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Abstract

The frazil ice dynamics in a turbulent Ekman layer have been investigated using a mathematical model. The model is
based on the conservation equations for mean momentum, energy and salinity, and employs a two-equation turbulence
model for the determination of turbulent diffusion coefficients. A crystal number continuity equation is used for the
prediction of the frazil ice dynamics. This equation considers several processes of importance, as for example turbulent
diffusion, gravitational up-drift, flocculationrbreak-up and growth. The results focus on the frazil ice characteristics in the
upper layers of the ocean, like suspended ice volume, ice crystals per m3, vertical distributions, etc. From the idealized
calculations, it is indicated that a large number of ice crystals can be mixed into the ocean during freezing. However, the
amount of ice in suspension, measured as vertically integrated ice thickness, adds only a minor part to the total surface ice
budget. Small crystals are mixed deep in the ocean while the large ones are found only in the top of the mixed layer.
Knowledge about the vertical distribution of ice crystals of different sizes, which is calculated from the model, should be of
importance when analysing processes as formation of ice covers in the ocean and ice–sediment or ice–algae interaction.
q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Almost all ice models applied in the polar and
sub-polar seas are based upon models derivated from

Žthe one-dimensional heat conduction equation e.g.,
Stefan, 1891; Maykut and Untersteiner, 1971; Hi-

.bler, 1979; Lepparanta, 1983, 1993; Maykut, 1986 .¨
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They assume some initial ice thickness, from which
the ice is assumed to grow, and sometimes simplify
the problem by introducing the so-called freezing
degree-day method or assuming a linear temperature
change in the ice, and the ice growth becomes
propotional to the square root of time. The physical
processes in mind using the above method, are re-
lated to columnar ice growth. In the ocean, the initial
ice formation is, however, often related to frazil ice
formation, in which all heat losses from the open
water is transformed into suspended ice crystals and
the ice growth becomes linear with time. Frazil ice

0165-232Xr98r$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII: S0165-232X 98 00011-1



( )U. SÕensson, A. OmstedtrCold Regions Science and Technology 28 1998 29–4430

formation is associated with large heat fluxes to the
atmosphere, large ice production and large amount of
salt rejected from the ice crystals into the ocean.

Intensive studies of the cold seas, during the last
decades, have demonstrated the importance of frazil
ice. The major sea ice forming process in the Wedell
Sea, Antarctica, is due to frazil ice that is trans-
formed to pancake ice at the surface due to wave–ice

Ž .interaction Wadhams et al., 1987; Lange, 1990 . Ice
core measurements from the Wedell Sea illustrate
that frazil ice contribute with as much as 50% of the

Ž .ice mass Gow et al., 1982 .
In the Arctic new ice often forms on the shallow

Žshelves through frazil ice formation Pfirman et al.,
.1990 . In these shallow areas large amounts of sedi-

ments can be incorporated and mixed in the ice
through the frazil ice formation and escape from the
shelf region through advection out into the Beufort
Sea or into the Transport drift stream out through the
Fram Strait.

In polynyas, leads and at ice edges frazil ice is the
Žmain ice process e.g., Martin, 1981; Pease, 1987;

Smith et al., 1990; Ushio and Wakatsuchi, 1993;
.Wadhams et al., 1996 . For the ventilation of inter-

mediate and deep water masses in the Arctic, frazil
ice formation on the shelves is believed to play an
important role in forming dense water masses
Ž .Aagard et al., 1981; Martin and Cavalieri, 1989 . As
the small frazil ice crystals become suspended in the
upper layers of the ocean, they can actively interact
both with the mixed layer dynamics as well as

Žsedimentary particles Reimnitz and Kempema, 1987;
Kempema et al., 1988; Pfirman et al., 1990; Nurn-

.berg et al., 1994 .
The frazil ice crystals also strongly interact with

the biological communities in the upper layers of the
Ž .ocean Ackley and Sullivan, 1994 . The structure of

an ice cover formed through frazil ice is therefore
different compared to that of columnar ice, with
sediment particles and biological material vertically
mixed within the whole ice column. Modelling of
frazil ice beneath ice shelves has been done by, for

Ž .e.g., Bombosch and Jenkins 1995 and Jenkins and
Ž .Bombosch 1995 , but this will not be further dealt

with in the present work, instead we only consider
frazil ice formation in the upper layers of the ocean.

