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ABSTRACT 

Sulisz, W., 1985. Wave reflection and transmission at permeable breakwaters of arbitrary 
cross-section. Coastal Eng., 9: 371--386. 

A theory is formulated to predict wave reflection and transmission at an infinite 
rubble-mound breakwater. The breakwater may be a multilayered structure with arbitrary 
cross-section. It is assumed that the incident wave is normal to the structure and the wave 
may be described by linear theory. A hybrid method has been applied to solve the 
boundary value problem. 

Comparison between experimental and theoretical results shows reasonable agreement. 

1. INTRODUCTION 

Var ious  t y p e s  o f  p e r m e a b l e  s t ruc tu re ,  including the  well  k n o w n  rubble-  
m o u n d  b reakwa te r ,  have been  c o n s t r u c t e d  fo r  the  pu rpose  o f  p r o t e c t i n g  
coas t a l  and  inland basins f r o m  ocean  waves.  Pe rmeab le  s t ruc tu res  have  
several  advan tages  c o m p a r e d  w i th  imperv ious  ones.  The  p e r m e a b l e  s t ruc tu re  
is m u c h  m o r e  e f fec t ive  in decreas ing  the  wave  run-up ,  in r educ ing  re f l ec ted  
wave height ,  and  even tua l ly  in r educ ing  pressures  ac t ing  on it. The  cons t ruc-  
t ion  o f  a r u b b l e - m o u n d  b r e a k w a t e r  is also r e c o m m e n d e d  w h e n  the  p r o t e c t e d  
wa te r  a rea  is deep  and  the  b o t t o m  consis ts  o f  weak  soil. 

Several  l a b o r a t o r y  s tudies  have  been  c o n d u c t e d  to  invest igate  the  re f l ec ted  
and  t r a n s m i t t e d  waves  fo r  specif ic  t y p e s  o f  p e r m e a b l e  s t ruc tu res  ( L o e w y ,  
1967;  Iwasak i  and  N u m a t a ,  1970;  Shore  P r o t e c t i o n  Manual ,  1973;  Da t t a t r i  
et  al., 1978;  Mani,  1981) .  Ana ly t i ca l  s tudies  have  been  d o n e  fo r  prac t ica l  
pu rposes  - -  to  p red i c t  t he  wave  height  o f  r e f l ec ted  and  t r a n s m i t t e d  waves  
(Le M~haut~,  1957;  K o n d o ,  1970;  Sol l i t t  and  Cross, 1972a ,  b; I j ima  et  al., 
1974;  Madsen ,  1974 ;  Massel and  Mei, 1977;  Madsen  e t  al., 1978;  Massel and  
Butowski ,  1980) .  T h e  exis t ing so lu t ions  o f  this p r o b l e m  are valid fo r  struc- 
tures  of  r ec tangu la r  cross-sect ion  and  l inear wave  t h e o r y ,  or  fo r  the  tra- 
pezoida l  b r e a k w a t e r s  and  l inear  t h e o r y  o f  long waves  (Madsen  e t  al., 1978) .  
In  the  second  case, add i t iona l  e x p e r i m e n t a l  i n f o r m a t i o n  is necessary  to  

0378-3839/85/$03.30 © 1985 Elsevier Science Publishers B.V. 



372 

determine the energy dissipated on the seaward slope of the breakwater. It is 
also possible to develop an approximate procedure for the prediction of 
wave reflection and transmission at trapezoidal breakwaters by considering 
an equivalent breakwater of rectangular cross-section (Sollitt and Cross, 
1972a,b; Kondo and Toma, 1974; Madsen and White, 1976; Massel and 
Butowski, 1981). 

In this paper, a theory of wave transmission and reflection at an infinite 
porous rubble-mound breakwater is presented. The breakwater may be a 
multilayered structure with arbitrary cross-section. 

The theoretical approach used in this study is based on the unsteady 
Forchheimer equation of motion in the pores of a coarse, granular medium. 
The equation is linearized using Lorentz's hypothesis of equivalent work. 
The linear wave theory is applied and the excitation is provided by a mono- 
chromatic incident wave that  is normal to the structure. The boundary value 
problem is solved by using a hybrid method which employs the boundary 
element methods in the breakwater body and in the vicinity of the break- 
water with a boundary solution procedure in the exterior regions extending 
to infinity. 

