waves are 
comparable, and about one sixth of the amplitudes 
of the incident Love wave. 

Numerical approaches (finite differences or 
finite elements) to scattering become increasing- 
ly important due to a relatively simple algo- 
rithm, great flexibility, and accuracy. A 
disadvantage is the high amount of computer 
storage capacity and of computation time required 
for the accurate modeling of realistic problems. 
Numerical methods are therefore especially useful 
in problems of scattering at heterogeneities 
having dimensions of the order of the wave- 
lengths. In this paper, wave propagation is 
modeled using finite differences (FD). A discus- 
sion of finite difference methods (homogeneous 
and heterogeneous formulations) for seismic 
waves has been given by Boore [•972]. In his 
Ph.D. thesis, Boore [1970] has investigated Love 
wave propagation across a local heterogeneity of 
a plane-layered medium. The wave was defined 
analytically in terms of the eigenfunctions of 
the layering, and was used to start the finite 
difference solution to the problem. The approach 
has since been adopted by a number of authors. 
Usually, interpretation refers to the spatial 
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Fig. 1. (Upper part) Seismograms of the fundamental Rayleigh mode at the coordinate 
origin. The vertical component of displacement w(t) is defined by a Ricker wavelet, 
which implies the corresponding horizontal component u(t). (Lower part) Subsurface 
elastic model. Density, compressional wave velocity, and shear wave velocity •f the 
layering are given by 01=2.6 g/cm •, •1=4.5 km/s, 81=2.45 km/s and 09=2.8 g/cm •, $9= 
6.0 km/s, 82=3.45 km/s.'The basin parameters take $n different values to define t•ree 
laterally heterogeneous models (see Table 1). The model dimensions are scaled by the 
dominant wavelength lD=10 km. 

waveform. Fuyuki and Matsumoto [1980], for 
example, have determined Rayleigh wave transmis- 
sion and reflection properties at a trench of a 
homogeneous halfspace, by analysis of the surface 
displacements at a fixed time. 

The author has presented a hybrid approach to 
surface wave transmission across a local hetero- 

geneity, based upon seismogram frequency spectra 
of the incident wave and of the wave transmitted 

CSzelwis, 1983]. The method has been applied to 
Love waves on a layered model involving a 
sedimentary basin. The present paper considers 
Rayleigh waves, and also compares the transmis- 
sion properties of the two waves. 

Analytical Definition of the 
Incident Wave 

Free surface waves of a laterally homogeneous 
waveguide are interpretable by mode contribu- 
tions. In the case of a two-dimensional elastic 

medium, horizontal and vertical components of 
Rayleigh wave displacement, u and w, may be 
represented by 

U(X,Z,t)} 1 7 W(X,Z,t) = • exp (-i•t) -oo 

f U (x,z,•)} ß • dm (la) 
•- (n) 
n W (x,z,m) 

where 

U © (x,z,m) (n) TH 
= c• (m) _(n)(z m) W © (x,z,m) T V , 

(n) 
ß exp(imx/c ) (lb) 

The Cartesian coordinates x,z refer to the origin 
at the surface of the medium; x is parallel to 
and positive in the direction of propagation, 
and z is vertical and positive downward. The 

time-frequency (t-w) •ourier(•ansforms of the modal components, Utn) and W (n is the mode 

index), are compos•)•[ (1) horizontal transfer where c tn) is the phase function exp(i•x/c T TM v•locity, (2) vertical transfer function H or •n) 

T V for the horizontal or vertical d•lacement 
component, and (3) mode coefficient • . 

Accordingly, a free Rayleigh wave propagating 
in a waveguide of,known properties is completely •n) ' 
determined by • (m). If there is only one mode, 
the wave is completely determined by a single 
(horizontal or vertical component) seismogram. 
The wave incident upon the heterogeneity is 
defined to be purely fundamental mode: 

(n) (1) 
• (m) = • (m) 6 (2) 

nl 

where 6 is Kronecker's delta. 

