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Key Points.

◦ Overturning circulation of a submesoscale, down-Stokes front is energized

by Stokes shear force.

◦ Overturning circulation extracts momentum and kinetic energy from sur-

rounding submesoscale eddies.

◦ Stokes shear force appears alongside buoyancy and modifies the hydro-

static balance.

Abstract. This paper provides a detailed analysis of momentum, angu-

lar momentum, vorticity, and energy budgets of a submesoscale front under-

going frontogenesis driven by an upper-ocean, submesoscale eddy field in a

Large Eddy Simulation (LES). The LES solves the wave-averaged, or Craik-

Leibovich, equations in order to account for the Stokes forces that result from

interactions between nonbreaking surface waves and currents, and resolves

both submesoscale eddies and boundary layer turbulence down to 4.9m ×

4.9m × 1.25m grid scales. It is found that submesoscale frontogenesis dif-

fers from traditional frontogenesis theory due to four effects: Stokes forces,

momentum and kinetic energy transfer from submesoscale eddies to frontal

secondary circulations, resolved turbulent stresses, and unbalanced torque.

In the energy, momentum, angular momentum, and vorticity budgets for the

frontal overturning circulation, the Stokes shear force is a leading-order con-

tributor, typically either the second or third largest source of frontal over-

turning. These effects violate hydrostatic and thermal wind balances dur-

ing submesoscale frontogenesis. The effect of the Stokes shear force becomes

stronger with increasing alignment of the front and Stokes shear and with
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a nondimensional scaling. The Stokes shear force and momentum transfer

from submesoscale eddies significantly energize the frontal secondary circu-

lation along with the buoyancy.
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1. Introduction

Fronts with ageostrophic secondary circulations, or frontal overturning circulations, and

wave-driven Langmuir turbulence both have significant horizontal divergence and are ex-

pected to impact transport and dispersion of chemical substances in the upper ocean, such

as oil, pollutants, biological tracers, and flotsam. This paper quantifies a commonality

between fronts and Langmuir turbulence: they are both significantly energized by surface

gravity waves. Fronts are ubiquitous across the global ocean [Ferrari and Rudnick , 2000;

Capet et al., 2008a] and stem from frontogenesis mechanisms similar to those proposed

by Hoskins and Bretherton [1972]. Their solutions for the frontal overturning circulation

are found by solving the equation proposed by Sawyer [1956] and Eliassen [1962]. The

dynamics of oceanic fronts [Capet et al., 2008a] affect and are affected by air-sea inter-

actions [Boutin et al., 2008], winds [Thomas and Lee, 2005], submesoscale instabilities

[Spall , 1997; Boccaletti et al., 2007; Taylor and Ferrari , 2009, 2010; Nencioli et al., 2013;

Haney et al., 2015], boundary layer or convective turbulence [Parker and Thorpe, 1995;

Nagai et al., 2006, 2009; McWilliams et al., 2009; D’Asaro et al., 2011], phytoplankton

productivity [Mahadevan and Archer , 2000; Lima et al., 2002], and surface gravity waves

[McWilliams and Fox-Kemper , 2013]. In the upper ocean, fronts vary in width from

100 m to 100 km [Pollard and Regier , 1992; Hosegood et al., 2006; Nencioli et al., 2013;

Shcherbina et al., 2014], and they typically originate from straining of density gradients

by mesoscale or submesoscale eddies. The primary emphasis of this paper is on studying

what energizes and torques submesoscale frontal overturning circulation in the presence

of surface gravity waves. We will address these questions by analyzing a Large Eddy Sim-
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ulation (LES) dataset [Hamlington et al., 2014] of upper ocean processes which resolves

straining of fronts by submesoscale eddies.

Surface gravity waves are also ubiquitous in the ocean. Their short wavelengths (0.1m<

λ <100m) and fast periods (1-10 s) require casting their interactions with larger, slower

phenomena – such as large-scale boundary layer turbulence or longshore currents – in a

multi-scale framework: namely, the wave-averaged equations [Craik and Leibovich, 1976;

Holm, 1996; McWilliams et al., 1997; McWilliams et al., 2004]. The LES analyzed in

this paper solves these equations. For simplicity, the wave-averaged equations neglect

intermittent breaking wave effects (although similar models have considered these effects

[Sullivan et al., 2007]) and account for the effects of nonbreaking gravity waves through

a Stokes drift velocity that decays rapidly from the surface. The wave interaction forces

acting on larger, slower flows in the wave-averaged equations can be organized into three

categories: 1) the advection of momentum and tracers by the Stokes drift, 2) the Stokes

Coriolis force, and 3) the Stokes shear force [Suzuki and Fox-Kemper , 2015]. These forces

are referred to as Stokes forces throughout.

Stokes forces in the wave-averaged equations are equivalent to the radiation stresses in

other forms of the equations [Longuet-Higgins and Stewart , 1964; Lane et al., 2007], but

in the context of this study Stokes forces are easier to understand dynamically. Stokes

forces exist within only a shallow surface region of the mixed layer or turbulent boundary

layer because Stokes drift rapidly decays with depth, with an e-folding depth of λ/4π,

which is usually less than 10 m. However, momentum and energy injected by Stokes

forces are transported outside of this shallow region via inertia, pressure perturbations,

and stresses. Hence, Stokes forces can lead to circulation effects that are much larger
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and deeper than the shallow surface region where Stokes drift itself is large [Polton and

Belcher , 2007; McWilliams and Fox-Kemper , 2013]. Stokes effects also have a particularly

sensitive dependence on the direction of flow structures as compared to the wave direction

[Van Roekel et al., 2012; Suzuki and Fox-Kemper , 2015].

Langmuir turbulence present in the ocean boundary layer is partly driven by the Stokes

shear force [Suzuki and Fox-Kemper , 2015] and involves Langmuir circulations. Typically,

Langmuir circulations are 1m-50m deep and wide and 100m to 1 km long, and their

axial directions are aligned with the wind and waves [Craik and Leibovich, 1976; Thorpe,

2004; Teixeira and Belcher , 2010]. Ocean mixing by Langmuir turbulence has important

climatic effects [Kukulka et al., 2009; Fan and Griffies , 2014; Li et al., 2015]. LES of

the wave-averaged equations allow for systematic study of Langmuir turbulence and its

dependence on parameters defining the upper ocean state, such as wind strength and

direction. [Skyllingstad and Denbo, 1995; McWilliams et al., 1997; Harcourt and D’Asaro,

2008; Van Roekel et al., 2012]. An important feature of the LES analyzed in this paper,

as discussed in Hamlington et al. [2014], is that nearly all small-scale motions due to

Langmuir turbulence are explicitly resolved by the simulations, rather than parameterized

using a subgrid-scale model. Therefore, this LES simulates natural development of both

Langmuir turbulence and submesoscale eddies.

The LES in this study neglects intermittent breaking wave effects. It is theoretically

unclear, however, to what extent the wave-averaged equations must be modified in order to

account for breaking waves. Moreover, the extent of such modifications may depend on the

types of breaking (e.g., microscale versus whitecap breaking waves) as well as the frequency

of wave breaking. As observational data of breaking waves in the ocean is not well
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constrained [Kleiss and Melville, 2010, 2011], speculating on the importance of breaking

waves relative to nonbreaking waves is difficult. However, as Langmuir circulations and,

hence, Stokes forces are common features present for modest winds similar to the winds

considered in this study, we expect that the wave-averaged equations and the effects of

Stokes forces highlighted here are largely valid.

The Stokes Coriolis force and additional related advection of momentum and tracers by

Stokes drift may have profound effects on coastal circulation, upper ocean fronts, internal

waves, and instabilities [e.g., Olbers and Herterich, 1979; McWilliams and Restrepo, 1999;

Monismith et al., 2007; McWilliams et al., 2012; Lentz and Fewings , 2012; Breivik et al.,

2015; Haney et al., 2015]. These effects are present in the simulations and theory presented

here, and on occasion they are significant in the energetics and angular momentum balance

of the frontal overturning circulation.

McWilliams and Fox-Kemper [2013] explore the effect of Stokes forcing on features much

larger than Langmuir cells: namely, fronts, filaments, and the associated geostrophic

currents. Of particular relevance here is the effect of the Stokes shear force on those

currents [Suzuki and Fox-Kemper , 2015]. InMcWilliams and Fox-Kemper [2013], inviscid,

adiabatic dynamics were assumed for ease of analysis. By contrast, the dynamics in this

paper simultaneously include turbulent stresses, diabatic mixing, and Stokes forces.

The most intense upper ocean geostrophic currents – fronts and filaments – result from

buoyancy anomalies strained by a confluent flow. Buoyancy anomalies are related to shear

in the currents through the thermal wind relation. The effect of waves – or, more precisely,

the Stokes shear force – in a front can be compared to the buoyancy anomaly; that is,

the Stokes shear force acting on a thermal wind current scales as the buoyancy anomaly
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multiplied by the dimensionless parameter [McWilliams and Fox-Kemper , 2013; Suzuki

and Fox-Kemper , 2015]

ϵ =
V S

fℓ

H

HS
=

V S

fHS︸ ︷︷ ︸
wave

H

ℓ︸︷︷︸
aspect

. (1)

Here V S is a characteristic velocity of the Stokes drift, f is the Coriolis parameter, H and

ℓ are the depth and width of the front, and HS is the Stokes drift decay depth (which

is λ/4π for monochromatic waves, or 1-10m for typical conditions). Thus, despite the

shallow HS, the effects of the Stokes shear force are substantial since the local magnitude

of the Stokes shear force relative to the buoyancy anomaly increases inversely with HS.

In other words, the ratio of the depth-integrated Stokes shear force and depth-integrated

buoyancy anomaly forms the dimensionless parameter V S/(fℓ). The Stokes-front inter-

action parameter (ϵ) can also be expressed as the aspect ratio of the front multiplied by

another dimensionless parameter grouping the wave parameters. The latter dimensionless

parameter is typically O(10 - 100). The aspect ratio may be estimated by the cross-front

isopycnal slope, which is O(1/10 - 1/100) for submesoscale fronts and O(1/100 - 1/1000)

for mesoscale fronts. Thus, for given wave parameters, the Stokes shear force effects are

strongest on steep submesoscale fronts. The front analyzed in detail here has ϵ = O(20).

As already mentioned, the simulation [Hamlington et al., 2014] analyzed in this paper

explicitly resolves both submesoscale eddies and most scales of Langmuir and boundary

layer turbulence. In Fig. 1, fronts in two simulations examined in Hamlington et al. [2014]

are shown using snapshots of vertical vorticity. These two simulations differ only by their

Stokes forcing: one (left panel) has Stokes forcing and the other one (right panel) does not.

The former Stokes-forced case is the same simulation analyzed here. Fronts are indicated

by adjacent stripes of positive and negative vorticity on the flanks of each front. In the
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left panel, fronts that are parallel to the wave (Stokes drift) direction are much stronger

than fronts in other directions. In contrast, no clear directionality is preferred in the right

panel depicting a simulation with wind forcing only. Thus, some aspect of Stokes forces

enhances the fronts in one direction. Preliminary examination of observational data by

Shcherbina et al. [2013] was inconclusive as to whether similar sharpening occurs in the

real ocean.

Frontal enhancement in the Stokes-forced case may represent an indirect coupling be-

tween Langmuir turbulence and fronts, or it may result from a direct connection between

fronts and Stokes forces. Hamlington et al. [2014] have examined the interactions between

Langmuir turbulence, mixed layer eddies [Boccaletti et al., 2007], and fronts in these simu-

lations. However, in addition to the indirect effects of Stokes forces on fronts through the

intermediary of Langmuir turbulence, there is a direct effect of Stokes forcing on ocean

fronts [McWilliams and Fox-Kemper , 2013]. This direct effect is the dominant reason for

the selection of the preferred frontal direction. The interaction between boundary layer

turbulence – whether forced by waves, winds, or convection – and fronts is indeed some-

times important and will be quantified here, and further analysis will be carried out to

assess the distinction between indirect and direct effects.

The fronts examined here (see again Fig. 1) have sharpened through frontogenesis acting

on the strain field of submesoscale mixed layer eddies. These mixed layer eddies have

an O(1) Rossby number and evolve faster and hold less energy than mesoscale eddies

[Boccaletti et al., 2007; Fox-Kemper et al., 2008]. As will be shown, they transfer an

appreciable fraction of their energy to the frontal overturning circulation which alters the

submesoscale strain field. To study these changes, it is important to use a simulation
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with an active eddy field that can respond as the front extracts energy and evolves, rather

than an imposed background eddy field that does not evolve [e.g., Hoskins and Bretherton,

1972].