As the physics of frazil ice differs from columnar
ice, new efforts are needed to properly simulate or

parameterize the ice–ocean interaction. Some field
and laboratory experiments on frazil ice formation
have been conducted, but rather few models are
available today. Modelling efforts were made by

Ž .Bauer and Martin 1983 , when they considered the
Ž .ice formation in leads, while Pease 1987 treated

Ž .wind driven polynyas. Martin and Cavalieri 1989
further estimated the role of the Siberian Shelf
polynyas in generating dense water through frazil ice
formation. In these studies, the ice formation was
assumed to be due to frazil ice, however, no models
or ideas about the frazil ice dynamics were intro-
duced instead bulk heat balance arguments were

Žapplied. In a series of papers Omstedt and Svens-
.son, 1984; Omstedt, 1985a,b , a frazil ice model for

the upper layers of the ocean was developed. The
main achievements were that the ice formation could
be treated as a boundary layer problem and that no
assumption was needed when ice was forming. In-
stead the initial ice formation and growth were treated
by the model through physically sound assumptions.
In the model, the frazil ice growth was assumed to
be due to multiplication, and a constant crystal size
was assumed. In a later study, Svensson and Omstedt
Ž .1994 presented a model of frazil ice dynamics,
where the crystal number continuity equation was
solved for a well mixed jar.

The present work will extend the frazil ice model
Ž .by Svensson and Omstedt 1994 to the upper layers

of the ocean and examine the dynamics of frazil ice
formation in an Ekman boundary layer. The purpose
is to describe and discuss processes involved in the
generation of ice due to surface cooling. This in-
volves transport processes in the vertical direction,
due to turbulent diffusion and gravitational rise, as
well as dynamical processes, like growth and floccu-
lation, in radial space.

The outline of the paper is as follows. In Section
2, a general description of frazil ice is given. Then in
Section 3, the mathematical formulation is outlined.
Section 4 gives the results and finally, some conclu-
sions are given in Section 5.

2. General description

A thorough review of the physics of frazil ice has
Ž .recently been given by Daly 1994 ; there is thus no



( )U. SÕensson, A. OmstedtrCold Regions Science and Technology 28 1998 29–44 31

need to review the subject in the present paper. The
basic features of the situation studied will, however,
be briefly introduced, see Fig. 1.

The problem will be discussed in boundary layer
terms, and the hydrodynamical scene is thus a turbu-
lent Ekman layer. In the present context, the main
interest in the hydrodynamics is that it provides a
turbulent diffusion coefficient. If heat is lost at the
surface, the turbulent diffusion coefficient will have
a strong influence on the resulting temperature distri-
bution. During the formation of frazil ice salt is
rejected into the water phase. Also the resulting
salinity profile is strongly governed by the magni-
tude and distribution of the turbulent diffusion coef-
ficient. There is a coupling back to the turbulence
field from the distributions of temperature, salinity
and frazil ice, as these modifies the mixture density
distribution, which, in turn, affects the turbulence
level.

The physical processes believed to be the most
important ones in the frazil ice dynamics are listed in
Fig. 1. Seeding is the term used for the mass ex-
change at the ocean surface caused by aerosols. It is
known, from laboratory studies, that seeding is pri-
marily important for the initialisation of frazil ice
Ž .heterogeneous nucleation . When the frazil ice
regime is established, small ice fragments are shed

Žfrom large ice crystals secondary nucleation or col-
.lision breeding . The intensity of the breeding is a

function of the turbulence intensity, which gives a
further link to the hydrodynamics. The small ice
fragments then act as nucleus for growth. Regarding
the growth of ice crystals, we will assume that
crystals are disc-shaped and grow only at the edges.
The crystal size distribution is also influenced by
flocculation and break-up. In the present formula-
tion, it will be assumed that the net effect is a
transport to larger aggregates. Due to gravity some

Fig. 1. Schematic outline of the problem studied.



