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Abstract 

Two time-dependent equations for wave propagation on rapidly varying topography are 
developed using different theoretical approaches and are shown to be identical. The developed 
equations include higher-order bottom effect terms proportional to the square of bottom slope and 
to the bottom curvature. Without these higher-order terms, the equations developed are reduced to 
the time-dependent mild-slope equations of Smith and Sprinks and Radder and Dingemans, 
respectively. For a monochromatic wave, the equation reduces to the extended refraction-diffrac- 
tion equation of Masse1 or the modified mild-slope equation of Chamberlain and Porter, which in 
turn, without the higher-order terms, reduces to the Bed&off’s mild-slope equation. For a 
monochromatic wave, the theory is verified against other theoretical and experimental results 
related to the waves propagating over a plane slope with different inclination and over a patch of 
periodic ripples. For random waves, numerical tests are made for the transmission of unidirec- 
tional random waves normally incident on a finite ripple patch. 0 1997 Elsevier Science B.V. 

Kepvrds: Numerical model; Surface waves; Wavr equation; Wave scattering 

1. Introduction 

The mild-slope equation developed by Berkhoff (1972) has not only been used in its 
original form of an elliptic equation but also provided the basic governing equation for 
the development of other wave equations such as the parabolic equation (Radder, 1979) 
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and hyperbolic equations (Copeland, 1985) allowing the generation of numerical 
models which could predict reasonably well the evolution of monochromatic waves due 
to the combined effect of refraction and diffraction in coastal waters. As an effort 
towards modeling the propagation of random waves, time-dependent mild-slope equa- 
tions have also been developed. Smith and Sprinks (1975) developed a hyperbolic 
time-dependent mild-slope equation using Green’s formula and Radder and Dingemans 
(1985) proposed a canonical form of the time-dependent mild-slope equations based on 
the Hamiltonian theory of surface waves. Radder and Dingemans’ equations consist of 
two equations for two unknowns of the water surface elevation and the velocity potential 
at the free surface. Radder and Dingemans showed that their equations could be reduced 
to the Smith and Sprinks’ equation by eliminating the surface elevation. Kubo et al. 
(1992) also developed another type of time-dependent mild-slope equation using the 
Taylor series expansion technique for waves with local frequencies different from the 
carrier frequency. The linear dispersive properties of the time-dependent mild-slope 
equations were verified by Kirby et al. (1992) and Kubo et al. (1992) who simulated the 
propagation of wave groups using, respectively, the equation of Radder and Dingemans 
and the equation of Kubo et al. Recently, on the other hand, Nadaoka et al. (1994) 
developed a time-dependent nonlinear mild-slope equation which was shown to be the 
nonlinear extension of the equation of Smith and Sprinks. 

In the aforementioned models, the mild-slope assumption Vh/kh +K 1 (where V = 
horizontal gradient operator, h = water depth and k = wavenumber) was made so that 
the terms of O((Vh)*) and O(V*h) were neglected. Recently, by using the Galerkin-ei- 
genfunction method, Masse1 (1993) developed an extended refraction-diffraction equa- 
tion which includes these higher-order bottom effect terms as well as the evanescent 
modes. More recently, Chamberlain and Porter (1995) proposed a modified mild-slope 
equation which includes the higher-order bottom effect terms as in Massel’s equation 
but not the evanescent modes. Both Masse1 (1993) and Chamberlain and Porter (1995) 
demonstrated the applicability of their equations to rapidly varying bottom topography 
for which Berkhoff’s mild-slope equation could fail to produce adequate approxima- 

tions. 
In the present study, using Green’s formula method and the Lagrangian formulation, 

we derive two equivalent time-dependent wave equations for the propagation of water 
waves on rapidly varying bottom topography. Without the higher-order bottom effect 
terms, each of the derived equations reduces to the time-dependent mild-slope equations 
developed by Smith and Sprinks (1975) and Radder and Dingemans (1985) respec- 
tively. A reduced form of the derived equation for a monochromatic wave is the same as 
the modified mild-slope equation developed by Chamberlain and Porter (1995) and the 
Masse1 (1993) equation with the evanescent modes neglected. 

For the case of a monochromatic wave, first the developed equation is applied to the 
problem of wave reflection from a plane slope with different inclination, which has been 
tested by Booij (1983) to examine the accuracy of the mild-slope equation with respect 
to bottom slope. Second, the equation is applied to the problem of resonant Bragg 
reflection of monochromatic waves due to singly or doubly periodic ripples to show its 
capability for rapidly varying topography. Finally, in order to investigate the applicabil- 
ity of the time-dependent wave equation to random waves, numerical tests were made 
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for the transmission of unidirectional random waves normally incident on a finite ripple 

patch. 

2. Derivation of the wave equations 

As mentioned in Section 1, the time-dependent mild-slope equations have been 
derived using either Green’s formula (Smith and Sprinks, 1975) or the Hamiltonian 
theory of surface waves (Radder and Dingemans, 1985). The latter is equivalent to the 
Lagrangian formulation of Kirby (1984). Here we adopt the same approach keeping the 
higher-order bottom effect terms neglected in the previous derivations of the time-depen- 
dent mild-slope equations. 

