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ABSTRACT

A mathematical model of the ocean boundary layer under drifting melting ice is formulated, verified, and
applied. The model is based on the conservation equations for heat, salt, and momentum and uses turbulence
models to achieve closure. Novel features of the model include a low-Reynolds number turbulence model for
the viscous region and a discrete element approach to the parameterization of roughness.

Basic verification studies, using laboratory measurements, include the budget of turbulent kinetic energy and
the mean temperature profile. All verification studies are focused on the viscous region. Good agreement with

measurements is generally obtained.

The model is finally compared to field data obtained during MIZEX. Predicted melt rates are in good agreement
with measurements. An analysis of the fluxes of salt and heat within the boundary layer is also provided.

1. Introduction

It is interesting, as a historical note, that our present
mathematical description of geophysical boundary
layers originates from ice drift studies in the beginning
of this century (Ekman 1905). One may further claim
that the paper by McPhee and Smith (1976) provided
the first simultaneously measured mean current and
turbulent stress profiles in an ocean boundary layer.
These measurements were obtained from a drifting ice
floe. It may well prove to be the case that the recent
experimental programs dealing with the marginal ice
zone, MIZEX (J. Geophys. Res., Vol. 88, No. C 5,
1983, and Vol. 92, No. C 7, 1987) will have a similar
impact on our understanding of geophysical boundary
layers. The detailed information provided has already
challenged mathematical modellers to simulate, for
example, melt rates (McPhee et al. 1987). The present
paper, which attempts to simulate the entire boundary
layer under drifting ice, also rests on the results from
MIZEX.

The boundary layer under drifting ice is schemati-
cally shown in Fig. 1. A prominent feature of this
boundary layer is the large roughness elements, which
are due to ridged ice. McPhee (1986) has compared
the ice keels, which are typically 1-5 m in depth, to
topographic features in the atmospheric boundary

Corresponding author address: Dr. Anders Omstedt, Swedish Me-
teorological and Hydrological Institute, S-601 76 Noorkdping,
Sweden.

layer. He found, by a scale argument, that they cor-
respond to hills of 30-150 m height. One may therefore
expect that ice keels behave more like roughness ele-
ments within the ocean boundary layer and should not
be considered as surface roughness. In the present paper
we will use a “discrete element approach,” based on
the form drag excited by the elements on the water
(Taylor et al. 1985). The increased drag due to ice
keels will thus not be parameterized as a boundary
condition, but appear as source terms in the momen-
tum equations. A similar approach has recently been
used in boundary-layer meteorology when studying air
flow in and above a forest canopy ( Yamada [982;
Raupach and Thom 1981). In Fig. 1 it is indicated
that we will idealize the ice keels as conical elements
with a circular cross section, a bottom diameter equal
to D,, a depth 4,, and an average spacing A,. Recent
field observations (see Wadhams 1988), support the
conical sparsely distributed roughness elements indi-
cated in Fig. 1.

The melt rate is, of course, basically controlled by
the heat flux to the ice-water interface. The process is,
however, quite intricate, as the freezing (or melting)
temperature is a function of the salinity at the interface.
The salinity at the interface is, in turn, affected by the
melt rate, as the melting ice has a much lower salinity.
To our understanding it is not suitable to use wall-
functions in a situation like this, as additional as-
sumptions about the interface salinity then need to be
introduced. Instead we choose to use a model that can
be applied all the way into the ice—water interface. By
resolving the viscous layer it is expected that the afore-
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FiG. 1. Schematic figure of the ocean boundary layer
under drifting melting ice.

mentioned problem with wall-functions can be
avoided, as both temperature and salinity are calculated
from their conservation laws right into the ice—water
interface. In this context it is relevant to mention that
McPhee et al. (1987 ) have tried different wall-function
formulations. The conclusion was that the fully tur-
bulent models, based on a logarithmic profile assump-
tion, overestimates melting while viscous sublayer
models predict melt rates too low. Also the uncertainty
introduced by roughness was brought up by McPhee
et al. A further argument for resolving the viscous sub-
layer can be found in the discussions of buoyancy ef-
fects due to the meltwater (Josberger 1983, 1984;
McPhee 1984). In a turbulence closure model it is pos-
sible to include buoyancy effects and thus explicitly
take this effect into account.

