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ABSTRACT

The paper proposes a theory of the stationary turbulent drift friction layer that, under the conditions of stable
stratification, can appear as the upper mixed layer (UML) of the ocean or as one mixed to the bottom in shallow
water. An analytical solution of the drift current equations is obtained as an infinite power series valid for the
vertical turbulence exchange coefficient of arbitrary form. General properties of the solution are derived in the
form of asymptotic theorems. These state that two types of dynamic processes can form, depending on the free-
slip or no-slip conditions at the lower boundary of the drift friction layer at small dimensionless depth. With
the free-slip condition, the currents are transverse to the wind direction and the stress distribution is linear in
the whole layer. With the no-slip condition, the currents are along the wind direction and the stress distribution
is constant in the whole layer as well. Based on this model of vertical turbulent exchange, including equations
of turbulent kinetic energy and dissipation of turbulent kinetic energy, the first type is shown to be inherent in
the UML when a dimensionless stratification parameter increases, while the second type applies to shallow
water where drift currents penetrate to the bottom. The possible formation of a layer with a linear velocity
profile and constant turbulence values in the second type is discussed. Analytical models describing both types
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of these processes are suggested.

1. Introduction

The theory of stationary drift currents began with
the work of Ekman (1905). It is concerned with ana-
lytical solutions of drift current equations (DCE) with
a constant coefficient of vertical turbulent exchange
(VTE) and a variable coefficient that preceded
Prandtl’s formula. Ekman examined the problem with
a no-slip condition at the lower boundary and showed
that the velocity vector tends to turn towards the wind
direction in the whole layer as depth decreases. Nom-
itsu (1933) studied the same problem with the free-
slip condition and showed that the velocity vector of
drift currents tends to turn transverse to the wind di-
rection in the whole layer as depth decreases while,
when deepening, the solution approaches the Ekman
solution (1905) for an infinitely deep ocean. When the
ratio between the layer depth, H, and the depth of the
Ekman friction layer, D (D = = \;ZKO /1), is small, H/
D < 1, there are two types of solutions depending on
the lower boundary condition. When the ratio H/D is
large, the solution is independent of the boundary con-
dition.

Later, analytical solutions of DCE with variable VTE
coeflicient were studied; they are reviewed by Brown
(1978). Among them, singular problems were inves-
tigated where the VTE coefficient is zero at the lower
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boundary of the area. In a singular problem, the
boundary condition need not be given at the degen-
eration point and as a solution a restricted branch is
selected. The solutions of singular problems may have
no physical applications. Dotsenko (1971 ) showed by
analytical methods that the direction and amplitude
of drift velocity are monotonic functions of depth for
a VTE coefficient of arbitrary form.

In the paper by Sukhorukov and Dmitriev (1983)
DCE is solved analytically with the VTE coefficient
represented as an infinite power series (one analytical
function). It is well known that any continuous func-
tion can be uniquely approximated by a power series
to any preassigned accuracy. Hence, the solutions ob-
tained are valid for the coefficient eddy viscosity of
arbitrary form. General properties of the solution are
formulated as three asymptotic theorems stating that
when the ratio H/D is small the drift velocity vector
tends to turn towards and transverse to the wind di-
rection and the friction stress approaches constant or
linear distribution throughout the layer depending on
the lower boundary no-slip or free-slip condition sat-
isfied, respectively (Sukhorukov and Dmitriev 1984,
1986).

Observations in the ocean give evidence for the free-
slip condition at the lower boundary of the surface
mixed layer (Nikiforov 1961; Lacomb et al. 1972).
Data taken from a laboratory buoy in summer in the
Mediterranean Sea showed the drift velocity vector in
the upper layer to be nearly orthogonal to the wind
(Lacomb et al. 1972). In shallow water, where drift
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currents may reach to the bottom, the phenomenon
of current velocity turning towards the wind and the
presence of a constant friction stress layer are to be
expected. To study these phenomena by mathematical
modeling, turbulence exchange models should be used.

The physical processes taking place in the upper
mixed layer (UML) of the ocean are diverse. The UML
is basically formed by small-scale turbulence brought
about by the breaking of surface waves, by shear in-
stability of inertial and drift currents, and by thermal
and thermohaline convection arising when cooling or
evaporation from the ocean surface occurs. Internal
waves cause microstructure formations and can transfer
energy from the mixed layer to a thermocline. The

stabilizing factors are the dissipation of small-scale

fluctuations and the work by buoyancy forces in con-
verting kinetic energy of turbulence to potential energy.
Langmuir circulation produces effective heat transport
from the surface to the lower boundary of the UML.

Models applied in determining the turbulence ex-
change in the UML are based on correlation equations.
As a rule, in these models there is no correlation be-
tween surface waves and small-scale turbulence.
Therefore, when solving such models, the upper
boundary is chosen as deeper than the free surface.
The frictional wind stress, transformed by the breaking
of short surface waves, produces drift currents and cre-
ates a small-scale turbulence flux into the ocean. There
is a point of view that the impact of the breaking surface
wave is concentrated in the upper several meters, while
the small-scale turbulence is caused by the velocity
shear in the UML (Oakey and Elliot 1980). According
to another point of view, wave turbulence penetrates
much deeper, ten times deeper than the surface wave
height (Kitaigorodsky et al. 1983). There are assump-
tions that in the upper layer the velocity profile is de-
scribed by the logarithmic law, which agrees with lab-
oratory and in situ measurements (Kondo 1976). The
fact that the logarithmic velocity law really exists in
the bottom boundary layer is proven by experiments
(Kullenberg and Zaneveld 1983). Later we will con-
sider theoretically the logarithmic velocity profile for
shallow water.

The existing models of small-scale ocean turbulence
are based on correlation equations and differ principally
in the equation for the turbulence scale or its analogues;
for example, see Mellor and Durbin (1975) and Mar-
chuk et al. (1977). A detailed survey of turbulence
models currently applied is given by Rodi (1987).