2.1. Green’s formula method 

In the classical linear theory of water waves, the velocity potential 4(x, y, z, t> is 

governed by 

V2++&=0 (-hsz<O) (1) 

+,= -fgt, (z=O> (2) 

&= -Vh.V+ (z= -h), (3) 

where g is the gravitational acceleration and the vertical coordinate z is measured 
vertically upwards from the still water level. The solution to Eqs. (l)-(3) may be 
expressed as 

4(x, y, z, t) =f( x, y, z)$( x, y, t) + Cnonpropagating modes, (4) 

where f= cash k(h + z)/cosh kh is a slowly varying function in the horizontal 
coordinate (x, y). The wavenumber k( X, y) must satisfy the dispersion relationship, 
which relates k to the wave angular frequency w and the water depth h( x, y) by 

w ‘=gktanh kh. (5) 

In order to extract the propagating component of 4, we apply Green’s second identity to 

f and 4 

Neglecting the nonpropagating modes and using Eqs. (l)-(4), the integrals are manipu- 

lated to finally obtain 

&-V.(CC$6) ( + w2-k’CC&$-g Vh+Vj-];=_,+/“fVZfdz $=O, 
( -h i 

(7) 

where C and Cg are the phase speed and group velocity, respectively. The terms in the 
last parenthesis of the preceding equation are 0((Vh)2) and 0(V2h) and were neglected 
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in the equation of Smith and Sprinks (1975). Here, we keep these terms to include the 
effect of rapid depth variation. Using the following relationships: 

(8) 

(9) 

and after a lengthy algebraic manipulation, Eq. (7) becomes 

$,, - v . (ccy$j + ( wz - k’CC,)& + o*{ R,( vq2 + R*Vh)b; = 0, 

where 

(10) 

R, = (1’) 

R, = &W’ + rr,z* + 44). (‘2) 

The expressions of W,, q, and Zi are given in Appendix A. The coefficients R, and R2 

could be considerably simplified as in Masse1 (1994) and Chamberlain and Porter 
(1995). 

For a monochromatic wave, the model equation becomes 

which is the same as the equation for propagating wave mode developed by Masse1 
(1993) except for minor algebraic errors in W, and W, of the Massel’s equation. It 
should also be noted that for a monochromatic wave Eq. (7) reduces to the modified 
mild-slope equation proposed by Chamberlain and Porter (1995). Conclusively the 
time-invariant form of the present equation is the same as the extended refraction-dif- 
fraction equation of Masse1 and the modified mild-slope equation of Chamberlain and 
Porter. This equation has been used by Suh and Park (1995) for the prediction of 
reflection coefficient of a composite-type perforated-wall caisson breakwater including 
the effect of a rubble mound foundation with a relatively steep fore slope. 

2.2. Lagrungiun ,formulation 

The variational principle governing it-rotational fluid motion is given by (Luke, 1967) 

~///L(.x, I’, t, 4,V4, $J,, rl)dydxdt=O, 
f x \ 

(‘4) 

where q is the free surface displacement. The preceding equation implies that the 
integral of the Lagrangian L over all space and time is stationary with respect to small 
variation. Luke (1967) gives 

L= 
/ 

’ l’dz= -1’) [~,+;(V#+*+:@+sz]dz 
-h Z’ -h 

(15) 
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Retaining the terms in second order in the Lagrangian L and using the expression for 4 
in Eq. (4) after neglecting the nonpropagating evanescent modes, we get 

+ 
/ 

’ f Vfdz&‘$ + +gq2. 
-h 

(16) 

The stationariness of L with respect to 7 gives 

&= -877 ( 17) 

which is the linearized dynamic free surface boundary condition. The stationariness of L 

with respect to 4, after integrating by parts the fifth term on the right side of Eq. (16) 
and using the Leibnitz rule, gives 

r&= -v. O”-k2ccg6- i g 
Vh.[fVfli=_,+j_OhfV2fdi 

(18) 
The terms in the last parenthesis of the preceding equation is equivalent to the terms in 
the last parenthesis of Eq. (7). Therefore, the preceding equation can be written as 

co2 - k2CC 
g $+ ;{R,(Vh)2+K2V2h}$. 

g 
(19) 

Eqs. (17) and (19) constitute a canonical form of time-dependent wave equations on the 
bottom with rapid depth variation. The terms in the brace of the preceding equation are 
O((Vh)‘) and 0(V2h) and were neglected in the equation of Radder and Dingemans 
(1985). The surface elevation n may be eliminated from Eqs. (17) and (19) in order to 
obtain Eq. (lo), proving the equivalence of the two models which were developed by 
different methods. 