The mathematical model outlined thus attempts to
resolve a boundary layer that includes the viscous re-
gion, the buffer layer, the logarithmic layer, the Ekman
layer, and the geostrophic region. This approach to
modeling of the boundary layer under drifting ice, i.e.
explicit resolution of roughness elements and viscous
region, has to the authors’ knowledge not been con-
sidered by the recently published papers on modeling
(Lemke and Manley 1984; Ikeda 1986; Mellor et al.
1986; McPhee et al. 1987; Hikkinen 1987; Lemke
1987).

The purpose of the present paper is thus to formulate
and explore a mathematical model of the ocean
boundary layer under drifting melting ice. The low
Reynolds number turbulence model will be verified
against laboratory measurements, and the complete
model will then be applied to situations typical for
MIZEX.

2. Mathematical model

The mathematical model to be derived is based on
the conservation laws for mass, energy and momentum
in their differential form. Models of this kind require
turbulent exchange coefficients, which in the present
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model are calculated from a turbulence model. It will
be assumed that the boundary layer is horizontally ho-
mogeneous, which implies that the model is one di-
mensional. With the introduction of the Coriolis term,
we thus have arrived at a model describing the idealized
planetary boundary layer, which is a suitable frame
work for the present problem.

The natural upper boundary of the model is the
melting ice-seawater interface. This means, however,
that the computational grid will be moving with a ve-
locity equal to the melt velocity. Although this velocity
is very small indeed, it will be included in the mathe-
matical formulation, as it may prove important to
consider the advective transport of salt in the viscous
region of the boundary layer.

a. Mean flow equations

With the assumptions introduced, the momentum
equations read

U U @ U
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where U and V are horizontal velocities, W is vertical
velocity, z is vertical space coordinate (positive up-
wards), ¢ is time, » (=10 m?s~') and v are laminar
and turbulent kinematic viscosity, f is Coriolis param-
eter and Fy and Fy are form drag terms.

The form drag terms represent the influence of the
roughness elements. The basic idea behind this ap-
proach to roughness parameterization is simply that
an object immersed in a flow will exert a force on the
fluid. For the present formulation it is probably the
only possible approach, considering that the viscous
sublayer of thickness, of the order 1073 m, is to be
resolved together with roughness elements with a height
of 1-10 m. The blockage effect of the elements will not
be considered in the present formulation, which as-
sumes that the elements are sparsely distributed. This
assumption is also implied when neglecting heat and
mass exchange with the roughness elements and in the
parameterization of the drag force, as the element den-
sity does not appear in the formulae for the drag coef-
ficient. This roughness model, the discrete element ap-
proach (Taylor et al. 1985), allows a detailed descrip-
tion of the geometry of the roughness elements (height,
spacing, etc.) but, of course, requires that this infor-
mation is available. In the present paper it will be as-
sumed that all roughness elements are identical and
have the shape of a cone. The form drag terms are
given by

Fy=3Cily|Uee = Ul(Uee = U)  (3)

1
Fy =3 Codp|Viee = VIViee = V) (4)
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where U, and Vi are the velocity components for the
ice, A, is the projected area of the roughness elements
in the flow direction per unit volume and Cjy is an
empirical drag coefficient. It is simple to show that 4,
is related to A, and d,(z) by 4, = d,(z)/A,% where
d.(z) is the diameter of the element at level z. For
elements with a cross section, which can be approxi-
mated as circular, Cy is fairly well represented as a
function of a roughness element Reynolds number Rep
= [(Uiee — U)2 + (Viee — V)lelzdr(z)/y- Following
Taylor et al. (1985), C,is given by

logC,; = —0.125 log(Rep) + 0.375, Rep < 6 X 104
(5)
C,=0.6, Rep=6X 10~ (6)

Further details and verification studies of the discrete
element approach can be found in Taylor et al. (1985).
The equations for temperature and salinity are

aT oT 9 v vy \ 0T
_ W—=— _— —
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where Pr; (=13.8), Sc; (=2432) and Pry (=0.86),
Scr (=0.86) are laminar and turbulent Prandtl and
Schmidt numbers. In the present paper, the laminar
Prandtl and Schmidt numbers are set to constant values
in accordance with McPhee et al. (1987). The value
of Pry and Scr is the generally recommended one for
wall boundary layers; see for example Kader and Yag-
lom (1972). It will be assumed that no exchange of
heat or mass with the roughness elements takes place,
and hence no source/sink terms are present in (7)
and (8).