The idea of constructing the hierarchy of turbulence
models for the planetary boundary layer of the atmo-
sphere (Mellor and Yamada 1974 ) can be extended to
the UML of the ocean in more than one way. Let us
look at one such approach based on the VTE coefficient
concept where two energetic equations of turbulence
are suggested as equations of small-scale ocean tur-
bulence dynamics. They are those of turbulence kinetic
energy (TKE) and dissipation of turbulence kinetic
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energy (DTKE) (Kochergin et al. 1974). In the paper
by Kochergin et al. (1977) the model is simplified; the
substantiation of the generalized Prandtl formula is
given by K = L2(U?* + V2 — gp./po)"/?, in which the
mixing length, L, is determined from the mixed layer
thickness, #. Energetic turbulence equations (ETE) are
proposed to study the laws (similar to the laws of the
atmospheric boundary layer) of the drift friction layer
of the ocean formation when fine numerical vertical
resolution is required. This is especially true of UML
deepening in a storm when a local boundary layer with
the extremum of DTKE may occur at the UML base
(Marchuk et al. 1977). Oakey and Elliot (1980) em-
phasized this when analyzing in situ measurements. It
would be reasonable to apply the Prandtl formula to
the problems with a rough spatial resolution such as
those of the general circulation of the ocean (Marchuk
et al. 1978; Sunderman et al. 1983; Sukhorukov and
Tausnev 1986). The next step in the modeling hier-
archy is the analytical theory formed in elementary
functions for the stationary turbulent drift friction layer
of the ocean (Sukhorukov and Dmitriev 1986). These
methods of modeling the UML were checked against
the data of the FLEX experiment (Friedrich et al. 1981;
Kazakov and Sukhorukov 1984) and those taken from
the ocean weather station “C” (Sukhorukov et al.
1986). Prognostic numerical experiments were carried
out for a period of two months using an approximation
of the equations of the horizontally homogeneous
boundary layer. They demonstrated that in spring and
summer all three methods reproduce turbulence char-
acteristics in a similar manner in the upper layer of the
ocean. Therefore, in practice it’s better to use the gen-
eralized Prandtl formula and, if we neglect the nonsta-
tionary state, to employ analytical formulae. Spectral
analyses of the simulated drift velocity fields from the
FLEX experiment made it clear that the main contri-
bution to kinetic energy is made by inertial oscillations
whose relative contribution increases with depth. Short-
wave atmospheric perturbations are filtered out in the
upper layer and long periods, such as synoptic varia-
tions of wind velocity with depth, manifests itself in a
modulation of the velocity field associated with inertial
oscillations (Sukhorukov 1985). Anderson etal. (1983)
provide an experimental verification of such phe-
nomena.

The present paper puts forward the theory of a sta-
tionary drift friction layer of the ocean, which may
appear as an UML in the deep ocean or a layer mixed
from surface to the bottom in shallow water under the
conditions of stable stratification.

2. Analytical solutions of drift current equations
Let us look at a stationary DCE:
(KW,), — ifW = 0. (1)

Here W = U + iV U, V are the horizontal velocity
component, z is the vertical downward component, f
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is the Coriolis parameter, { = V—=1. Coefficient K is
assumed to be zero at the boundary z = H. Therefore,
in this case, instead of a boundary condition at this
point, we require the solution to be bounded:

z=0:KW,=—ul; z=H:|W| <o, (2)

where u, is the dynamic velocity in the wind direction.

Any analytic function can be expanded in an infinite
power series. Consider the solution of Eq. (1) with the
coefficient K(z) represented in the form of a power
series

K(x)=(1—-x)" % an(1 — x)",

n=0

x=z/H, m=0.

(3)

We assume that g, # 0, K(x) = 0, and the coefficient
K is not zero anywhere within the interval (0, 1), except
for possibly the point x = 1. Then for m < 2, the Fuchs
theorem is valid for Eq. (1) (Tricomi 1962) and the
solution can be found from the power series (Sukho-
rukov and Dmitriev 1983).

For m = 2 the solution takes the form:

ui ;Zi)cj(l —x)j
W(x)= K, (l-x)y—, (4)

Z Cj(j + w)
Jj=0

where Ky = K(0), w = M + iN, A = 8(xH/D)?, D
=7 ZKO/f)a

1/2
=L} 2y1/2 -
M 2{[2(1+A) +1] 1},
=11 2y1/2
N 2[2(1+A) l],

and the coefficients ¢; are found from the recursion
formula

j-1

=1 QRo+1+j)g=—(w+1+j)2
k=0
X (k+ w)(aj—k/a0)5 .] = la 2: AR

The presence of the factor (1 — x)¥ = exp[iN In(1
— Xx)] in the solution causes the infinite number of
turns of the velocity vector at x — 1 (Kozlov 1963).
Investigating the dependence of W, in the vicinity of
x = 1 on the dimensionless relation H/D (where D is
depth of the Ekman friction layer determined above),
it can be shown that if H/D < E = x~'(1.5V2)""2
~ 046, W, —> «0;if H/D> E, W, — 0;and if H/D
= E, W, = const. Consequently, if H/D < E, the spiral
of the velocity hodograph has explicitly noticeable ro-
tation in the vicinity of the point x = 1. An example
of this rotation is given in Sukhorukov and Dmitriev
(1983). This mathematical effect of a singular problem
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has no physical analogue. When X is allowed to be
nonzero at the boundary H, this effect vanishes.
For m = 1 the solution takes the form:

2 © @
w =225 -0 Sie )
Ko j=0 j=0
=1, c =ifH*/ ap,
j-2

jei = —ifH*¢i1/ao — j 2 Cerr(k + 1)(@j—x-1/ a0),
k=0

j=2,3 -,

Let us consider the asymptotic properties of the solu-
tion for H/D — 0. We will obtain

W(x) = —iuz/(fH),

i.e., for sufficiently small values of the magnitude H/
D, the velocity vector tends to turn normal to the wind
direction in the whole layer [0, H]. Note that at the
point x = 1, velocities do not vanish, however, they
tend to zero, as the ratio H/D increases.

For m = 0[ K(x) > 0] consider asymptotic properties
of the two solutions with different boundary conditions.
The solution with the boundary condition W =0 at x
= 1 will be

2 Ecj(l -xy
wo =200 -nE—0! ()
0 Zc(ji+1)
Jj=0
- T o1 +j)(1 = xy
KW, =-ulH Y a(l — x)/ = ,
=0 Zc(j+1)
j=0
(7

=1 o¢=-a/(2a), (D=nV2Ko/f),
-1

J(L+ ;= ifH?*¢ia/ao — j > cem(k + 1)
k=0

X (aj—k/ao)y ] = 2’ 3, .