3. Numerical examples 

In order to validate the capability of the derived wave equation in the case of rapid 
depth variation, we first apply the time-invariant form of the equation (i.e., Eq. (13)) to 
the problem of reflection of monochromatic waves from a plane slope with different 
inclination, which has been tested by Booij (1983) to investigate the accuracy of the 
mild-slope equation with respect to bottom slope. Secondly, the equation is applied to 
the simulation of the resonant Bragg reflection of monochromatic waves due to singly 
and doubly periodic ripple patch, for which experimental data have been presented by 
Davies and Heathershaw (1984) and Guazzelli et al. (1992) respectively. Finally, a 
numerical example of the transmission of random waves over a periodic ripple bed is 
presented to demonstrate the applicability of the time-dependent wave equation to the 
simulation of random waves on rapidly varying topography. 
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For all the problems mentioned above, the bottom contours are straight and parallel to 
each other. For a monochromatic wave propagating over a straight and parallel bottom 
contour, Masse1 (1993) showed that Eq. (13) could be reduced to an ordinary differential 
equation with the upwave and downwave boundary conditions, which could be approxi- 
mated by a system of linear equations, A x = b, where A is a tridiagonal band type 
matrix, x is a column vector, and b is also a column vector. The derivation of this 
equation is referred to Masse1 (1993). For the simulation of the propagation of random 
waves, the Adams-Moulton predictor-corrector method is used to solve Eqs. (17) and 
(19), which will be explained later in Section 3.3. 

3.1. Wave rq7ection from a plane slope 

By numerical computation for the reflection coefficient of a monochromatic wave 
normally incident on a plane slope, each end of which is connected to a constant-depth 
region, Booij (1983) has shown that the mild-slope equation gives accurate results up to 
1:3 slope through comparison with a finite element numerical model. The wave period 
in the Booij’s test was 2 s and the water depths on the upwave and downwave sides of 
the slope were 0.6 and 0.2 m, respectively, so that the difference of the water depth 
between the two constant-depth regions was 0.4 m. 

Booij’s finite element model solution, however, covers the slope range steeper than 
about 1:3 and no data is provided for the milder slopes. In order not only to examine the 
performance of the present equation but also to re-assess the accuracy of the mild-slope 
equation, we constructed a finite element model for the Booij’s problem. An example of 
the finite element mesh is shown in Fig. 1 for the slope of 1:3. The finite element model 
is also based on linear potential wave theory. The near-field solution including the 
inclined slope was discretized by 8 noded isoparametric elements with quadratic shape 
functions. The far-field region was modeled using infinite elements whose shape 
function was derived from the usage of the progressive and first evanescent wave 
components in the analytical boundary series solutions (see Park et al., 1991). The shape 
function satisfies the radiation boundary condition at infinity. To properly model the 
behavior of the scattered waves, the infinite elements on the upwave and downwave 
sides were located at distances five times the constant water depth from both ends of the 
slope. The finite-difference model domain for the present equation and the mild-slope 
equation was taken the same as that for the finite element model as shown in Fig. 1 and 

no. of nodal points = 755 
no. of finite elemefh = 208 
no. of infinite elements = 8 unit: m 

Fig. I Finite element mesh for the bottom slope of 13 of the Booij (1983) problem. 
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it was divided by 999 equally spaced intervals in the direction of wave propagation 
without regard to the bottom slope. 

Fig. 2 compares the present equation, the mild-slope equation and the finite element 
model results. The abscissa, b, in the figure indicates the horizontal length of the plane 
slope normal to the wave crest lines. First it should be mentioned that for the relatively 
steep slope range our FEM model results are almost the same as the Booij’s EEM model 
results in which triangular elements were used. It is shown that the present model gives 
reflection coefficients very close to those of the finite element model and the reflection 
coefficient becomes stable even for very steep slope, while the mild-slope equation 
underpredicts the reflection coefficient for steeper slopes. In the limiting case of the 
vertical step (i.e., b = 0), the finite element model gives the reflection coefficient of 
0.228, which is not so different from the value of 0.225 for b = 0.1 m. Even for very 
mild slopes, the present equation and the mild-slope equation show some difference, and 
results of the finite element model coincide with the present equation rather than the 
mild-slope equation. 

It has been well known that the mild-slope equation gives accurate results up to 1:3 
slope. However, the results shown in Fig. 2 indicate that this is not true. It should be 
noted that the bottom configuration of the Booij’s test includes the effects of slope 
discontinuity at both ends of the slope as well as the bottom slope. The former effect 
may be represented by the bottom curvature term of the present equation, which is 
nonzero only at the ends of the slope in the Booij’s problem (The bottom curvature at 
the ends of the slope is approximately given by central-differencing d’h/dx*, i.e., 
d2h/ax2 = [h(x + 6x) - 2hC.x) + h(x - SX)I/(SX)~ where 6x is the grid spacing in 
the wave propagation direction.) Thus, if we want to assess the accuracy of the 
mild-slope equation merely for bottom slope, we have to use the mild-slope equation 
including the bottom curvature term, i.e., Eq. (13) with R, = 0. This result is shown in 
Fig. 2 by a dash-dotted line, which gives somewhat larger reflection coefficient than the 

Fig. 2. Reflection coefficient 

= present equation, 

bottom curvature effect. 

I 

1.0 

b (ml 

versus horizontal length of a plane slope; 0 = finite element model, 
- - ~ = mild-slope equation, = mild-slope equation including the 
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present equation for steeper slopes but is almost identical with the present equation for 
milder slopes. 