2. Simulation

The simulation in this study is described in detail in Hamlington et al. [2014] and

Smith et al. [2016]. As a result, here we only briefly summarize the simulation details.

The simulation models the spindown of two horizontal buoyancy gradients subject to the

effects of winds, waves, and modest cooling. Both gradients are initially O(1 km)-wide.

The spindown takes place in the presence of modest initial cooling (−5Wm−2 for 10 days,

none afterward), modest winds arriving at a 30◦ angle to the initial fronts (10-meter height

wind speed U10 = 5.46m s−1 and water-side friction velocity u∗ = 5.46× 10−3ms−1), and

fully-developed waves aligned and consistent with the imposed winds (surface Stokes drift

V s = 6.3× 10−2 ms−1, turbulent Langmuir number
√
u∗/V s = 0.29, phase speed at the

peak wave frequency Cp = 6.68m s−1, and wave age Cp/U10 = 1.2 places the majority of

the Stokes drift shear in the upper 4 meters). The prescribed Stokes drift is horizontally

uniform and constant in time. Hence, it is assumed that the surface wave field has a

large energy reservoir and a ready supply of energy from the winds, so interactions with

currents negligibly affect the Stokes drift. Because of the interactions between the front

and the Ekman flow, only the initial front that is downwind is unstable to mixed layer

eddies [Thomas , 2005].

The LES domain is 20 km × 20 km × 160m, and the simulation explicitly resolves both

submesoscale and boundary layer turbulence down to the 4.9m × 4.9m × 1.25m compu-

tational grid. This domain is much larger than the submesoscale eddies and fronts in the

D R A F T April 21, 2016, 3:01pm D R A F T

This article is protected by copyright. All rights reserved.



SUZUKI ET AL.: STOKES FORCES & FRONTS X - 11

LES and, thereby, allows natural development of the submesoscale features in a realistic

larger-scale flow field. The fine grid explicitly resolves nearly all small-scale motions due to

Langmuir turbulence, minimizing the role of the subgrid-scale parameterization. There-

fore, the LES simulates realistic multi-scale flow interactions between the submesoscale

flow features and both larger-scale and smaller-scale flow features.

3. Selected Front and its Flow Environment

This section characterizes the front analyzed in detail in the following sections and the

flow environment in which this front is embedded. After evolving submesoscale mixed layer

eddies for just over 12 days (Fig. 1), one submesoscale front oriented in the down-Stokes

direction is singled out for detailed analysis; it is shown in the center of the yellow box in

the left panel of Fig. 1. To select this front, a number of fronts in different locations and

orientations were preliminarily examined. Subsequently, it was found that all of the fronts

having a strong frontal overturning circulation are oriented in the down-Stokes direction.

There is no up-Stokes front having a clear overturning circulation. The importance of the

Stokes shear force relative to the buoyancy depends on the degree of alignment between the

front and the Stokes drift shear as well as the strength of the surrounding submesoscale

eddies and the buoyancy gradient. For some down-Stokes fronts, the energy input by

the Stokes shear force to the overturning circulation is as large as the energy input by

buoyancy. For the selected front, however, the relative importance of the Stokes shear

force is moderate; hence, it is a typical down-Stokes front. It also has a long stretch

of straight front, which makes the along-front averaging used in the following analysis

robust.
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The boxed region in Fig. 1 is illustrated in plan and section views in Figs. 2 and 3. These

figures also indicate the “front region” (solid box) and the “surrounding region” (dashed

box) used for the along-front averaging and flow decomposition detailed in Section 4.3.

Figure 2 shows the orientation of the coordinate system used in this study as well as

flow anomalies (indicated with a prime) from the horizontal averages. Looking from

above, the submesoscale front is at the center of four pressure anomalies p ′ (Fig. 2a) in

a checkerboard pattern; the low pressures are in the positive-x-positive-y and negative-x-

negative-y quadrants, and the high pressures are in the positive-x-negative-y and negative-

x-positive-y quadrants. This arrangement of pressure fields leads to a strong confluence

(∂xu − ∂yv ≫ 0) near the center of the front region (solid box). This front is in near

alignment with the direction of the Stokes drift, which is 30◦ above the horizontal axis in

these figures (as indicated in Fig. 1). The front has a sharp gradient of buoyancy anomaly

b′ (Fig. 2b) and strong along-front jets apparent in velocity anomaly in the x-direction,

u′ (Fig. 2c). The front features a strong overturning circulation, which is visible as the

downwelling jet along the front (Fig. 2d) even among the Langmuir downwelling jets that

exist throughout the domain. The overturning circulation is also visible in the cross-front

velocity anomaly v′ that is positive near the surface (filling the solid box in Fig. 2e) and

negative near the base of the mixed layer (filling the solid box in the same location in

Fig. 2f).

Section views of the front and surrounding regions are shown in Fig. 3. This section

lies on the local coordinate y-z plane cutting through the center of the solid and dashed

boxes shown in Fig. 2. The variables shown here are smoothed using 10-minute time

averaging and also along-front (i.e., x-direction) averaging across the solid box in Fig. 2
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(see Section 4.1 for details of the averaging procedure). The buoyancy anomaly of the

front is apparent in temperature [Fig. 3a, compare to observations such as Pollard and

Regier , 1992]. This buoyancy anomaly is associated with several frontal circulation modes

(Fig. 3b-e) which are diagnostically defined in the next section.

The along-front velocity anomaly, uH , from the surrounding flow shows a 3 cm s−1 baro-

clinic shear over the mixed layer depth (Fig. 3b), sensibly co-located with the horizontal

temperature gradient (Fig. 3a). Although the front has modest velocity, it has large Rossby

number, or equivalently significant vertical relative vorticity normalized by f (Fig. 1).

The strong vertical vorticity is largely due to the horizontal shear of the along-front jets:

∂yu
H ∼ ±3× 10−4s−1.

The frontal overturning circulation, ψ (Fig. 3c), reveals the clockwise overturning pat-

tern expected from the vertical shear of cross-front velocity anomaly shown in Fig. 2e-f

and the frontal downwelling shown in Fig. 2d. Vertical velocity, although overlapped with

small-scale Langmuir signatures, shows downwelling jets spanning the whole of the mixed

layer on the cold side of the front and a broader upwelling on the warm side of the front

(Fig. 3d). The downwelling jet at the “nose” of the front, where the front reaches the

surface, is enhanced by the Stokes shear force incited by the positive uH peaking at the

nose (Fig. 3b) and causes the temperature field to form a vertical wall there (Fig. 3a). The

Stokes shear force is explained in more detail in Section 4.2.

The cross-front flow vH associated with the submesoscale eddies pinches the front by

a fairly uniform confluence −∂yvH ∼ ∂xu
H ∼ 3 × 10−5s−1 (Fig. 3e). Compared to the

confluence, the magnitude of ∂xv
H is much smaller, although it increases to 2×10−5s−1 at
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the front in the lower mixed layer. The largest component of the Q vector [Hoskins , 1982]

resulting from this submesoscale eddy field is −∂yuH∂xb− ∂yv
H∂yb ∼ −5× 10−12s−3.

In addition to these frontal circulation modes (Fig.3b-e), the region shown in figure 3

has another flow mode (uB, vB, 0) that is horizontally uniform (Fig. 4a). It consists of hor-

izontal flows (namely, an Ekman spiral, an inertial oscillation, and a geostrophic current)

that have much larger scales than the front region; hence these phenomena are approxi-

mately horizontally uniform within the front region. The cross-front component vB has a

vertical shear (mainly, due to the Ekman spiral) that is roughly −1.5 cm s−1 over 50m.

This shear is opposite to the vertical shear of the overturning circulation, which is roughly

+3 cm s−1 over 50m (Fig. 2e, 2f, 3c). In summary, the frontal overturning circulation is

superimposed with 1) the horizontally-uniform, down-front Stokes drift confined near the

surface (uS, vS ≈ 0), 2) the narrow, along-front baroclinic jets and the confluent subme-

soscale eddies (uH , vH), and 3) the horizontally-uniform flow (uB, vB), whose cross-front

component vB opposes the vertical shear due to the overturning circulation.

Finally, note that the orange line in Fig. 3c is the bounding streamline of the overturning

circulation, where ψ is positive. Inside of this orange line is the integration domain for

the energy, vorticity, and angular momentum budgets shown in the following analysis.

4. Theory

The following analyses involve many terms and symbols. Hence, for the reader’s conve-

nience, a glossary of terms is provided at the end of this paper after the appendices.

4.1. Momentum and Buoyancy Equations
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The LES model [McWilliams et al., 1997; Sullivan and Patton, 2011] solves the wave-

averaged equations with an LES subgrid-scale model suitable for boundary layer turbu-

lence [Sullivan et al., 1994]. Our primary interest in this section is to present the versions

of these equations averaged in time and along one particular front. These averaging oper-

ations are necessary for the following analyses to filter out the strong signal of small-scale

turbulence and isolate the dynamics pertaining to the larger-scale flows.

The LES resolution used is sufficient to explicitly resolve Langmuir turbulence, which

has a much smaller characteristic scale than the frontal features studied here. As men-

tioned already, Fig. 2d shows a snapshot of vertical velocities due to Langmuir turbulence

and those due to the longer front. In magnitude and width of downward jet, these fea-

tures are quite similar, but they differ substantially in length and timescale of evolution.

Langmuir turbulence is three-dimensional, exists inside and outside of the front, and acts

as a stress to the other larger-scale flow modes. Without averaging, Langmuir turbulence

appears at leading order in the flow dynamics and obscures the dynamics of the larger-

scale flow modes. Hence, the signal of Langmuir turbulence dynamics may be considered

as “noise” in the desired frontal analysis.

To reduce such signal, all flow variables are averaged by a simple moving average in time

as well as in the x-direction (i.e., the along-front direction). Experimentation with the

particular front examined here allowed the determination of the largest region consistent

with a straight front that also avoids introducing uncertainty from other anomalies in the

nearby flow field, which can be seen in Fig. 2. The time averaging window is 10 minutes,

and during this window the front position moves less than one horizontal grid cell, thus the

sharp front is minimally blurred. The window of the along-front averaging corresponds
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to the x dimension of the boxes shown in Fig. 2. Again, the sharp front is minimally

blurred by the along-front averaging because submesoscale frontal features line up well in

the x-direction. Although these averaging operations do not perfectly remove the signal

of small-scale turbulence, they certainly reduce it (Fig. 3).

The equations of averaged motion describe the dynamics of the flow modes larger than

small-scale turbulence. With a horizontally-uniform Stokes drift used in the LES, these

equations are:

(
∂t + uLj ∂j

)
u = −∂xp′ + fvL − ∂jL1j, (2)(

∂t + uLj ∂j

)
v = −∂yp′ − fuL − ∂jL2j, (3)(

∂t + uLj ∂j

)
w = −∂zp′ + ∂z⟨τL33⟩ − ∂jL3j + b′ − u′j∂zu

S
j , (4)(

∂t + uLj ∂j

)
θ = −∂jLθj, (5)

∂juj = 0, (6)

where j = 1, 2, 3 and Einstein summation is implied on repeated indices. All variables are

taken as averages along the front and in time, but notation of the averaging operators is

omitted except in Appendix A where these equations are derived systematically. As al-

ready shown in Figs. 2 and 3, the coordinates are oriented such that x, y, z, or equivalently

x1, x2, x3, are in the along-front, cross-front, and vertical directions, respectively. Velocity

components u, v, w, or equivalently u1, u2, u3, are in the x, y, z directions, respectively.

The mean Eulerian velocity is (u, v, w), the Stokes drift is (uS, vS, wS) where wS = 0, and

the mean Lagrangian velocity is (uL, vL, wL) = (u+ uS, v+ vS, w+wS). The Stokes drift

used in the LES is horizontally uniform and constant in time. The potential temperature

is denoted by θ.
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The presence of small-scale turbulence results in the stress tensors in these equations.