In the vicinity of the boundary x = 1, one can dis-
tinguish the domain where the velocity has a linear
profile, here the profile of the coefficient K determines
only the slope. When the H/Dy and a;/ a, ratios de-
crease, the solution tends to the linear profile in the
whole layer of depth H.

2
usH
w

(x)—> X

(1 — x).

With the depth H decreasing or the coefficient ag in-
creasing, (the boundedness of the ratio a;/a¢(a;/ao
< o0) being necessary in the latter case), the current
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in the whole layer deviates from the wind direction to
a lesser extent, since the coefficients c¢; become real as
H/Dy — 0. Here Dy = wV2Ky/f is the depth of the
friction layer determined by the coefficient Kj,.

Let us next look upon the behavior of the friction
stress components. Formula (7) reduces to

1
j+2
2w 1

1 +ifH? 3 -
4 j=0j+2
In the vicinity of x = 1 one can distinguish the domain
where the friction stress can be considered constant.

Ku

1+ ifH?* 3 ci(1 = x)/*?
Jj=0

KW,=—ulH . (8)

Cj

2
U
KV, =~ % *

> e(j+1) Ko
Jj=0

As the depth H decreases or the coefficient g, increases
and the ratios a;/ ay are bounded, the domain of con-
stant friction stresses grows since, as H/Dy — 0, we
have KW, - u2 in the whole domain [0, H]. The
change in the friction stress with respect to depth be-
comes marked when 0.5fH?(1 — x)?/ao ~ 1. Hence
the domain of the constant stress can be estimated as
follows:

hconst ~ U2KH/f = Dy/w.

Let us assume that the coefficient K(x) is linearly de-
pendent on x, of the form K(x) = ay + a;(1 — x),
then the solution may appear as

iH
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H/zy < 1is not fulfilled, H/z; < 1, then strictly speak-
ing, the logarithmic profile domain in the vicinity x
= 1 will not exceed (1 — x) < zy/ H, where the linear
number may again prove to be dominant.

Consider the solution satisfying the boundary con-
dition KW, =0 at x = 1.

uyH 2 d(1 — x)’

W(x) = —z2 , (9)
Ko 2 dii(j+ 1)
Jj=0
KW, = —uiH(1 — x) % a;
j=0
2 dia(2 + )1 — x)/
X(l _x)j]=0 3 > (10)

Z dua(j +2)
do=1, di=0, j(1+))d=ifHd/a
Jj R
—jdek(ff;.’fﬂ), j=23, .
k=0

With the depth H decreasing or the coefficient a, in-
creasing and the relations a;/a, being bounded, the
current velocity vector tends to turn normal to the wind
direction. It follows from (9) and the fact that the coef-
ficients d; go to zero provided that H/Dg —> 0. From
(10) it follows that in the vicinity of the boundary x

a 1/2
do

u
[W(x)| =~
Qo

if the condition (a;/ap) (1 — x) < 1 is satisfied, under
which the expansion of In[l + (a,/ay) (1 — x)] in a
power series is valid. If a;/ay < 1, the solution holds
for all the domain [0, 1]. Sufficient conditions to dis-
tinguish the logarithmic velocity profile in the domain
[0, 1] are Ey; = (H/Dy)? < 1 and a;/ap < 1, then

|W(x)| = (uiH/ao) In[1 + (a1/ae)(1 — x)].

If we assume K(z) = kzouy + iy (H — z), where « is
the traditional von Kirmin constant and z, is the
roughness length, we obtain

| W (x)| > (uiH/xz0) In[1 + (H/2)(1 — z/H)].

Sufficient conditions Ey = H?f/(2kzouy) < 1 and a,/
ao = H/zy < 1 indicate that the logarithmic profile is
possible in very shallow water. In this case, presumably,
the constant profile of the coefficient K(z) is preferable,
and hence the linear velocity profile, the first term of
the logarithmic expansion in a series. If the condition

1 + Ey? §3 &(ai/ ap)"

= 1, there can be distinguished the domain where the
friction stress has a linear profile. As it takes place, with
the depth H decreasing or the coefficient a; increasing,
the ratio a;/ ap being bounded, the friction stress com-
ponents tend to a linear distribution throughout the
domain with the depth H.

The analysis carried out of the solutions of drift cur-
rent equations (DCE) makes it possible to formulate
the following conclusions. Let the VTE coefficient be
an analytical function vanishing nowhere in the do-
main [0, H], then the following theorems hold for the
solutions of equations of the ocean drift currents.

Theorem 1. If the boundary condition KW, = 0 is
fulfilled at z = H, then in the vicinity of this boundary
one can always distinguish the domain with linear dis-
tribution of the friction stress components. And when
the depth H decreases or the coefficient Ky (Ky = ap)
increases, with the ratio a;/a, being bounded, in the
whole layer with the depth H, drift velocities tend to
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turn at an angle of /2 to the wind direction and fric-
tion stress components tend to linear distribution.

Theorem 2. If the boundary condition W = 0 holds
at z = H, then in the vicinity of this boundary one can
always distinguish the domain with constant values of
the friction stress components. Furthermore, as depth
H decreases or the coefficient K increases, the relations
a;j/ ap being bounded, the drift velocities throughout
the layer with depth H tend to turn towards the wind
direction and the friction stress components tend to
constant distribution.

Theorem 3. If the boundary condition W = 0 is sat-
isfied at z = H, then in the vicinity of this point one
can always distinguish the domain where velocity is
linear. With the ratios H/ Dy and a;/ ao decreasing this
vicinity broadens and, in the limit, it tends to the whole
domain [0, H].

For the coefficient K(z) of a power form based on
the solutions obtained by Kozlov (1963 ) and Dmitriev
and Sukhorukov (1982) we will formulate the following
assertion.

Assertion. If the coefficient K(z) has the form K
= Ko(1 —z/H)", n=> 2, then as the depth H increases,
the velocity value at the surface tends to Ekman’s clas-
sical solution (Kozlov 1963; Dmitriev and Sukhorukov
1982). As this takes place, the conditions W = 0 and
KW, = 0 are simultaneously valid at z = H (Sukho-
rukov and Dmitriev 1984).

The analysis of numerical solutions of the DCE with
the coefficient K(z) of a power form with the exponent
n, 0 < n < 2, shows that the assertion is valid at any
n = 0 (when n < 2, the boundary condition W = 0 or
KW, = 0 is satisfied ).