Recently Porter and Staziker (1995) have tested the mild-slope equation and the 
modified mild-slope equation for this problem, showing that these equations do not 
ensure continuity of mass flow at locations where the bed slope is discontinuous and the 
use of inter-facial jump conditions at such locations improves the accuracy of these 
equations. The solution technique of Porter and Staziker is different from that of the 
present study. In the present study the whole domain including the slope and the 
horizontal bed regions was modeled as one, but Porter and Staziker divided the domain 
into three regions (i.e., two horizontal bed regions and the sloping bed region) and 
imposed matching conditions at the interfaces between neighboring regions. Therefore, 
in the solution of Porter and Staziker, the effect of bottom curvature is not included 
directly in the calculation but it is included through the use of interfacial jump condition. 
A comparison between Fig. 2 and the corresponding figure in the Porter and Staziker 
paper (Fig. 2a) shows that the two results are almost identical. This means that the effect 
of the use of the interfacial jump conditions in the Porter and Staziker solution is 
equivalent to the inclusion of the bottom curvature term in our solution. Another 
important thing we can see in Fig. 2 is that when only the bottom slope is concerned the 
mild-slope equation can give accurate results up to 1: 1 slope rather than 1:3 slope. But it 
should not be overlooked that the inclusion of the bottom curvature term played an 
important role in improving the accuracy of the mild-slope equation for milder slopes. 

3.2. Resonant Bragg reflection of monochromatic waues 

The problem of reflection of surface waves by a patch of periodic bottom undulations 
has recently received a great deal of attention. When surface waves are normally 
incident on a region of long-crested periodic bottom undulation, a significant amount of 
incident wave energy is reflected at the point where the wavenumber of the periodic 
bottom undulation (K) is twice the wavenumber of the surface wave (k), that is, 
2 k/K = 1. This wave reflection, which has been known as Bragg reflection, has been 
studied in coastal engineering because it may either provide a measure to protect shore 
face from the full impact of the waves by partially reflecting incident waves having the 
appropriate wavelength or explain the mechanism of the growth of periodic sand bars 
due to the interaction between the surface wave and erodible sand bed in nearshore 
regions. 

The Bragg reflection of surface waves has been studied both by laboratory experi- 
ments and through theoretical or numerical models. Davies and Heathershaw (1984) 
reported experimental data for the reflection of waves due to singly sinusoidal ripple 
patches with different numbers of ripples. These data have been used for comparison 
with various numerical models by a number of researchers including Davies and 
Heathershaw (1984) themselves, Dalrymple and Kirby (1986), Kirby (1986) O’Hare 
and Davies (1993) Masse1 (1993) and Chamberlain and Porter (199.5). Similar labora- 
tory experiments were reported by Hara and Mei (1987) Benjamin et al. (1987) and 
Kirby and Anton (1990). Especially the experimental data of Kirby and Anton revealed 
that the second-order Bragg reflection occurred in the vicinity of 2 k/K = 2 in addition 
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to the main Bragg resonant peak in the vicinity of 2 k/K = 1 and that the resonant peaks 
were shifted towards smaller values of 2 k/K compared with the values of 2 k/K = 1 

and 2 which were predicted by the lowest-order theories of Miles (198 1) and Mei 
(1985). 

A more intensive study on the higher-order Bragg reflection was recently made by 
Guazzelli et al. (1992) who carried out laboratory experiments for reflection of surface 
waves by doubly sinusoidal ripple beds. In the case of a bed consisting of the 
superposition of two sinusoids having different wavenumbers, K, and K, (K, > K,), 
Guazzelli et al. showed that the first-order Bragg reflections occurred in the vicinities of 
2k = K, and K, while the second-order reflections were revealed in the vicinities of 
2k=2K,, 2K,, K, + K, (harmonic Bragg reflections) and 2 k = K, - K, (sub- 
harmonic Bragg reflection). They also showed that the center of each resonant peak was 
slightly shifted towards a smaller wavenumber than the predicted value given above. 

First, the derived equation is compared with the experimental data of Davies and 
Heathershaw (1984) for the reflection of monochromatic waves by a singly periodic 
ripple patch. Secondly, the equation is applied to the simulation of the higher-order 
Bragg reflections due to doubly sinusoidal ripple beds for which experimental data were 

reported by Guazzelli et al. (1992). 
The test conditions of the Davies and Heathershaw (1984) experiment are summa- 

rized in Table 1, in which A is the ripple amplitude, A is the ripple wavelength, IZ is the 
number of ripples, and h, is the water depth in the region of flat bottom. The water 
depth is given by 

h x50 

h(x) = h:‘Asin(Kx), OSxlnh (20) 
h C’ x>nh 

Reflection coefficients computed by the present model are given by solid lines in 
Figs. 3-5 for the beds D,, D,, and D,, respectively, in comparison with the experimen- 
tal data. Also shown in these figures are the results obtained using the mild-slope 
equation (dashed lines). As shown in Figs. 3 and 4, for the beds D, and D, for which 
waves are relatively long compared to the water depth, the results of the mild-slope 
equation are in close agreement with the results of the present model. Fig. 5 shows that 
for the bed D, the mild-slope equation, while correctly positioning the resonant 
reflection, completely fails to predict its magnitude. In this case, waves are relatively 

Table 1 

Test conditions of the experiment of Davies and Heathershaw (1984) 

Bed A (cm) h(K) (cm) n h, (cm) 

D, 5 100 (0.0628 cm- ‘) 2 15.6 

D, 5 100 (0.0628 cm- ‘1 4 15.6 

D? 5 100 (0.0628 cm- ‘) 10 31.3 
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1.0 

0.0 , i I 
0 1 2 3 

2k/K 

Fig. 3. Comparison of the present equation and the mild-slope equation with the experimental data of Davies 

and Heathershaw (1984) for the bed D,; - = present equation, - - - = mild-slope equation, 0 = 
experimental data. 