The stress tensor τLij (i = 1, 2, 3, θ) is the sum of the Lagrangian Reynolds stress tensor

and the LES subgrid-scale (SGS) stress tensor. Its full definition is given by (A4)-(A5)

in Appendix A1. This tensor represents the averaged flux of momentum or temperature

due to the full (i.e., not averaged) turbulent flow. In (2)-(5), the advection term (i.e.,

−∂juiuLj or −∂jθuLj ) is separated from −∂jτLij . This results in the Leonard stress tensor

Lij = τLij − uiu
L
j . Here, uiu

L
j can be interpreted as the flux due to the averaged flow. The

full definition of the Leonard stress tensor is given by Eqs. (A25)-(A26) in Appendix A4.

Angle brackets ⟨⟩ in (4) indicate the horizontal mean taken over the entire simulation

domain, and the prime notations in (2)-(4) indicate deviations from this horizontal mean

(i.e., ϕ′ = ϕ− ⟨ϕ⟩). Correspondingly, p′ is the pressure deviation divided by the constant

background density, and b′ is the buoyancy deviation where the buoyancy is proportional to

temperature as defined in the notation chart at the end of this paper. The presented form

of (4) does not contain the dynamically-unimportant background hydrostatic balance:

−∂z⟨p⟩ − ∂z⟨τL33⟩ + ⟨b⟩ − ⟨uLj ⟩∂zuSj = 0 (see Appendix A3). The term ⟨τL33⟩ appears

in (4) because this background hydrostatic balance has been removed in (4). That is,

∂z(L33 −⟨τL33⟩) – rather than ∂zL33 alone – appears in (4), in the same way as b′ = b−⟨b⟩

rather than b appears in (4). This is also true for ∂h(L3h− ⟨τL3h⟩) with h = 1, 2. However,

⟨τL31⟩ and ⟨τL32⟩ do not appear in (4) because ∂x⟨τL31⟩ = 0 and ∂y⟨τL32⟩ = 0. The last term of

the RHS of equation (4) is the Stokes shear force deviation (hereafter, SSF) [Suzuki and

Fox-Kemper , 2015] from the horizontal mean, −⟨uLj ⟩∂zuSj . Again, just as the buoyancy,

only the deviating part of the Stokes shear force is dynamically important.
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The temperature budget (5) for the front is not equilibrated. The front overall is

undergoing cooling, in part because the large-scale flow is delivering cold water via vL∂yθ

[Thomas and Lee, 2005], and in part because there is upwelling of cold water by w∂zθ

near the base of the mixed layer by turbulent entrainment. Near the surface, turbulent

buoyancy fluxes are significant and mix the cold water advected to the front.

4.2. Stokes Shear Force

This section describes how Stokes forces—especially, Stokes shear force—drive the

frontal overturning circulation. Understanding this mechanism is critical in making sense

of the quantitative analyses presented in the following sections.

In Eqs. (2)-(5), advection of all velocities and temperature is by the Lagrangian velocity;

that is, the advective effect of the Stokes drift is distinguished from other wave effects and

represented by these terms. In general, advection of buoyancy and momentum may have

an important effect on fronts (e.g., change of stratification due to buoyancy advection).

However, the effect of the Stokes advection is negligible for the front analyzed here because

the front is nearly two-dimensional and aligned with the Stokes drift velocity.

Waves also affect the horizontal momentum equations through the Stokes Coriolis force

(fvS,−fuS), which is part of the Lagrangian Coriolis force in Eqs. (2) and (3). The

Stokes drift and, thereby, the Stokes Coriolis force in this study have a large horizontal

scale (namely, horizontally uniform). The results of the LES show that this Stokes Coriolis

force contributes to the formation of a large-scale Ekman spiral and is typically canceled

by the turbulent stress gradients (Section 4.4). Because it is balanced, the Stokes Coriolis

force cannot directly force the frontal overturning unless the turbulent stresses in the front

region deviate from the large-scale stresses. Hence, it is the frontal perturbation to the
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turbulent stresses or equivalently, the resulting disruption of the Ekman balance (rather

than the Stokes Coriolis force itself) that affects the frontal overturning dynamics. This

point will be apparent in (15) where the Stokes Coriolis force does not directly appear in

the momentum equations for the overturning circulation.

Stokes shear force, in contrast, forces and energizes the frontal overturning circulation

directly. With a horizontally-uniform Stokes drift (see Appendices A2 and A3), the Stokes

shear force (SSF) appears only in the vertical momentum equation (4), and it is useful

to consider how it pairs with the buoyancy force that also appears only in that equation.

If the anomalous Lagrangian flow u′ has a component in the direction of the Stokes drift

shear ∂zu
S (namely, u′ ·∂zuS > 0), then the Stokes shear force pushes the water down like

a negative buoyancy anomaly (b′). On the other hand, if the anomalous Lagrangian flow

and Stokes drift shear are oppositely oriented (u′ · ∂zuS < 0), then the SSF pushes the

water up like a positive buoyancy anomaly. When there is a down-Stokes (u′ · ∂zuS > 0)

flow anomaly at small scales, the SSF triggered is downward, drives a downward jet, and

transfers wave energy to the jet; that is, the work done by the SSF, w(−u′ · ∂zuS), is

positive. This is why Langmuir circulations have strong downward jets and gain energy

from surface waves [Suzuki and Fox-Kemper , 2015]. The same forcing mechanism of SSF

applies to larger-scale flow anomalies such as frontal jets near the surface. When the

along-front flow is down-Stokes, both the SSF and buoyancy are downward, and they

work in concert. In contrast, when the along-front flow is up-Stokes, then the SSF is

upward and the buoyancy is downward; hence they work against each other.

Since the Stokes-front interaction parameter–ϵ defined in (1) that determines the relative

size of the SSF versus buoyancy–is large for this front, the SSF near the surface is larger
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than the buoyancy. Thus, this front is non-hydrostatic and is embedded within a field of

non-hydrostatic Langmuir turbulence. Although non-hydrostatic effects are often small

for submesoscale fronts when the Stokes shear force is neglected [Mahadevan and Tandon,

2006], they are not small here and observations suggest that the Stokes shear force is not

negligible for submesoscale fronts worldwide [McWilliams and Fox-Kemper , 2013].

Some authors combine the SSF and advection terms and regroup them into a Stokes vor-

tex force and a Stokes Bernoulli effect [McWilliams et al., 1997; Holm, 1996; McWilliams

and Fox-Kemper , 2013; Suzuki and Fox-Kemper , 2015]. While that form is mathemati-

cally identical, the form used here simplifies the analysis of the frontal circulation, angular

momentum and potential vorticity dynamics, and energetics. Lagrangian advection ap-

pears in every prognostic equation, which means that derived quantities, such as energy

and potential vorticity, will be advected by the Lagrangian velocity as well. Furthermore,

O(ϵ) terms are collected into one centralized SSF term for easy examination. Also, while

neither Stokes advection nor Lagrangian advection transfers energy between the waves

and currents, the SSF does; in fact, the SSF and the Stokes Coriolis forces are the only

ways in this system to transfer energy between the waves and currents.

4.3. Flow Decomposition

As already shown in Fig. 3 and Fig. 4a, the averaged motion (u, v, w) defined in Sec-

tion 4.1 consists of not only the frontal overturning circulation (Fig. 3c) but also the other

frontal circulation modes – namely, the along-front baroclinic jets (Fig. 3b) and the sub-

mesoscale confluent eddies (Fig. 3e and the nearly barotropic flow in Fig. 3b) – as well as

non-frontal circulation modes (Fig. 4a) which encompass the front and have much larger

horizontal scales than the cross-frontal scale of the front. Non-frontal circulation modes
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are horizontally uniform in the frontal region and are in the background of the frontal

features. They may be large-scale types of inertial oscillations, wavy Ekman spirals, and

geostrophic currents. Thus, Eqs. (2) and (3) contain the dynamics of many flow modes

and do not single out the dynamics of the frontal circulations. It is, therefore, useful to

distinguish the frontal circulation modes from the background flow mode and decompose

the frontal circulation modes structurally to examine underlying balances.

In particular, the flows are decomposed into: 1. small-scale turbulence (already removed

by averaging), 2. the background mode, which is horizontally uniform and has no vertical

velocity (denoted by a superscript B and wB ≡ 0), and 3. frontal circulation (i.e., frontal

deviation from the background; denoted by a superscript C). The frontal circulation is

further divided into: 3a. circulations of submesoscale eddies and the along-front jet, both of

which are mostly horizontal motions (denoted by a superscript H), and 3b. an overturning

circulation that lies on a y-z plane (denoted by a superscript ψ and uψ ≡ 0). Therefore,

the decomposition is performed as

u = uB + uC = uB + uH , (7)

v = vB + vC = vB + vH + vψ, (8)

w = wC = wH + wψ, (9)

where ∂hu
B
i = 0 for h = 1, 2 (as this mode is horizontally uniform), and ∂yv

ψ + ∂zw
ψ = 0

(as this mode is a circulation on a y-z plane).

In general, the flow in the front region (solid box in Fig. 3) contains large anomalies

from the “background” flow that are present in both the front region and the surrounding

regions (dashed boxes in Fig. 3). To diagnose the background mode without being biased

by the frontal anomalies, the background mode is defined as the horizontal average of
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u and v in the surrounding regions, thereby excluding the anomalies in the front region

(see Appendix B). We will denote this horizontal averaging over the surrounding regions

by B. Thus, uBh ≡ uh
B and uCh ≡ uh − uBh for the horizontal components: h =

1, 2. Note that, unlike (uB, vB), the vertical component wB is not defined using the

B operation. Instead, wB is 0 by definition – hence, it is not equivalent to wB –

because (uB, vB) has no horizontal divergence and the rigid lid condition does not permit

a vertical motion associated with this mode. In contrast, a horizontally-uniform flow

wB may become non-zero when the horizontal divergence of the submesoscale eddies

(uH , vH) is non-zero in the surrounding regions where the B operation is taken. Hence,

wB is associated to the submesoscale eddy motion (H-mode or wH) rather than to the

larger-scale motions (B-mode). Experimentation with this particular front determined the

largest surrounding regions that include only nearby flow features relevant to this front

(Fig. 2), and uncertainties in budgets are estimated by varying the width of the front

region and surrounding regions up to 100m.

The decomposition of the circulation modes (i.e., the decomposition of C-mode into ψ

and H-mode), in practice, requires care and is detailed in Appendix C. Here we note that,

although a significant part of small-scale turbulence has been removed, some remains in

the averaged motion. A part of this residual turbulence forms circulations in x-z planes

and contaminates uH and wH with small-scale fluctuations. Our results show that the

average of (wH)2 in the front region is less than 6% of the average of w2, the average of

(∂tw
H)2 is less than 8% of the average of (∂tw)

2, and the predominant structure of wH

is small-scale turbulence fluctuations. Therefore, to leading order, and especially when

small-scale fluctuations are removed, wH is negligible; that is, w ≈ wψ.
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In summary, Fig. 4a shows uB and vB, Fig. 3b shows uC = uH , Fig. 3e shows vH , and

Fig. 3c shows the overturning circulation ψ (hence vψ = −∂zψ and wψ = ∂yψ; also w
ψ is

nearly identical to w shown in Fig. 3d).

4.4. Momentum Budget for the Background Mode

To further characterize the background mode, the force balances involved in the back-

ground mode are analyzed in this section. This analysis shows what types of flows con-

stitute the background mode.

An application of the B operation to Eqs. (2) and (3) shows that the background

mode (uB, vB) obeys

∂tu
B + uLj ∂ju

B
− f(vS + vB) = −∂xp′

B − ∂jL1j
B
, (10)

∂tv
B + uLj ∂jv

B
+ f(uS + uB) = −∂yp′

B − ∂jL2j
B
, (11)

where j = 1, 2, 3. These balances for the present front are shown in Fig. 4b-c.

The dashed blue lines in Fig. 4b-c show the turbulent wavy Ekman balance described

in McWilliams et al. [2012] and Haney et al. [2015]; that is,
(
−f(vS + vE), f(uS +uE)

)
=

−
(
∂jL1j

B
, ∂jL2j

B)
where (uE, vE) is the horizontally-uniform Eulerian Ekman spiral.

Note that vS ≈ 0 for this front as it is nearly aligned with the Stokes drift (and wind)

direction. By comparing the solid yellow lines to the solid blue lines, it is clear that

(uE, vE) is a main component of (uB, vB). The red line in Fig. 4a or the solid blue line

in Fig. 4b shows that there is an Ekman transport in the cross frontal direction for this

down-front wind. A further analysis (not shown here) shows that the frontal anomaly

in the along-front stress gradient from its background value (i.e., ∂jL1j − ∂jL1j
B
) is not

correlated with fvψ or fvH . This indicates that the along-front stress deviation does not
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establish a local Ekman balance at this horizontal scale, and hence neither vψ nor vH has

an Ekman spiral component.