b. Turbulence models

Two turbulence models will be used in the present
formulation: a low-Reynolds number model for the
near-ice region and a high-Reynolds number model
for the outer region. The high-Reynolds number model
is the k—e model, which by the present authors, Svens-
son (1979), Omstedt et al. (1983), has been success-
fully applied to geophysical boundary layers. A general
review of this model is given by Rodi (1987). The
model is based on transport equations for the turbulent
kinetic energy, k, and its dissipation rate, . These
equations read

ok ok 0 (vr ok
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(10)
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where P denotes shear production and P, buoyancy
production. The kinematic eddy viscosity is calculated

‘from the Prandtl-Kolmogorov expression:

vr = C,k?*/e (13)
The reader is referred to the papers for details of this
model.

A one-equation turbulence model will be used in
the region close to the ice—seawater interface. This re-
gion will cover the viscous layer and the roughness
elements, and the coupling to the two-equation model
is thus made outside the roughness elements. There
are two reasons for using a one-equation model in the
near-ice region. First, our verification studies (this pa-
per and Svensson and Rahm 1988) of this model have
shown that the one-equation model is as good as, or
superior to, the low-Reynolds number versions of the
k—e model. Second, the roughness elements modifies
the e-equation in an unknown way. However, for the
one-equation model, where the length scale is to be
prescribed, a tentative relation that takes roughness
elements into account is available. The drawback of
using two turbulence models is that one needs to specify
a point where to switch from one model to the other.
Generally speaking, one chooses a point which gives a
smooth transition (in terms of k and vy) from one
model to the other. In the present study this point was
set at a distance of 1.24,, where /4, is the height of the
roughness elements, from the ice water interface. The
one-equation model is based on an equation for k and
a prescribed length scale. Viscous effects are taken into
account in the k-equation and the Prandtl-Kolmo-
gorov expression. The equations read:

Ok _9[(  rr\ok
o oz|\" " o) oz

Diffusion
wkCp  Cpk3'?
+ P - 2 - ] j; (14)
Production Dissipation
vr = Cik'2lf, (15)

P=w29Y 1+ b, 4lcauvriul (6

iy b 3 CadpUr UL (16)
Shear Buoyancy Form drag

f“ =1- exp(—A“Rk) (17)
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where Ry is a turbulence Reynolds number, f, is a
damping function, / is the prescribed length scale, Cp
(=0.164), C}, (=0.5477) and A4, (=0.03) are empirical
constants. Since the one-equation model is to be used
only close to the ice, only one horizontal velocity com-
ponent, denoted U,, is included in the formulation.
This velocity has, of course, two components in the
basic coordinate system. The important low-Reynolds
number features of this model are due to the dissipation
term in Eq. (14) and the damping function f,. Of the
two dissipation terms, the first one is dominant for low
Ry, as can be understood by noting that it is propor-
tional to ». The second part is the standard dissipation
term in one-equation models for high Reynolds num-
bers, except for f,. This function goes to 1.0 for high
Ry and to zero for low Ry, and thus it makes the second
dissipation term Reynolds number-dependent. The
formulation and the constants of this model are given
. by Spalding and Elhadidy (1979), who also carried out
detailed verification studies. It should be noted, how-
ever, that they only constdered smooth boundaries, and
thus the third production term in expression (16) was
not present. One may therefore question the validity
of the empirical constants which were established for
smooth conditions. In between the sparsely distributed
roughness elements, however, we do assume a smooth
boundary, and the influence of the roughness elements
is therefore through the friction velocity, which is the
scaling velocity for the viscous sublayer. We may
therefore, alternatively, classify the model as a model
for smooth ice with a friction velocity modified by
roughness elements. Another reason for keeping the
original constants is that the model should approach
the smooth boundary version when the typical distance
between the roughness elements goes to infinity. Sim-
ilar formulations are also discussed by Reynolds
(1976). A recent application of this model to the flow
and heat transfer over a circular cylinder is reported
by Ibrahim (1987). Another recent application
(Svensson and Rahm 1988) deals with the near-bot-
tom region of the benthic boundary layer. It is beyond
our present scope to describe this model in more detail;
instead the reader is referred to the papers mentioned
and the papers by Patel et al. (1985) and Nagano and
Hishida (1987), where low-Reynolds number models
in general are discussed and evaluated.