1 2 3 

2k/K 

Fig. 4. Same as Fig. 3, but for the bed D, 
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0.0 +- , 

0 1 2 3 

2k/K 

Fig. 5. Same as Fig. 3, but for the bed D,. 

short compared to the water depth so that violation may be made on the assumption of 
the mild-slope equation that the depth must vary slowly over a wavelength. The present 
model which includes the higher-order bottom effect terms, however, describes the 
resonant peak very well. The scattering of the experimental data and the disagreement 
between theory and data become apparent for the beds D, and D, probably because of 
the reflection from the beach at the end of the wave channel. Davies and Heathershaw 
(1984) indicated that the reflection coefficients for the beach were of the order of 0.1 or 
less for the bed D,, but those for the beds D, and D, were of the order of 0.2. 

The next example of the Bragg reflection is that due to doubly sinusoidal ripple beds 
for which the experimental data of Guazzelli et al. (1992) are available. The test 
conditions of the experiment are summarized in Table 2, in which A is the ripple 
amplitude taken the same for both ripples of different wavelengths, A, and A2 are the 
wavelengths of the longer and shorter ripples, respectively, m = h,/h, = K,/K, is the 

Table 2 
Test conditions of the experimental of Guazzelli et al. (1992) 

Bed A (cm) h&K,) km) Az( K? ) km) 

G, 1 12 (0.52 cm- ‘) 6c1.05 cm-‘) 
G* 0.5 6c1.05 cm-‘) 4(1.57cm-‘1 

% 1 6 (1.05 cm-‘) 4 (1.57 cm-‘) 

m 1 (cm) 

2 48, 192 
1.5 48 

1.5 48 

h, (cd 

2.5, 3, 4 
2.5, 3, 4 

2.5, 3, 4 
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ratio of the larger and smaller ripple wavelengths, 1 is the total length of the ripple 
patch, and h, is the water depth in the region of flat bottom. The water depth is given 

by 

I 

h,, XSO 

h(x) = h,-A[sin(K,x) +sin(mK,x)], O<x~l (21) 

h,, X,1 

For the bed G,, the larger ripple wavelength is twice the smaller ripple wavelength so 
that the subharmonic Bragg resonance peak at k = (K, - K,)/2 would coincide with 
the Bragg peak due to the larger wavelength ripples at k = K,/2. For the beds G2 and 
G,, the larger ripple wavelength is 1.5 times the smaller ripple wavelength so that the 
subharmonic Bragg resonance peak would appear at the wavenumber smaller than that 
of the Bragg peak due to the larger wavelength ripples. For each bed, tests were made 
for three different water depths to examine the importance of relative ripple amplitude 
with respect to the water depth. In the present study, only the data corresponding to 
h, = 2.5 and 4 cm are compared with the numerical model results because the data for 
h, = 3 cm show intermediate behavior between these two extreme values as described in 
the paper of Guazzelli et al. (1992). 

Fig. 6 shows the comparison between the measured reflection coefficients and the 
predictions of the present equation and the mild-slope equation for the bed, G, , with the 
total length of the ripple patch, 1 = 48 cm. The mild-slope equation gives erroneous 
results compared to the present equation, and as expected, the wave reflection in 
shallower water is much higher than deeper water. Also, in shallower water, the 
occurrence of harmonic Bragg reflections at 2k/K, = 3 and 4 and the shifts of the 
Bragg resonance peaks towards smaller wavenumbers are obviously observed in both 
experiment and prediction. In deeper water, however, the shifts of the resonant peaks are 
minute and the harmonic Bragg resonances are predicted not to occur by the present 
equation even though the experimental data do not cover this range of wavenumbers. 

Results obtained for the same bed G, but with a longer length of the ripple patch, 
1= 192 cm, are shown in Fig. 7. The features described above are again shown as far as 
the shift towards a smaller wavenumber and the occurrence of the harmonic Bragg 
reflection are concerned. However, many more oscillations are present between the main 
resonant peaks of which the amplitude increases and the peak width decreases compared 
with those of the shorter length of ripple patch (Fig. 6). This feature has also been 
observed for singly sinusoidal ripple beds by Davies and Heathershaw (1984). 

Fig. 8 shows the results for the bed G, for which the subharmonic Bragg resonant 
peak is expected to occur in the vicinity of 2k/K, = 0.5 in addition to the main and 
harmonic resonant peaks at larger wavenumbers. Again the wave reflection in shallower 
water is much higher than deeper water. In this case, however, the shifts of the resonant 
peaks towards smaller wavenumbers are not prominent in both water depths probably 
because the ripple amplitude is smaller than that of the bed G,. The subharmonic 
resonant peak is predicted by the present equation though it somewhat underpredicts the 
experimental data. 

