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Abstract Time-space varying uncertainty maps of monthly mean Arctic summer ice drift are presented.
To assess the error statistics of two low-resolution Eulerian ice drift products, we use high-resolution Lagran-
gian ice motion derived from synthetic aperture radar (SAR) imagery. The Lagrangian trajectories from the
SAR data are converted to an Eulerian format to serve as reference for the error assessment of the Eulerian
products. The statistical error associated with the conversion is suppressed to an acceptable level by apply-
ing a threshold for averaging. By using the SAR ice drift as a reference, we formulate the uncertainty of
monthly mean ice drift as an empirical function of drift speed and ice concentration. The empirical functions
are applied to derive uncertainty maps of Arctic ice drift fields. The estimated uncertainty maps reasonably
capture an increase of uncertainty with the progress of summer melting season. The uncertainties range
from 1.0 to 2.0 cm s21, which indicates that the low-resolution Eulerian products for summer seasons are of
practical use for climate studies, model validation, and data assimilation, if their uncertainties are appropri-
ately taken into account.

1. Introduction

One of the characteristics of the Arctic climate system is the existence of sea ice [Wadhams, 2002; McPhee,
2008]. Sea ice reflects the incoming solar radiation and hampers the direct exchange of heat, momentum,
and materials between the atmosphere and ocean. These characteristics of sea ice are a distinctive feature
of the atmosphere-ocean interaction in the polar oceans. To study dynamical and thermodynamical proc-
esses governing sea ice growth and retreat is therefore a topic of great interest to understand the ongoing
dramatic change in the Arctic [e.g., Comiso, 2002; Comiso et al., 2008; Rampal et al., 2009; Turner and
Overland, 2009; Lindsay et al., 2009].

Sea ice motion deduced from satellite remote sensing offer valuable opportunities to study the dynamical
processes governing the sea ice and its role in the Arctic climate system. In recent years, a number of sea
ice motion products came to be available [e.g., Kwok, 2008; Lavergne et al., 2010; Girard-Ardhuin and Ezraty,
2012; Fowler et al, 2013; Kimura et al, 2013]. These products provide ice displacements obtained by tracking
spatial pattern of pixel intensities from one image at a certain time to another image at a subsequent time.
By utilizing the displacement information, users can derive averaged ice drift vectors for a certain time inter-
val. The inferred ice drift vectors are applied to a broad range of sea ice studies, e.g., sea ice dynamics
[Kimura and Wakatsuchi, 2000; Tremblay and Hakakian, 2006; Girard et al., 2009], the role of sea ice on the
Arctic climate [Spreen et al., 2009, 2011; Kwok, 2009; Kwok et al., 2013], model validation [Kreyscher et al.,
2000; Martin and Gerdes, 2007; Kwok et al., 2008; Rozman et al., 2011], and data assimilation [Meier et al.,
2000; Zhang et al., 2003; Miller et al., 2006; Stark et al., 2008; Rollenhagen et al., 2009].

Sea ice motion data can be categorized into Eulerian and Lagrangian products. A number of products
deduced from satellite-borne sensors are classified into Eulerian products, in which the initial locations of
sea ice ‘‘parcels,’’ representing a certain area at a certain time, are given at points on an equidistant gridded
coordinate system, and ice movement of respective parcels after a certain time interval are given as ice dis-
placements [e.g., Kwok, 2008; Lavergne et al., 2010; Girard-Ardhuin and Ezraty, 2012; Kimura et al., 2013;
Fowler et al., 2013]. The advantages of the Eulerian products are the uniform and extensive spatial and tem-
poral coverage of data over the ice covered area and easiness of handling associated with the gridded fea-
ture in space and time. These advantages facilitate a variety of applications on the broad range of sea ice
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studies mentioned above. In particular, the uniform and extensive spatial and temporal coverages of the
data are beneficial for Arctic-wide model validations and data assimilations.

Lagrangian products, on the other hand, give a sequential record of tracks (or trajectories) of distinctive ice
parcels or identical spatial patterns of ice surface. There are two types of Lagrangian products available; one
contains ice trajectories deduced from sequential records of positions of on-ice buoys [Colony and Rigor,
1989], while the other contains those deduced from high-resolution sequential images obtained from
satellite-borne sensors (e.g., synthetic aperture radar (SAR)) [Kwok, 1998]. The advantages of the former
types of the Lagrangian products are the higher accuracy of position measurements and robustness against
misdetection of sea ice motion, while those for the latter products are the higher spatial density of cover-
age. In spite of the limited spatial and temporal coverages, the Lagrangian products are applied to a variety
of sea ice studies [e.g., Colony and Thorndike, 1984; Geiger et al., 1998; Kwok, 2006; Girard et al., 2009].