The specification of length scale is simple in the ab-
sence of roughness elements; it may for the wall-region
be set as «z, where « is the von Karman constant. The
roughness elements do, however, modify the length-
scale in an unknown way. A tentative modification of
the length-scale specification is derived and tested in
Svensson and Rahm (1988). This specification reads:

] =

—[+ [[* + (k2)?]'/? (19)
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2CLkY%(3U,/3z)* "

[= (20)
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This formulation is seen to return to «z in the absence
of roughness elements. Details of the application of
this length-scale equation can be found in Svensson
and Rahm (1988).

¢. Equation of state

Stratification is in the present formulation due to
salinity and temperature gradients. A nonlinear den-
sity-temperature dependence is assumed, while the
density is linearly related to salinity:

p=poll — (T~ Th)* + @S] (21)

where a; (=7 X 107%) and a, (=8 X 107*) are expan-
sion coefficients and T, the temperature of maximum
density. The T, is a function of salinity and pressure
(see Caldwell 1978) but will in the present study be
assumed constant and equal to —2.7°C. The equation
of state could probably be simplified further for the
calculations described in the present paper, but Eq.
(21) is used with future applications in mind. -

d. Boundary conditions

For the momentum equations, the upper boundary
condition is a specified velocity—the ice drift velocity.
At the lower boundary, a zero stress condition is used,
equivalent to a zero velocity gradient condition.

Temperature and salinity are specified at the lower
boundary to values given by measurements. These val-
ues thus give the mixed layer properties. At the ice—
seawater interface, the boundary condition for salinity
is that of a given flux. The flux is given by the melt
rate and the salinity of the ice, Sic:

dh
dt
where dh/dt is the melt rate. This simple boundary
condition applies due to the moving grid adopted and
because the viscous sublayer is resolved. If, for example,
the ice salinity is zero, a zero flux will result. The salinity
at the interface, if diffusion is neglected, will then de-
crease because salt is transported out of the cell by
advection, see Eq. (8). The advection velocity is equal
to the melt rate. If a steady state is reached, a balance
between advection (from the boundary) and diffusion
(towards the boundary) is established. This balance
will be analyzed in detail below. The temperature at
the. ice—seawater interface is specified as the freezing
temperature for the salinity at the interface, So. The
dependence on pressure in this relation (see Millero,
1978) is neglected for the present situation. The relation
used reads:

T;= —0.0575S5, + 1.710523 X 10735,%/2
—2.154996 X 107*Sp%.  (23)

With a specified temperature at the interface, a heat
flux can be obtained from Fouriers law, i.e.:

flux, = Sice (22)
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flux, Pr, 9z pC, T
where C,, is the specific heat of seawater. The specific
heat of seawater is a function of temperature, salinity,
and pressure (Gill 1982) but is here set to a constant
value equal to 3980 J (kg °C)~'. The temperature gra-
dient is evaluated from Tyand the temperature of the
cell closest to the ice—water interface. Strictly, advective
heat transport should enter this flux, but it can be
shown by estimating the Peclet number that the ad-
vective transport is two orders of magnitude smaller
than the conduction contribution. This heat flux gives
the melt rate through the expression:

dh

Z = ﬂuxh/Lpice
where L is the latent heat of saline ice. As the melt rate
also determines the grid movement, it is clear that dh/
dt = W, where W is the vertical velocity appearing in
the conservation equations above.

As can be seen, simple boundary conditions for
temperature and salinity apply in the present formu-
lation. In fact, one of the major advantages of the mov-
ing grid and the resolution of the viscous sublayer is
that straightforward boundary conditions apply.
Boundary conditions for turbulent kinetic energy and
its dissipation rate are also straightforward in the pres-
ent formulation. At the lower boundary zero gradient
conditions are used, while at the upper boundary, where
the one-equation model is used, k is specified to zero.

(24)

(25)

e. Numerical solution

The set of equations formulated are solved using the
equation solver PROBE (Svensson 1986). PROBE is
a finite-difference code based on an implicit numerical
scheme. The vertical extent of the grid cells was in-
creased down from the ice-water interface, with a typ-
ical number of cells equal to 70. The cell closest to the
ice was typically 2 X 1073 m. This extremely small cell
size is motivated by the correspondingly thin diffusion
layer for salt. For the present conditions it can be shown

that this layer has a thickness of the order 10™* m. "

Predictions to be presented in the next section were
tested for grid-independence, and the predictions can
therefore be regarded as an accurate solution of the
differential equations.