Fig. 9 shows the results for the bed G, which is the same as G, except for the larger 
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0.6 

2 

2k/K13 
4 

(b) 

0 1 2 

2k/K13 
4 5 

Fig. 6. Comparison of the present equation and the mild-slope equation with the experimental data of 
Guazzelli et al. (1992) for bed G, with 1= 48 cm; ~ = present equation, - - - = mild-slope 
equation, l = experimental data. (a) h, = 4 cm, (b) h, = 2.5 cm. 

ripple amplitude. The magnitude of the subharmonic resonant peak is comparable to the 
main peaks, and in shallower water the prominent harmonic resonant peaks at larger 
wavenumbers are predicted though experimental data are not available in this range of 
wavenumbers. The shifts of the resonant peaks towards smaller wavenumbers are also 
observed in both experiment and prediction. 
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Fig. 7. Same as Fig. 6, but for the bed G, with I = 192 cm. 

The experimental data of Guazzelli et al. (1992) have been used for comparison with 
the successive application matrix model of O’Hare and Davies (1992) and the extended 
mild-slope equation model of Kirby (1986) by O’Hare and Davies (1993). Guazzelli et 
al. (1992) also compared the experimental data with their own numerical model which is 
based on the approach of Takano (1960). The model of Guazzelli et al. (1992) is similar 
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Fig. 8. Same as Fig. 6, but for the bed G,, 

to that of O’Hare and Davies (1992) in that the bed is discretized into a series of 
horizontal shelves but differs in that it can include not only the propagating wave mode 
but also the nonpropagating (or evanescent) wave modes generated at each discontinuity 
with neighboring steps. Both Guazzelli et al. (1992) and O’Hare and Davies (1993) 
concluded that the inclusion of the evanescent wave modes has the general effect of 
shifting the resonance peaks towards smaller wavenumbers and reducing the size of all 
the higher-order resonances, except for the subharmonic resonance which is enhanced. 
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3.3. Transmission of random waues over a ripple patch 

So far we tested the derived equation for the problems of monochromatic waves. One 
of the advantages of a time-dependent wave equation is that it can be used for the 
simulation of random waves. However, experimental data for random waves propagating 
over rapidly varying topography are rare. Therefore, here we test numerically the 
time-dependent equations for the case of unidirectional random waves normally incident 
on a finite ripple patch. The test conditions are chosen to be the same as the bed D, of 
the Davies and Heathershaw (1984) experiment (cf. Table 1) for which a marked 
discrepancy was observed between the results of the present equation and the mild-slope 
equation for the case of a monochromatic wave. For monochromatic waves, we 
calculated the wave reflection from the ripple patch as in Section 3.2. Even for random 
waves, it may be possible to calculate the wave reflection if we use the technique for 
separation of incident and reflected waves (Mansard and Funke (1980), for example). 
However, some errors may be somehow involved in this procedure. In the present test of 
random waves, therefore, we examine wave transmission over the ripples rather than 
wave reflection. 

The TMA shallow-water spectrum (Bouws et al., 1985) is used as the input target 
spectrum: 

S(f) = ag2(2r)-4f”exp[ - 1.25(f/fp)~4]yeX~~~~~~~~~‘~‘~2u’~~~(f, h), 

(22) 

where (Y is a spectral parameter, y is the peak enhancement factor, v is the spectral 

width parameter (u = a, if f I f, and u = fib if f > f,; OTT = 0.07 and ub = 0.09 were 
used), and finally the Kitaigordskii shape function, 4k(f, h), is approximately given by 

I 
0&d;, Wh < 1 

hc(f> h) = 1 -0.5(2-w,)~, 1 <w,,12 (23) 

1, wh > 2, 

where oh = 2rrf(h/g)‘j2. 

Two cases of numerical tests are conducted: one with narrow frequency spectrum 
(y = 20) and the other with broad frequency spectrum (y = 2). (Y = 7.57 X 10m4 was 
used in both cases. The peak frequency, f,, was 0.76 Hz in both cases, for which 2k,/K 
is 1.0 and thus significant wave reflection from the ripple patch is expected in the 
vicinity of the peak frequency. 

Before starting the test of the time-dependent wave equations, we calculated the 
transmission coefficient separately for each frequency of the TMA spectrum using the 
time-invariant form of the present equation, the mild-slope equation, and the finite 
element model described in Section 3.1. The transmitted wave spectra calculated from 
the three methods are shown in Figs. 10 and 11 for the narrow and broad spectrum, 
respectively, along with the incident wave spectrum. The transmitted wave spectra of 
both the FEM solution and the present equation show significant reduction in the 
vicinity of the peak frequency compared with the input spectrum because of wave 
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Fig. 10. Incident and transmitted wave spectra of narrow-banded TMA spectrum; --- = incident wave, 

~ = FEM solution, - - - = time-invariant form of present equation, - ~ - = mild-slope equation. 

reflection by the ripples. However, the mild-slope equation yields only a slight reduction 
near the peak frequency, as expected. The FEM solution and the present equation show 
a little difference probably because the FEM solution includes the evanescent wave 
components as well as the progressive one. The FEM solution may be regarded as an 
exact solution for linear random waves. Therefore, in the following, the solutions of the 
time-dependent wave equations will be compared against the FEM solution. 