The numerical results are compared with experimental data. 

2. THEORETICAL FORMULATION 

2.1. The equation of  motion in porous media 

Fluid motion in a body of this structure is described in terms of seepage 
velocity and pressure. These are conceptual quantities which are averaged 
over finite and continuously distributed pore volumes. The equation of 
motion then reduces to the form: 

av i 
- -  = --V (P + 7z) + resistance forces (2.1) 
at  p 

where v is the seepage velocity vector at any point, p is the corresponding 
pressure, t is time, V is the gradient operator, p is the fluid mass density, ~, is 
the fluid weight density, z is the vertical coordinate. 

In order to represent the resistance forces, the relation proposed by 
Forchheimer is used (Bear, 1972). In the present application we add to the 
motion equation an additional term which evaluates the added resistance 
caused by the virtual mass of discrete grains within the medium (Sollitt and 
Cross, 1972b; Hannoura and McCorqoudale, 1978). Thus, eq. (2.1) may be 
rewritten in the form: 

av 1 ~e Cfe 2 1-e  av 
. . . .  V ( p + ~ z ) - - -  v K1 n ]vlv  CM (2.2) 
at  p K e a t  
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where v is the kinematic viscosity, e is the porosity of the medium, K is the 
intrinsic permeability, Cf is the dimensionless turbulent  resistance coeffi- 
cient, CM is the virtual mass coefficient of medium grains which is a known 
quanti ty for isolated simple shapes, but  generally is unknown for random, 
densely packed materials. 

In order to complete the set  of equations in the porous media, we add the 
equation of cont inui ty  for an incompressible fluid. Thus: 

~v 1 ve Cfe  2 
S . . . .  V(p + v~) (2.3) 

~t p K K '12 

V . v  = 0 (2.4) 

where S is an inertial coefficient, and: 

1 - - e  
S = 1 + - CM ( 2 . 5 )  

e 

Linearization of eq. (2.3) is done using a technique that  approximates 
the nonlinear damping condition inside the porous media. The dissipative 
nonlinear stress term in eq. (2.3) is replaced by an equivalent stress term, 
linear in v, i.e.: 

ve Cfe :  
- - v +  I v i v ~ f e o v  K K in  

where ~0 is the angular frequency of  the periodic mot ion and f is a dimen- 
sionless friction (damping) coefficient. 

To evaluate f in terms of the known damping law, it is required that  both 
the linear and nonlinear friction laws account for the same amount  of energy 
dissipation during one wave period - -  Lorentz 's  hypothesis (Lean, 1967). 
From Lorentz 's  condit ion of equivalent work we obtain: 

d t  

f = - -  ( 2 . 6 )  

f '+~' c l R  e v 2 dt  
R 

where T1 is a wave period, /~ is the porous domain and f is considered to be 
constant within R. 

Thus the equation of mot ion reduces to the following form: 

av 1 
S . . . .  V (p + 7z) - fcov (2.7) 

a t  p 
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with 

V" v = 0 (2.8) 

2.2. S ta tement  o f  the problem 

The situation considered for analysis is shown schematically in Fig. 1. 
Additionally, we assume that: 

(1) In the infinite rubble-mound breakwater L homogeneous porous 
layers (l = 3, 4, .... ,  L + 2, Fig. 1) can be distinguished with known.physical 
(el) and hydraulic (Kh Cf z) properties. The breakwater has the same cross- 
section over the entire length. 

s s<-=  s<-'01" 

I R, S I ¢  R2 ~,4~,~ S,~a ) ~ RL+, ] RL,4 / 

I" I, "1" l~ I 

Fig. 1. Definition sketch and coordinate system. 

(2) The semi-infinite domains R1 and RL+4 have constant depths, ht and 
h2, respectively. 

(3) The sea bo t tom is impervious. 
(4) A train of simple harmonic waves (co) of  small amplitude (a) is 

approaching the breakwater such that the wave crests are parallel to the 
longitudinal axis of the breakwater. 

(5) The amplitude of the wave and the largest dimensions of the elements 
which form the porous layers are small, compared to the water depths hi 
and h~ and to the wavelength. 

(6) The fluid is inviscid and incompressible. 
(7) The velocity in each flow domain has a potential. 
(8) The only forces acting on fluid in the domains RI,R2,RL+3,RL+4 are 

gravity forces. Additionally, in porous layers the damping force proportional 
to the fluid velocity is acting on a fluid element. 