Let us illustrate theorems 1, 2 by some particular
examples. Figures 1, 2 display profiles of friction stress
components, velocity module and the angle of the ve-
locity vector rotation for the two types of the coefficient
K(x) which provide the solutions of the turbulence
model equations and experimental estimates.

Figure 1 is an illustration of Theorem 1. In the vi-
cinity of the boundary x = 1, the linear domain can
be distinguished in the profiles of friction stress com-
ponents KU,, KV, and with H decreasing (H/D = 1,
0.5, 0.25) the domain increases, reaching the surface
z = 0, while the velocity vector of drift currents tends
to turn at an angle of w/2 to the wind direction.

Figure 2 illustrates Theorem 2. As the depth H de-
creases, (H/D = 1,0.5,0.25, 0.125), the drift currents
in the whole domain [0, H] tend to turn towards the
wind direction and the layer of constant friction stresses
is formed, KU, = —u?, KV, = 0.

In both cases an increase in convexity of the coef-
ficient K(z) makes the assertion formulated in Theo-
rems 1, 2 more precise. Diagrams shown in Figs. 1, 2
are plotted when the external parameters have the fol-
lowing values: Ko = 50 cm?s™!, f =10"*s™!, Ky =1
cm? 57! u, = 1 cm s™'. The velocity module and
friction stress components are presented in dimen-
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FIG. 1. Profiles of values KU,, KV, | W(z)|, ¢(z) for the respective
profiles of the coefficient K, KW, (z = H) = 0.

sionless form with respect to the velocity u, . The prop-
erties of drift currents stated in Theorems 1, 2 become
more distinct if the condition H/D < 1 holds.

Figure 3 illustrates the display of the logarithmic ve-
locity profile for a linear profile X(z) in the realistic
physical domain with the bottom coefficient Kj in-
creasing.

3. VTE model

Dimensionless ratios H/D and H/Dy are the key
parameters in the above theorems. The question arises
as to the factors causing the change in these parameters.
The regime stated in Theorem 2 is, presumably, found
in shallow water where drift currents reach to the bot-
tom. Observation of drift currents in summer under
the conditions of stable stratification report on the ab-
sence of friction stress at the UML base (Lacombe et
al. 1972). Therefore the regime stated in Theorem 1
should be sought for in the UML when shallowing.

To simulate the conditions mentioned, we examine
turbulence energy equations for the determination of
the coeflicient K(z) (Kochergin et al. 1974; Marchuk
et al. 1977).

KW, W* + (Kb,), — ¢ — puz /A =0, (11)
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FIG. 2. Profiles of values KU,, KV,, | W(z)|, ¢(z) for the respective
profiles of the coefficient X, illustrated in Fig. 1, W (z = H) = 0.

Cie i KW, W* + (Ke,), — ¢, 15) € — Cs g,uui/)\ =0,
(12)
K = ¢,b?/e, (13)
z=O:szfO, Ke,=0;, z=H:b=0, ¢=0,
(14)
or
z=H:b,=0, e¢=KW,W¥+ (Kb,), — pul/\

(15)

Here b is the TKE, e is the dissipation rate of turbulent
kinetic energy (DTKE), 1 = gaQ\/u, is the dimen-
sionless stratification parameter, A = u,/ f is the length
scale, ga is the buoyancy parameter and Q is the heat
flux normalized with respect to density and specific
heat, W* = U — V.

Based on the formulated problem (11)-(15) and
(1) and (2), we investigate the effect of stratification
and boundary conditions W=0orKW,=0atz=H
on the formation of the drift friction layer. The tech-
nique of solving this system is described in Kochergin
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and Sukhorukov (1975). The problems corresponding
to these boundary conditions were numerically cal-
culated and analyzed. The constants in the ETE model
are assumed as follows: ¢, = 1.38, ¢;. = 1.4, ¢3, = 1.4,
¢, = 0.08.

The variants for the six values of the dimensionless
parameter of stratification u (see Table 1) were nu-
merically calculated for the case when the boundary
condition KW, = 0. A uniform grid with mesh size
from 5 cm (for ¢ = 100) to 30 cm (for u = 0.01) was
used. The depth H was taken deeper than A so that
boundary conditions (14) at z = H had no effect on
characteristics of the turbulent layer. The depth of the
surface turbulent layer # was determined as the first
point of the calculated grid, at which the condition
K(z) < K, was satisfied. ¢, denotes the value of the
rotation angle of the velocity vector at the surface rel-
ative to the wind direction. The values of the outer
parameters are taken as follows: u#, = 1 cm s7!, f
=10 s, gaQ = (107%/102) cm?2 s73, K, = 1
cm?s™!,

Since the coefficient K varies in the surface turbulent
layer with the depth 4, the ratio /D is the analogue

H/D = 0.25, Ky = 10 cu’/s 9
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RG. 3. Profiles of values KU,, KV,, | W(z)|, ¢(z) for the respective
profiles of the coefficient X, illustrated in Fig. 1, W (z = H) = 0.
The velocity | W(z)| calculated by logarithmic formula is marked
with points.
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TABLE 1. Calculated hydrodynamic values at different values of the parameter u.

I 0.01 0.1
h/D 0.70 0.63
@o (deg) 50.3 50.3

| Wol (cm s™") 7.06 7.06
Ko (cm? s™") 223 221

bo (cm? 572 3.00 3.00
6 (X107%) (cm? s73) 3.24 3.25
h (cm) 4650 4175

| KW, | oenf 1t (%) 0.1 0.3
el (uoul) (%) 100 100
gaQh/(ugi3) (%) 0 0

&/ (Uiotl) (%) 0.56 0.56

1. 10. 50. 100.
0.48 0.28 0.18 0.14
50.3 59.7 68.1 69.7
7.15 10.3 18.3 24.7
214 108 53 38
2.97 2.48 2.45 2.11
3.29 6.0 9.1 9.3
3120 1280 585 396
1 4 10 14
93 75 57 53
7 25 43 47
0.53 0.48 0.48 0.57

of the dimensionless ratio H/D. Numerical solutions
show that an increase in the parameter p results in a
decrease in the ratio 42/ D. In the vicinity of the point
z = h the condition KW, = 0 holds with high accuracy
and is necessary for the phenomena stated in Theorem
1. Note that in these calculations boundary condition
W = 0(14) is used at z = H. With u increasing, the
magnitudes 4, K, by decrease and the values of the
magnitudes ¢y, | Wy!, ¢ become larger. Note that nu-
merical solutions asymptotically approach the neutral-
stratification solution when the value u ~ 1 and that
further decrease of the parameter u does not alter hy-
drodynamic and turbulent characteristics in the do-
main of the solutions except for the vicinity z = A.
The profile of the coefficient K(z) approaches the shape
of the universal curve and the angle ¢, is greater than
45°, ¢ = 50°. A similar effect was pointed out by
Kundu (1980a). These results may contribute to an
explanation of why the classical Ekman spiral does not
come about in nature under stable stratification con-
ditions. Figures 4, 5 present the profiles K(z), | W(2)|,
¢(z) and the balance of the terms of the TKE equations
only for the three values of u, u = 1, 10, 100 denoted
by numbers 4, 5, 6, respectively. Generation and dis-
sipation are the basic terms in the balance of the TKE
equation. The contribution of the diffusion term is
much smaller.