In solving the time-dependent wave equations (17) and (191, the wave parameters 
such as w, k, C and C, are chosen to be the values corresponding to the carrier 
frequency f on the assumption of a narrow-banded frequency spectrum. The wave 
parameters would become inaccurate for the wave components far from the carrier 
frequency. Since the TMA spectrum has a long tail in the high frequency region, 
especially for the narrow spectrum, the input spectrum was confined within a certain 
frequency range. For the narrow spectrum, both the lower and upper cutoff frequencies 
were taken as the frequency at which the energy density is 5% of that at the spectral 

0.5 1.0 1.5 

Frequency (Hz) 
2.0 

Fig. Il. Incident and transmitted wave spectra of broad-banded TMA spectrum; --- = incident wave, 
= FEM solution, - - - = time-invariant form of present equation, = mild-slope equation. 
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Table 3 

Test conditions of transmission of random waves over a ripple patch 

Spectrum Number of bands 

Narrow 1 

2 

3 

Broad 1 

2 

3 

Band order f,,, (Hz) j (Hz) f,,,,, (Hz) 

1st 0.67 0.79 1.00 

1st 0.67 0.75 0.78 

2nd 0.78 0.83 1.00 

1st 0.67 0.74 0.76 

2nd 0.76 0.78 0.80 

3rd 0.80 0.85 1.00 

1st 0.59 0.98 1.63 

1st 0.59 0.78 0.92 

2nd 0.92 1.18 1.63 

1st 0.59 0.74 0.82 

2nd 0.82 0.93 1.06 

3rd 1.06 1.28 1.63 

peak so that the confined range of the spectrum (between 0.67 and 1.00 Hz) covers 83% 
of the total energy. For the broad spectrum, the energy density at both the lower and 
upper cutoff frequencies was 10% of the peak spectral density, and the confined range of 
the spectrum (between 0.59 and 1.63 Hz) covers 90% of the total energy. The significant 
wave height calculated from the wave energy within the confined frequency range was 
2.54 and 1.58 cm for the narrow and broad spectrum, respectively. 

In order to obtain still better accuracy, the selected frequency range could be divided 
into several bands and each of them could be modeled with a representative carrier 
frequency. In the present study, three cases of different number of frequency bands (one, 
two, and three) are examined. The division of frequency bands is made so that each 
band contains the same energy, and in each frequency band the carrier frequency is 
selected as the weight-averaged frequency. Details of the test conditions are given in 
Table 3. 

The schematic diagram of the numerical test is shown in Fig. 12, in which L, is the 
wavelength corresponding to the peak frequency, &, of the input frequency spectrum. A 
time-series of normally incident random waves is generated internally inside the model 

Fig. 12. Schematic diagram of the model domain for the numerical calculation of random waves propagating 
over a ripple patch. 
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boundaries while the waves reflected from the ripple patch are permitted to freely pass 
across the wavemaker so that unwanted addition of wave energy inside the model 
domain can be avoided. This technique was previously developed by Larsen and Dancy 
(1983) for the Boussinesq equation and was used by Madsen and Larsen (1987) for the 
Copeland (1985) equation. They argued that the velocity of disturbances caused by the 
incident wave is the phase speed from the viewpoint of mass transport. Lee and Suh 
(1997) applied this technique to a monochromatic wave in the Radder and Dingemans 
(1985) equations and found that the resulting amplitude of the incident wave is different 
from the desired amplitude by the ratio of C/C,. However, from the viewpoint of 
energy transport, they could obtain the desired wave amplitude for the Radder and 
Dingemans model. The viewpoint of energy transport suggests the use of the energy 
velocity for the velocity of the disturbances. The energy velocity can be obtained using 
the geometric optics approach. In the present model, the energy velocity is given by 
(Lee and Suh, 1997) 

(24) 

where the overbar is associated with the carrier frequency ,f. 
Waves are generated internally by adding the water surface elevations of incident 

wave to the computed ones at the wave generation line. The value of v * added to the 
surface elevation at each time step at the wave generation line is given by 

CejAt 
77 * = 2tanh(fPt)CxAje 

c,At 

i 

i(k,*- W,f+ Ei) = 2tanh( f,t) ax ~~jei(klx- W~‘+ ‘~1, 

I 

(25) 

where 

(26) 

A, is the amplitude of incident wave with the local angular frequency wj, Ax and At 
are the grid spacing and time step, respectively, E, is the random phase, and the term 
tanh(f, t) is added for slow start of wave generation. 

A time-series of free surface elevation of random waves was generated by the inverse 
Fourier transform of the TMA spectrum. The time step for the inverse Fourier transform 
was T,/41 and the total number of time step was 16,384 so that the total time for wave 
generation was 399.61Tr. After 399.61T,, waves were generated repeatedly from the 
start. 