According to these assumptions the wave field can be specified by a 
velocity potential of  the form: 

~Pl(x,z,t) = Re[¢l(x ,z )e  - i~t] l = 1 , 2 , . . . , L + 4  (2.9) 

where Re denotes the real part  and i = x / -1 .  
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The  wave field is comp le t e ly  specif ied if ¢ l ( x , z )  is known .  Th e  b o u n d a r y  
value p r ob l e m fo r  ¢ l ( x , z )  m a y  be wr i t t en  as follows: 

V2¢! = 0 l = 1 , 2 , . . . , L + 4  

on  Sl,  o : 

a~l w 2 
( S  1 + i f l ) ¢ l  = O, Z = 0 

aZ g 

f l  = 0, S l = 1 fo r  l 

On SI,  I: 

, ,  .T- 0 

anl ,  l 

On S1, m and S m ,  l : 

(S l  + i f t ) ¢ l  = (Sin + i f m  )¢m 

¢l ~ = - e m  
~nl ,  m ~ n m ,  l 

f l (m)  = 0 a n d  S l ( m ) ,  e l (m)  = 

x ~ - ° ° :  + i k l ~ l  = 0 
a x  

a¢L+4 
X ~ +~o: i k : ¢ L +  4 = 0 

~X 

(2.10) 

--: f ree  surface c o m b i n e d  cond i t ion  (2.11)  

= 1 , 2 , L + 3 , L + 4  

--  no  normal  ve loc i ty  on  the  bed (2.12)  

- -  c o n t i n u i t y  o f  pressure (2 .13)  

- -  c o n t i n u i t y  of  normal  ve loc i ty  (2 .14)  

1 fo r  l ( m )  = 1 , 2 , L + 3 , L + 4 :  

- -  rad ia t ion  cond i t ion  at  - ~  (2.15)  

- - r a d i a t i o n  cond i t ion  at + ~  (2.16)  

where  
Sl,  o (SI, I) is pa r t  o f  the  R l  b o u n d a r y  domain- f ree  wate r  surface (sea b o t t o m ) ,  
Sl, m and S m , l ! a r e  c o m m o n  boundar ies  o f  R l and R m domains ,  
a ¢ l / ~ n l ,  m is the  ou twa rd  normal  derivat ive o f  ¢I at  Sl,  m ,  
Sl is t he  inert ial  coe f f i c i en t  f o r R / i d o m a i n  (see 2.5),  
k~, k~ are the  wave number s  co r respond ing  to  the  fluid dep ths  in domains  
R1 and  R L + 4 ,  

¢1 = ~bine + 61,  

where  ¢ine is t he  ve loc i ty  po ten t i a l  due  the  inc ident  wave. 

3. METHOD OF SOLUTION 

3 .1 .  A n a l y t i c a l  s o l u  t i o n  

In  doma in  R I ,  t he  func t i on  ~t (x,z)  should  be (x ~< - /1 ) :  
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- i g R  cosh k l (Z + h l) ¢ l (x ,z)  = - iga eik,(x+l,) cosh k~(z+h~) + ~ e_ik,(x+l, ) 
¢o cosh klh~ ¢o cosh hlh l  

where: 

- igRan  cos an(z +hl) 
+ ~ e a-(x+l,) (3.1) 

an 60 COS 0~nh 1 

iga e ik~(x+l~)coshkl(z+hl)  = ¢inc (3.2) 
co cosh k 1 h i 

a is the amplitude of the incident wave, 
R is the unknown amplitude of  the reflected wave, 
R a ,  is the unknown amplitude of the local standing wave (with exponential- 
ly decaying amplitude), 
g is the acceleration due to gravity. 

In domain RL÷ 4 the function dPL+4(x,z ) should be (x >~/2): 

CL÷4(X,Z) = - i g T  e ik2(x-/:) cosh k:(z+h2) 
60 cosh k:h2 

+ ~ - i g T ~ ,  e~ ( l_x  ) cOS~n(z+h2) (3.3) 
~n 60 cosl3nh2 

where T is the unknown amplitude of  the transmitted wave and T ~  is the 
unknown amplitude of  the local standing wave (with exponentially decaying 
amplitude). 