Assume the vertical component seismogram w 0 (t) 
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Fig. 2. (Upper part) Phase velocity of the 
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to be known at the coordinate origin. Then, 
comparing expression 

w(t;x=z=0) : w 0(t) = • • 
-oo 

ß exp(-icot) W0(co) dco (3) 
(W^(co) is the Fourier frequency spectrum of 
w^•t)), to (]a) and (lb) and taking into account 
(•), it follows that the incident wave is given 
by 

/ UA(X, z ,co) } W0 (co) WA(X,Z ,co) TV(] ) 

t TH(1)(z,co)} (1) ß exp (icox/c ) (4) 

TV( 1 ) (z 
where the index A denotes "analytical wave." 
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Fig. 3a. Model M1. Amplitude ratio at the 
vertical array of sensors (Figure 1), obtained 
by numerical propagation (index FD) and by 
analytical propagation (index A) of the funda- 
mental mode. (Upper part) horizontal component 
and (lower part) vertical component. 

For convenience o• •ota•ion the vertical 

t•sfer functions tn) tn) ' T•-'(0,co) to yield TH ' TV are normalized by 
•H(n) (z ' co) 1 1 
•fv(n) (z,•)J •V(1) (0,•) 

{_ (n)(z co))} ß i'H ' (5a) 
_ (n) (z ,• i' V 

Correspondingly, the mode coefficients are 
redefined by 

V( (n) A(n)(co) = T 1)(0,co) • (co) (5b) 

allowing direct comparison with 
Now, the frequency-time (inverse) Fourier 

transform of (4) gives the fundamental mode dis- 
placement field at every point of the waveguide 
as a function of time. Direct numerical computa- 
tion of the wave field on a (two-dimensional) 
spatial grid requires a Fourier transform at 
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Fig. 4b. Histograms of residuals due to inversion of the vertical component of 
motion, for the three laterally heterogeneous subsurface models. 

every grid point, which is generally not feasi- 
ble. A more useful form is obtained by trans- 
forming from frequency m to wavenumber k 
associated with the direction of propagation x. 
This yields the following representation: 

= exp (ikx) •(k) 
WA(X,Z,t ) - • 

Z• (z,k) (1) 
ß exp(-ikc t) dk 

,,.,(1) ,k)J T v (z 
where 

(6a) 

. doo (1) W(k) - dk WO(øø(1)) (6b) 
Computation of the spatial displacement field 

according to (6a) and (6b) requires one Fourier 
transform at every depth level of the grid. 

FD Wave Propagation 

The equations of motion governing the propaga- 
tion of free Rayleigh waves in a two-dimensional 
heterogeneous elastic medium are given by 

•2u • •G 
0' 2 •x (D + 2E) + •-• 

•t (7) 

•2w • •G 
P' - •z(D + 2F) + • 3t 2 

where 

D = k( Du Dw Du Dx + •) E = ]•xx 

;•u 3w) F 3w 0= •(•+ •x = •xx 

and where the density 0 and Lam&'s parameters l 
and • are functions of the spatial coordinates x, 
Z. 

The second order partial differential equa- 
tions (7) are solved by the heterogeneous finite 
difference formulation. Approximations to the 
differentials are analogous to those of Kelly et 
al. [1976], except that the density 0 is consid- 
ered here to be spatially variable. Hence the two 
coupled FD equations corresponding to (7) differ 
from those of Kelly et al. by explicit occurrence 
of l, •, and 0. 

Conformable to standard procedure, the free 
surface boundary conditions, i.e., vanishing of 
normal and tangential stress components, are 
treated explicitly to specify the displacement at 
artificial grid points exterior to the medium of 
propagation. Boundary conditions at a discontinu- 
ity within the medium are involved in the hetero- 
geneous FD formulation. Initial conditions are 
defined by the fundamental mode displacements at 
two points in time separated by the numerical 
time increment. 

A stability condition for the FD forward time 
differencing scheme on a regular two-dimensional 
spatial grid is given by 

At =< Ar/(• 2 + B2)1/2 
m m 

where At represents the time increment, Ar is the 
grid interval, and • and B are maximum compres- 

m m . 

sional and shear wave velocltzes occurring in the 
model. The existence of stability implies conver- 
gence for all practical purposes [Boore, 19723 . 
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Fig. 5a. Model M1. Seismograms at the sensor array, obtained by analytical propaga- 
tion and by numerical propagation of the fundamental mode. The analytical seismograms 
are given by a thin line, and the FD seismograms by vertical bars simulating a 
relatively broad line. From left to right, the seismograms correspond to increasing 
depth. The time scale is in seconds, and the amplitude'scale is in •m. (Upper part) 
horizontal component and (lower part) vertical component. 