Table 1 gives the inte%fal balance of terms of the
TKE equations ¢ (¢, = |, edz) and gaQh relative to
the kinetic energy flux in the ocean u2uy(7V,) and in
the atmosphere w2 U,q (p i Uig = CapU3oUso, Ca
= 1.3 X 1073, p, = 1.2 kg m~3). In the balance, dis-
sipation dominates over the work of Archimedean
buoyancy forces. Oakey (1985) reports on experimen-
tal estimates of the ratio ¢;/( Ujou2) taking up 0.4% in
the JASIN experiment and 1.2% in Emerald Basin.
Our values agree better with the JASIN data.

Let us now consider the solutions applicable to the
shallow conditions where drift currents extend to the
bottom. Here we mean solutions obtained when the
stratification parameter u = 1 and the depths of domain
H are equal to 10, 15, 20 meters labeled in Figs. 4, 5
by 1, 2, 3, respectively, because according to the earlier
numerical experiments, at 4 = 1 the depth of the tur-

bulent layer 4 is 30 meters. Here we examine the role
of the boundary conditions W = 0 at z = H. Conditions
(15) are assigned as boundary conditions for energetic
turbulent equations, similar to the conditions in the
constant flux layer near a solid wall. Calculations show
that a decrease in the depth H results in the rotation
of the velocity towards the wind direction, the velocity
amplitude being linear. TKE generation of KXW, W%
becomes constant in this domain as well (Fig. 5). The
contribution of the diffusion term (Kb, ), in the balance
of the TKE equation is insignificant, hence the dissi-
pation ¢ (Fig. 5) and the TKE b are constant, too.
Calculations demonstrate the K(z) coefficient to be-
come constant in all the domain; i.e., the coefficients
of its expansion in a power series a,, a4, ds, . . . tend
to zero. In this case, it follows from theorem 3 that as
the dimensionless parameter H/ Dy decreases, the do-
main of the linear velocity profile increases at a rate
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FIG. 4. Profiles of the coefficient K, dimensionless amplitude of
the velocity vector W (z) and turning angle of velocity vector ¢(z):
(a) solution for shallow water condition at u = 1, H = 10, 15, 20
meters are marked 1, 2, 3; (b) solution for UML at u = 1, 10, 100
by 4,5, 6.
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cm?/s3

~0.010 -0.005 0.005 0.010 0.015 0.020 0.025

0.000

FIG. 5. Balance of TKE equation terms (withoui gaQ) for the
UML conditions (a) and for the shallow water (b). Variants are
labeled in the same way as Fig. 4.

being determined by the ratio (H/Dg)?. This may
come about as the depth H decreases or as the scale
Dy becomes larger, which are observed in Fig. 4. These
results may be formulated as a corollary of Theorems
2, 3.

Corollary. When the conditions of Theorem 3 are
satisfied, the conditions of Theorem 2 are valid as well.
In this case the velocity profile is linear in the layer of
constant stress, therefore the VTE coefficient in the
layer of constant stress becomes constant, consequently
the generation source KW, W ¥ in the TKE equation
is constant. .

Our, to an extent idealized, calculations show that
a linear velocity profile may form in a shallow water
and the turbulence parameters X, b, ¢, KW,W¥ and
the friction stress become constant, independent of the
vertical coordinate.

4. Analytic models for the turbulent drift friction layer
of the ocean

Let us construct analytical models of the turbulent
drift friction layer both for a deep ocean and shallow
water. Numerical solutions of problems (1), (2), (11)-
(15) have shown the turbulent diffusion in the balance
of the terms in TKE to be substantially less than the
other terms. With this assumption in mind, Eq. (11)
can be written in the form:

G—e—uui/A=0, G=KW,W¥. (16)

Let us introduce the function of dimensionless param-
eters of the problem ®,(u)

6O/Go =1—®(u), (17)

where ¢, Gy are values of the functions at z = 0. Using
boundary condition (2), that Gy = u%/K,, and Egs.
(16), (17), we arrive at

U\ Uz
Ko=—"-&(p), Go=-2 ,
0 i |(ﬂ) 0 X @1(#)
3
Uy H
==*_—"_(1-9 ,
€0 X ‘1’1(#)( 1(1))
by = 2.5V2ui(l - <I>l(u))’/2. (18)
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To determine the other turbulent magnitudes let us
use the technique suggested by Marchuk et al. (1979)
and Sukhorukov and Dmitriev (1984). Assume that
the coefficient K has a power form:

K = Ko(1 — z/H)" = Ko(1 — x)",

n=0, x=z/H.
For integer positive n the solution of Eq. (1) in ele-
mentary functions exists only for three values of n (n
= (), 2, 4) (Kozlov 1963).

Let us consider the case when n = 4. The solution
of equation (1) with boundary condition (2) takes the
form (Dmitriev and Sukhorukov 1982):
ul VB2 + (1 —x+6)°
JH (1—-x)

X exp(—Bx/(1 — x))[cosy, siny],
B =mH/D, Y(x)
= Bx/(1 —x) — tan"'[1 + (1 — x)/B].

Let us determine the boundary of the surface tur-
bulent layer / as a point at which the VTE coefficient
K is equal to the a priori fixed value Kj, K, = K(h).
Let us introduce a function of dimensionless param-
eters, ®,(u), by analogy with ®,(u)

€/ Gr=1— ®2(u). (19)

By this equality and expressions ( 16)—-( 18) we find the
basic characteristics of the problem:

28,\'72
2
u

APV (R
4u Rey P, ©
u; n
A ()

X {(1 = x)"? exp[—26x/(1 — x)] — @1(n)},
b=2.5V2u3(1 — x)?
X {(1 = x) 2 exp[—2Bx/(1 — x)] — &, (1)},

In[(®:/®)(®; Ren/u)'"?]
(& Rey/w)* =1 7

z 1 u 1/2
<55 (am)
where Re, = u A/ K.