The eigenvalues kl ,k~ ,an, ~n are roots of the equations: 

032 
-- = k l tgh(k lh~)  = k2tgh(k2h2) (3.4) 
g 

and 

£0 2 
m = -an  tg (anhl) = -fin tg (13nh2) (3.5) 
g 

3.2. Numerical solution 

A boundary-element method  is used to write the equations for velocity 
potential in the domains R2 ,R3 . . . .  ,RL+ 3 (Fig. 1). 

The mathematical basis stems from Green's identities. Assuming that 
(Sternberg, 1926; Jaswon and Symm, 1977): 
(1) the domain /~ is bounded by the surface S which has a continuous 

normal ,  except  for finite numbers of corners; 
(2) ~ is continuous in i~ +$; 
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(3) ~ is differentiable to  at least the second order in/~; 
(4) ~b satisfies Laplace's equat ion in R;  and 
(5) V = lnr,  where r is the  distance f rom an arbitrary point ,  P, to  a point ,  Q, 

on  the boundary  ~; 
we obtain f rom Green's second identi ty:  

f(~0n0V V a ¢ ~ d ~  = 0 0 n /  (3.6) 

The outward normal  derivative (O~/On) should be piecewise cont inuous  on 
S. Note  tha t  a discont inuous normal  derivative boundary  condi t ion does not  
contradict  our  original assumption of the cont inui ty  of ~ (Bai and Yeung, 
1974). 

The first step in the numerical  solution of the boundary  value problem 
formulated  in terms of integral equations, is the subdivision of the  boundary  

into suitably small Nl straight-line segments. Then eq. (3.6) yields: 

~ ¢ - -  ( l n r ) - l n r ~  dSj = 0 j = 1 , 2  . . . . .  Nl (3.7) 
1 Si On On ' 

If we assume now that:  
(a) the  point  Pi is placed at the beginning of the i-th segment; 
(b) the beginning of  a local (},~) coordinate system (Sulisz, 1982) is located 

at po in t  Pi (Fig. 2); and 
(c) between a pair of node  points  QJ, Qj÷, (Fig. 2), the potential  and its 

normal  derivative are wri t ten as: 

¢ - CY+' - ~J ~ + }J+' ~J - }J~Y+' }j < } < }j+, (3.8) 

}j+1 - }j }1+, - }j 

Or~ }j+l - }j }j+l - }j 

~?ij 

Fig. 2. ~-~ coordinate system. 

}Y ~< } ~< }l+, (3.9) 



378 

then substitution of  eqs. (3.8) and (3.9) in eq. (3.7) yields (for Pi) an 
algebraic equation of  the following form (Sulisz, 1982): 

~ n ( l n r ) - - -  In d~ = ~ (Ii, i+I i ,  II) = 0, ] = 1 , . . . , N i ( 3 . 1 0 )  
j On j 

In a well-posed problem, either ¢ or OO/On or the linear relation: 

0¢ 
6i~ + 6 2 " - -  = 83 (3.11) 

0n 

between ~b and Oct~an is known at each point  of S (Jaswon and Symm, 
1977). 

Applying eq. (3.10) at each point  Pi ( i=1,2  . . . .  ,Nl) we obtain Nl equa- 
tions in either ¢i(O¢/On)i, or some combination of  ¢i and (O¢/On)i: 

(Ii, I + Ii, II) = 0 i , j  = 1 ,2 , . . . ,N l  (3.12) 
J 

The solution of the above equations provides the boundary data that  can 
be used in eq. (3.6) to find the solution at any interior point. 

3.3. The solution o f  the boundary value problem 

The boundary value problem formulated in item 2.2 is solved in the fol- 
lowing way: 

(1) We assume the friction coefficient f/ ( I=3 , . . . ,L+2) .  Usually as a 
starting approximation we apply fl = 1 ÷ 2. 

(2) We apply the numerical solutions at the domains R 2 , R 3 , . . . , R L . 3 .  
Using the analytical solutions (eqs. 3.1, 3.3, 3.4, 3.5) and boundary condi- 
tions (eqs. 2.11, 2.12, 2.13, 2.14) we obtain N equations for N unknowns 

L+3 
(complex), where N = Z Nl. After solving such a system of equations, the 

1=2 

quantities R,  R~n, T, T~n and the value of potential function and its normal 
derivative at each point  of the boundary (of domains Rl) will be known. 