In addition to the horizontally-uniform Ekman spiral, the background mode (uB, vB)

has a weaker geostrophic component (Fig. 4b-c red) and an inertial oscillation component

(Fig. 4b-c black). Note that, according to (10) and (11), the acceleration ∂t(u
B, vB) =

(∂t + uLh∂h)(u
B, vB) (where h = 1, 2) is influenced not only by the Coriolis force pertain-

ing to inertial oscillations but also by nonlinear interactions with the circulation modes,

namely, −uLj ∂jui
B

= −uLj ∂juCi
B
+ −wC∂zuB

B
. Thus, the acceleration minus the non-

linear interactions (Fig. 4b-c black) pertains to the inertial oscillations. Notice also that

the near-surface increase of −∂xp′
B
(Fig. 4b red) is balanced by the acceleration (Fig. 4b

black) instead of by the Coriolis force fvB (Fig. 4b yellow). Hence, these increases are not

related to geostrophic or inertial oscillation modes. Both the geostrophic and inertial os-

cillation modes are almost vertically uniform. This near-surface pressure gradient and the

resultant acceleration occur because the SSF triggered by u′ (Fig. 2c) sets up the pressure

via (4) in the same way that buoyancy sets up pressure [Suzuki and Fox-Kemper , 2015].

As a result, the existing large-scale gradient of u′ yields this pressure gradient.

4.5. Overturning Circulation Dynamics

4.5.1. Momentum Budget for the Overturning Circulation

This section shows the equations of motion governing the frontal overturning circulation.

These equations reveal the forces involved in the frontal overturning and lay the foundation

for the torque and energy analyses presented in the following sections.
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Subtraction of Eqs. (10) and (11) from (2) and (3), respectively, shows that the frontal

circulation mode obeys

(∂t + uLj ∂j)u
C − uLj ∂ju

C
B
= −

(
∂xp

′ − ∂xp′
B
)
−

(
∂jL1j − ∂jL1j

B
)
+ fvC −

(
w∂zu

B − w∂zuB
B
)
,

(12)

(∂t + uLj ∂j)v
C − uLj ∂jv

C
B
= −

(
∂yp

′ − ∂yp′
B
)
−

(
∂jL2j − ∂jL2j

B
)
− fuC −

(
w∂zv

B − w∂zvB
B
)
,

(13)

(∂t + uLj ∂j)w
C = −∂zp′ −

(
∂jL3j − ∂z⟨τL33⟩

)
+ b′ − u′j∂zu

S
j , (14)

where w = wC [(9)] and j = 1, 2, 3. Equations (13) and (14) can then be rewritten

to highlight the dynamics of the frontal overturning (vψ, wψ). First, using (uC , vC) =

(uH , vH + vψ) in (13) yields the momentum budget for vψ as

(
∂t + uLj ∂j

)
vψ = −

(
∂yp

′ − ∂yp′
B
)
−

(
∂jL2j − ∂jL2j

B
)
− fuH − F h − F v (15)

where

F h = ∂tv
H + uLj ∂jv

H − uLj ∂jv
C
B
, (16)

F v = w∂zv
B − w∂zvB

B
. (17)

Next, because wC ≈ wψ, as quantified in Section 4.3, (14) yields the momentum budget

for wψ as (
∂t + uLj ∂j

)
wψ ≈ −∂zp′ −

(
∂jL3j − ∂z⟨τL33⟩

)
+ b′ − u′j∂zu

S
j . (18)

As vS ≈ 0 for this down-Stokes front and also u′ ≈ uH , the Stokes shear force here is

essentially −u′j∂zuSj ≈ −uH∂zuS. The mechanism of how the Stokes shear force drives the

overturning circulation is schematically shown in Fig. 5.
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Note that Eqs. (11), (15), and (16) are related by the forces uLj ∂jv
C
B
, F h, and F v as

background mode vB: (∂t + uLj ∂j)v
B = −uLj ∂jvC

B
+ F v + · · ·,

horizontal circulation mode vH : (∂t + uLj ∂j)v
H = +uLj ∂jv

C
B
+ F h ,

overturning circulation mode vψ: (∂t + uLj ∂j)v
ψ = − F h − F v + · · ·,

where ∂hv
B = 0 for h = 1, 2 is used to rearrange (11). Note that – in theory, or aside from

the remaining turbulence signals – the frontal overturning circulation (vψ, wψ) is negligible

in the surrounding regions (i.e., outside the front) where the B averaging is taken; that

is, uLj ∂jv
C
B

≈ (uSh + uBh + uHh )∂hv
H
B
. This term thus represents nonlinear interactions

between the horizontal circulation (submesoscale eddy) mode and the background mode.

Likewise, F v in theory reduces to wψ∂zv
B. Hence, hereafter, F v is addressed as the

nonlinear interaction between the background mode and the overturning circulation. In a

similar way as the other two forces, F h appears with alternate signs between two modes.

This term is a forcing on the horizontal circulation and enters as −F h in the dynamics of

the overturning circulation. This relation allows momentum partitioning or “interaction”

between the horizontal circulation and the overturning circulation. Indeed, the largest

contribution to F h comes from the frontal deviation in a nonlinear interaction vL∂yv
H −

vL∂yvH
B
, which is mostly vψ∂yv

H in the frontal region. Hereafter, −F h is addressed as

the interaction between the horizontal circulation and the overturning circulation. The

typical appearance of −F h is schematically shown in Fig. 5.

Quantitative exploration of the overturning dynamics [Eqs. (15) and (18)] will be carried

out by analyzing integrated angular momentum, vorticity, and energy budgets for the

overturning ψ variables in the next section. Here, however, the leading-order momentum
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balances revealed by examining the LES dataset are given without illustration. First, the

leading order balance in (18) is a quasi-hydrostatic, or “wavy-hydrostatic”, balance in

which the leading-order pressure perturbation is determined by the sum of buoyancy and

SSF, namely

∂zp
′ ≈ b′ − u′j∂zu

S
j . (19)

Although a small imbalance of this relationship and the associated acceleration of wψ will

be shown to be important for this front in the following sections, the wavy-hydrostatic

balance is, by far, the leading-order vertical balance and determines the leading-order

pressure perturbation. Next, the cross-frontal flow associated with the submesoscale eddy

(vH) satisfies a geostrophic balance plus a small near-surface correction for Stokes advec-

tion:

fvH ≈ ∂xp
′ − ∂xp′

B
+
(
uS∂xu

H − uS∂xuH
B
)
. (20)

Removing this balance and also neglecting terms that are expected to be generally small

in (12) yields an approximate momentum balance for the along-front component of the

frontal circulation (uC = uH) as

(∂t+u∂x+v
L∂y+w∂z)u

H−(u∂x + vL∂y)uH
B
≈ −

(
∂jL1j−∂jL1j

B
)
+fvψ−w∂zuB. (21)

In particular, for this nearly 2D (∂x ≪ ∂y), downwind (uB < vB), and down-Stokes (vS ≪

uS) front, the largest terms are (∂t+ v∂y)u
H , ∂jL1j − ∂jL1j

B
, and fvψ. McWilliams et al.

[2015] find a similar equation in turbulent filaments, referred to there as the “turbulent

thermal wind.” However, here the large Rossby number keeps the time derivative and

advection term in the dominant balance. Unlike the turbulent thermal wind mechanism,

the Coriolis term is balanced by the material derivative term instead of the stress gradient

term. The Coriolis term and the stress gradient term are rather independent from each
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other. Hence, this front is not a front driven by the turbulent thermal wind mechanism

(see section 5.4 for more detail).

The force balance of the cross-frontal overturning momentum in (15) is more compli-

cated. Every term takes part in the leading order balance at some location of the front, and

a simple relationship such as a geostrophic balance for uH does not hold well. However,

the complexity posed by the spatial variations can be ameliorated by studying integrated

budgets of energy, angular momentum, and vorticity. Sources and sinks of these budgets

highlight the average dynamics of overturning circulation and thereby that of the frontal

strength uH [via the Coriolis turning of vψ in (21)]. The rest of section 4 reviews the

theory of such integrated budgets, then in section 5 the simulation results are used to

quantify the sources and sinks in the budgets.

4.5.2. Integrated Angular Momentum Budget for the Overturning Circula-

tion

Vorticity and the related local balances such as the thermal wind balance are key con-

cepts in traditional theories of fronts. However, in the presence of strong small-scale

turbulence, local vorticity is dominated by the signal due to the small-scale turbulence

rather than that of the flows and forces pertaining to the frontal overturning (even after

the time and along-front averaging). Therefore, understanding the frontal overturning dy-

namics requires use of a quantity that is less sensitive to small-scale rotating features and

that can capture the circulation at the frontal-scale. For this reason, our primary analyses

are based on the angular momentum and energy, both of which are quantities that can

be integrated over the entire overturning cell to measure the dynamics and energetics of

the entire overturning circulation. This is in contrast to the integration of vorticity, which
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results in the circulation only along a line (Stokes’s theorem). The angular momentum

budget is explained in this section, and the energy budget is explained in Section 4.5.3.

In the front region, a water parcel carries the angular momentum associated to the

overturning motion (vψ, wψ) about the center of mass of the overturning cell. This angular

momentum is defined as

ε1ij(ri − r0i)u
ψ
j = (y − y0)w

ψ − (z − z0)v
ψ (22)

where i, j = 1, 2, 3, ε1ij is the Levi-Civita symbol, (r2, r3) = (y, z), and (r02, r03) = (y0, z0)

is the center of mass of the overturning cell (see Fig. 3c). Following the water parcel, the

angular momentum changes as

(∂t + uLk∂k)ε1ij(ri − r0i)u
ψ
j = ε1ij(ri − r0i)(∂t + uLk∂k)u

ψ
j + ε1iju

L
i u

ψ
j (23)

= (y − y0)(∂t + uLk∂k)w
ψ − (z − z0)(∂t + uLk∂k)v

ψ + vLwψ − wvψ

≈ (y − y0)(∂t + uLk∂k)w
ψ − (z − z0)(∂t + uLk∂k)v

ψ + (vL − vψ)wψ,

where k = 1, 2, 3, and the last approximation is due to w ≈ wψ. The first two terms

on the right-hand side are the torques by the vertical [(18)] and horizontal [(15)] forces

driving the overturning circulation. The last term on the right-hand side comes from

commuting the moment arm with the material derivative, and it does not vanish when

the water parcel moves with the total velocity vL, which is different from the overturning

velocity vψ. This term represents the change of angular momentum due to dislocation

of the vertical overturning motion (wψ) by the fluid velocity other than the overturning

velocity itself (vL − vψ = vS + vB + vH). Hence, this term will be referred to in the

following as the “dislocation cost.”
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Equation (23) shows that the forces in Eqs. (15) and (18) contribute toward torquing

the front and driving the overturning circulation. The overall contribution from each of

these forces can be revealed by integrating (23) over the overturning cell (Fig. 3c). These

contributions are presented in Table 1 and will be discussed in detail later in Section 5.1.

4.5.3. Integrated Overturning Energy Budget

Multiplying Eqs. (15) and (18) by vψ and wψ, respectively, and combining them allows

computation of the overturning kinetic energy (KE) budget. The equation governing this

budget is

(∂t + uLj ∂j)
vψvψ + wψwψ

2
=wψb′ − vψF h − wψu′j∂zu

S
j︸ ︷︷ ︸

major sources

−fvψuH + vψ
(
∂yp′

B
+ ∂jL2j

B
)
+ Lkj∂ju

ψ
k︸ ︷︷ ︸

major sinks

−∂k(uψkP )− ∂j(u
ψ
kLkj)− vψF v︸ ︷︷ ︸

negligible

(24)

where P ≡ p′ − ⟨τL33⟩, j = 1, 2, 3, and k = 2, 3. The kinetic energy budget for the whole

overturning circulation is diagnosed by integrating (24) over the overturning cell. The

result is presented in Table 2 and will be discussed in Section 5.2. Note that the pressure

transport
∫
A
−∂k(uψkP )dA vanishes because the overturning motion (vψ, wψ) is parallel to

the boundary of the overturning cell area A.