Similarly we can obtain the solution for the coeffi-
cients K of the form: K = const, K = Ky[1 — (z — 20)?/
(H — 2z)*], K = Ko(1 — z/H)?* (Sukhorukov and
Dmitriev 1984).

The functions ®,, ®, are selected on the basis of

numerical solutions of section 3. Asymptotic ®; of the
parameter p has the form &, — 0 for u — 0, which

Uuv=

€=

g =05
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follows from Eqgs. (16): Gy ~> ¢, and &, = 1 for u —>
oo which follows from the numerical solutions. One
of the possible functions that meets the requirements
stated will be

@ =u/(p+c), ¢ =45

where ¢, is selected so that K; coincides with the nu-
merical solution for u ~ 0.

Before determining the function &, it should be
noted that this function is used in the solution in the
ratio ®, /®, = G,/ Go only. The asymptote of the ratio
can be determined from the numerical solution analysis
and general considerations

const, u—>0

®/®=Gu/Go = [
1, “=> 00.

By analogy with the function ®, the function ®, is
constructed

®; = pu/(p+ c).

The constant ¢, is determined from the condition that
in a neutral-stratificated medium it is usually assumed
that v = 2/\ = 0.4. Hence we obtain

¢z = Vi Rey exp[—vo(4 ¢, Rey)'/4).

These solutions are applicable to the stationary stably
stratified UML of the ocean. Let us now consider the
solution applicable to shallow water. The coefficient K
is then assumed constant and W = ( at the z = H.
Reasoning in a similar way we arrive at the following

K= uNp + )7, (20)
W] = uy[(n + ) F(x)]"2,
¢ = tan"![tan(B(1 — x)) cotanh(B(1 — x))]

— tan~'[tan@ tanhB} — 7 /4,

L N e
e=~ (u Cl)[ (x) u+61]’

1/2
b= 2.5\6ui[F(x) S ] i
pto

B =mV0.5(p + c)H/\,

cos?(B(1 — x)) sinh?(B(1 — x))
+ sin?(B8(1 — x)) cosh?(B(1 — x))

F —
(x) cos?B cosh?8 + sin?g sinh?B

To make the analysis more convenient, let us also
present the solutions for the case when K = Ky(1 — x)?
is applicable to the UML of the ocean:

K= um + c))7'(1 — x)?,
| W = uB2(p + 1)/ (2m* + m)]V2(1 — x)™,

e =tan"!(1 + 1/m)'? — (m? + m)"? In(1 — x),
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H = M[2/(u + c1)]"?,
Y = h/X = V2B[(n + )™ = Rey ),
e= A (p+ e)[(1 = x)*" — wlp + )7,
b=2.5V2u5(1 = X)[(1 = X)*" — w(p + c) '],
B=mH/D =025V2{[2(2m + 1) ~ 1]2 — 1}1/4,
m=1n[(p+ ¢;)(n + c2)'1/In[Ren(p + ¢1)7'],
¢ = ¢; 't Rey, ™™,
mo = 0.5{[0.5((167¢*(c,”"/> — Re, /%)~
+ D2+ DIV2 -1} (21)

Solutions in both the variants K = Ko (1 — x)*and X
= Ko(1 — x)? are rather similar and are in good agree-
ment with the numerical solutions cited in section 3.
These solutions display an explicit dependence on outer
parameters. The difference is in the functional depen-
dence on depth: power and exponential. With the pa-
rameter 3 an explicit dependence of the basic charac-
teristic on the ratio h/D is observed. This problem is
singular and depth H is nothing but a characteristic of
the coeflicient K. Solutions have physical sense in the
domain [0, #]. As the stratification parameter p in-
creases, the angle of rotation of the velocity vector tends
to w/2 in the whole domain. Figure 6 illustrates the
behavior of hydrodynamic characteristics as a function
of the parameter u for the following outer values Re
= 10%, A = 10%cm. As the value p increases, the values
h/D and v, K, decrease, while the velocity module
| Wo| and the angle ¢, at the surface z = 0 increase. It
is seen that the solutions approach asymptotically of a
neutrally-stratified variant when x < 0.1. The solutions
proposed provide a realistic estimate of the UML char-
acteristics known to us. Note that drift currents almost
perpendicular to the wind direction in the UML have
been recorded in situ (Lacomb et al. 1972).

In the solutions for shallow water (20), with depth
H shoaling, drift velocities turn towards the wind di-
rection in accordance with Ekman solution.

With an increase of the parameter u, the coefficient

0.8 9209 6550.4
0.6 159 6070.3

1
0.4 4104 55302
024 5450 o.1j
003 o0d4sdoo

100

0.0001 0.001 0.01 0.1 1 10

F1G. 6. Dependence of the values v, ¢y, | Wyl, /D on the
stratification parameter y for the solution K = Kp(1 — x)2.
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Ko and, hence, the depth of Ekman’s friction layer D
decrease, therefore beginning with a certain value of
i, these solutions (20) become unacceptable. An UML,
of depth 4 smaller than the basin depth H, occurs for
which the solutions above will become valid.

The suggested theory of drift friction layer in shallow
water is fairly simple and physically conceivable, but
it needs experimental verification. Here there is the
preference of the linear velocity law to the conventional
logarithmic law. The origin of the logarithmic law is
traced back to the analytical solutions of Karman and
Prandtl (Schlichting 1969) in hydrodynamics and up
to now is still to be theoretically substantiated in geo-
physical hydrodynamics. The asymptotic formula of
logarithmic velocity profile quoted in section 2 may be
one of the exampiles.