( )U. SÕensson, A. OmstedtrCold Regions Science and Technology 28 1998 29–4432

of the suspended ice will reach the surface and form
surface ice, frazil slush which may form pancake ice.
This is the final process in the link from surface heat
loss to surface ice.

The transient nature of the problem is also shown
in Fig. 1. Assuming that the wind stress and the
surface cooling are constant in time, the surface
water temperature will develop as outlined. After the
temperature for freezing, T , is reached, supercoolingf

starts. Soon after that time, ice formation starts, but
initially at a rather low rate because of the small ice
area exposed to the supercooled water. The super-
cooling will thus increase until the time of maximum
supercooling; after that, freezing releases more heat
than is lost at the surface. Eventually a quasi-sta-
tionary situation is reached, when the product of
exposed ice area and supercooling is proportional to
the surface cooling. In this paper we will focus
interest on this quasi-steady state, as it is in this stage
that most frazil ice is produced.

The situation outlined in Fig. 1 assumes that
horizontally homogeneous conditions prevail. When
a certain amount of surface ice has formed, this ice
will cause a non-uniform surface wind stress and
heat flux. The model is thus relevant only for a
limited time. However, the surface ice may be trans-
ported away by the wind and the water surface is
kept free, as in the case of polynyas. The model is
then valid as long as the water surface is free. In this
paper, we will not further concern ourselves with the
practical application of the model, but concentrate on
the frazil ice dynamics in the quasi-steady state as
marked in Fig. 1.

3. Mathematical formulation

3.1. Basic assumption

The present model can, as mentioned above, be
considered as a combination of the models of Omst-

Ž .edt and Svensson 1984 and Svensson and Omstedt
Ž .1994 . In fact, we will keep basic assumptions,
material properties, numerical coefficients, etc. ex-
actly as given in these two papers. This has the
advantage that the basic verification studies pre-

Ž .sented by Svensson and Omstedt 1994 are valid
also for the present formulation. We may also refer

to these two papers for a thorough discussion of
basic assumptions and details about the model for-
mulation.

3.2. Mean flow equations

Within the assumptions made, the mean flow
equations take the following form:

ES E Õ EST
s qG 1Ž .sž /E t E z s E zS

E T E Õ E TT
s qG 2Ž .Tž /E t E z s E zT

EU E EU
s Õ q fV 3Ž .Tž /E t E z E z

E V E E V
s Õ y fU 4Ž .Tž /E t E z E z

where z is the vertical space coordinate positive
upwards, t the time coordinate, f the Coriolis’ pa-
rameter, U and V are mean velocities in horizontal
directions, S is the mean salinity, and T the mean
temperature. The kinematic eddy viscosity is denoted
by Õ , s and s are PrandtlrSchmidt numbers forT s T

salinity and temperature, respectively. Sourcersink
terms in the equations for salinity and temperature
are denoted by G and G , respectively.S T

The source terms, which are due to the freezing
and melting of ice, can be derived by considering a
unit volume of a mixture of water and ice particles.
The heat flux per unit area of ice, q, between the
water and ice, can be expressed as

qsNuk T yT dy1 W my2 5Ž . Ž . Ž . Ž .w i

where Nu is the Nusselt number, k is the thermalw
Žconductivity for water, d a characteristic length here

.taken as the disc thickness and T is the ice surfacei

temperature, taken as the freezing temperature in the
following calculations. Considering the unit volume
with frazil ice with a total area, A, exposed to

Ž .freezing or melting, it can be shown Omstedt, 1985b
that the term in the temperature equation takes the
form

y1 y1G sqA r c 8C s 6Ž . Ž . Ž .T w p

where r is the density of water and c the specificw p
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heat of water. The heat flux, it is assumed, will be
directly related to melting or freezing.

By assuming that the ice has zero salinity, an
expression for the sourcersink term in the equation
for the salinity of the water may be formulated as

y1 y1G sSqA Lr s 7Ž . Ž . Ž .S w

where L is the latent heat of ice.