Here we note interpretations of the terms in (24). The three major sources of energy for

the frontal overturning circulation are the buoyancy production, the work done by −F h,

and the work done by the SSF. In an up-Stokes front, the SSF work would constitute

a sink of energy rather than a source. The work done by −F h is the rate of change in

vψvψ/2 due to the interaction between the horizontal circulation (confluent eddies) and

the overturning circulation (Section 4.5.1).
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The three major sinks of energy are the Coriolis conversion of vψ into the along-front

jet uH , the work done against the Coriolis force due to the background wavy-Ekman and

geostrophic modes, and the generation of small-scale shear turbulence by the shear in the

overturning circulation. The interpretation of the second sink term is due to the definitions

that the background wavy Ekman mode uS + uE satisfies ∂jL2j
B
= −f(uS + uE) and the

background geostrophic mode uG satisfies ∂yp′
B
= −fuG (Section 4.4). Hence, the second

sink term is equal to −fvψ(uS + uE + uG). The appearance of fvψ – i.e., the Coriolis

turning of vψ – in (21) but not in (10) shows that vψ turns and becomes the along-front

jet uH , which is a deviation from the background, but does not affect the background uB.

This results in an increase of energy in the jet uHuH/2 by uHfvψ [according to uH times

(21)], corresponding to the first sink term of (24).

The second sink term, on the other hand, does not change the along-front jet energy

uHi u
H
i /2 nor the background flow energy uBi u

B
i /2. Note that the energy of the full flow

uiui/2 consists of not only u
B
i u

B
i /2, u

H
i u

H
i /2, and u

ψ
i u

ψ
i /2 but also cross-mode terms uBi u

H
i ,

uBi u
ψ
i , and u

H
i u

ψ
i . Conservation of energy applies to the full flow energy. The second sink

term −fvψ(uS+uE+uG) represents the work done by the Stokes Coriolis force (−fuSvψ)

and the energy transfer from vψvψ/2 to a cross-mode energy component involving the jet

and the background mode, (uG + uE)uH [according to Eqs. (10) and (12)]. Because vψ

turns and increases uH to uH + fvψ∆t in a short time ∆t without changing uG + uE, the

cross-mode energy component (uG+uE)uH changes to (uG+uE)(uH + fvψ∆t). This rate

of increase in the cross-mode energy corresponds to the energy transfer in the second sink

term −fvψ(uG + uE).
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If one wishes to facilitate comparison between the energy budget and the angular

momentum budget, the torques involving pressure must be added together. That is,∫
A
(z0− z)(−∂yp′+ ∂yp′

B
)+ (y− y0)(−∂zp′)dA. This can be readily compared to the work

done by the same forces
∫
A
vψ(−∂yp′ + ∂yp′

B
) + wψ(−∂zp′)dA =

∫
A
vψ∂yp′

B
dA.

4.5.4. Integrated Overturning Vorticity Budget

The vorticity budget and the angular momentum budget over a region are closely related

because the conservation of vorticity and the first and second moments of vorticity imply

conservation of angular momentum [Batchelor , 1973, Section 7.3]. However, pressure

terms appear in the angular momentum budget, whereas they do not in the vorticity

budget. In this turbulent flow, where the Langmuir cells have axial vorticity of O(30f),

local vorticity balance is very noisy. This turbulence signal can be reduced by integrating

the vorticity budget over an area. Then, the integrated budget shows the dynamics of

the circulation due to (vψ, wψ) along the contour bounding the area (Stokes’s theorem).

Although this budget does not describe the overturning dynamics as a whole, it may be still

useful in studying the circulation at a specific location (e.g., inner core, outer boundary,

etc.). Hence, even though the vorticity, or circulation, budget is not our primary analysis,

it is included here for completeness.
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The x-component of the vorticity dynamics associated with the overturning circulation

is obtained by subtracting the z-derivative of (15) from the y-derivative of (18), giving

∂t(−∂zvψ + ∂yw
ψ) = ∂yb

′ + ∂y(−u′j∂zuSj ) + ∂zF
h︸ ︷︷ ︸

major sources

+
(
∂z
(
∂jL2j − ∂jL2j

B)− ∂y∂jL3j

)
+ f∂zu

H +
(
∂z(u

L
j ∂jv

ψ)− ∂y(u
L
j ∂jw

ψ)
)

︸ ︷︷ ︸
major sinks

−∂z∂yp′
B
+ ∂zF

v︸ ︷︷ ︸
negligible

.

(25)

Integration of this equation over the overturning cell, for example, yields the budget for

the overturning circulation along the overturning cell boundary. The result is shown in

Table 3 and will be discussed in Section 5.3.

Note that the curl of the Lagrangian advection of the overturning circulation ∇ ×

(uL · ∇)uψ is equal to (uL · ∇)ωψ − (ωψ · ∇)uL − ∇ ×
(
uψj ∇(uSj + uBj + uHj )

)
where

ωψ = ∇× uψ is the overturning vorticity. The first term is the Lagrangian advection of

the overturning vorticity, the second term is the Lagrangian tilting and stretching of the

overturning vorticity, and the last term is overturning vorticity generation by nonlinear

mode interactions. In the last term, there is a term that resembles the curl of the Stokes

shear force ∇ × (−u′j∇uSj ), but they are not the same (e.g., u′ ≈ uH , but uψ = 0). For

this down-Stokes (vS ≈ 0) front with wH ≈ 0 and uψ = 0, the last term reduces to

−∇×
(
vψ∇(vB + vH)

)
.

5. Results and Discussion

5.1. Forces and Torques

First, we visualize how the forces in Eqs. (15) and (18) torque the front by showing

their integrals at each moment arm. For example, according to (18), the total buoyancy
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torque is
∫
A
(y− y0)b

′dA where A is the area of the overturning cell (Fig. 3c). This can be

rewritten as
∫
y
(y − y0)

(∫
z(y)

b′dz
)
dy. Thus, the vertical integral of buoyancy

∫
z(y)

b′dz at

a given y is the net buoyancy that torques the front at the corresponding moment arm

(y − y0).

Figure 6a shows (18) integrated vertically within the overturning cell at each y. These

terms multiplied by the horizontal moment arm (y − y0) are the torques exerted by ver-

tical forces. The location of y0 is indicated with the vertical dashed black line. The

wavy-hydrostatic balance [(19)] is apparent in the dominant balance between the pressure

gradient (red), buoyancy (yellow), and Stokes shear force (black dashed-dot). However,

the combination of these three terms (green) is not exactly balanced and causes accel-

eration (black solid). Although the visible signals in the green and black solid lines are

small-scale fluctuations, these lines also contain a variation whose spatial scale is ofthe

front width. This variation can be seen by filtering out the small-scale fluctuations (not

plotted because it is of order of 10−6). As a result, the sum of the vertical forces turns the

fluid in the same sense of rotation as the overturning circulation (clockwise). This point

will be quantified below in Table 1.

Figure 6b shows (15) integrated horizontally within the overturning cell at each z.

These terms multiplied by the vertical moment arm z− z0 are the torques exerted by the

horizontal forces. The location of z0 is indicated by the horizontal dashed black line. Many

forces are important, and it is clear that the imbalance of these forces produces acceleration

(black) both near the surface and at depth. This acceleration, or net force, torques

the front in the same sense of rotation as the overturning circulation (clockwise). The

along-front component of the frontal circulation uH (yellow) is not fully in a geostrophic
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balance with the frontal pressure gradient (red). At depth, the pressure gradient and

the Coriolis force due to uH are the largest terms. Near the surface, the importance

of uH decreases and that of other terms increases. The frontal imbalance in the wavy

Ekman relation −∂jL2j + ∂jL2j
B

(dark solid blue) is the imbalance between the local

turbulence −∂jL2j (blue dashed) and the Coriolis force on the background wavy Ekman

mode −f(uS + uE) = ∂jL2j
B
(blue dashed-dot). The imbalance in −∂jL2j − f(uS + uE)

cancels part of the frontal pressure gradient −∂yp′ + ∂yp′
B
(red) and thereby reduces the

clockwise torque by the pressure term. The interaction with the submesoscale confluent

flow (cyan; −F h) also torques the front clockwise. The nonlinear interaction with the

background mode vB (magenta; −F v) is overall negligible.

The frontal imbalance in the wavy Ekman relation here occurs because the cross-front

stress term −∂jL2j is affected by the frontal anomaly in the vertical shear of the total

cross-front velocity: ∂zv = ∂zv
B+∂zv

H+∂zv
ψ. As described in Section 3, ∂zv

B is negative,

∂zv
H is negligible compared to ∂zv

B or ∂zv
ψ, and ∂zv

ψ is positive inside the front and its

magnitude is about twice as large as the magnitude of ∂zv
B. Hence, ∂zv

ψ reverses the sign

of ∂zv inside the front. Especially near the surface, ∂zv
ψ is significant, even more so than

the along-front baroclinic shear ∂zu
H (Fig. 5). As a result, ∂jL2j significantly deviates

from ∂jL2j
B
, or equivalently −f(uS + uE), near the surface inside the front. Finally,

it should be clearly noted that the stress anomaly in Figure 6b is the cross-front one

(−∂jL2j + ∂jL2j
B
) rather than the along-front one (−∂jL1j + ∂jL1j

B
). The anomaly in

the cross-front stress acts on the overturning circulation vψ and opposes the overturning.

In contrast, the along-front stress does not directly act on vψ. However, it may indirectly

induce vψ by vertically diffusing the baroclinic jets uH and thereby reducing the yellow
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line in Figure 6b. Such diffusion of uH weakens the torque preventing the front from

overturning. Hence, it has a tendency of inducing or enhancing overturning.

The net torques exerted on the overturning cell by these forces are computed by inte-

grating (23) over the overturning cell and are quantified in Table 1. The sum of all the

torques is not balanced and at this rate of angular acceleration the current overturning

circulation could have been created in only 8±1 hours without the displacement cost and

11±1 hours with the displacement cost. Because of the wavy-hydrostatic relation (19),

the torques by the buoyancy and Stokes shear force are largely canceled by the torque due

to the vertical pressure gradient. However, the small imbalance in the wavy-hydrostatic

relation still produces a net torque that is as large as the torque by the net horizontal

force. Thus, nonhydrostatic effects are important in determining the overturning angular

momentum.

Among horizontal forces, the largest source of overturning angular momentum is the

torque due to the frontal deviation in the cross-frontal pressure gradient from its back-

ground value, where the background value is set by the background geostrophic mode

(∂yp′
B

= −fuG). Only 68% of this torque is balanced by the Coriolis torque due to

the along-front jet uH ; thus, the geostrophic balance is only partial. Another 27% is

balanced by the frontal imbalance in the wavy Ekman relation. However, this loss is

recovered by another significant source: the torque generated by the interaction between

the submesoscale confluent flow vH and the overturning circulation. This torque is as

large as 32% of the horizontal pressure gradient torque. Note that the SSF torque is as

large as 26% of the buoyancy torque. Therefore, the buoyancy, the interaction between

the submesoscale eddies and overturning circulation, and the SSF are the major sources
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of overturning torque. The pressure plays the important role of redirecting the vertical

forcing of buoyancy and SSF to a force driving the cross-front flow.

5.2. Energy Sources and Sinks

Table 2 quantifies the integrated budget for the KE of the overturning circulation. The

KE budget has essentially the same sources and sinks as the angular momentum budget,

but it is not so heavily influenced by the wavy-hydrostatic balance [because the vertical

forces are multiplied by large moment arms |y− y0|(≫ |z− z0|) in the torque formula and

small velocities |wψ|(≪ |vψ|) in the work formula]. Following the overturning cell, there

is hardly any net incoming or outgoing turbulent transport of the overturning circulation

KE through the cell boundary. The overturning circulation KE is vigorously increasing.

In particular, the energy uptake by the overturning circulation is as large as nearly half

of the largest energy source; namely, buoyancy production. The buoyancy production

is joined by energy inputs due to the SSF and the interaction with the confluent flow

(leading to extraction of momentum and energy from the submesoscale eddies). The two

uncommon sources – surface waves and KE of submesoscale eddies – together produce

energy at a rate nearly as large as the more common buoyancy production.