For applications of the sea ice motion products, it is indispensable to appropriately evaluate the uncertainty
of each ice drift vector. This requirement is rapidly growing due to the recent increase in the number of
data assimilation studies using diverse data sets [e.g., Nguyen et al., 2011; Sakov et al., 2012; Sumata et al.,
2013]. In systematic data assimilation, misfits between observed and modeled variables are quantified as a
cost function (or an objective function), which is defined by the square of the norm of the difference
divided by the corresponding uncertainties [e.g., Menke, 1989]. If more than one sort of physical variable are
assimilated in a system, the relative importance of the different variables are evaluated based on their mag-
nitude of uncertainties. Therefore uncertainty estimates for observed data are as important as data
themselves.

However, in many Eulerian ice motion products uncertainty is not provided as a function of space and time,
but rather as a constant value inferred from the study of comparison with Lagrangian buoy tracks [e.g.,
Geiger et al., 2000; Lavergne et al., 2010; Hwang, 2013]. This is because the number of available in situ meas-
urements is still not sufficient to estimate the uncertainties Arctic wide and for the entire year. On the other
hand, comparison studies of ice motion products [Hwang and Lavergne, 2010; Rozman et al., 2011; Sumata
et al., 2014] imply that the difference of ice drift vectors between different products is not always consistent
with the uncertainty provided for respective products. In addition, other studies pointed out that the error
of ice drift is not spatially uniform [Hwang, 2013], but is covariant with sea ice properties such as ice concen-
tration [Kwok et al., 1998] and/or ice drift speed [Sumata et al., 2014]. These studies, together with the
requirement of data assimilation studies, demand the formulation of uncertainties as a function of space
and time.

To tackle this issue, we formulate empirical uncertainty functions for Eulerian ice motions by means of utili-
zation of Lagrangian products provided from the RADARSAT Geophysical Processor System (RGPS) [Kwok,
1998]. The RGPS provides high-resolution Lagrangian sea ice motions and other ice-related variables
deduced from SAR imagery. We take advantage of the high spatial resolution of the RGPS data to assess the
error statistics of low-resolution Eulerian products. Previous studies have used sparse buoy measurements
for the assessment of the Eulerian products. Using the densely populated RGPS SAR data allows more thor-
ough assessment of these products, e.g., it allows the definition of empirical uncertainty functions. Here, we
convert the Lagrangian ice motion to Eulerian ice drift and use them as a reference for the assessment. As
will be shown later, errors associated with the conversion can be decreased to an acceptable level by calcu-
lating spatial and temporal averages of the Lagrangian ice motions to derive monthly mean Eulerian drift.
The temporal averaging is an indispensable procedure because of the irregular sampling time intervals of
the Lagrangian product. Since previous studies pointed out that the error of the Eulerian products is covari-
ant with ice concentration [Kwok et al., 1998] and ice drift speed [Sumata et al., 2014], we examine the error
statistics of Eulerian products in relation to ice concentration and ice drift speed.

To demonstrate uncertainty estimation for Eulerian products, we formulate empirical error functions for
monthly mean ice drift in summer season (May–July). The summer ice drift data with appropriate uncer-
tainty estimates are essential for ongoing model validation and data assimilation studies. Recent reduction
of summer sea ice extent and ice concentration in the Arctic highlights the necessity of validation of mod-
eled dynamical processes under fragile ice conditions [Rampal et al., 2011]. Since models struggle to repro-
duce realistic Arctic sea ice properties in summer, data assimilation schemes need summer ice drift and
associated uncertainties to constrain these models, and to validate (calibrate) dynamical processes under
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fragile ice condition. Providing time-space varying uncertainty maps for monthly mean ice drift is beneficial
for a wide range of studies, since monthly mean drift has been used to a variety of studies because of its
ease of handling [e.g., climate studies: Wu et al., 2006; Wang and Zhao, 2012, model validation: Martin and
Gerdes, 2007, and model’s parameter estimation: Miller et al., 2006; Nguyen et al., 2011; Sumata et al., 2013].

We selected two Eulerian ice motion products, which provides ice motions not only in winter but also in
summer. The selected products are Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 2
(hereafter NSIDC2) [Tschudi et al., 2010; Fowler et al., 2013] from the National Snow and Ice Data Center (NSIDC)
and ice drift vectors from Kimura et al. [2013] (hereafter KIMURA) at University of Tokyo. Although other pro-
viders also published Eulerian sea ice motion in summer (e.g., sea ice motion from Kwok [2008], Ocean and Sea
Ice Satellite Application Facility (OSISAF); Lavergne et al. [2010]), we focus our attention on the aforementioned
products because only those are available over the same time period as the RGPS data product.

The paper is organized as follows: section 2 describes the data products, section 3 describes the derivation
of Eulerian ice drift from the RGPS Lagrangian trajectory, section 4 describes the formulation of uncertain-
ties for the Eulerian products, and finally section 5 gives concluding remarks.