5. Discussion

Empirical constants in b — ¢ model

€ K €2
cle—l;(PS+c3éPb)+(E ez)z~c263=0a (22)
K = c,b?/e, (23)

Cies C2¢s C3ey O, €, are not universal. (Pg is the shear
term, P, is the buoyancy force work). They are selected
to investigate free turbulent flows outside regions of
the laminar sublayer (Sukhorukov 1974; Kochergin
and Sukhorukov 1975). Among them, most significant
is the constant c¢,, whose variation limits are set by
degenerate laws of homogeneous isotropic turbulence,
1.4 < ¢, < 2. If ¢y, lie within this range, we have the
finite depth of turbulence damping diffusing downward
from the surface (K. L. Egorov, private communica-
tion). For turbulent motions in channels, the following
constants were selected as optimal: 6, = 1, ¢, = 1.9,
¢, = 0.08 (Kochergin and Sukhorukov 1975). To sat-
isfy the conditions & =~ 0.4u,/ f for the neutral stratified
case, the value of ¢, was taken equal to 1.4 in the
problems of UML modeling (Kochergin et al. 1976).

The constants, termed c-constants, used by Rodi
(1984), Omstedt et al.* (1983), and Kundu** (1980)
are:
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Table 2 shows the results of numerical solutions of
the stationary problem (1), (2), (11)-(14) with the
c-constants used by Rodi, Omstedt et al. and Kundu,
which model the deep ocean UML.

In these solutions, the velocity vector turns almost
perpendicular to the wind as parameter u increases.
Values K, b, ¢ monotonically decrease with depth.
However, the solutions turned out to be sensitive to
the magnitude of the parameter u even when its values
are small, and in this range of values u(u < 1), they
differ essentially from those shown in Table 1. For ex-
ample, depth /2 becomes greater than u,/f. When
> 1 the distinction is less significant, though dissipation
¢o differs essentially. The integral balance of the terms
of the TKE equation is critically different as compared
to that in Table 1. In it the contribution to potential
energy dominates over dissipation which accounts for
the solutions sensitivity to parameter u even when its
values are small. The ratio ¢;/( Ujou% ) does not exceed
0.1% which is less than experimental estimates—0.4%
and 1.2% (Oakey 1985). The constant ¢,.c;. becomes
more important with an increase of parameter u. Table
2 shows solutions at u = 10 where this constant takes
the values 0.8 and 0.288. In this case, the solutions
become more similar to those presented in Table 1;
there occurs a change in the balance of terms ¢; and
gaQh and the ratio ¢;/(Uyoly ) increases.

The selection of constants in & — ¢ model should
originate from the field data on the UML depth /2 and
the TEC K(z). The UML depth is conventionally be-
lieved to be determined by the relation 2 ~ 0.4u,/f
(rn = 0). Not arguing the validity of this relation, let
us be careful about the value 0.4. Depth £ is experi-
mentally inferred from the temperature gradient cre-
ating the conditions of stable stratification, even if there
is no heat flux at the surface. This temperature gradient
may have a profound effect on the modeled depth 4,
particularly when the c-constants are used. Note that
the formation of the jump of the density layer is an
essentially nonstationary process (Marchuk et al.
1977).

Hence, of great interest are nonstationary prognostic
calculations of natural meteo-information as compared
with observations (Fridrich et al. 1981; Martin 1985;

Cye Cae  C1C3e Cy 8  *ci.C3 **ci«c.  Sukhorukov et al. 1986). We have carried out nu-
145 192 145 009 13 0.8* 0.288** merical calculations with a nonstationary system of
TABLE 2. Calculated hydrodynamic values at different values of the parameter p.

u 1 10. 50. 100. *10. **10.
h/D 0.47 0.16 0.14 0.12 0.19 0.19
%o (degg 48. 79. 80. 80. 74. 73.
Ko (cm?s7!) 1935 253 91 55 178 135
bo (cm? 572 1.7 1.7 15 1.3 2.3 24
& (X107%) (cm? s7%) 0.1 1.0 2.0 3.0 30 40
h (m) 92 11.5 6.0 4.0 1.5 10.0
el (uots3) (%) 38 36 21 16 56 68
8o Qhf(ug}) (%) 62 64 79 84 44 32
e/ (Uroty) (%) 0.07 0.07 0.08 0.09 0.18 0.27
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Egs. (1), (2), (11)-(14), to which the equation of
heat transfer is added

F;
T, = {KTZ — ——[0.4 exp(—a,z)
CpPo

+ 0.6 exp(—azz)]} , (24)

z

boundary conditions of heat balance being estimated
from hourly meteorological data at ocean station “C”
for June 1979. In the turbulence equations the c-con-
stants are used. We compared these calculations to the
similar ones by Sukhorukov et al. (1986). In this work,
a rather realistic prediction is obtained of the temper-
ature field in the upper ocean layer. Compared solu-
tions showed that the tendencies of stationary solutions
given in Tables 1, 2 remain true. For example, if wind
stress is greater than 1 dyn cm 2 the value of the coef-
ficient K|, is greater than 103 cm?s™!, and depth 4 is
likely to be two times larger than its observed values
in extreme conditions. The accuracy of UML depth
determination is restricted by temperature measured
in the field at standard levels. Depth / being modeled
reaches its maximum of 60 meters with wind stress
equal to 2 dyn cm 2, The mean value of the ratio
€1/ (Uyou) over the whole period of modeling is 0.1%
as compared to 0.58% estimated by Sukhorukov et al.
(1986). These calculations were made with a 15-min
time step. Calculations using an hour time step and
interative averaging of the K coefficient on this interval
showed the discrepancy in the modeled depth 4 to be-
come insignificant though discrepancy in the magni-
tude Kj is still large: it is sometimes half an order greater
than the values with the constant given by Sukhorukov
(1974). In connection with this, note that even in the
detailed calculations by Marchuk et al. (1977) the rate
of deepening of the homogeneous layer depends on
space and time steps and on the a priori value of the
K-coefficient at the boundary z = / and deeper. Thus,
in a nonstationary problem with in situ data, the dif-
ference of constants in the model does not affect the
modeled depth significantly.

Let us now address boundary conditions in the b
— e model (Kb, = 0, Ke, = 0) implying the absence of
turbulent fluxes from the wave-induced surface or
symmetry conditions at z = 0.