Horizontal velocities of the overturning circulation vψ turn due to the Coriolis force

and generate along-front jets. This effect represents the largest energy loss from the

overturning circulation, but only 69% of the buoyancy production or 38% of the net

production is used for this. The work done against −f(uS + uE + uG) is the next largest

sink. As mentioned in Section 4.5.3, the energy lost by this work does not change the

momentum nor energy of uE + uG.
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Interestingly, the loss of the overturning circulation KE to small-scale, shear turbulence

is relatively small: only 16%. This may be due to the fact that L23 is not as large as one

may expect from the significant ∂zv
ψ. However, L23 depends on ∂zv = ∂zv

B+∂zv
H+∂zv

ψ

rather than ∂zv
ψ alone. As mentioned in Section 5.1, ∂zv

ψ and ∂zv
B have opposite signs,

resulting in a smaller magnitude of ∂zv. Hence, L23∂zv
ψ becomes smaller in the presence

of ∂zv
B.

5.3. Vorticity Sources and Sinks

Table 3 shows the integrated budget for the vorticity of the overturning circulation

(vψ, wψ). This is equivalent to the tendency of the overturning circulation along the

overturning cell boundary (Stokes’s theorem). The table reinforces the results of the

angular momentum and energy budgets: relative to the buoyancy (largest source term),

the SSF as well as the interaction between the confluent flow and overturning circulation

are significant.

As already shown in Section 4.5.4, the curl of the Lagrangian advection term ∇×(−uL ·

∇)uψ consists of the Lagrangian advection, stretching, and tilting −(uL·∇)ωψ+(ωψ ·∇)uL

and a vorticity generation by mode interactions ∇ ×
(
uψj ∇(uSj + uBj + uHj )

)
. The mode

interactions for this front are approximately equal to ∇ ×
(
vψ∇(vB + vH)

)
and do not

correlate with the curl of the SSF.

Unlike the angular momentum and energy budgets, the negative contribution from the

frontal imbalance in the local and background turbulence (mostly, wavy Ekman relation)

is larger than the Coriolis contribution due to the along-front jet. This is because the

circulation budget reflects contributions along the cell boundary, and the wavy Ekman

imbalance near the cell top is very large (c.f. the blue solid and yellow lines in Fig. 6b).
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In contrast, the angular momentum and energy budgets reflect the whole interior of the

overturning circulation.

5.4. Comparison to Traditional Mesoscale Frontogenesis

The budgets clearly show that this submesoscale front is not in a balanced state, and the

unbalanced net torque directly drives the overturning. This is in contrast with the con-

ventional mesoscale frontogenesis models, in which the front is in a nearly balanced state.

In these models, the net overturning torque is zero and does not drive the overturning.

Instead, an overturning circulation exists because there is a force (e.g., from mesoscale

straining) that tends to reduce the integrated torque due to −fuH (i.e., the mesoscale

counterpart to yellow line in Fig.6b). The overturning circulation, once generated, can

continue because it continually generates vertically-sheared uH and thereby cancels the

torque reduction. In this way, the net torque stays balanced and the overall overturning

circulation stays unforced.

Some examples of such processes are depicted in Fig. 7. The conventional quasi-

geostrophic model considers the torque reduction due to advection by a confluent flow

vH (Fig. 7a). As the advection narrows and reduces the area occupied by uH without

changing the magnitude of it, −fuH integrated between y1 and y2 at each vertical mo-

ment arm weakens and reduces the overall torque due to −fuH (note that the buoyancy

and, hence, the hydrostatic pressure at y1 or y2 does not change due to the advection).

This weakening in
∫ y2
y1

−fuHdy can be compensated if an overturning circulation generates

more vertical shear in uH . Note that the description here is given from the perspective of a

fixed control volume, whereas the more common description of this frontogenesis is given

from the Lagrangian perspective. This is because the control volume perspective is less
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sensitive to small-scale fluctuations than the common description based on a point-wise

local balance (Section 4.5.2). From the Lagrangian perspective, the horizontal pressure

gradient acting on a water parcel in a jet uH increases as vH moves the isopycnals closer

to each other. At the same time, the jet remains unchanged. Hence, the pressure gra-

dient force on the parcel starts to overwhelm −fuH and overturns the front. This local

imbalance is reduced if the overturning circulation enhances the jet (hence, −fuH) as the

pressure gradient increases. Similarly to Fig. 7a, Fig. 7b uses the control volume perspec-

tive to understand the conventional semi-geostrophic model, which considers advection by

the overturning circulation in addition to the advection shown in Fig. 7a. The advection

in Fig. 7b again weakens
∫ y2
y1

−fuHdy and results in the same effect.

In the submesoscale front, there are similar processes that tend to reduce the torque

by −fuH . To visualize the rate of change of this torque, (12) is multiplied by −f and

integrated in the y-direction at each height within the overturning cell, and the result is

shown in Fig. 8 (note uC = uH). The frontal advection of uH by the horizontal circulation

(black dashed-dot) and that by the overturning circulation (black solid) tend to reduce

the torque by −fuH , in the same way as in Fig. 7a,b. This reduction is opposed by the

generation of along-front jet due to the Coriolis turning of the overturning circulation

(magenta) and by the frontal anomaly in the advection of the submesoscale eddy uH due

to the background flows (black dashed). The frontal anomaly in the stress gradient (dark

blue) has little systematic relation to the overturning circulation (magenta), indicating

that this frontogenesis is not related to the turbulent thermal wind mechanism studied

by McWilliams et al. [2015]. The net change (cyan) in the torque by −fuH is small.

As a result, this submesoscale frontogenesis cannot develop a torque by along-front jets
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strong enough to balance the source torques (i.e., buoyancy, SSF, interaction between

confluent flow and overturning) and stays unbalanced. Hence, the unbalanced net over-

turning torque keeps accelerating the overturning at a high rate of angular momentum

and overturning energy productions (time-scale of hours).

The advection shown by the black dashed line in Fig. 8 simplifies as −(uSh + uBh )∂hu
H +

(uSh + uBh )∂hu
H
B
≈ −vB

(
∂yu

H − ∂yuH
B)

for the current front, and it is mainly due to the

cross-front Ekman flow advecting the along-front component of the horizontal circulation

uH associated to the barotropic component of the submesoscale eddies (seen in Fig. 3b) as

depicted in Fig. 7c. This term can contribute to the vertical shear of
∫ y2
y1
∂tu

Hdy, typically

when there is a vertical shear in vB (e.g., background Ekman spiral) and a sudden jump

at the front in the barotropic part of ∂yu
H (as in Fig. 7c). Both of these conditions are

likely in a natural confluent eddy field.

In the previous theories of frontogenesis involving stress [e.g., Garrett and Loder , 1981;

Thomas and Lee, 2005;McWilliams et al., 2015], it is essential that 1) a frontal anomaly in

the along-front component of the stress gradients (namely, ∂jL1j−∂jL1j
B
with j = 1, 2, 3)

is produced by the along-front baroclinic jets, and 2) this stress gradient acting on the jets

form a balance with the Coriolis force due to the overturning circulation. However, the

LES result shows that ∂jL1j − ∂jL1j
B
is not significantly produced by the baroclinic jets

and is also independent from fvψ (or fvH). Determination of the reason for this result

is beyond the scope of this study, but the following causes are likely. The small-scale

motions in this front is heavily affected by the vertical stratification and the Stokes shear

force. The vertical shear of the baroclinic jets is less than half of the Stokes drift shear.

Hence, the vertical shear of the jets does not have a dominant effect on the turbulence
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production, resulting on the little relation between the jets and ∂jL1j − ∂jL1j
B
. Another

important factor is the narrowness and rapid evolution of this front. The observed stress

fluctuation occurs at scales below 200 m and evolves significantly over a day, making it

difficult for the Coriolis effect to establish a local balance. Therefore, for a wider, slower

front with a larger horizontal buoyancy gradient, larger baroclinic shear, and less wave

influence, the turbulence may be more dominated by shear turbulence and ∂jL1j−∂jL1j
B

may establish a local balance with the Coriolis effect.

Another distinction between this front, formed in the confluence between four subme-

soscale eddies, and a similar front formed by a strain field of mesoscale eddies is transfer

of energy from the eddies to the front. In traditional theory, the strain field is held fixed

while the front evolves [e.g., Hoskins and Bretherton, 1972], implying that the source of

energy from the strain field is of such magnitude that the front only negligibly affects

it. However, consistent with arguments about the important role of fronts in the forward

cascade of energy through the submesoscale [Capet et al., 2008a, b], the extraction of

energy by the front in this case is not negligible. If the rate of conversion of kinetic energy

from the strain field (vH) to the frontal flow (Table 2) is compared to the eddy kinetic

energy in the four eddies surrounding the examined front (approximately 0.22 Jm−3 over

a 4 km by 4 km region nearby), only 9 days would be required to drain all of the eddy

kinetic energy (assuming the frontal extraction rate remained constant). If both kinetic

and potential energy conversion are considered, then it would require only 5 days for the

conversion of all of the eddy kinetic energy and available potential energy (approximately

0.18 Jm−3 over the same region) to be transferred to the front. This rapid timescale re-

flects both the small scale of submesoscale eddies, but also the intensity and efficiency of
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the chosen front. Furthermore, under such rapidly evolving circumstances the diagnosed

time tendency and imbalance in the energy, angular momentum, and vorticity budgets

are not surprising. Note that, although in general time tendency may oscillate (centering

around a thermal wind balance) due to inertial oscillation of a background flow or that

of a frontal flow, the time tendency observed here is not oscillatory. The background

inertial oscillation in this study has little vertical shear (Section 4.4); hence it cannot tilt

and oscillate the frontal isopycnal slope. Also, as shown in Fig. 8, much of the energy

transferred to the along-front jet does not increase the torque to the extent that could

overshoot, reverse the overturning, and cause oscillation.

As mentioned in the introduction and in McWilliams and Fox-Kemper [2013], the pa-

rameter ϵ is larger for submesoscale fronts than for mesoscale fronts. This parameter,

referred to here as the Stokes-front interaction parameter, quantifies the relative impor-

tance of Stokes shear force to buoyancy in the vertical momentum budget. If the wave

parameters are the same for a mesoscale and a submesoscale front, it is the isopycnal slope

(aspect ratio) that governs the magnitude of ϵ, and submesoscale fronts have significantly

steeper isopycnals and larger aspect ratio than mesoscale fronts. Thus, the Stokes-front

interaction (ϵ) is large for this front, and Stokes shear force causes a significant deviation

from traditional hydrostatic balance (Table 1), although it might still be the case that a

wavy-hydrostatic balance holds, where the combined effect of buoyancy and Stokes shear

force dominate the vertical momentum balance. However, the stratification in this front

is also small, so both aspect ratio and Froude number are large. Non-hydrostatic effects

scale as the square of aspect ratio times Froude number squared [e.g., McWilliams , 1985].

Table 1 indicates that indeed the combination of buoyancy force and Stokes shear force do
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largely balance the vertical pressure gradient, indicating a leading order wavy-hydrostatic

balance. However, the table also shows that the large aspect ratio and Froude number

are sufficient to make true deviations from hydrostasy – wavy-hydrostatic imbalances –

as important as horizontal sources of angular momentum.

Finally, it is worth emphasizing that the particular values of the budget terms presented

in this case study may change in other fronts in other flow environments, although similar

balances hold for most of the fronts in this simulation. We have already mentioned that

the alignment between the Stokes drift shear and the front, the Stokes drift magnitude,

and the isopycnal slope are important factors. Another potentially important factor is

the vertical shear of vB. A different ∂zv
B may change, for example, the contribution

of the nonlinear interaction term vψ(−F v) in the energy budget through the vertical

advection of vB by wψ (which is analogous to the shear production of boundary layer

turbulence). The process shown in Fig. 7c also depends on this shear. Other than the

aforementioned factors, the horizontal density gradient is also an important factor. For

a larger ∂yb, the vertical shear of the baroclinic jets would be larger. This may cause

a larger frontal anomaly in the stress diffusing the jets (L13). Thereby, the turbulent

thermal wind mechanism [McWilliams et al., 2015] shown by the dark blue line in Fig. 8

may become more significant.

6. Conclusions

In the energy, momentum, angular momentum, and vorticity budgets for the frontal

overturning circulation, the Stokes shear force is a leading-order contributor, typically

either the second or third largest source of frontal overturning. Because the front examined

here is oriented in the down-Stokes direction, the Stokes shear force pushes down the
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along-front flow at the cold side of the front and produces a downward jet there, in

much the same way as it drives Langmuir circulations where jets along the Stokes shear

direction develop into convergence zones (windrows). As a result, the Stokes shear force

accelerates the overturning circulation in concert with the buoyancy, leading to sharpening

of the front and, under the effect of the Coriolis force, enhancement of the along-front

jet. Hence, the fronts that are down-Stokes are stronger than those that are up-Stokes

or cross-Stokes (Fig. 1). The Stokes-front interaction parameter (ϵ) in (1) measures the

strength of the Stokes shear force versus buoyancy for submesoscale and mesoscale flows.