Wave propagation on a lattice is known to be 
subject to "grid dispersion." According to 
Alford et al. [!974], the effect is important if 
there are less than about l O grid points per 
wavelength, and tends to become more pronounced 
as the distance the wave has travelled through 
the grid increases. 

In this paper, Ar = 0.5 km, and At = 0.07 s 
which is 3% below the stability limit. The 
amplitude spectrum of the analytical wave-- 
represented by a Ricker transient--is maximal at 
a (fundamental mode) wavelength of 20 Ar, and 
assumes half the maximum value at wavelengths of 
about 50 Ar and •2 Ar (Figure 2). 
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Fig. 5b. Model M1. Seismograms at the sensor array. Comparison between FD seismo- 
grams and "observational" seismograms, represented by a continuous line and by 
crosses, respectively. For legend, see Figure 5a. 

Inversion 

Propagation of the Rayleigh wave across the 
heterogeneous region is subject to elastic 
scattering which generally implies mode conver- 
sion, i.e., excitation of trapped higher modes, 
and also conversion into leaky modes and body 
waves. The relative importance of these effects 
depends upon geometrical and scale parameters 
(for example, depth location and size of the 

heterogeneity relative to the wavelengths) as 
well as material properties (for example, the 
impedance contrast represented by the heteroge- 
neity). This paper considers a local heterogene- 
ity of the form of a basin, the lateral and 
vertical dimensions of which correspond to the 
dominant wavelength and to a quarter of the 
dominant wavelength, respectively (Figure 1). 
The elastic parameters of the basin are varied 
to yield different velocity (or impedance) 
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Fig. 5c Model M1. Seismograms at the sensor array. Comparison between "observation- 
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crosses of the preceding Figure) and by open circles, respectively. For legend, see 
Figure 5a. 

contrasts with respect to the layer. 
The concept of analysis consists in separat- 

ing the wave transmitted across the basin into a 
(multimodal) Rayleigh wave and random noise. 
This means to focus attention on possible mode 
conversion, while nonmodal components, i.e., 
scattered leaky modes and body waves, are 
interpreted as background noise. 

The modal wave component is modeled by the 
seismogram frequency spectra of the form 

t%(x z,•) l = •(x]z •(n) (x, z,m)t n• •(n) (x,z,m) 

! %(n) (m) •V © (z m n 

ß exp (imx/c (n)) (8) 
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(see (1) %•) (5)),, where •(n) (m) is generally not equal to (m) due to the influence of the 
basin. 

The mode structure of the Wave transmitted is 

determined from a number of seismograms "observ- 
ed" at a hypothetical sensor array located 
beyond the basin. With respect to the seismogram 
frequency spectra, the concept of analysis 
implies that 

V.(x,z,m) =•i(x,z,m) + e!(x,z,m) (9a) 1 1 

i=1 ..... 2• 

where V. stands for {Uk, W. } k=l, .... • 1 . f complex observational representing a set o 

spectrum samples; V. stands for the corresponding 
set {U"k, •k}; and le: represents the spectral 
density of a random "•esidual process." 

By a priori assumption, 

E(e•) = 0 i=1 .... ,2• (9b) 

The assumption actually applies to the residuals 
arising at each of the sensor locations sepa- 
rately. 

Hence the mode structure is obtained_ by least- 

squares fitting between model spectra •i ) and 
observational spectra (Vo). The discrete linear 

ß 1 

inverse problem is equivalent to solving the 
system of equations 

m 

V.(x z m) = •. Lij(x,z,m,n) •j(•,n) (10) 1. ' ' j=l 
i=1,...,2• 2• > m 

where the right-hand side stands for the model 
representation of (8); L. denotes the product 

' ]':• al trans between vertical and horz ont fer 

function, and •. denotes the (generally complex) 
mode coefficien• to be estimated. 

In real matrix notation, the system (10) is 
weighted by multiplication with a diagonal 
matrix containing the inverse observational 
spectra, and solved by the generalized matrix 
inverse •for example, Searle, 1971]. 

Estimation Statistics 

Use of the generalized inverse matrix in 
solving the linear equations (10) involves a 
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Fig. 6b. Model M2. Vertical component seismograms at the sensor array, corresponding 
to increasing depth from top to bottom. Comparison between FD seismograms and observa- 
tional seismograms, represented by a continuous line and by crosses, respectively. 