2. Data

2.1. RGPS Lagrangian Ice Motion Product
To assess the error of the low-resolution Eulerian ice motion products, we utilize the high-resolution Lagrangian
ice motion product provided from RGPS [Kwok, 1998] as a reference. RGPS is developed and maintained at the
Jet Propulsion Laboratory (JPL) and provides different types of sea ice products obtained from RADARSAT SAR
imagery [Kwok et al., 2000; Kwok and Cunningham, 2014]. Taking advantage of its high-resolution feature, the data
have been applied to a number of studies which require fine-scale information of sea ice motion and deformation
[e.g., Kwok, 2002, 2006; Kwok and Cunningham, 2002; Lindsay, 2002; Stern and Moritz, 2002]. The Lagrangian ice
motion product is obtained by tracking spatial pattern of pixels in sequential images with the maximum correla-
tion technique [Fily and Rothrock, 1987; Kwok et al., 1990]. The spatial resolution (i.e., the spatial separation of the
initial seeds of traced ice parcels) is approximately 10 km and the temporal resolution of the acquired imagery
ranges from 1.5 h to 15 days (The sampling is irregular in time; the bulk interval is approximately 3 days). The
RGPS record provides ice motion from 1996 to 2008, although no data are available in September and October
for the entire period, and only partially available in August and November. There are additional unavailable
months in 1996, 1997, 2000, 2002, and 2008. The data are provided on a polar stereographic grid, the reference
latitude of which is 708N, and the origin of the Cartesian grid is at the North Pole. The error statistics of the Lagran-
gian motion were closely examined in Lindsay and Stern [2003] by the comparison of the tracks from different
facilities and the comparison with buoy trajectories from the International Arctic Buoy Program [Colony and Rigor,
1989]. The paper reported that the error standard deviation of the tracking associated with manual interventions
is 100 m, and the magnitude of the displacement difference relative to the buoy data is 323 m.

The data set is assembled as monthly collections of data files. Each monthly collection contains several data
files, each gives a set of trajectories of ice parcels obtained from a certain data stream. In each data stream,
the initial locations of ice parcels are defined on the image frame of an initial data-take and the respective
parcels are tracked in sequential images to provide trajectories. Each trajectory in each data stream is com-
posed of a sequential record of observations, in which the time, location, a quality flag, and other informa-
tion are given. In the present application, we utilize all trajectory data, which contain at least one
observation for summer months (May–August) from 1997 to 2008.

2.2. NSIDC Eulerian Ice Motion Product
NSIDC provides one of the most comprehensive set of Eulerian ice motion products for the Arctic Ocean,
Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion vectors, Version 2 [Tschudi et al., 2010; Fowler et al.,
2013], which currently extends from 1978 to 2012 and covers the entire Arctic Ocean for all seasons (Here-
after referred to as NSIDC2). The product contains daily gridded fields of sea ice. The product has been
widely used in modeling and data assimilation studies [e.g., Miller at al., 2006; Dai et al., 2006; Stark et al.,
2008]. The used algorithm calculates sea ice motion using a variety of satellite-based sensors (Advanced
Very High-Resolution Radiometer (AVHRR), Scanning Multichannel Microwave Radiometer (SMMR), Special
Sensor Microwave Imager (SSM/I), and Advanced Microwave Scanning Radiometer for EOS (AMSR-E)), as
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well as the International Arctic Buoy Program (IABP) observations and wind effects on ice motion [Thorndike
and Colony, 1982]. All passive microwave sensors are used during their time of operation (SMMR until 1987,
AMSR-E 2002–2011, SSM/I 1987–2012), and AVHRR use drops after 2006, because of its limited coverage
due to cloud cover/contamination. Recent (post-2011) sea ice motions are therefore obtained from SSM/I,
IABP buoys, and wind forcing, but the full data set retains the integration of other sensors during the afore-
mentioned time periods. NCEP Reanalysis wind data [Kalnay et al., 1996] are used for the entire data set.
Sea ice motions are obtained from each satellite sensor using the Maximum Cross Correlation (MCC)
method and merged with the buoy data and winds using the cokriging method described in Isaak and
Srivastava [1989]. The sea ice motion vectors are defined on an EASE-Grid with 25 km 3 25 km horizontal
resolution on a daily basis. We define monthly mean drift on an Eulerian grid described in section 3, if the
temporal coverage of the daily motion vectors of the corresponding month is 100%. The monthly mean
drift vectors for seven summer seasons (May–July) are used to formulate an error function.

2.3. KIMURA Eulerian Ice Motion Product
We also consider ice drift data from Kimura et al. [2013], which provides ice drift not only in winter, but also in
summer (Hereafter referred to as KIMURA; In Kimura et al. [2013] only winter data are described, but summer data
are also provided based on the same method). The winter ice drift (December–April) is calculated from brightness
temperature maps of AMSR-E 89 GHz horizontal and vertical polarization channels, whereas the summer drift
(May–November) is obtained from 18.7 GHz channels. The algorithm used to detect ice motions is the improved
MCC method described in Kimura and Wakatsuchi [2000, 2004]. The nominal time interval of consecutive images
used to detect ice displacement is 24 h. In order to provide ice drift over the entire ice covered area, they filled
missing values by an average of surrounding values, if more than 5 of the surrounding 8 points give an appropri-
ate ice drift. They repeated this procedure twice for the product. The data cover the Arctic Ocean with a horizontal
resolution of 37.5 km 3 37.5 km in winter and with a resolution of 75 km 3 75 km in summer. The data are cur-
rently available from September 2002 to April 2011. The monthly mean drift is defined on the Eulerian grid coor-
dinate in the same manner as NSIDC2 with a maximum interpolation distance of 53 km. For the present error
formulation, we apply the monthly mean ice drift vectors from five summer seasons (May–July).