(3) Next, we calculate the new values of  fl, 1=3 . . . .  , L + 2  (eq. 2.6) and 
compare them with the assumed values fl and iterate if necessary (return to 
2). The iteration scheme typically closes after two to four cycles. 

As a test case, the hybrid method discussed in this paper was first applied 
to calculate wave reflection and transmission at a permeable breakwater of 
rectangular cross-section. Figure 3 shows a comparison of the reflection and 
transmission coefficients obtained by Sollitt and Cross (1972a) and by the 
method presented. The reflection (RC) and transmission (TC) coefficients 
are defined by: 

RC = IRl /a  (3.13) 
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RC ~ 
TC 

0,6 

o,5 

0/. 

0,3 

0.2 

0,1 

RC; 
'TC 

o,a 

o,7 

o,6 

q5 

q4 

o,3 

q2 

o,I 

f - a s ~  !Rc! 0l  Su,sz • (RC)----t S~l,,a.d 0 ~  
K . . ~ . . z  . j  - , ( ' r c )~J  (1972Q) 

b / h  - S - i  

~-0,4 
f-2 %,.. j j ~ - - - - ~ - ~ -  o 

f-s L ..~ ..'" \ '~ 

l l 1 L I I JL 1 
q2 o,s ~ 2 3 k h 

. R C )  o • . (Rr..J.---- So l { i l l  a n d  C r , ~ $  
E: 0 f l ' - . ~ . ~ T C ) , }  S u h s z  , ( T C } - - - }  ( 1 9 7 2 c l )  

E-0 , / ' ,  b h - S - I  

E.qs ~ . 1 I I f  ~ . . . .  o-_ 

i i i I i J i i [ 

Fig. 3. Comparison of the reflection (RC) and transmission (TC) coefficients obtained by 
Sollitt and Cross (1972a) and the present method. 

T C  = I TI/a (3.14) 

Additional comparisons of the test results (wave forces on large pipelines, 
diffraction problems), obtained by the present method with the results ob- 
tained by other authors have already been published by Sulisz (1982, 
1983b). 

4. EXPERIMENTAL RESULTS 

The experiment was done in two steps (Sulisz, 1983a). First, the physical 
(e) and hydraulic (K, Cf) properties of two kinds of crushed rock were deter- 
mined. 

The porosity was obtained by weighing a gravel sample dry and sub- 
merged, subtracting the one from the other to yield the weight of water 
occupying the pores, and dividing the pore water weight by the weight of 
water occupying the same gross volume as that of the sample. 

The hydraulic properties (permeability, K and turbulent damping coeffi- 
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cient, Cf) of the medium were determined using a large permeameter. These 
quantities are evaluated from steady state tests by measuring the pressure 
gradient through a sample of medium as a function of an imposed discharge 
velocity. Then K and Cf were determined from eq. (2.3) (S avDt=O) in 
terms of the measured quantities. A summary of the physical and the 
hydraulic properties are listed in Table 1. 

T A B L E  1 

Physical  and  hydrau l ic  p roper t i e s  of  the  m e d i u m  

Size, d Equ iva len t  m e a n  Poros i ty ,  e Permeabi l i ty ,  K T u r b u l e n t  damp ing  
sphere  d iamete r ,  d b coeff ic ient ,  C i 

m m d imens ion less  m ~ d imens ionless  

0 .023 - -0 .037  0 .025 0 .442  1 .923 X 10 -7 0 .270  
0 .01- -0 .02  0 .012 0 .468  0 .919  X 10 -7 0.387 

In the second step of the experiment, a rubble-mound breakwater of 
crushed rock (of known e,K, Cf) was constructed in the channel and the 
wave reflection from and transmission through the structure were deter- 
mined. The amplitudes of the incident, reflected and transmitted waves were 
obtained using Fourier's analysis of  the surface elevation records in the 
domains up- and downstream of the structure (Jolas, 1962; Bendykowska, 
1966). 