"singular value decomposition" of the weighted 
rectangular matrix (L..). For the mode Is cons•d- 

ß 

ered, the matrix prove• to be well-conditioned; 
therefore the matrix inverse is constructed by 
inclusion of all singular values and their 
eigenvectors. The corresponding resolution matrix 
is an identity matrix, i.e., the solution is 
unique. 

On the premise of independent residuals nor- 
mally distributed about zero, a 100(1-•) percent 
confidence interval associated with the unbiased 

estimate •[. is given by 

dj -- 2 t2•_m(•/2) /vary) (11) 
The equation applies to real and imaginary parts 
separately; the radical is the variance of the 

estimate, and to• • (•/2) represents the 100• per- centage point •e t-distribution on 2•-m 
degrees of freedom. An estimate•. is considered 
significant when real and imaginary parts of the 
estimate exceed the confidence interval half- 

width. 

A measure of the goodness-of-fit of the model 

is given by the coefficient of determination 
between Vo and •. : 

1 

1 2 
(12) 

Physically, e = e[/V. -- 1 - V•/V: represents the residual spectral •en•ity normalized by the 
observed spectral density (see (9a)). Hence the 
quantity 1 - R is related to the average power 
of the normalized residual process, and may serve 
as an indicator of the power of nonmodal noise. 

Laterally Homogeneous Model 

The "incident" fundamental Rayleigh mode is 
defined in terms of a Ricker pulse (Figure 1) 
representing the vertical component seismogram at 
the coordinate origin. The pulse amplitude 
spectrum is given in Figure 2. 

To test the method of investigation, the wave 
is propagated across the undisturbed waveguide 
(model M1) consisting of a layer of sedimentary 
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Fig. 7a. Model M3. For legend, see Figure 6a. 

rock velocity of 5 km thickness over a homogene- 
ous substratum of crystalline rock velocity. 
Theoretically, the fundamental mode displace- 
ments occupy a large space. For the purpose of 
FD wave propagation, the displacements are 
defined to be zero outside a range extending 
60 km laterally and 20 km downward. Hereby, 
amplitudes of modulus lower than 0.5% and 5% of 
the maximum amplitude are neglected in the 
lateral and downward direction, respectively. 
This wave propagated numerically is compared to 
the analytical wave propagated by phase shifting. 

Figure 2 compares phase velocity estimated 
from two FD surface seismograms, to theoretical 
phase velocity. Numerical and theoretical 
results closely agree in a limited frequency 
band, while outside this band, there are rapidly 
increasing deviations. As a consequence, inter- 
pretation is confined to the interval 0.08-0.50 
Hz defined as "analysis interval." (This will be 
valid for all of the models considered.) 
Fundamental mode wavelengths of the analysis 
interval cover a range of 5 to 35 km, the wave- 
length of maximal spectrum amplitude being 10 km. 

The wave propagated is recorded by an array 

of hypothetical sensors distributed vertically 
at four locations with 1 km spacing, at a 
horizontal distance of 110 km from the coordi- 

nate origin (Figure 1). Inversion is based upon 
the seismogram spectra sampled at 16 equidistant 
frequencies (separated by about 0.03 Hz) of the 
analysis interval, yielding a total of 64 com- 
plex spectral values per component of motion-- 
defined as "observations." 

Now, the analysis interval implies no more 
than the two lowest modes. Sampling at the 
frequencies defined, of the trapped modes which 
are characterized by zero energy below cut-off, 
yields a total of 26 generally complex mode 
coefficients to be determined in the inversion. 
Hence the number of observations is about 2.5 
times the number of unknowns. 

Figures 3a and 3b show the array seismogram 
spectra obtained numerically, in relation to 
those obtained theoretically. The componental 
spectra are compared in terms of amplitude and 
phase at the sample frequencies of the analysis 
interval. According to Figure 3a, the amplitudes 
differ by about maximally 15% in the case of the 
vertical component, whereas considerably larger 
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deviations occur in the case of the horizontal 
component. 

According to Figure 3b, the phase difference 
is nearly independent of the depths considered 
for the vertical component. The increase of 
phase delay with frequency--a well-known feature 
of grid dispersion--is given approximately by a 
quadratic law, A•(f) = -¾(f-fn) z, where f 
denotes frequency (Hz), and f• = 0.1 (Hz), and 
¾ = 8 (degrees times seconds •quared). For the 
horizontal component, a corresponding trend in 
phase delay is obvious, although there are 
distinct variations between individual depths. 