3. Results of calculations

Basic verification studies of the low-Reynolds num-
ber turbulence model and the discrete element ap-
proach to roughness are presented in Svensson and
Rahm (1988). As the present paper focuses attention
on the processes at the ice-seawater interface, some
additional verification studies of the turbulence energy
budget in the low-Reynolds number region will be pre-
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sented in the present paper. We will then apply the
model to a situation with conditions close to day 191
during the MIZEX experiment (McPhee et al. 1987).
Details of the boundary layer structure, as predicted
by the model, are provided. Finally, a transient situa-
tion, covering the days 188-192 during MIZEX, is
considered.

a. The low-Reynolds number region

This verification study makes use of some recently
presented data on the near-wall region of a boundary
layer. The surface is hydrodynamically smooth, and
no buoyancy effects are present. Measurements of the
turbulent kinetic energy budget have been carried out
by Johansson and Karlsson (1988). These data are
presented in Fig. 2 together with results from the pres-
ent low-Reynolds-number turbulence model. As can
be seen, a close agreement exists. The experimental
data by Johansson and Karlsson were obtained from
Laser Doppler Velocity measurements. The budget was
obtained by measuring shear production, viscous dif-
fusion, and turbulent diffusion. Pressure diffusion was
neglected, as it is believed to be a higher order term,
and dissipation was obtained as the closing term. It is
interesting to note that the direct simulation results by
Spalart (1988) are in close agreement with the budget
shown in Fig. 2.

A comparison with the mean velocity profile mea-
sured by Johansson and Karlsson (1988 ) is also shown
in Fig. 2. Once again the agreement is very satisfactory.

As the melt rate is controlled by the heat transfer to
the ice—water interface, it is of interest to include a
temperature profile in the verification study. The lab-
oratory measurements of Antonia et al. (1977) are used
for this purpose. A laminar Prandtl number of 0.72
was used in this simulation, as the measurements were
carried out in a wind tunnel. The comparison between
the nondimensional profiles is shown in Fig. 3. The
agreement is also regarded as satisfactory for this case.

In the near-ice region of the ocean boundary layer,
additional complicating features like roughness, melt-
ing, density variations, etc. are found. The method of
verification in the present model development has,
however, been to verify different aspects of the model
by comparisons with available laboratory experiments.
It has thus been demonstrated that the mean velocity
profile, k-budget and temperature profile are accurately
predicted through the viscous sublayer. The roughness
model adopted was, as mentioned above, verified in
Svensson and Rahm (1988). The combined effect of,
for example, melting and roughness is not verified by
this approach, and the verification study is therefore
not conclusive.

b. Day 191, 1984, in MIZEX

McPhee et al. (1987) analyzed day 191 of MIZEX
and also applied different theoretical models. The basic
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FiG. 2. Turbulent kinetic energy budget (top) and mean velocity profile (bottom).
The terms in the energy budget are normalized with v/ U%.

average properties of the boundary layer for this day
were given by McPhee et al. (1987). If the mixed layer
temperature and salinity are fixed, a steady state so-
lution can be obtained, which is useful for a detailed
analysis of the boundary layer. The steady state, it
should be pointed out, is in the moving coordinate
system. A constant advection velocity is thus balanced
by molecular and turbulent diffusion of salt and heat.
The following data were used for the calculations to
be presented: U, = 0.25 m s™!, T, = —0.3°C, S,
= 33%o, Sice = 4%0, D, = 1.0 m and A, = 2.0 m. The

lower boundary was set at 28.0 m below the ice-water -

interface. The roughness height chosen, 4,, is based on
the estimates zo = 0.066 m and 4, = 30z, given by
McPhee et al. (1987). In the form drag terms (3) and
(4) it is the projected area per unit volume, A4, of the
roughness elements that enters, which indicates that
one may fix the diameter, D,, and vary the spacing,
.A,, in order to cover a range of 4,. A weak depenence
of D, is, however, present through the C; coefficient.
We choose to fix D, to 1.0 m and vary the spacing in
order to see the influence of roughness.