2.4. OSISAF Ice Concentration Product
In order to formulate the uncertainty of ice drift as a function of ice concentration, we use ice concentration
data provided from OSISAF. For the data period used in this study (1997–2007), the raw data are measured
by SSM/I and are processed following the algorithms described in Eastwood et al. [2010]. Here, we utilize
the product named OSI-409, which contains daily mean ice concentration on a polar stereographic grid
with a horizontal spacing of 10 km, covering the entire Arctic Ocean. We processed the original OSI-409
data into monthly mean data on the Eulerian grid. In this process only data whose status flags guarantee
their reliability are used. Monthly mean values are defined at a grid point if more than 80% of the days of
the month have reliable data. For the data projection from the Polar-Stereographic grid to the Eulerian grid,
we simply calculated the arithmetical mean of valid data contained in each Eulerian grid cell. In general,
each grid cell contains a sufficiently large number of data points because of the finer resolution of the ice
concentration data, leading to a negligible interpolation error.

3. Derivation of Eulerian Ice Drift for Reference

We process the RGPS Lagrangian trajectory data into monthly mean Eulerian ice drift vectors. First we
define ‘‘Lagrangian’’ ice drift vectors from all pairs of sequential record of observations contained in the tra-
jectory data, except for the pairs whose time difference is smaller than 1 day or larger than 10 days. A
Lagrangian vector gives an averaged displacement of an ice parcel from a certain position to another posi-
tion for a certain time interval, and has information regarding the initial and the terminal positions and cor-
responding time span.

Second we define monthly mean Eulerian ice drift vectors. The Eulerian coordinate system for the vector is
formulated on a spherical rotated grid of the Earth, whose geographical north pole is shifted to 608E on the
equator. The coordinate system offers nearly equidistant grid cells in the Arctic Ocean, whose horizontal
resolution is 54.8 km 3 54.8 km. The Eulerian ice drift at each grid point is defined by an average of all
Lagrangian vectors whose initial or terminal position lies within the distance R from the center of each grid
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point (R 5 40.0 km, which corresponds
to the half distance between diago-
nally neighboring Eulerian grid points),
and whose initial or terminal times lies
in the corresponding month. Figure 1a
shows an example of a grid point (red
plus) and area for the averaging (red
circle), with Lagrangian vectors (blue
arrows) whose time span intersects
0:00 on 3 June, 2005. Note that the
number of available Lagrangian vectors
is different for each Eulerian grid point
and is not constant in time. Figure 1b
shows the number of available Lagran-
gian vectors for the monthly mean at
the grid point shown in Figure 1a.

In order to guarantee equal contribu-
tions from each time segment on the
temporal mean, we take temporal
weighting into account to define the
monthly mean;

~vE xð Þ5
XN xð Þ

i51

1
T

ðT2 ið Þ

T1 ið Þ

~vL x; ið Þ
g x; tð Þ dt; (1)

where ~vE is a monthly mean Eulerian
ice drift vector at position x, x is a
location on the Eulerian grid coordinate,
N xð Þ is the number of available Lagran-
gian ice drift vectors for the monthly
mean at location x, T is a time interval
to define the monthly mean (30 or 31
days), T1 ið Þ and T2 ið Þ are the initial and
the terminal time defining the i-th
Lagrangian drift vector, ~vL x; ið Þ is the i-
th Lagrangian vector available for the
monthly mean calculation at location x,
and g x; tð Þ is the number of available
Lagrangian vectors at a certain time
segment Dt for the mean calculation at
x. To define monthly mean Eulerian
vectors on the gridded coordinate, we
beforehand calculate g x; tð Þ at all
monthly mean grid points. If no Lagran-
gian vector is available at any time seg-
ment of the month at x (i.e., g x; tð Þ50),
the monthly mean at that point is not
defined. The temporal coverage in

August does not allow to calculate monthly mean Eulerian vectors.

To estimate the error associated with the derivation of the Eulerian vectors, we examine the distribution
function of the difference between an estimated Eulerian vector and the Lagrangian vectors used to define
the Eulerian vector (Figure 2). The functions were obtained from the combinations of the all Eulerian and
corresponding Lagrangian vectors. The figure shows that the form of the probability density functions