In the case of the horizontal component, both 
amplitude and phase deviate considerably from 
the average trend at 1 km and, to a smaller 
degree, at 2 km depth. Actually, near these 
depths, the sense of polarization of the funda- 
mental mode motion reverses, implying a node of 
the horizontal component. This means that a 
small bias of the FD wave may be responsible for 
a change in sign of the phase, as well as a 
large relative deviation of the amplitude. 

To find out the implications in the inversion, 
the wave propagated numerically has been invert- 
ed using the spectra of both horizontal and 
vertical components, on the one hand, and the 
spectra of the vertical component only, on the 
other hand. Compared to the former approach, the 
latter leads to mode coefficient estimates which 
agree better with theory. Also, the latter 

approach results in a much smaller spread and a 
higher degree of symmetry of the distribution of 
residuals (Figure 4a). Inferred from the coeffi- 
cient of determination, the model accounts for 
99% of the observations in the latter approach, 
compared to 84% in the former approach. For 
illustrative purposes, Figures 5a-5c compare 
theoretical seismograms, FD seismograms, "obser- 
vational" seismograms corresponding to the 
sampled spectra of the FD seismograms, and model 
seismograms computed from the mode coefficient 
estimates resulting from inversion of the 
vertical component observational spectra. Note 
that observational seismograms and model seismo- 
grams are based upon the sample frequencies of 
the analysis interval. Owing to the sampling 
rate (as defined above) the corresponding seis- 
mograms have a length of 36 s; outside this 
interval they are repeated periodically by 
definition of the fast Fourier transform (FFT) 
applied. 

Figure 5a compares FD seismograms and theo- 
retical seismograms at the recording array. 
There is good agreement in general. Deviations 
of the long period components occurring before 
about 50 s, seem to result from the restricted 
vertical extent of the numerical grid. The hori- 
zontal component well illustrates the change in 
polarization close to ] km depth. Figure 5b 
compares observational seismograms and FD seis- 
mograms. Their close agreement demonstrates 
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Fig. 8a. Model M4. For legend, see Figure 6a. 
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adequate sampling rate. Figure 5c compares model 
seismograms and observational seismograms. Their 
close agreement demonstrates close model fit. 

Laterally Heterogeneous Models 

In the following, the layered model includes 
a local heterogeneity of the form of a rectangu- 
lar basin at the surface (Figure 1). While the 
basin geometry is kept constant, the elastic 
parameters of the basin are varied to obtain 
different velocity (or impedance) contrasts with 
respect to the layer. The incident fundamental 
Rayleigh mode described analytically occupies 
the space to the left of the basin. The wave is 
transmitted across the basin by FD approximation, 
and recorded at the vertical array of sensors 
situated 70 km--being double the maximum wave- 
length of the analysis interval--beyond the 
basin. In view of the results for the undis- 

turbed waveguide, the inversion is based upon 
the vertical component seismogram spectra only. 

Three models are considered. The basin 

properties correspond to low velocity sedimenta- 
ry rocks for two models, and to vacuum for one 
model. The models are characterized by a shear 
wave velocity ratio between the basin and the 
layer, of 0.6 (model M2), 0.4 (model M3), and 
0.0 (model M4), respectively. Consistent with 

the previous assumption, the residuals produced 
by the fitting procedure prove to be almost 
normally distributed about zero for all models 
(Figure 4b). Thus (11) and (12) provide meaning- 
ful criteria for the estimates and the total 
model. 

Figures 6a, 7a, and 8a give the estimated 
mode coefficient amplitudes, along with their 
associated 95% confidence intervals. Also, the 
figures show the amplitude spectra of surface 
seismograms representing the wave transmitted 
across the basin, and the incident wave or, 
equivalently, the wave transmitted across the 
undisturbed waveguide. Comparing the wave trans- 
mitted (across the basin) to the incident wave 
in terms of the amplitude spectral density, the 
following is evident (only the analysis interval 
is considered). In the case of model M2, the 
wave transmitted is modified negligibly, except 
for small but significant reductions at about 
0.3 Hz. In the case of model M3, over most of 
the frequency interval, the wave transmitted is 
reduced such that frequency bands of distinct 
reduction alternate with bands of low reduction. 