5. C O M P A R I S O N  OF T H E O R Y  A N D  E X P E R I M E N T  

Theoretical reflection and transmission coefficients are found using the 
iteration procedure discussed previously. The virtual mass coefficient, CM is 

RC 
TC 

O,7 

qS 

0,5 

0,4 

0,3 

02 

0,1 

(RC) . . . .  1 present (RC) o } exp. resutts 
(TC) ~ l  method ; (TC) Soitittend Cross (1972o) 

I o. k~ = o, oi I 
h~ b = 0,549 m I 

E=0434 K=4,478,107m 2 
" ' ' ' - _  o CrQ2S2 ~)-1,0126.10" n~ 

x 

o,3 0.5 ~ ~ ~ kh" 

Fig. 4. Re f l ec t ion  and  t r ansmiss ion  coef f ic ien ts  for  rec tangula r  h o m o g e n e o u s  b r e a k w a t e r  
d e p e n d e n c e  o n  wave num ber .  
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u n k n o w n ,  and  it is t a k e n  as equal  to  zero  b y  defaul t .  T h e  resul ts  are 
p re sen ted  as c o n t i n u o u s  (TC) and  dashed  (RC) lines on  the  e x p e r i m e n t a l  
plots .  F igure  4 p resen t s  the  re f l ec t ion  and  t ransmiss ion  coef f ic ien t s  fo r  a 
r ec tangu la r  b r e a k w a t e r  as a f u n c t i o n  o f  d imens ion less  wave  n u m b e r .  T h e  
s t ruc tu re  is a h o m o g e n e o u s ,  ver t ical-wal led b r e a k w a t e r  c o m p o s e d  o f  gravel 
con t a ined  in a wire screen cr ib (Sol l i t t  and  Cross,  1972a) .  T h e  b r e a d t h  (b) 
o f  this s t ruc tu re  is equal  to  the  d e p t h  of  the  wa t e r  in the  channe l  (h). 

, 0 ,38m 

, ..~,~ e "~'1 

J l  e"°'lTm ~ ~F. E I e"°"Tm ,~'~'~ I 

Fig. 5. Trapezoidal layered breakwater (TW-2). 

RC 
TC 
o,8 

o,7 

q6 

q5 
o,4 

o,3 
0,2 

0,I 

(RC)- . . . .  "1. present ; (RC) o t exp. results 
(TC) J method (TC} 

o 
o o o 

o o °  . . . . . . . . .  

o o 

RC I (RC) ---]. present {RC)o} TCi (TC)--J method ; (TCI. J exp. results 

0,5 
o,4 

o . . . . . . .  

0.3 

0,2 

0,01 0,02 0,03 e.k/1 i 

(RC)- . . . .  J present ; (RC)o l 
C T C ) - - J  method (TC)* J exp. resutts 

o o o 

RC 
TC 

0,5 

0,4 

O.3 

0,2 

0,1. 

I * - I I I =1 " 

0,01 o, oz o.kAT 0,01 0,02 o, o3 o.04 0.05 q~e o.k~ 

Fig. 6. Reflection and transmission coefficients for trapezoidal layered breakwater (TW-2) 
dependence on wave steepness. 

Fig. 7. Reflection and transmission coefficients for trapezoidal layered breakwater (TW-2) 
dependence on wave steepness. 
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The second breakwater is a two-layered trapezoidal-shaped structure 
dimensioned as in Fig. 5. The medium properties are given in Table 1 
(g = 9.81 m/s 2, v = 1.17 X 10 -6 m2/s). The reflection and transmission coef- 
ficients are presented as functions of  wave steepness in Figs. 6, 7 and 8. 

The multilayered breakwaters are built from core, secondary armour and 
primary armour. The seaward and leeward faces of the primary (secondary) 

RC' 
TC 

0,5 

0,4 

o,3 
0,2 

0,1 

RC 
TC 

0,5 

O,4 

O,3 

0,2 

0,1 

(RCF . . . .  [ present (RC} o 1 
(TC)- - - -  J method ; (TC] exp. resu t ts  

_ - - - ~  "6~- o o 

o,6~ 0.o2 0.03 o~4 o~5 o, o6 o.k/~ 

(RC)- . . . .  ] present (RC) o } 
(TC} J' method ; (TC) • exp. resu t ts  

o . . . .  
. . . . . . . .  o_ . . . . .  o . . . . . . . . . . . . .  - - -  

o o o o oo  

I I I , , " "  

o,o9 0.04 o, os 0,66 a.l~1 i qol o, o2 

Fig. 8. Reflection and transmission coefficients for trapezoidal layered breakwater (TW-2) 
dependence on wave steepness. 
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Fig. 9. Trapezoidal layered breakwater (TW-3). 
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Fig. 10. Reflection and transmission coefficients for trapezoidal layered breakwater 
(TW-3) dependence on wave number. 