Results of predictions are shown in Fig. 4. Melt rate,
interface salinity, and heat transfer coefficient are
shown as a function of the spacing between the rough-
ness elements. The calculations are seen to be in general
agreement with the field measurements by Josberger
(1987) for the heat transfer coefficient and also with
the melt rate estimated by McPhee et al. (1987) for

‘day 191. It is also interesting to note that assuming a

hydrodynamically smooth surface (A, = o0 ) also gives
a melt rate of the correct order of magnitude. An as-
sumption introduced above is that heat and mass ex-
change with the roughness elements can be neglected.
A reasonable requirement is then that the surface area
of the roughness elements should be at least an order
of magnitude smaller than the smooth ice boundary.
For the present conditions this means-that A, > 5.0 m,
which indicates that predictions for A, < 5.0 m become

y
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FIG. 3. Comparison of predicted temperature profile with mea-
surements of Antonia et al. (1977). The temperature has been nor-
malized with T, (=Q/pC,U,).
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FIG. 4. Comparison of predicted melt rate (top), interface salinity
(middle) and heat transfer coefficients (bottom ) with field measure-
ments from MIZEX 1984.

increasingly unrealistic. Vertical profiles of velocity,
temperature, and salinity are given in Fig. 5 for A, = 10
m. In Fig. 5 one should note that the velocity profile
is logarithmic in the turbulent part of the flow (as it is
almost linear in the log-scale used). We may further
note that the salinity change over the boundary layer
occurs very close to the ice, O(10~3 m). This is, of
course, due to the high molecular Schmidt number for
salt, as can be understood from a comparison with the
temperature profile.

A detailed analysis of the terms in the salinity equa-
tion can be found in Fig. 6. Looking first at the mag-
nitude of the terms in the differential equation, Fig.
6a, one finds that terms of large magnitude are found
only very close to the ice. The explanation can be found
in Fig. 6b, where salt fluxes are shown. First, one need
to remember that the coordinate system is attached to
the melting ice-seawater interface. This means that in
the steady state situation considered, a net flux towards
the mixed layer, proportional to the salinity in the
melting ice, must be present. However, diffusion, mo-
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lecular and turbulent, will always transport salt towards
the interface, as this is in the direction of the negative
gradient. Hence the advection must everywhere be
larger than the sum of molecular and turbulent diffu-
sion with an amount equal to the constant net flux
given by the melting ice. If we next consider the shape
of the curve describing the advective transport, one
should first note that the volume flux is constant and
equal to the melt rate, through the entire boundary
layer. The decrease of the curve towards the ice is thus
due to the decrease in salinity. By once again requiring
a constant net flux, we also understand the shape of
the molecular diffusion curve as it approaches the ice.
Figure 6b is seen to reproduce exactly this picture. Re-
turning now to Fig. 6a, one should note that the terms
in the differential equation describe the gradient of
fluxes. Looking at molecular diffusion, for example, it
is clear that the gradient of the flux changes sign, and
accordingly the differential term changes sign. It is also
clear that all flux gradients are small in the turbulent
part of the boundary layer.

The same analysis for heat is presented in Figs. 7a
and 7b. Looking first at the fluxes, one notes that the
net flux is in the direction of decreasing temperature.
The direction of the net heat flux is upwards, as the
ice is melting. Molecular and turbulent diffusion are
the dominating modes of transport, advection is two
orders of magnitude smaller than the net flux. The
smaller influence of advection is also seen in Fig. 7a.

The detailed analysis presented of the boundary layer
under melting, drifting ice illustrates the complexity of
the problem. Even with all the simplifying assumptions
introduced, it is hard to understand all fluxes and bal-
ances present. The mathematical model presented,
however, does give a consistent and detailed picture of
the physical processes involved.

¢. Days 188-192, 1984, during MIZEX

Mixed layer temperature and salinity and ice drift
velocity were measured continuously during MIZEX.
McPhee et al. (1987) provide data for the days 188-
192, during which the mixed layer properties varied
significantly. In Fig. 8 the measured ice drift and the
idealization made for the numerical model calculations
are shown. As seen, we neglect the variation in direction
during the drift. The spacing between roughness ele-
ments was also for this case assumed to be 10 m. Initial
conditoins (day 188) for salinity and temperature were
set as uniform profiles of 33%. and —1.5°C. At the end
of day 190 a front passed, which brought new water
into the boundary layer. In the numerical model this
front was simulated by simply prescribing new values
to salinity (=33.1%0) and temperature (—0.5°C) at the
end of day 190. These data were evaluated from
McPhee et al. (1987). Measured and predicted melt
rates are shown in Fig. 8. Qualitatively the agreement
is satisfactory, although the measurements show a more
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FiG. 5. Predicted velocity, salinity and temperature profiles for day 191 of MIZEX 1984.

gradual response to the change in the mixed layer
properties. This may be partly due to the idealized
forcing in the numerical model, but it probably also
shows the limitations of a one-dimensional analysis.