In the case of model M4, the wave transmitted is 
reduced substantially at all frequencies from 
about 0.2 Hz upward, and exhibits strong varia- 
tions with frequency. 

The estimated mode coefficients have statis- 
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tically significant amplitudes for the fundamen- 
tal mode and also for the first higher mode. The 
higher mode contribution is relatively small in 
the case of model M2, and tends to increase with 
increased velocity contrast. This aspect will be 
discussed in more detail below. 

Figures 6b, 7b, and 8b show the seismograms 
at the sensor array, for the models considered. 
The figures compare the FD seismograms to the 
observational seismograms, demonstrating that 
the FD seismograms are accurately reproduced by 
the sampling of their spectra. In comparison 
with model M1 (Figure 5b), the seismograms are 
diminished in amplitude and extended in time. 
The effect is moderate in the case of model M2, 
and becomes more pronounced for the models of 
higher velocity contrast. Apparently, the seis- 
mograms are affected mainly at times from about 
50 s onward; this implies a relatively small 
influence of the basin upon the high velocity 
components which correspond to the long wave- 
length components. 

The model seismograms (not shown) computed 
from the mode coefficient estimates, are nearly 
identical to the observational seismograms, due 
to a close model fit in all of the cases. 

Mode Conversion 

In terms of the mode coefficient amplitudes, 
higher Rayleigh mode excitation appears to be 

relatively unimportant. This is in contrast to 
results from an earlier paper dealing with Love 
wave transmission across a basin type heteroge- 
neity [Szelwis, 1983]. That paper considers two 
models resembling M2 and M3. For both models, 
the mode coefficient amplitudes of the higher 
mode are comparable to those of the fundamental 
mode. 

To enable more direct comparison between the 
two waves, Love wave transmission is reinvesti- 
gated for the subsurface models considered in 
the present paper. The incident fundamental Love 
mode is defined by the amplitude spectrum 
corresponding to the vertical component funda- 
mental Rayleigh mode. This implies similar wave- 

km/s 

3.0 R(1)•,•,,• 
2.5 ....... 

2.0 
i I , i i i 

o o.i 
Fig. 9. Model M1. Modal'phase velocity of 
Rayleigh waves (R) and Love waves (L). 
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lengths, owing to relatively close phase veloci- 
ties of the undisturbed layer model (Figure 9). 

The mode coefficient amplitudes are related to 
the rate of modal energy transport per unit width 
of the wavefront: 

= 1 (n) 2 •(n) (m) 7 m k •(n) I (13) 
Lysmer and Drake, 1972]. 

Figure 10 gives the ratio •(2)/•(1) for 
Rayleigh and Love waves. The two waves consis- 
tently exhibit increasing mode conversion with 
increased velocity contrast. They differ in the 
relative amount of first higher mode energy, 
which is less by orders of magnitude, and also 
shows a more pronounced frequency dependence for 
the Rayleigh wave compared to the Love wave. 

Field experiments generally do not provide 
coordinate-independent mode energy, but rather 
modal amplitudes involving the subsurface trans- 
fer functions. For comparison between the two 
waves, the amplitude spectral density of a 
Rayleigh mode is defined here by 

V (n) (x,z,m) = (•(n) 12 + •(n) 12) 1/2 

= •(n) i(•H(n)i 2 + •v(n)12)1/2 
_- %(n) l T(n) eff 

(14) 

(see (8)). 
In the case of Love,modes, the "effective 

_. ,, .,tn) ß 
transfer function -,' • is replaced by the 

{ar) Love trans er magnitude of the (sc• • mode f 
function. 

Figures 11a-11c show the amplitude spectral 
density of Love and Rayleigh modes at the 
surface. The figures reflect a decrease of the 
transmitted wave relative to the incident wave, 
and also an increase of the first higher mode 
contribution relative to the fundamental mode 

contribution, parallel to increased velocity 
contrast. Remarkably, both Love and Rayleigh 
waves display higher mode contributions of the 
order of the fundamental mode contributions. 