Figure 1. (a) Lagrangian sea ice drift vectors (blue arrow) around an Eulerian grid
point (red plus; 164.78W, 78.78N) on 3 July 2005, and (b) the time series of the
number of available Lagrangian vectors for monthly mean calculation at the
Eulerian grid point. In Figure 1a, only the Lagrangian drift vectors whose time
span intersects 0:00 on 3 July 2005 are shown by motion vectors. Note that each
Lagrangian vector exhibits an averaged track of ‘‘ice parcel’’ from its initial loca-
tion to the terminal location during its time span, i.e., the magnitude of the vector
does not correspond to sea ice drift speed, since the time span of each vector dif-
fers each other. The red circle in Figure 1a indicates the area used to calculate
averaged Eulerian drift vector. Figure 1b exhibits number of Lagrangian vectors
contained in the red circle at each time segment, corresponding to g(x, t) in
equation (1). See text for description.
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(PDFs) can be reasonably well approximated by the Laplace (the double exponential) distribution (black line
in Figure 2);

q uE2uLð Þ5 1
2b

exp 2
juE2uLj

b

� �
; (2)

whose variance is given by

2b25
XM

j51

N jð Þ21

 !21XM

j51

XN jð Þ

i51

uE jð Þ2uL i; jð Þð Þ2; (3)

where M is the total number of the estimated Eulerian vectors, N jð Þ is the number of the Lagrangian vectors
used to define the j-th Eulerian vector, uE jð Þ is the zonal (x) component of the j-th Eulerian vector, and uL i; jð Þ
is also the zonal (x) component of the i-th Lagrangian vector used to define the j-th Eulerian vector. Since the
functional form of the distribution is obtained from a sufficiently large number of samples O(107), we regard
the function as the one which describes the population. If we deal with each Lagrangian vector as an inde-
pendent stochastic variable whose probability density function is given by (2), the standard deviation of the
mean (i.e., the standard error of an estimated Eulerian vector) with N samples is given by

ffiffiffi
2
p

bN21
2.

We used a threshold of N 5 400 to define the Eulerian vectors. This gives standard errors of the x and y com-
ponent of the Eulerian vectors of 0.21 and 0.24 cm s21, respectively, which is, as will be shown in later, one
order of magnitude smaller than the errors of the low-resolution Eulerian products. At the same time the
calculation of the monthly mean with this threshold reduces the error involved in the Lagrangian vectors
on the monthly mean. If we estimate the uncertainty associated with the manual intervention and the geo-
location error on each Lagrangian drift by 0.16 cm s21 (i.e., the manual intervention error 100 m plus the
geolocation error 323 m divided by the bulk time interval 3 days), the associated error of the monthly mean
Eulerian vector is 8 3 1023 cm s21 (0.16 cm s21 / N1/2). This error is more than two orders of magnitude
smaller than the error of the Eulerian products.

Figure 3a shows the number of Lagrangian vectors available for the monthly mean calculation in June
2005. The RGPS Lagrangian product offers a sufficiently large number of vectors allowing a strict threshold
of N 5 400. Figure 3b depicts the Eulerian vector field for the same time. The estimated Eulerian vectors are
used as reference data to examine error statistics of the low-resolution Eulerian products. It should be noted
here that Figures 1 and 3 are selected to demonstrate the derivation of the Eulerian vectors from the
densely populated RGPS Lagrangian motions, and are not representing a typical situation. From the point
of view of spatial and temporal coverage, June 2005 is one of the ‘‘champion months.’’ Since we can derive

Figure 2. Probability density functions of difference between monthly mean Eulerian ice drift and raw Lagrangian ice drift used to calculate the monthly mean in (a) x and (b) y direction.
The solid black line in each plot depicts corresponding Laplace distribution. The functions are obtained from RGPS summer ice drift (May–July) from 1997 to 2007. See text for
description.
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monthly mean Eulerian vectors in only limited areas in some months, the statistical examinations of the fol-
lowing section are only possible by combining the RGPS data for the entire period of operation.

4. Uncertainty Formulation

Figure 4 shows an example of the spatial pattern of the monthly mean ice drift in June 2005 from
NSIDC2 and KIMURA (See also Figure 3b for RGPS in the same month). The figure exhibits typical fea-
tures of the respective products. NSIDC2 generally gives a smooth spatial pattern consistent with RGPS,
whereas the magnitude of the ice drift vectors is smaller than that of RGPS in regions where RGPS gives
large drift speed (> 6 cm s21). KIMURA gives comparable drift speed with RGPS in such areas, whereas
the direction of the ice drift vector exhibits small scale variation and the spatial pattern is noisier than
that of RGPS. Note that the area showing large difference between the two products is close to the
outer rim of the pack ice and relatively low ice concentration area (�90%). The spatial coverages of the
both products are generally much larger than that of RGPS. We use ice drift vectors from the respective
products for the respective uncertainty formulation, if both RGPS and the product provide ice drift at a
certain grid point.