armours are usually constructed from different media (Shore Protection 
Manual, 1973; Hydro Delft,  1 9 8 3 ) .  Therefore, a computational  program 
which calculates the reflection and transmission coefficients for a five- 
layered breakwater (core, seaward and leeward face of  second armour, sea- 
ward and leeward face of  first armour) has been developed. Using this pro- 
gram, the wave reflection from and transmission through a three-layered 
trapezoidal structure (cont inuous  line) dimensioned as in Fig. 9 (SoUitt and 
Cross, 1972a)  were calculated. The media properties are the same as 
tabulated in the figure. The dashed line in Fig. 9 denotes  the  division of  the 
second armour and the small change carried into the physical model  (exten- 
sion o f  secondary armour to free surface) in order to use a computer 
program. The reflection and transmission coefficients are presented as a 
funct ion of  wave number for a constant wave steepness in Fig. 10. 

6. FURTHER DISCUSSION AND CONCLUSIONS 

The experimental and theoretical transmission coefficients correlate 
rather well. For the reflection coefficient the correlation is satisfactory only  
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for small k. Note that  for small wave numbers (k) the differences between the 
theoretical reflection coefficient and experimental results obtained by Sollitt 
and Cross (1972a, b) (presented in Fig. 4 and Fig. 10), are due to the experi- 
mental procedure (determination of the reflection coefficient by measuring 
the heights of  loop and node), which underestimates the value of  the reflec- 
tion coefficient for small k (Bendykowska,  1966; Madsen and White, 1976). 
For the remaining k values considered the theory generally underestimates 
the experimental results at low steepnesses and overestimates the results at 
high steepnesses. 

In general, the observed discrepancies may be due to a number of factors 
including: 

(I) Assumption that S = 1. 
(II) Loss of energy in the domain R2, particularly for high wave steep- 

nesses. 
(III) Unsteady modification of the steady-state damping law. 
The theory underestimates the experimental results (RC) at low steep- 

nesses probably due to factor I or II. The correlation is substantially 
improved by taking nonzero values for the virtual mass coefficient (Fig. 11); 
S = 2 as proposed Le M6haut6 (1957). However,  it is not  possible to predict 
the magnitude of this coefficient a priori as the virtual mass of densely 
packed fractured stone is not  known. The experimental results show very 

Rd (RC) .... } present . (RC} o ~ exn res,,~s 

o,s t 

o,21__~a3 s~2 .......... ........... -[[_-2 .......... 

i I I I 

0,oi 0.02 0.03 O- k/jl 

RC~ (RC) .... Ipresent . (RC) ° ~ exn reck,its 

0'5 t 0,4 

0,:3 ~ - ? - - ~ -  - - - ° - -~ -~ r - .  . . . . . . . .  22.-22=-- 

0,2 I~ ----------- ............... 

QIT ' ~ " ~  ~ ~-  ~- .. , ,  , 
q01 0,02 0,03 0,04 0,05 0,06 o-~/~ 

Fig. 11. R e f l e c t i o n  and transmiss ion coe f f i c i en t s  for trapezoidal  layered breakwater  
(TW-2) d e p e n d e n c e  on  wave  number  and on  inertial c o e f f i c i e n t  (S = 1, S = 2), 
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large scatter (Hannoura and McCorquodale, 1978). Thus, the results 
obtained by using S > 1 can be treated only as a possible explanation of the 
discrepancies between the theoretical and experimental reflection coeffi- 
cients at low wave steepnesses. 

The theory overestimates the experimental results (RC) at high wave 
steepnesses, probably due to factor II or III. In the theoretical model we 
have assumed that  there is no loss of  energy in domain R2. This assumption 
was involved with the difficulty of the theoretical estimation of the energy 
loss in th.is domain. 

The discrepancies between the experimental and theoretical reflection 
coefficient may also be due to linearization of the motion equation and 
boundary condition. However, one must not  forget, that  in the domain 
before the breakwater, the resultant wave amplitude is the sum of the 
amplitudes of the incident and reflected waves. Thus, in spite of the dis- 
crepancies between the experimental and theoretical reflection coefficient, 
the theory estimates the resultant wave amplitude before the structure (very 
important  design quantity) within an error of only several percent. 
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