In the following, the role of the subsurface 
transfer functions in the depth range of the 
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Comparison between Fig. 11a. Model M2. Modal amplitude spectra at the surf•i and the transmitted Rayleigh and Love waves in•• o{•She incident mode (o z)) modes at the sensor array • . ' 
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sensor array is considered. Figures 12a and 
show the magnitude of the first higher mode 
transfer function divided by the fundamental mode 
transfer function for model M1. In the case of 

the Love wave (Figure 12a), the ratio is almost 
frequency independent, decreasing from unity at 

the surface toward zero at a depth of 2 to 2.5 
km, then increasing with depth. Figure 12b shows 
the ratio of the effective Rayleigh mode transfer 
functions as defined by (14). At low frequencies, 
the ratio takes on relatively high values in- 
creasing with depth from about 100 at the surface 

Hm/Hz 
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Fig. 11c. Model M4. For legend, see Figure 
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to about 200 near the depth of the bottom sensor. 
With increasing frequency, the ratio decreases 
toward about unity at the surface, and to about 
10 at the depth of the bottom sensor. 

COmparing the ratio of modal transfer func- 
tions to the ratio of modal energies (Figure 10), 
the following is evident. A high energy ratio 
corresponds to a low ratio of the transfer func- 
tions, and vice versa. This relation basically 
accounts for the discrepancy between the modal 
energies of Rayleigh and Love waves. It must be 
noted that the transfer functions are nonunique, 
hence this also applies to the mode coefficients, 
respectively the mode energy. 

In terms of mode amplitudes defined by the 
product of mode coefficient and transfer func- 
tion, Rayleigh and Love waves are roughly compa- 
rable (Figures 11a-11c). Accordingly, mode 
conversion is relevant for both waves. An aspect 
important for applications is that the presence 
of several modes in the wave transmitted across 

the basin, gives rise to modulation in the hori- 
zontal direction of the wave amplitude spectrum. 

Energy Balance 

The influence of the basin is now considered 

in terms of the fraction of transmitted energy. 
From (13) it follows that 

• (1) 2 
E A -- k Iwol 

2 

-• • (n) •(n) 2 
n = 1 

represent the energy of the incident fundamental 
mode and of the modal field transmitted, respec- 
tively; W^ denotes the Fourier spectrum of the 
Ricker puYse representing the seismogram at the 
coordinate origin, of the Love wave, or of the 
vertical component Rayleigh wave. 

(15) 

0.35 0.40 0.45 Hz 0.50 
' 0 ' • i 

2 

3 

_ 

Fig. I• •lel MI. Cont•u• plot of 
log(IT• =) ''• •n• . /T m), where T is the transfer L L 
function of the n-th Love mode. Coordinates 

are frequency and depth. The contour spacing 
is 0.2. 
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km 

Fig. •b. tM0del M1. Coatour plot of 
k z2 k/2 kn2 . 

log(T •/T •), where T • zs the "effective" 
transfer f,unctzon of the n-th Rayleigh mode. 
The contour spacing is 0.4. 

Figure 13 gives •/E A for Rayleigh and Love 
waves. The two waves resemble in magnitude and 
frequency dependence. As indicated by the ampli- 
tude spectral density, the energy spectrum of the 
incident mode is distorted increasingly with 
increased velocity contrast. Minimal values of 
the fraction of transmitted modal energy are of 
the order of 50% for model M2, 10% for model M3, 
and 1% for model M4. 

An estimate of the fraction of total modal 

energy transmitted is obtained by the ratio 

F""/F A = Z'•'(co) / • EA(CO) (16) 

where summation is over the sample frequencies 
of the analysis interval. 

The ratio is given in Table 1 for Rayleigh 
and Love waves. It proves a sensitive indicator 
of the velocity contrast, almost agreeing for 
the two waves. 

Table 1 also gives the quantity 1-R 2 related 
to the residuals of the fitting procedure (see 
(12)), which serves as a coarse measure of the 
fractional power of nonmodal noise in the trans- 
mitted wave. The difference between the two 

waves suggests that losses due to (forward) 
scattering into nonmodal components, are more 
important for the Love wave compared to the 
Rayleigh wave. Generally, the fraction of noise 
in the wave transmitted is small; therefore the 
energy deficit between the modal wave transmit- 
ted and the incident wave must be attributed 

essentially to reflection at the basin. 
(Note: The influence of a water basin upon a 