Given that realistic values of ϵ are often as large as in this study [Fig. 1 of McWilliams

and Fox-Kemper , 2013], and given that the fraction of the mixed layer occupied by the

Stokes shear in this study is in a typical range, the relative importance of the Stokes shear

force found here is a sign that it should often be important in the real-world ocean.

The stronger overturning circulation interacts with the surrounding submesoscale eddies

more and extracts not only more potential energy but also more momentum and kinetic

energy from submesoscale eddies. This leading order effect potentially plays a significant

role in the cascade of upper ocean energy toward smaller scales [e.g., Capet et al., 2008b;

Molemaker and McWilliams , 2010; Thomas and Taylor , 2010]. A greater proportion of

the energy produced went into strengthening the frontal overturning in this case rather

than enhancing dissipation, but it is not clear how typical this transfer is beyond the

context of this simulation.

The results here indicate that the Stokes shear force should be implemented alongside

the buoyancy whenever the Stokes-front interaction parameter (ϵ) is expected to be large.

While the wavy-hydrostatic balance was closely held here and could be implemented eas-
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ily in hydrostatic models by adding the Stokes shear force wherever the buoyancy occurs

[Suzuki and Fox-Kemper , 2015], deviations from this balance were as important in the

angular momentum budget as the horizontal accelerations. It is difficult to gauge if this

fully non-hydrostatic effect is only a result of the front in question being a small, sub-

mesoscale example. The Stokes Coriolis force and Stokes advection play a significant

role here and elsewhere [Lentz and Fewings , 2012; McWilliams et al., 2012; Haney et al.,

2015; Breivik et al., 2015]. Thus, direct substantive impacts of Stokes forces on subme-

soscale and mesoscale phenomena in the real world and front-permitting simulations are

expected, even when boundary layer and Langmuir turbulence are parameterized. Direct

observation of these effects would be ideal validation but may be difficult because, even in

the model diagnosis here, quantification of the effects required closing budgets to a level

of accuracy rarely achieved at sea. However, study of the orientation of frontal strength

versus wave direction is a tractable starting point.

Appendix A: Derivation of equations (2)-(6)

In Appendix A, equations (2)-(6) are systematically derived from the original LES

equations of motion. In and only in Appendix A, the symbols of the time averaging

˜ and the along-front averaging { } are explicitly shown. That is, any variable ϕ in

Appendix A is a variable without being averaged. In contrast, ϕ in all the other sections

refers to the quantity already averaged in time and along-front direction. Hence, {ϕ̃} in

Appendix A is equal to ϕ in all the other sections.

A1. Equations of Resolved-Scale Motion
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Resolved-scale flow in the LES satisfies the incompressible wave-averaged, or Craik-

Leibovich, equations with Boussinesq approximation, a temperature conservation equa-

tion, and the incompressibility equation. Namely,

∂tui = −∂ip− εi3jfu
L
j + δi3b− ∂j(uiu

L
j + τSGSij )− uLj ∂iu

S
j , (A1)

∂tθ = −∂j(θuLj + τSGSθj ), (A2)

∂ju
L
j = ∂juj = 0. (A3)

In these equations, u = (u1, u2, u3) = (u, v, w) is the resolved Eulerian velocity; uS =

(uS1 , u
S
2 , u

S
3 ) = (uS, vS, wS) is the prescribed Stokes drift; uL = u + uS is the resolved

Lagrangian velocity; θ is the resolved virtual potential temperature; τSGSij are components

of the subgrid-scale stresses; τSGSθj are components of the subgrid-scale fluxes of θ from

Sullivan et al. [1994]; p is the pressure divided by ρo = 1000 kgm−3; b = −g
(
1+βT (θo−θ)

)
is the buoyancy where g = 9.81ms−2, βT = 2 × 10−4K−1, and θo = 290.16K; εijk is the

Levi Civita symbol; and δij is the Kronecker delta. Using

τLij ≡ uiu
L
j + τSGSij , (A4)

τLθj ≡ θuLj + τSGSθj , (A5)

we can write equations (A1)-(A2) as

∂tui = −∂ip− εi3jfu
L
j + δi3b− ∂jτ

L
ij − uLj ∂iu

S
j , (A6)

∂tθ = −∂jτLθj. (A7)

A2. Horizontally Uniform Stokes Drift
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For a horizontally uniform Stokes drift – as consistently used here – with wS = 0,

Equation (A6) becomes

∂tui = −∂ip− εi3jfu
L
j − ∂jτ

L
ij + δi3(b− uLj ∂zu

S
j ). (A8)

A3. Removal of Dynamically Unimportant Balance

To elucidate the frontal dynamics, the dynamically-unimportant balance between the

horizontal averages of vertical forces is removed from (A8). Let ⟨ϕ⟩ be the horizontal

average of a variable ϕ over the entire LES domain, and let ϕ′ be the deviation from this

horizontal average; thus, ϕ(x, y, z, t) = ⟨ϕ⟩(z, t)+ϕ′(x, y, z, t) for any ϕ. Note that ⟨w⟩ = 0

for this LES. The horizontal averaging operator commutes with the temporal and spatial

differential operators as the boundary conditions in this LES are horizontally periodic.

First, write the vertical component of (A8):

∂tw = −∂zp− ∂jτ
L
3j + b− uLj ∂zu

S
j . (A9)

Next, rewrite (A9) as:

∂t(⟨w⟩+ w′) = −∂z(⟨p⟩+ p′)− ∂j

(
⟨τL3j⟩+ (τL3j)

′
)
+ ⟨b⟩+ b′ − ⟨uLj ⟩∂zuSj − u′j∂zu

S
j . (A10)

Because ∂h⟨ϕ⟩ = 0 for h = 1, 2 and also ⟨w⟩ = 0 and w = w′, Equation (A10) becomes

∂tw = −∂zp′ − ∂j(τ
L
3j)

′ + b′ − u′j∂zu
S
j + (−∂z⟨p⟩ − ∂z⟨τL33⟩+ ⟨b⟩ − ⟨uLj ⟩∂zuSj ). (A11)
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The last term of the RHS of (A11) is zero for horizontally periodic boundary conditions

because (A9) implies

0 = ∂t⟨w⟩

= ⟨∂tw⟩

= ⟨−∂zp− ∂jτ
L
3j + b− uLj ∂zu

S
j ⟩

= −∂z⟨p⟩ − ∂z⟨τL33⟩+ ⟨b⟩ − ⟨uLj ⟩∂zuSj .

(A12)

The last equality is valid with horizontally periodic conditions. Using this and the fact

that ∂xp = ∂xP and ∂yp = ∂yP where P ≡ p′ − ⟨τL33⟩, we can rewrite (A8) as

∂tui = −∂ip′ − εi3jfu
L
j − ∂j(τ

L
ij − δi3⟨τL3j⟩) + δi3(b

′ − u′j∂zu
S
j )

= −∂iP − εi3jfu
L
j − ∂jτ

L
ij + δi3(b

′ − u′j∂zu
S
j )

(A13)

or equivalently,

∂tu = −∂xP + fvL − ∂jτ
L
1j, (A14)

∂tv = −∂yP − fuL − ∂jτ
L
2j, (A15)

∂tw = −∂zP − ∂jτ
L
3j + b′ − u′j∂zu

S
j . (A16)

A4. Equations of Averaged Motion

To eliminate small-scale and fast turbulent fluctuations and elucidate the dynamics of

submesoscale flows, smoothing filters are applied to the equations of motion. The filters

used are a simple moving average in time (denoted by ˜) and a simple moving average

in the along-front (i.e., x-) direction (denoted by { }). These filtering operators commute

with the differential operators. Then, equations (A14)-(A16) and (A7) imply:

∂t{ũ} = −∂x{P̃}+ f{ṽL} − ∂j{τ̃L1j}, (A17)

∂t{ṽ} = −∂y{P̃} − f{ũL} − ∂j{τ̃L2j}, (A18)
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∂t{w̃} = −∂z{P̃} − ∂j{τ̃L3j}+
{
b̃′
}
− {ũ′j}∂zuSj , (A19)

∂t{θ̃} = −∂j{τ̃Lθj}. (A20)

Combining these equations with {ũLj }∂j{ϕ̃} = ∂j({ϕ̃}{ũLj }), we can express the equations

for the averaged flow as

∂t{ũ}+ {ũLj }∂j{ũ} = −∂x{P̃}+ f{ṽL} − ∂jL1j (A21)

∂t{ṽ}+ {ũLj }∂j{ṽ} = −∂y{P̃} − f{ũL} − ∂jL2j (A22)

∂t{w̃}+ {ũLj }∂j{w̃} = −∂z{P̃} − ∂jL3j +
{
b̃′
}
− {ũ′j}∂zuSj (A23)

∂t{θ̃}+ {ũLj }∂j{θ̃} = −∂jLθj (A24)

where the Leonard stresses for momentum and temperature are

Lij ≡ {τ̃Lij} − {ũi}{ũLj }

= {ũiuLj }+ {τ̃SGSij } − {ũi}{ũLj }

= { ˜uiuj + uiuSj }+ {τ̃SGSij } − {ũi}{ũj + uSj }

= {ũiuj}+ {ũi}uSj + {τ̃SGSij } − {ũi}{ũj} − {ũi}{ũSj }

= {ũiuj}+ {τ̃SGSij } − {ũi}{ũj},

(A25)

Lθj ≡ {τ̃Lθj} − {θ̃}{ũLj }

= {θ̃uLj }+ {τ̃SGSθj } − {θ̃}{ũLj }

= {θ̃uj}+ {τ̃SGSθj } − {θ̃}{ũj}.

(A26)

Appendix B: Defining the Background Mode

Let ϕ
B
be the horizontal average of a variable ϕ over the surrounding regions shown in

Figs. 2-3. That is,

ϕ
B
(z, t) ≡ ϕ1(z, t) + ϕ2(z, t)

2
, (B1)
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where ϕ1 is the horizontal average of ϕ over one of the surrounding regions, and ϕ2 is the

horizontal average over the other one. Note that the areas of the surrounding regions are

equal to each other, and the positions of the surrounding regions do not change with time

[within the duration of O(10min) used in the budget analysis of this study]. This averaging

is idempotent (ϕ
B
B

= ϕ
B
) and commutes with ∂t and ∂z. In addition, ∂xϕ

B
= ∂yϕ

B
= 0

whereas ∂xϕ
B
or ∂yϕ

B
may not be zero.

Using this averaging, the background (horizontally-uniform) flow is defined as

uB ≡ uB, vB ≡ vB, wB ≡ 0. (B2)

Then, deviations from the background flow are

(uC , vC , wC) ≡ (u, v, w)− (uB, vB, wB). (B3)

Deviations are denoted by a superscript C because they are frontal circulations. Note

wB = 0 by definition. Hence, wC = w. Because both (u, v, w) and (uB, vB, wB) are

divergence free, (uC , vC , wC) is also divergence free.

Appendix C: Defining the Frontal Overturning Circulation

Frontal circulations are composed of overturning circulations (ψ) that lie on y-z planes

and circulations of submesoscale eddies and along-front jets, both of which have verti-

cal velocities negligibly small compared to vertical velocities of overturning circulations

(hence, they virtually lie on x-y planes within a frontal region). For the analysis of frontal

overturning dynamics, it is essential to distinguish these modes without introducing un-

due noise or uncertainty. However, such identification is not trivial because even after

the time and along-front averaging, there are some remaining turbulence signals (e.g., see

Fig. 3d) which make accurate diagnosis of ψ difficult. However, after experimentation,
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it was found that the confluent submesoscale eddy flow vH is governed in a tractable

way; that is, turbulence fluctuations in (20) are small enough compared to the signals

of submesoscale flows, and it allows accurate diagnosis of vH . Therefore, our diagnosis

starts with finding vH and, then, finds ψ implied by the vH . Namely, the components of

v = vB + vH + vψ are found in the following way:

1. Obtain vB by vB = vB.

2. Obtain vC = vH + vψ by vC = v − vB.

3. Let ⟨ϕ⟩DA be the depth-average mode of a variable ϕ; namely, ⟨ϕ⟩DA = 1
zt−zb

∫ zt
zb
ϕ dz

where zt and zb are the top and bottom of the frontal region, respectively. Let ⟨ϕ⟩BC be

the baroclinic mode ⟨ϕ⟩BC = ϕ − ⟨ϕ⟩DA. We find ⟨vH⟩DA and ⟨vH⟩BC separately. First,

obtain ⟨vH⟩DA using ⟨vH⟩DA = ⟨vC⟩DA, which is true because ⟨vψ⟩DA = 0. The last

equality is true because the overturning satisfies vψ = −∂zψ and the stream function is

ψ = 0 at the top and bottom of the frontal region (Fig. 3c).