3.3. Turbulence model

The turbulence model used in this paper is based
on turbulent exchange coefficients calculated from a
kinetic energy-dissipation model of turbulence. The
equations can be derived in exact form from the
Navier–Stokes equations and are thereafter ‘mod-
elled’ to the following form:

E k E Õ E kT
s qP qP y´ 8Ž .s bž /E t E z s E zk

E´ E Õ E´ ´T
s q C P qC P yc ´Ž .1´ s 3´ b 2 ´ž /E t E z s E z k´

9Ž .
2 2EU E V

P s q 10Ž .s ž / ž /ž /E z E z

TyT E TŽ .M
P sÕ g y2ab T ž s E zT

b ES r yr E CŽ .i o
q q 11Ž ./s E z s r E zs c o

k 2

Õ sC 12Ž .T m
´

where k is the turbulent kinetic energy, ´ its dissipa-
tion rate, P production due to shear and P iss b

productionrdestruction due to buoyancy, C the vol-
ume fraction of ice and s , the Schmidt number forc

ice crystals. The kinematic eddy viscosity is denoted
Õ . For a general description of this turbulence modelT

Ž .the reader is referred to Rodi 1980, 1987 .

3.4. Equation of state

An underlying assumption of the P term is thatb

the ice and the water can be regarded as a mixture
when considering buoyancy effects in the turbulence

Table 1
Model constants

Constants Value Unit

C constant in the turbulence model 0.09 –m

C constant in the turbulence model 1.44 –1´

C constant in the turbulence model 1.92 –2 ´

C constant in the turbulence model 0.8 –3´

s PrandtlrSchmidt number 1.4 –k

s PrandtlrSchmidt number 1.3´

s PrandtlrSchmidt number 1.0c

s PrandtlrSchmidt number 1.0T

s PrandtlrSchmidt number 1.0s

s PrandtlrSchmidt number 1.0n
y6 y2a constant in the equation of state 5.6=10 8C
y4 y1b constant in the equation of state 8.0=10 ‰
3 y3r reference density 1.0=10 kg m0

T temperature of maximum density 2.9 8CM

T freezing temperature y0.3 8Cf
y4 y1f Coriolis’ parameter 1.3=10 s

Nu Nusselt number 1.0
y5d ice disc thickness 10 m

y1Ž .k thermal conductivity 0.564 W m 8Cw
5 y1L latent heat of pure ice 3.34=10 J kg

2 y3r density of ice 9.2=10 kg mi
3 y1Ž .c specific heat of water 4.217=10 J kg 8Cp

model. The mixture density r can be calculatedm

from

r sr qC r yr 13Ž . Ž .m w i w

where r is the ice density.i

The density of water, r , in this temperaturew

interval is an almost quadratic function of tempera-
ture and is also linearly dependent on salinity. An
approximative form, also used by Omstedt et al.
Ž .1983 , reads

2
r sr 1ya TyT qbS 14Ž . Ž .Ž .w o M

where a and b are constants, T is temperature ofM

maximum density, and r a reference density. Theo

temperature of maximum density, as well as the
freezing temperature, is a function of salinity and
pressure. In the present study both of these tempera-
tures will, however, be set to constants adequate for
sea surface pressure and a salinity of 5‰, see Table
1.

3.5. Crystal number continuity equation

Assume that the frazil ice particles can be classi-
fied into N discrete radius intervals, within which all
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Ž . Ž .Fig. 2. The depth-integrated volume top of ice and number of crystals as a function of wind speed and surface cooling. 300
2 Ž . 2 Ž . 2Wrm ; ——`—— 200 Wrm ; ——)—— 100 Wrm .
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Ž . Ž . 2Fig. 3. Depth-integrated properties. Mean diameter top and penetration depth 90% of volume . Surface cooling: 200 Wrm .
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Ž . Ž .Fig. 4. Vertical distributions. Frazil ice volume top , number of crystals middle and mean diameter. Windspeed: 10 mrs. Surface cooling:
200 Wrm2.
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y5 y4Ž . Ž . Ž .Fig. 5. Volume top and number of three crystal sizes as a function of depth. rs10 ; ——l—— rs10 ;
Ž . y3 2 2——`—— rs10 Wrm . Windspeed: 10 mrs. Surface cooling: 200 Wrm .
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particles are assumed to be of equal radius. The
following equation can be then formulated for the
number of particles, n , in each group:i