To formulate uncertainties for the selected products, first we examine the relation between the error of the
respective products and ice drift speed, and second we examine the relation between the error and ice con-
centration. In both examinations, the ‘‘error’’ of the respective ice drifts are measured by the deviation from
the corresponding RGPS monthly mean ice drifts, and therefore inevitably contains uncertainty coming
from RGPS drift as described in section 3. It should be noted here that in the present uncertainty formula-
tion we measure the error by the magnitude of the difference of two vectors, i.e., jj~U diff jj5jj~URGPS2~Uproductjj,
where jj~Ajj is the magnitude (norm) of a vector ~A(see Figure 5a). This definition does not directly
measure the difference of ice drift speed, jj~URGPSjj2jj~Uproductjj, nor the difference of drift direction,
cos21½ð~URGPS �~UproductÞðjj~URGPSjj jj~UproductjjÞ21�, but implicitly measures both of them. Advantages of the

Figure 3. Spatial distribution of (a) number of available RGPS Lagrangian vectors for the monthly mean calculation in June 2005 and (b) deduced corresponding monthly mean Eulerian
ice drift with a threshold of 400 Lagrangian vectors. Only every second vector is shown in x and y direction.
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present measure are (1) the uncertain-
ties can be quantified by one scalar
variable, jj~Udiff jj, (2) we do not need to
assume an anisotropy of the uncer-
tainty, and (3) estimated uncertainties
can be directly applied to a different
coordinate system without vector rota-
tion. The practical usage of the esti-
mated uncertainty function will be
discussed in section 5.

Figure 6 shows scatter plots of the ice
drift error (deviation from RGPS)
against ice drift speed of both prod-
ucts. In Figure 6a, we can see that the
error is not uniformly distributed but is
dependent on the ice drift speed (the
dense range of the points for 0–2 cm
s21 ice drift speed (abscissa) is approx-
imately 0.2–3.0 cm s21 range (ordi-
nate), whereas that for 2–4 cm s21

speed is approximately 0.4–6 cm s21

range). This indicates that the distribu-
tion function of the error may differ in
different ice drift speed ranges and
should be formulated as a function of
ice drift speed.

To take the possible difference of the
functional forms into account, we clas-
sify the scatter points into six drift speed
bins, i.e., five bins with 1 cm s21 interval
from 0 to 5 cm s21 and a bin with drift
speed larger than 5 cm s21. Figure 7a is
an example of the distribution function
of the error for 4–5 cm s21 bin for
NSIDC2. The figure shows that the distri-
bution can be reasonably approximated
by the lognormal function shown in the
black line in the figure;

f jj~Udiff jj
� �

5
1ffiffiffiffiffiffi

2p
p

rk jj~Udiff jj

exp 2
lnjj~Udiff jj2lk

� �2

2r2
k

2
64

3
75; (4)

where rk and lk are distribution param-
eters calculated from the distribution of
the points in the k-th bin. We examined
functional forms of the points in all
bins and found that in all bins the dis-
tributions can be reasonably approxi-

mated by lognormal functions with the distribution parameters obtained from the points in the
corresponding bins (see Appendix A). From the lognormal function in each bin, we can define the cumula-
tive distribution function in k-th bin as

Figure 4. Monthly mean ice drift of (a) NSIDC2 and (b) KIMURA in June 2005. The
color indicates ice drift speed.
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F jj~Udiff jj
� �

5
1
2

erfc 2
lnjj~Udiff jj2lkffiffiffi

2
p

rk

" #
; (5)

where erfc xð Þ52p21=2
Ð1

x exp 2t2½ �dt is the complementary error function (see Figure 7b).

In the present uncertainty formulation, we measure the uncertainty of the ice drift vectors, djj~U jj, by the 68.3
percentile of the cumulative distribution function of each bin (the subscript of d indicates that the error is a

Figure 5. Sketch of (a) the magnitude of ice drift difference between NSIDC2 and RGPS and (b) the definition of ice drift uncertainty as the
68.3 percentile of the cumulative function, F. See text for description.

Figure 6. Scatter plot between the monthly mean ice drift speed (a: NSIDC2, b: KIMURA) and the magnitude of their difference from the
monthly mean RGPS ice drift.

Journal of Geophysical Research: Oceans 10.1002/2015JC010810

SUMATA ET AL. UNCERTAINTY OF ARCTIC SUMMER ICE DRIFT 5293



Figure 7. (a) Probability density function (PDF) of ice drift difference between NSIDC2 and RGPS in 4.0–5.0 cm s21 ice drift speed bin, (b)
PDF of the corresponding lognormal function (solid line) and its cumulative function (dotted line) in the same bin, and (c) estimated ice
drift uncertainty as a function of ice drift speed for NSIDC2 (red) and for KIMURA (blue). The solid line in Figure 7a exhibits a lognormal dis-
tribution whose distribution parameters are obtained from the ice drift difference in the corresponding bin. The horizontal and vertical
dashed lines in Figure 7b indicates 68.3 percentile of the cumulative function (horizontal) and its corresponding value of ice drift differ-
ence. See text for description.
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function of ice drift speed). This measure supposes that the error (magnitude of the difference from the
referencing RGPS vector) is governed by a stochastic process, where the PDF is given by (4). The physical
meaning of this measure is that the probability of the error being contained within a circle of the radius
djj~U jj is 68.3% (see Figure 5b). This measure corresponds to the error definition of the one-standard devia-
tion for a random variable with a Gaussian distribution. Note that the present definition is not the same as
the one employed in Sumata et al. [2014]. In their study uncertainty of a variable with lognormal distribution
is measured by a combination of the mean and standard deviation of the distribution (which generally
gives larger error than the present definition). Since we intend to provide uncertainty estimates applicable
to the data assimilation of data from multiple sources, an error definition which can be easily relatable to
that of Gaussian distribution is preferable (see also discussion in section 5).