Love wave corresponds with the influence of a 
vacuum basin. The influence of a water basin 

upon a Rayleigh wave is difficult to evaluate, 
due to instability of the heterogeneous FD 
approximation at a fluid-solid interface. Alter- 
natively, if use is made of the explicit formu- 
lation of the boundary conditions for a solid- 
solid interface, where the shear wave velocity 
is assumed zero for the fluid, a stable FD 
scheme is obtained. The scheme implies continu- 
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component transmitted and the incident mode. 
Comparison between Rayleigh and Love waves for 
the laterally heterogeneous models. 

ity of the component of motion parallel to the 
boundary, and hence violates the physical slip 
condition. For the model configuration of this 
paper, the corresponding bias appears to be 
small. By making use of that approach in analyz- 
ing the water basin model, it follows that there 
is some analogy to the vacuum basin model; for 
example, the ratio F•/FA is given by 0.10, and 
the quantity l-R- by 0707. On the other hand, 

there are nonnegligible differences concerning 
the mode structure and the spectral representa- 

tion of •/E A.) 
Concluding Remarks 

The hybrid method of analysis is affected by 
errors due to the FD approximation, the sampling 
approximation, and the fitting procedure. 

1. The FD approximation has been investigated 
by comparison with theory for the case of the 
undisturbed layering. This has led to the defini- 
tion of an "analysis interval" where numerical 
errors are minimal. In the case of the basin, the 
accuracy of the FD scheme is somewhat uncertain. 
First, the heterogeneous FD formulation involves 
a continuous approximation to the discontinuous 
change of Lam•'s parameters at the bas in bounda- 
ries. Second, FD results are biased increasingly 
with increased values of Poisson's ratio charac- 

terizing an elastic medium. The basin elastic 
parameters of models M2 and M3 imply a Poisson's 
ratio of 0.33 which is not considered a critical- 

ly high value. In summary, FD propagation across 
the basin appears to be sufficiently accurate. 

2. The sampling approximation implies the 
limited analysis interval and the sampling rate. 
The interval length does not affect the relative 
energy considered (although almost the entire 
wave energy is concentrated in the analysis 
interval). The sampling rate is adequate to 
reproduce the variations of the amplitude spectra 
in the case of models M2 and M3; whereas, in the 
case of model M4, it is relatively coarse leading_ 
to a smoothed version of the amplitude spectra. 

3. The errors of the fitting procedure, i.e., 
the residuals, are related to the model of anal- 
ysis. In the concept of this study, the sum of 
squares of the residuals yields a measure of 

016 nonmodal noise. 
This study has provided quantitative evidence 

of surface wave transmission across a heteroge- 
neity having dimensions of the order of the wave- 
lengths. Fundamental mode Rayleigh and Love waves 
have been propagated numerically across a basin 
representing different velocity contrasts, and 
analyzed subsequently in terms of modes contami- 
nated by nonmodal noise. It has been found that 
wave interaction with the basin gives rise to 
mode conversion which is increasingly important 
with increased velocity contrast. With regard to 
mode amplitudes conventionally considered in 
practice, the first higher mode contribution 
(due to mode conversion) is vastly comparable to 
the fundamental mode contribution, for both Love 
and Rayleigh waves transmitted. This implies that 

TABLE 1. Laterally Heterogeneous Models 

Model 0 3 , c• 3 , 8 3 , (•/FA) R (1-R2) R ('•/FA) L ( 1-R2 ) L g/cm 3 km/s km/s 
M2 2.2 3.0 1.5 0.77 0.01 0.76 0.12 

M3 2.0 2.0 1.0 0.36 0.02 0.37 0.14 

M4 0.0 0.0 0.0 0.09 0.06 0.11 0. 12 

Columns 2, 3, and 4 give the elastic parameters of the basin. Columns 5 and 
6 refer to the Rayleigh wave, and columns 7 and 8 refer to the Love wave. For 
definition of symbols, see text. 
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the amplitude spectrum of the transmitted surface 
wave is modulated in the horizontal direction. 

The fraction of modal energy transmitted across 
the basin proves to be a sensitive indicator of 
the velocity contrast, and shows correspondence 
with respect to amount and frequency dependence 
between Rayleigh and Love waves. 

Based upon two-dimensional models, the results 
of this paper may not simply be extrapolated to 
three-dimensional structures. However, it is 
demonstrated that variable sedimentary coverage, 
or a distinct topographic relief (or a water 
basin) may have significant influence upon 
surface waves of comparable wavelength scales. 
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