E n E Õ E n E ni T i i
s yWiž /E t E z s E z E zn

Change in number GravityDiffusion

N

q a n y a nÝ i i i i
js2 Ž .2FiFN

Ž .is1

Secondary nucleation

yb n q db ni i iy1 iy1
Ž . Ž .1FiFNy1 2FiFN

Floccul.rbreak-up

yG n q G n 15Ž .i i iy1 iy1
Ž . Ž .1FiFNy1 2FiFN

Crystal growth

w y1 xwhere a , b , G are coefficients s giving thej i i

strength of the process considered. The gravitational

rise velocity is denoted W and s is ai n

PrandtlrSchmidt number. The factor d is the ratio
between volumes of particles of two neighbouring

Ž .radius intervals. Eq. 15 gives the evolution of the
particle size distribution from an initial stage, given
the values of the coefficients. The left hand side of

Ž .Eq. 15 gives the change in number of crystals in
radius interval i. This change is due to the processes
on the right hand side of the equation. Turbulent
diffusion will redistribute the particles, while gravity
will always generate an upward drift. The term
secondary nucleation gives a source for the smallest
radius interval, is1, and a corresponding sink for
other intervals. The two terms in flocculationrbreak-
up and crystal growth are due to the discretization
concept used; crystals are entering from a smaller
radius and leave the present interval to enter the next
higher one.

Ž .Expressions for the coefficients in Eq. 15 and
further background and details are given by Svens-

Ž .son and Omstedt 1994 .

Ž . Ž . Ž .Fig. 6. Number of crystals at three selected depths, as a function of radius. 1 m; ——`—— 10 m; ——e—— 100 m
depth. Windspeed: 10 mrs. Surface cooling: 200 Wrm2.
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y5 Ž . y4 Ž . y3Fig. 7. Balance of processes as a function of depth for three crystal sizes: rs10 m top , rs10 m middle and rs10 m.
Ž . Ž . Ž . Ž .Processes: ——)—— growth, ——^—— gravity, ——`—— flocculation, ——e—— diffusion. Windspeed: 10 mrs.

Surface cooling: 200 Wrm2.
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3.6. Boundary and initial conditions

Surface boundary conditions for mean flow vari-
ables are specified according to:
Õ E TT y1sF r c 16Ž . Ž .N o p
s E zT

Õ EST
s0 17Ž .

s E zs

Õ EUT y1st r 18Ž .x o
s E zT

Õ E VT y1st r 19Ž .x o
s E zT

where t and t are wind stresses and F is net heatx y N

flux. The zero flux condition for salinity is an ap-
proximation made in this analysis, as precipitation
and evaporation rates generate a non zero flux. The
results are not particularly sensitive to this approxi-
mation. The wind stress is calculated from the wind
speed at 10 m, using a drag-coefficient of 1.3=10y3.
The turbulent kinetic energy k and its dissipation
rate ´ are related to the friction velocity at the

Ž .surface. For details, see Rodi 1987 .
For ice particles, the flux through the water sur-

Ž .face forming surface ice is due to gravity. For
particle size i the flux is W n . The exception is thei i

Ž .smallest size is1 where a small downward flux
Ž y1 y2 .1000 particles s m is prescribed. This seeding
is important in the initial phase of the frazil build-up,
but has no effect in the quasi-steady state studied
here.

At the lower boundary a zero flux condition is
used for all variables.

Initial conditions are given as zero velocity,
y0.38C temperature, 1000 ice particles in each ra-

Ždius interval and 5‰ salinity a typical value for the
.northern extension of the Baltic Sea . The initial

number of ice particles will not influence the results
for the quasi-steady state.