4. Discussion and conclusions

A mathematical model of the boundary layer under
drifting melting ice is bound to have “weak spots” con-

Viscous diffusion Turbulent diffusion

zx10° (m)

? )(1(52 (sh

sidering the complexity of the problem. In the model
presented we believe that it is the treatment of rough-
ness elements that introduces one of the main uncer-
tainties, The approach is probably sound, but the
modification of the turbulence model constitutes a
major problem. In the present work, following Svens-
son and Rahm (1988), the length-scale distribution is
modified in the presence of roughness. The tentative
relations used, although to some degree tested by
Svensson and Rahm (1988), certainly need further
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FIG. 6. The salt balance of the boundary layer for day 191 of MIZEX 1984. Terms in the differential equation
(a: left panel) and fluxes (b: right panel) as given by the mathematical model.
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FI1G. 7. The heat balance of the boundary layer for day 191 of MIZEX 1984. Terms in the differential equation
(a: left panel) and fluxes (b: right panel) as given by the mathematical model.

consideration. The low-Reynolds-number model used
seems to be in close agreement with available experi-
mental data. It is, however, instructive to note that the
turbulent transport of salt is as effective as the molecular
transport when the ratio v1/» is of the order 10 3. This
can be understood by writing the total diffusive trans-
port coefficient as (v/Sc; + vr/Scy) and noting that
the Scy, is about three orders of magnitude larger than
Scr. It is questionable if one can trust predicted eddy
viscosities of this magnitude.

The close agreement with laboratory and field data
obtained with the model presented does indicate, how-
ever, that the formulation is basically sound. It is note-
worthy that no constants in the model have been tuned
for the present application. We may thus consider the
formulation as a theoretical frame work, which con-
tains submodels that need to be refined and further
tested.

The conclusions from the paper may be summarized
as:

¢ A mathematical model of the ocean boundary
layer under drifting, melting ice can, and has been,
formulated. The model contains submodels for low-
and high-Reynolds number turbulence and also for
distributed roughness elements.

e The low-Reynolds number turbulence model is
found to predict a turbulence energy budget in the near-
wall region of a boundary that is in close agreement
with measurements. Also the predicted temperature
profile through the viscous region is found to be in
agreement with laboratory measurements.

e Applications to MIZEX data show satisfactory
agreement with measurements. An analysis of the heat

and salt fluxes within the boundary layer provides a
detailed and consistent picture of the processes taking
place under melting, drifting ice.
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APPENDIX
List of Symbols
A, projected area per unit volume
A, constant in damping function
Cy drag coefhicient
C,, C,-C;, constants in the k—e model
C..Cp constant in the one-equation turbulence
model
C, specific heat of sea water
D, roughness element bottom diameter
d,(z) roughness element diameter
Coriolis’ parameter
flux, heat flux at ice-water interface
flux, salinity flux
Fy form drag in x-direction
Fy form drag in y-direction
M damping function
g gravity constant
h, ice keel depth
k turbulent kinetic energy
L latent heat of ice
I, 1 length scales
dh/dt melting rate
P turbulent kinetic energy production

P, buoyancy production/destruction

Pr, laminar Prandtl number

Prr turbulent Prandtl number

P, shear production

Rep roughness element Reynolds number
Ry turbulence Reynolds number

S mean salinity

Sc; laminar Schmidt number

Scr turbulent Schmidt number

So salinity at ice-water interface
salinity of ice
mean temperature
freezing / melting temperature
temperature of maximum density
temperature at lower boundary
" time
salinity at lower boundary
mean velocity in x-direction
mean local velocity in drift direction
mean ice velocity in x-direction
Vv mean velocity in y-direction
Vice mean ice velocity in y-direction
w mean velocity in z-direction
X horizontal coordinate, positive in east di-
rection
y horizontal coordinate, positive in north
direction
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z vertical coordinate, positive upwards
oy, o constants in the equation of state
A, average spacing of ice keels
€ dissipation rate of turbulent kinetic en-
ergy
K von Karman constant
v molecular kinematic viscosity
vr turbulent kinematic viscosity
Pice ice density
Po reference density
o, turbulent Schmidt number for e
ok turbulent Schmidt number for k
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