For comparison, calculations similar to those pre-
sented in Table 2 were carried out with the c-constants
and boundary conditions of the form:

Bl) z=0: Kb, = —ud, e = Ps+ P, + (Kb,),;,
B2) z=0:Kb, =0, e = Ps+ P, + (Kb,);;

which in the explicit form include a turbulent flux de-
pending on wind stress (B1). The dissipation rate ¢ is
a very changeable feature, hence, a priori boundary
conditions for it or its flux and their inaccuracy may
result in a severe error in the theoretical solution. The
conditions of balance in B1, B2 are preferable in this
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sense, but the mathematical question about the solu-
tions uniqueness remains to be answered. In both cases
numerical experiments found that the velocity vector
rotates nearly perpendicular to the wind direction as
parameter u increases. Magnitudes b and ¢ in solutions
keep decreasing with depth and the K(z) coefficient
profile is governed by the conditions at z = 0. If the
conditions Kb, = 0, Ke, = 0 are satisfied, the K(z)
coefficient decreases monotonously with depth (K,
= 2Kb,/b — Ke,/e = 0). If only the flux Kb, = 0, then
K, = —Ke,/e > 0(e, < 0) and K(z) coeflicient has its
local maximum in the region. When the condition Kb,
= —y3 is satisfied, the K(z) coefficient may also reach
its maximum in the region, which is verified by the
calculations when u < 10; if u > 10, K(z) coefficient
takes on its maximum value at the boundary z = 0.
The fact that the boundary z = 0 is deeper than the
free surface does not conflict with the possibility for
the K(z) coeflicient to take on its maxima values here.
Pollard (1979) gives some estimates of values of the
K(z) coefficient which are on the order of 100 cm?s™*
and argues that its maxima values are near the sea sur-
face. The UML depths /4 are almost the same in both
the cases Bl and B2 (. = 0.01, 2 = 150 m) and at u
> 1 are consistent with the values listed in Table 2.
The magnitudes by, ¢ exceed the values presented in
Table 2, particularly in conditions B1. When p > 1,
the solutions are more similar to those given in Table
1 and, in all the likelihood, more realistic

Bl: p=1: K =300 cm?s™, by = 4 cm? 572, ¢
=5X 103 cm?s3, h=55m, ¢/(Uul) = 0.7%.

B2: p=1: K=200cm?s™!, by = 3 cm? 572, ¢
=4X 102 cm?s73, h=55m, ¢/(Upu) = 0.5%.

In our opinion, further investigations for determin-
ing the constants in the » — ¢ model are necessary to
combine with the study of conditions at the ocean sur-
face.

The idealized boundary condition at the base utilized
in section 3 for shallow water b, = 0, ¢ = Pg + P,
+ (Kb,),, may be considered as a case of limiting
roughness when the direct effect of the solid wall on
turbulence is ruled out, its influence being realized by
the condition W = 0. Or consider the case of a smooth
bottom streamline beyond the region of a viscous sub-
layer when the velocity value should be given, taking
into account the logarithmic law. Note that the bottom
layer in a deep ocean is not similar to the one consid-
ered above.

We carried out numerical experiments, making al-
lowance for the base roughness in a shallow water in
the boundary conditions:

Cl)z=0:Kb,=0,Ke, =0, z=H: W=0,b
= VKe/c,, € = Pg+ P, + (Kb,),, K = kzgity;

C2) z=0:Kb, = —ud, e = Ps + P, + (Kb,),; z
=H: W=0,b=VKe/c,, e = Ps+ P, + (Kb,),, K
= KZoUy;



ki)

1148

In the boundary conditions at z = H, only one as-
sumption K = kzpu, is introduced. Numerical exper-
iments showed that in both cases with the c-constants,
fairly realistic solutions are obtained as compared to
those described in section 3. A decrease in depth H
results in the phenomena stated by Theorem 2. The
coeflicient K(z) increases from the bottom upward as
is usually the case in turbulent flows near the wall. As
the roughness length z, increases and depth H de-
creases, the K(z) coefficient tends to become constant
and the phenomena stated in Theorem 3 arise.

The phenomena stated in Theorems 1-3 are pre-
dicted by the b — ¢ model. Further investigations should
be carried out such as a clarification of the role of
boundary conditions for turbulence models aimed at
the study of quantitative laws of the formation of
boundary drift friction layers of the ocean.

6. Conclusion

Numerous solutions obtained over the 80 years of
development of the stationary theory of drift currents
made researchers conclude that the velocity hodograph
is relatively insensitive to the shape of the VTE coef-
ficient (Brown 1978). This is valid for large values of
theratio H/Dand H/Dy,(H/D > E, E is the number
introduced in section 2). For small values of H/ D and
H/ Dy, whatever the K(z) coefficient profile, the ve-
locity hodograph is basically determined by the
boundary condition at z = H: slip KW, = 0 or no-slip
condition W = 0. In this case, analytical solutions state
that two fundamentally different types of motion can
exist; velocities tend to turn orthogonal to (towards)
the wind direction and friction stress components tend
to be linear (constant) in the whole domain when a
slip (no-slip) condition is satisfied at the boundary,
respectively. These assertions were formulated as two

‘Rheorems. One of them asserts a certain minimalization
principle; the system tends to the minimum inflow of
kinetic energy from the atmosphere to the ocean and,
correspondingly, to turbulence. The other theorem
validates the conditions under which constant friction
stress exists. This fact is broadly used in hydrodynamics
and geophysical hydrodynamics. The third theorem
shows in a general form that the linear velocity profile
is formed when the K( z) coefficient tends to a constant
value at small ratios H /Dy and a no-slip boundary
condition. Under conditions of theorems 2, 3 theoret-
ical grounds are given for the existence of the linear
plus logarithmic velocity profile in the near bottom
sublayer, which is well known in the surface layer of
the atmosphere.

Numerical solution of turbulent drift friction layer
of the ocean equations where the K(z) coefficient was
inferred from the equations of turbulent energy and
turbulent dissipation, confirm the fact that these two
types of motion can possibly exist. They demonstrate
that the first type of motion manifests itself as the ex-
ternal dimensionless stratification parameter increases,
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which causes an increase in the oceans stable stratifi-
cation. This type of motion is inherent in the UML.
It is under such conditions, in summer, that drift cur-
rents almost orthogonal to the wind direction were ob-
served in the upper layer of the Mediterranean (La-
comb et al. 1972). The second type of motion with
the drift velocity towards the wind direction and with
the layer of constant fluxes applies to shallow water
where drift currents reach to the bottom. The condi-
tions are discussed under which the formation of the
linear velocity profile and constant values of turbulence
characteristics are preferable in this case. These theo-
retical results need experimental testing.

Analytical solutions of the equations of the turbulent
drift friction layer of the ocean for the two types of
motion are constructed in elementary functions, where
the effect of external parameters is clearly seen.
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