3.7. Numerical solution

Ž . Ž .Eqs. 1 – 19 form a closed system and thus
constitute the mathematical model. This set of equa-

tions, in their finite difference form, was integrated
forward in time by using an implicit scheme and a

Žstandard tri-diagonal matrix algorithm Svensson,
.1986 .

The numerical solutions were tested for and found
to be grid- and time step-independent. This was
achieved by a grid expanding from the surface with a
total of 50 grid cells covering a depth of 150 m. The
time step was chosen to 600 s for cooling down to
the freezing temperature and to 1 s for further cool-
ing.

For the frazil ice 23 radius intervals were used,
covering a radius interval from 5.=10y6 to 1.=
10y2 m.

4. Results and discussion

In this section, results from numerical simulations
will be presented and discussed. First, depth inte-
grated properties are presented, then distributions in
the vertical and radial coordinate are shown. Finally,
we study the balance of various processes in the
crystal number equation.

4.1. Depth integrated properties

In Fig. 2, the depth integrated volume of ice and
the number of crystals are shown. These parameters
are given as function of wind and surface cooling

w 3 2 xrate. The depth-integrated volume m rm can be
interpreted as the thickness of an ice cover. We find
from Fig. 2 that this ice-cover is less than a millime-
tre thick. The number of ice crystals is found to be of
the order 109. The number of crystals suspended in
the surface layer is thus very large, but still frazil ice
in suspension represents only a small ice volume,
almost negligible, compared to typical surface ice
budget values.

Fig. 3 shows the typical penetration depth, deter-
mined as the depth holding 90% of the total volume,

Ž . Ž .Fig. 8. Balance of processes as a function of radius, at two selected depths, 1 m top and 10 m. Processes: ——)—— growth,
Ž . Ž . Ž . 2——^—— gravity, ——`—— flocculation, ——e—— diffusion. Windspeed: 10 mrs. Surface cooling: 200 Wrm .
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and the mean diameter of suspended crystals. These
parameters are found to be only weekly dependent
on the surface heat flux and therefore shown as a
function of wind only.

The total number of ice crystals is often cited to
be around 106rm3. For a surface cooling of 200
Wrm2 and a wind of 10 mrs we find from Fig. 2
that the total number of crystals in the boundary
layer is predicted to be about 109. From Fig. 3, the
penetration depth is about 10 m, which gives 108 ice
crystalsrm3. A closer examination of the results
shows, however, that most of the crystals are smaller
than 10y4 m and may be hard to detect when the
number of crystals per m3 is estimated in an experi-
ment. In fact, if ice crystals with a radius smaller
than 10y4 m are not considered, the number density
is predicted to about 107 ice crystalsrm3, which is in
fair agreement with earlier estimates.

4.2. Vertical distributions

The vertical distributions of frazil ice volume,
number of crystals and mean diameter are found in
Fig. 4. These distributions are predicted for a wind-
speed of 10 mrs and a surface cooling rate of 200
Wrm2. The volume fraction close to the surface is
found to be around 10y4 , but already at 10 m depth
it has decreased with more than an order of magni-
tude. The number of crystals per unit volume has
decreased with an order of magnitude at a depth of
15 m. The mean diameter, as based on the volume
and number of particles at a certain depth, is found
to decrease down to 10 m and be constant below this
depth. Small ice crystals are thus mixed into deeper
layers, while the larger ones are found in the upper
part of the ocean surface layer.

4.3. Resolution in radial space

When discussing resolution in radial space, the
relevant way to specify volumes and numbers is per
unit volume and unit radius interval. It is then
straightforward to calculate, for example, the num-
ber, N, of crystals in the radius interval, d r and n
d r, where n is the number per unit radius.

In Fig. 5, the number and volume of three crystal
sizes are shown as a function of depth. As seen, the
smallest crystals will increase in volume and number

from the surface down to about 5 m. The explanation
for this behaviour is that the top 10 m are super-
cooled, and this is thus the region of intense growth.
As crystals growth can be viewed as a flux in radial
space, this flux gives a sink for the smallest radius
shown in Fig. 5.