The estimated uncertainties for the respective drift speed bins are summarized in Figure 7c. The uncertainty
of NSIDC2 ranges from 1.0 to 1.8 cm s21, while that of KIMURA ranges from 1.3 to 1.7 cm s21. In the low-
speed range, NSIDC2 gives smaller uncertainty associated with the smooth and aligned ice drift vectors,
whereas a clear low speed bias of NSIDC2 [Sumata et al., 2014] increases error in the middle and high-speed
ranges. The uncertainty of KIMURA does not exhibit clear dependence on drift speed, whereas it gives rela-
tively large uncertainty even in the low-speed range due to the noisy spatial pattern (Figure 4b).

Next we formulate uncertainties associated with ice concentration. We examine relations between ice drift
error and ice concentration in the same approach as for ice drift speed (Figure 8). The scatter of the points

Figure 8. (a) and (b) Scatter plot between the monthly mean ice concentration and difference of the monthly mean ice drift (a: NSIDC2, b:
KIMURA) from the RGPS ice drift. Figure 8c shows an example of PDF of ice drift difference between KIMURA and RGPS in 90–92% ice con-
centration bin. (d) Estimated ice drift uncertainty as a function of ice concentration for NSIDC2 (red) and for KIMURA (blue). See text for
description.
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shown in Figures 8a and 8b again classified into six different ice concentration bins, i.e., an ice concentration
bin lower than 90% and five bins from 90% to 100% with 2% interval. We examined the functional form of
the PDF in each bin and found that the distribution in all bins are again well represented by lognormal func-
tions with corresponding distribution parameters (not shown all, see Figure 8c for an example);

h jj~Udiff jj
� �

5
1ffiffiffiffiffiffi

2p
p

rljj~Udiff jj
exp 2

lnjj~Udiff jj2ll

� �2

2r2
l

2
64

3
75; (6)

where rl and ll are the distribution parameters in l-th ice concentration bin calculated from the distribution
of the points in the bin. The cumulative distribution function for l-th bin is

H jj~Udiff jj
� �

5
1
2

erfc 2
lnjj~Udiff jj2llffiffiffi

2
p

rl

" #
: (7)

Figure 8d summarizes the uncertainties defined by the 68.3 percentile of the cumulative distribution func-
tion (7). The uncertainties of the both products exhibit a clear tendency toward larger uncertainties in the
low ice concentration ranges and smaller uncertainties in the high ice concentration ranges. Since the tend-
ency is more emphasized in NSIDC2, KIMURA gives relatively smaller uncertainty in the low ice concentra-
tion area, whereas NSIDC2 gives smaller uncertainty in the high ice concentration area.

We define the total uncertainty � as a combination of the uncertainty associated with ice drift speed and
that associated with ice concentration,

� jj~Ujj; a
� �

5Max djj~U jj; da

� �
; (8)

where djj~U jj and da are uncertainties associated with ice drift speed and ice concentration, defined by the
68.3 percentile of the cumulative distribution functions (5) and (7), respectively. Figure 9 shows the func-
tional form of (8) in a two-dimensional view. The empirical uncertainty function (8) for both products exhib-
its larger uncertainty values at low ice concentration and high-uncertainty plateau at 2–4 cm s21 drift speed

Figure 9. Estimated uncertainty of ice drift (a) NSIDC2 and (b) KIMURA, as a function of ice drift speed and ice concentration. The uncer-
tainty is given by 6 3 6 segment of ice drift speed and ice concentration bins.
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range. Since both djj~U jj and da for NSIDC2 are more sensitive to the variation of ice drift speed and ice con-
centration compared to KIMURA, the empirical uncertainty function � for NSIDC2 exhibits larger variation
compared to that for KIMURA.

Figure 10. Monthly mean ice concentration from OSISAF (left column) and uncertainty of the monthly mean ice drift (center column: NSIDC2, right column: KIMURA) for May (top row),
June (middle row), and July (bottom row) in 2005. In the left plots, ice concentration higher than 80% are shown by color. In the center and right plots, the vector fields exhibit ice drift,
whereas the color indicates magnitude of the uncertainty. Note that the vector scaling of the ice drift is the same with those in Figure 4, whereas the color scale for the uncertainty dif-
fers from those in Figure 4.
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The empirical uncertainty functions are applied to the monthly mean ice drift field of both products. Figure
10 is an example of spatial maps of uncertainty from May to July 2005. The uncertainty of each ice drift vec-
tor is calculated from (8) as a function of ice drift speed and ice concentration, and mapped together with
the corresponding drift vectors. The map reasonably captures the uncertainty difference between different
ice drift speed areas, and the increase of uncertainty with the progress of the summer melting season.