4. Obtain ⟨vH⟩BC by an empirical force balance. First, the data shows that fvH ≈

∂xp
′ + uS∂xu − (∂xp′ + uS∂xu)

B
is a good approximation when the terms on the RHS

are additionally filtered by a Gaussian filter in the cross-front direction to remove its

small-scale turbulent fluctuations. In addition, the LES data shows that ⟨∂xp′ + uS∂xu−

(∂xp′ + uS∂xu)
B
⟩BC ≈ ⟨∂xp′b−∂xp′b

B⟩BC is also a very good approximation when turbulent

fluctuations are removed and where p′b is defined by ∂zp
′
b = b′. Therefore, obtain ⟨vH⟩BC

by f⟨vH⟩BC ≈ ⟨ ∂xp′b− ∂xp′b
B ⟩BC where small-scale fluctuations in the RHS are removed.

This procedure allows us to find not only vH but also ∂tv
H by replacing p′b with ∂tp

′
b. We

can obtain ∂tp
′
b from ∂tb

′.

5. Obtain vψ by vψ = vC − vH .
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6. Finally, obtain wψ using ∂yv
ψ + ∂zw

ψ = 0 with wψ = 0 at the surface.

A good Gaussian filter width is found by trial-and-error seeking the following conditions.

1) The frontal circulations analyzed have two dominant components: circulations on y-

z planes and those on x-y planes. Any circulation on a x-z plane is due to small-scale

turbulence. Thus, divergence ∂yv
H should cancel the submesoscale pattern seen in ∂xu

and minimize the residual ∂xu+∂yv
H , which is essentially small-scale fluctuations. 2) For

the same reason, we expect that ∂yv
ψ+∂zw ≈ 0; that is, the vertical velocity is dominantly

due to the overturning. Thus, maximize w ≈ wψ. 3) vψ is mainly ageostrophic. 4) The

extent of the overturning is reasonably contained near the frontal region.

Notation

⟨ ⟩ horizontal average over the entire

domain.
′ deviation from the domain-wise hor-

izontal average: such as ϕ′ = ϕ−⟨ϕ⟩.

˜ simple moving average in time.

Notation omitted unless otherwise

noted.
{ } simple moving average in the along-

front direction. Notation omitted

unless otherwise noted.
t time coordinate.

x, y, z along-front, cross-front, and vertical

coordinate, respectively.
u, v, w along-front, cross-front, and vertical

velocity, respectively.
ρo constant background density: 1000 kgm−3.

θ potential temperature.

θo constant background potential tem-

perature: 290.16 K.
βT thermal expansion coefficient: 2 ×

10−4K−1.
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f Coriolis parameter: 0.7× 10−4s−1.

p pressure divided by ρo.

P p′ − ⟨τL33⟩.
b buoyancy: b ≡ −g

(
1 + βT (θo − θ)

)
where g = 9.81ms−2.

τLij Lagrangian stresses defined by Eqs. (A4)-

(A5).
Lij Leonard stresses defined by Eqs. (A25)-

(A26).
uSi Stokes-drift velocity.

uLi Lagrangian velocity: ui + uSi .
B operation used to find the back-

ground mode: namely, horizontal

average taken over the two box re-

gions surrounding the front region.

uBi Background flow: uB ≡ uB, vB ≡
vB, wB ≡ 0. wB may not be equal

to wB.
uCi Frontal circulation (i.e., frontal de-

viation from the background flow):

ui − uBi . Note w
C = w as wB ≡ 0.

uψi Frontal overturning circulation. Note

uψ ≡ 0 and wψ ≈ w.
uHi Circulations of submesoscale eddies

and along-front jets, both of which

are mostly horizontal motions (i.e.,

|wH | ≪ |wψ|). Note uCi = uHi + uψi
and uC = uH as uψ ≡ 0.
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Table 1. Integrated Budget for the Angular Momentum of the Overturning Circulationa

a) Torques by Vertical Forces
responsible force : torque term relative value
net vertical force : (y − y0)(∂t + uLj ∂j)w

ψ 26± 7%

Sources
buoyancy anomaly : (y − y0)b

′ 13371± 1209%
Stokes shear force anomaly : (y − y0)(−u′j∂zuSj ) 3517± 229%

frontal anomaly in turbulent vert. stress : (y − y0)
(
−∂jL3j + ∂z⟨τL33⟩

)
0± 2%

Sinks
vertical pressure grad. : (y − y0)(−∂zp′) −16866± 1431%

b) Torques by Horizontal Forces
responsible force : torque term relative value

net horizontal force : (z0 − z)(∂t + uLj ∂j)v
ψ 38± 8%

Sources

frontal anomaly in horiz. pressure grad. : (z0 − z)
(
−∂yp′ + ∂yp′

B
)

100%

interaction with vH : (z0 − z)(−F h) 32± 6%
nonlinear interaction with vB : (z0 − z)(−F v) 2± 1%

Sinks
Coriolis on along-front current : (z0 − z)(−fuH) −68± 5%

frontal imbalance in wavy Ekman relation : (z0 − z)(−∂jL2j + ∂jL2j
B
) −27± 3%

c) Dislocation Cost
name : term relative value

dislocation cost : (vL − vψ)wψ −19± 1%

a All terms are integrated over the overturning cell and normalized versus horizontal pressure

gradient torque,
∫
(z − z0)(∂yp

′ − ∂yp′
B
) dydz = −0.31 ± 0.01m4s−2. Positive values speed up

and negative values slow down the overturning circulation. Uncertainty is due to variation in the

values of decomposed modes. This variation results from variation in the widths of front region

and surrounding regions.
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Table 2. Integrated Budget for the Kinetic Energy of the Overturning Circulationa

Rate of Change of Overturning Circulation KE
name : term relative value

total : (∂t + uLj ∂j)
vψvψ+wψwψ

2
45± 6%

Sources

buoyancy production : wψb′ 100%
energy increase due to interaction with vH : vψ(−F h) 49± 5%

Stokes shear force work : wψ(−u′j∂zuSj ) 24± 1%
energy increase due to nonlinear interaction with vB : vψ(−F v) 7± 1%

Sinks
generation of along-front jet by Coriolis turning of vψ : −fvψuH −69± 3%

work done against Coriolis of background flows : vψ
(
∂yp′

B
+ ∂jL2j

B
)

−45± 3%

generation of shear turbulence : Lkj∂ju
ψ
k −16± 1%

turbulent transport through the cell boundary : −∂j(uψkLkj) −2± 0.4%

a All terms are integrated over the overturning cell and normalized versus buoyancy production,∫
wψb′ dydz = (1.23 ± 0.05) × 10−4m4s−3. Uncertainty is due to variation in the values of

decomposed modes. This variation results from variation in the widths of front region and

surrounding regions.
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Table 3. Integrated Budget for Overturning Vorticitya

Relative Tendency of Overturning Circulation along the Cell Boundary
responsible force : vorticity term relative value

net tendency : ∂t(−∂zvψ + ∂yw
ψ) 11± 8%

Sources
buoyancy anomaly : ∂yb

′ 100%
Stokes shear force anomaly : ∂y(−u′j∂zuSj ) 44± 4%

interaction with vH : −∂z(−F h) 44± 8%

frontal anomaly in pressure gradient : −∂z
(
−∂yp′ + ∂yp′

B)
+ ∂y(−∂zp′)

= −∂z∂yp′
B

6± 9%
nonlinear interaction with vB : −∂z(−F v) 2± 1%

Sinks

frontal turbulence anomaly : −∂z
(
−∂jL2j + ∂jL2j

B)
(mostly, imbalance in wavy Ekman relation ) +∂y

(
−∂jL3j + ∂z⟨τL33⟩

)
−82± 11%

Coriolis on along-front jet : −∂z(−fuH) −66± 2%
Lagrangian advection of (vψ, wψ) : −∂z(−uLj ∂jvψ) + ∂y(−uLj ∂jwψ) −36± 7%

a All terms are integrated over the overturning cell and normalized versus the buoyancy term,∫
∂yb

′ dydz = (−1.14 ± 0.01) × 10−3m2s−2. The integration of vorticity tendency yields the

tendency of the circulation around the overturning cell. Positive values speed up and negative

values slow down the circulation. Uncertainty is due to variation in the values of decomposed

modes. This variation results from variation in the widths of front region and surrounding regions.
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Figure 1. A snapshot of near-surface vertical vorticity scaled by the Coriolis parameter from

each of the two runs analyzed in Hamlington et al. [2014]: [left] wind and wave (Stokes) forcing

and [right] only wind forcing. The strongest frontal features are parallel to the direction of wave

forcing in the wave-forced (left) panel, while fronts in other directions are much weaker. In the

wind-only simulation, frontal strength is more isotropic. The yellow box indicates the location

of Fig. 2.
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Figure 2. Instantaneous horizontal plane views of the region encompassing the front analyzed

in detail. The “front region” (solid box), the “surrounding region” (dashed boxes), and the

orientation of the coordinate system (x and y) are indicated in each panel. Each primed variable

shown represents the difference from the horizontal mean. The depths (−11 m and −45 m) shown

are representative of other depths near the top and bottom of the mixed layer, respectively.
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Figure 3. Sections in y-z plane of time-averaged and along-front averaged variables. The

cross-front coordinate y, the front region (solid box), and the surrounding region (dashed boxes)

corresponding to those in Fig. 2 are shown in every panel. a) Temperature reveals a sharp

gradient, and sloping isotherms throughout the mixed layer. b) Along-front current uH shows a

vertical shear, typical of thermal wind-like pattern. c) Overturning stream function shows the

cross-frontal and vertical velocity of the front. The overturning cell where ψ ≥ 0 is indicated by

the orange line. The cross indicates (y0, z0), which is the center of mass of the overturning cell.

d) Vertical velocity shows a noisy pattern, but note the downward frontal jets on the cold side

of the front and a broader upwelling on the warm side of the front. e) Large-scale cross-frontal

flow shows the confluence contributing to frontogenesis. Details of averaging given in the text.
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Figure 5. Schematic diagram showing how the overturning circulation is forced by some

forces in equations (15) and (18). The black contours are ψ, and the overturning circulation

is clockwise. Darker gray indicates denser water. The buoyancy anomaly b′ turns the front

clockwise. The Coriolis force due to the along-front jets uH turns the front counter-clockwise.

1) The Stokes shear force −u′∂zuS ≈ −uH∂zuS triggered by the near surface jet pushes the

overturning circulation clockwise. 2) The overturning circulation advects the momentum of the

confluent eddy field vH by −vψ∂yvH , and this interaction converts vH to vψ. As a result, this

term forces the overturning circulation clockwise. 3) ∂zv
ψ is especially high in this near-surface

region and disturbs the cross-front stress gradient ∂zL23, leading to an imbalance in the wavy

Ekman relation which forces the front counter-clockwise.
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Figure 7. Schematic diagram showing the effect of advection by a) the confluent flow, b) the

overturning circulation, and c) the background flow. The vertical solid lines are isopycnals. The

dashed lines indicate the area of integration between y1 and y2. In panel c), the uH shown is

that of the larger-scale barotropic flow. Notice that the buoyancy hence the hydrostatic pressure

at y1 or y2 does not change due to the advection shown; thus, the integrated torque due to the

horizontal pressure gradient does not change. On the other hand, the integrated torque due to

the along-front current −fuH changes due to the advection of uH .
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Figure 8. The horizontally-integrated rate of change of a major torque component, −fuH .

The equation of motion for uH(= uC) [(12)] is multiplied by −f and integrated in the y-direction

inside the overturning cell. The integration symbol is omitted in the legend for ease of notation.

The terms not shown are all small. Before the integration, the depth average of each term is

subtracted to highlight its vertical shear.
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