The distributions in radial space at three selected
depths are shown in Fig. 6. The typical slope in these
distributions resulted from the calibration of the floc-

Ž .culation process see Svensson and Omstedt, 1994 ,
and is hence a characteristic feature of the model.
The increase at the largest radius interval is not
physically correct but an effect of the discretization
in the model. Growth and flocculation give a trans-
port in radial space up to the largest radius interval
considered. No ice is, however, allowed to leave this
interval due to growth or flocculation. An artificial
build up of ice is therefore found at the largest radius
interval considered. As the build-up is fairly small it
is not expected that it affects the main results of the
study.

4.4. Balance of process

Next we will consider how the various terms in
the crystal number continuity equation balance in the
quasi-steady situation studied. As we are interested
in the relative importance of the processes, we choose
to normalize the processes to fit a diagram with
"1.0 as bounds.

Vertical distributions of various terms can be
found in Fig. 7. Starting with the smallest crystals
we find that gravitational effects are insignificant
and flocculation is always a sink term. Close to the
surface transport by turbulent diffusion balances the
net loss due to growth. For the largest crystals
gravity causes a sink term while flocculation is a
contributing process. Turbulent diffusion always re-
distributes and is hence bound to be a source in some
parts and a sink in others.

Fig. 8 shows the balance in radial space, at two
selected depths. The main balance is between growth
and flocculation. Of the two processes working in
the vertical direction, gravity and diffusion, it is
found that diffusion is the more important one. This
is, however, somewhat fictitious as it is dependent
on the way we choose to represent the fluxes. In Fig.

w 3 x8, the unit is Numberrm , s , which is the same as
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in the number continuity equation. However, we
w 3 3could also choose the look at the fluxes as m rm ,

xs , which implies that we multiply with the unit
volume of the crystals at a certain radius. This
representation would give large fluxes for the larger
crystals and gravity would then be more prominent
in the balance. However, as we are interested in the
frazil ice regime it is the radius interval 10y5 to

y3 Ž .10 m, according to Daly 1994 , which ought to
be in focus; above the radius 10y3 we find the frazil
flocs regime.

5. Concluding remarks

The paper presents a first attempt to simulate
frazil ice dynamics in the upper layers of the ocean,

Ž .with resolution in space with depth , time and radial
space. The model formulation includes the main
physical processes currently believed to be impor-
tant, although many of the processes are modelled in
the simplest possible way. Basic verification studies
of the model, using laboratory measurements, have
been presented in the paper of Svensson and Omst-

Ž .edt 1994 . Field data, suitable for verification stud-
ies, are however still not available, although the

Ž .recent study by Pegau et al. 1996 shows that
instruments for field measurements of frazil ice con-
centration are available. When such data are avail-
able, it will be an interesting task to compare these
with the outcome of the model presented. Model
results that can be compared with field data include:
Ž .1 The suspended ice volume is of the order 5=

y4 3 2 Ž .10 m rm ; 2 The number of suspended ice
crystals is of the order 109, for the whole boundary
layer. The density of crystals with a radius larger

y4 7 3 Ž .than 10 m is about 10 rm ; 3 The mean diame-
ter of the ice crystals is about 2=10y4 m and

Ž .decreases with increasing wind speed; 4 The frazil
ice concentration decreases rapidly with depth. For a
wind speed of 10 mrs and a surface cooling of 200

2 w 3 3 xWrm the concentration m rm decreases with
more than one order of magnitude from the surface
to a depth of 10 m.

The idealized calculations of frazil ice formation
in the upper layers of the ocean indicate that a large
number of crystals is mixed into the ocean during
freezing. However, the amount of ice in suspension

is small as counted as vertically integrated ice thick-
ness. Small crystals are mixed deep while the large
ones are found only in the top of the mixed layer.
Knowledge about the vertical distribution of ice crys-
tals of different sizes, a major outcome from the
model, is believed to be of interest when analysing
for example formation of an ice cover in the ocean
and ice-sediment or ice-algae interaction.
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