5. Concluding Remarks

We formulated empirical uncertainty functions for monthly mean Arctic ice drift from two Eulerian products
by the use of high-resolution Lagrangian ice drift obtained from SAR. The uncertainty formulation was con-
ducted on the Eulerian basis, different from a number of previous studies done on the Lagrangian basis. In
order to formulate the uncertainty function, first we deduced Eulerian ice drifts by spatial and temporal
averages of the Lagrangian drifts from the RGPS data. The high spatial density of the Lagrangian drift ena-
bles us to derive monthly mean Eulerian drift with a sufficiently small estimation error. We used the esti-
mated Eulerian drift as a references for the error assessment of the selected Eulerian products. The error of
the drift was measured by the deviation from the RGPS drift, and the error was examined in relation to the
drift speed and the ice concentration. The results show that the distribution functions of the errors are rea-
sonably represented by lognormal functions in both cases. We defined the uncertainty by the 68.3 percen-
tile of the cumulative density function of the distribution function, and combined the uncertainty for ice
drift speed and ice concentration to formulate an empirical uncertainty function. The estimated uncertainty
function reasonably represents the spatial and temporal variations of ice drift uncertainties, depending on
drift speed and ice concentration.

Tables 1 and 2 summarize the estimated uncertainties associated with ice drift speed and ice concentration
for the NSIDC2 and the KIMURA product. The values in this table indicate that the summer ice drift products
are of practical use to validate model results and to constrain models by data assimilation, because the dif-
ferences of the ice drift obtained from different Arctic ocean-sea ice models [Martin and Gerdes, 2007] are
clearly larger than the uncertainty presented here. The uncertainty can be directly applied to any kind of
coordinate system without considering vector rotation, since we formulated the uncertainty as a scalar vari-
able. The only requirement for an application is that the modeled ice drift should represent a spatial scale
of O(50 km), which is a typical resolution of the climate models used in the present IPCC report.

For a practical application to model validations and data assimilations, a cost function measuring model-data
misfit can be defined by a squared L2 norm of the misfit weighted by the uncertainty of the observations,

J5 d2MðmÞ½ �T W21 d2MðmÞ½ �; (9)

where d5 d1;d2;:::; dN
� �

is the observational data, m5 m1;m2;:::;mM
� �

is the control vector to be optimized
(or fixed internal and external parameters for a forward model), M mð Þ5 M1 mð Þ;M2 mð Þ; :::;MN mð Þ½ � is the
model operator providing the counterparts to the observation, and W is the error covariance matrix taking
the uncertainties of the observation into account. The present study gives the diagonal elements of the
matrix W, i.e., the i-th diagonal element (error variance) is given by

Wii5� jj~U
obs
i jj; ai

� �2
; (10)

where jj~Uobs
i jj and ai are the

observed ice drift speed
and ice concentration cor-
responding to the i-th drift,
respectively (see equation
(8)). Since the uncertainty
function � is formulated for
the difference of vector var-
iables, each element of the
cost function should be
measured by

Table 1. Uncertainty of Ice Drift Vector in Different Ice Drift Speed Range

0 – 1 cm s21 1 – 2 cm s21 2 – 3 cm s21 3 – 4 cm s21 4 – 5 cm s21 > 6 cm s21

NSIDC2 1.0 1.1 1.8 1.8 1.3 1.8
KIMURA 1.3 1.5 1.7 1.7 1.4 1.4

Unit [cm s21]

Table 2. Uncertainty of Ice Drift Vector in Different Ice Concentration Range

< 90% 90 – 92% 92 – 94% 94 – 96% 96 – 98% 98 – 100%

NSIDC2 2.0 1.9 1.7 1.3 1.0 0.8
KIMURA 1.8 1.5 1.6 1.4 1.3 1.2

Unit [cm s21]
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Figure A1. Probability density functions of ice drift error in respective ice drift speed bins for NSIDC2 (the first and second row) and KIMURA (the third and fourth row).
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Ji5jj~U
obs
i 2~U

mod
i jjW21

ii ; (11)

where ~U
mod
i 5Mi mð Þ is the modeled ice drift corresponding to the i-th observation. It should be noted that

in the present uncertainty definition we use the 68.3 percentile of the cumulative function of the lognormal
distribution in place of one standard deviation of a Gaussian distribution. If one intends to deal with the
error in Gaussian form, one has to evaluate the cost function by log-transformed variables.

In the present study, we have taken only the diagonal elements of the error covariance matrix into account
(implicitly assuming the independence of the errors between the monthly mean grid points). Therefore the
present measure may overestimate the cost to some extent, particularly due to a potential correlation of
the errors in space. The large abundance and the spatial density of available ice drift from RGPS data, on
the other hand, implies the possibility to assess the error covariances (nondiagonal elements of W) of the
Eulerian products. But this is outside the scope of the present study and is a topic for future research.

Appendix A

Probability density functions of ice drift error in all ice drift speed bins for NSIDC2 and KIMURA are shown in Figure
A1. The method to calculate the distribution and corresponding lognormal function are described in section 4.
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