A sponge layer was placed at both upwave and downwave boundaries to minimize 
wave reflection from the boundaries by dissipating wave energy inside the sponge 
layers. The thickness of the sponge layer, S, was taken as 2.5 times the longest 
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wavelength of the waves to be modeled, being found to reduce the magnitude of the 
incident wave to almost zero at the boundaries. Eq. (17) is modified to 

6, = -PI - W$, (27) 

where 

I 

0, outside sponge layer 

w= cd/S _ 1 
w 

i i 

(28) 
max 

e-l ’ 
inside sponge layer, 

where mrnax is the maximum angular frequency of the waves to be modeled and d is the 
distance from the starting point of the sponge layer. The damping coefficient w 
increases exponentially from zero at the starting point of the sponge layer to w,,, at the 
end. 

Eqs. (19) and (27) are discretized by a fourth-order Adams-Moulton predictor-cor- 
rector method in time and by a three-point symmetric formula in space. The predictor 
step yields 

V n+’ = n” + ;(55F” - 59F”-’ + 37F”-2 - 9F”-3) 

c/J -n+l = 4” + !_! jssGn _ 59G”-’ + 37G”-2 - 9G”-3) 

and the corrector step yields 

At 
rl n+ ’ = qn + 24(9F ?I+ 1 + 19F” _ 5,&V? i + Fn-2) 

4 
-fl+ 1 = 4” + ;(9(;“+’ + 19G” - .5G”-’ + Gn-2), 

(29) 

(30) 

(31) 

(32) 

where the superscript n (= 0,. . . , N) denotes the value in the nth time step, and F(4) 

and G($,q) are the right-hand sides of Eqs. (19) and (271, respectively. All the values at 
the initial stage (n = 0) are set to be zero, i.e., 7’ = $” = 0. At both upwave and 
downwave boundaries, perfect reflection is assumed, i.e., 6, = 6, and 4, = q,_ ,, 
where the subscript denotes the grid point when the model domain is discretized by J 
equidistant points. However, the effect of the reflection from these boundaries is 
negligibly small in the region of interest because the sponge layer significantly reduces 
the incoming waves. 

The grid spacing Ax was chosen so that the local wave length is greater than 1OAx 
and a spatial resolution is guaranteed. The time step At = 7”/328 was chosen so that the 
Courant number C, = C,A t/Ax is less than 0.1 and a stable solution is guaranteed. 
Since the time step of 7’,‘,/41 was used for wave generation, linear interpolation was 
used to obtain the surface elevations of At = T,/328 at the wavemaker. 

Surface elevations were recorded at a point in the lee of the ripple patch to calculate 
the transmitted wave spectrum. In order to permit the slower-traveling high-frequency 
component waves to travel to the point of wave recording, the surface elevations were 
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Fig. 13. Transmitted wave spectra calculated with different number of frequency bands using the present 

equation for narrow-banded TMA spectrum; -- = one band, - - - = two bands, ~ - - = three bands, 

~ = FEM solution. 

xxx 

recorded from 507” to 449.61Tr with the sampling interval of T,/41 so that the total 
number of samples was 16,384. In the spectral analysis of the data, the smoothing 
techniques presented in Otnes and Enochson (1978) were used. The 16,384 data points 
were processed in seven segments of 4,096 points per segment. These segments overlap 
by 50% for smoother and statistically more significant spectral estimates. The raw 
spectra were then ensemble-averaged. Further smoothing was made by band-averaging 
over five neighboring frequency bands. The total number of degrees of freedom is about 
47 for final spectra. 

Fig. 13 shows the comparison of the transmitted wave spectra calculated by the 
present time-dependent wave equations against the FEM solution for the case of narrow 
frequency spectrum. As mentioned previously, the FEM solution may be regarded as an 
exact solution for linear random waves. In the vicinity of the Bragg resonant frequency 
(,f = 0.76 Hz), the solutions using different number of frequency bands show some 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 
Frequency (Hz) 

Fig. 14. Same as Fig. 13, but using the Radder and Dingemans (1985) equation 



K.D. Suh et al./Coastal Engineering 32 (1997) 91-117 113 

0.5 1.0 1.5 

Frequency (Hz) 
2.0 

Fig. 15. Transmitted wave spectra calculated with different number of frequency bands using the present 

equation for broad-banded TMA spectrum; - - - = one baud, - - - = two bands, - - - = three bands, 

= FEM solution. 

difference, but the overall shapes of the solutions do not change much with the number 
of frequency bands. As expected, the transmitted wave spectrum shows significant 
reduction compared with the input spectrum near the Bragg resonant peak, while most of 
the wave energy is transmitted over the ripples for the wave components whose 
frequency is far out of the resonant frequency. A similar plot is shown in Fig. 14 for the 
results obtained from the time-dependent mild-slope equations of Radder and Dinge- 
mans (1985). Again, in the vicinity of the Bragg resonant frequency, the solutions using 
different number of frequency bands show some difference, but as a whole the solutions 
are far from the exact solution (i.e., the FEM solution), predicting much larger wave 
transmission than the present solution or the FEM solution. 

Fig. 15 shows the comparison of the transmitted wave spectra calculated by the 
present time-dependent wave equations against the FEM solution for the case of broad 
frequency spectrum. When using a single carrier frequency representing the whole 
frequency range, the solution does not detect the reduction of wave transmission near the 
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Fig. 16. Same as Fig. 15, but using the Radder and Dingemans (1985) equation. 
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Bragg resonant peak. As the number of frequency bands increases, the solution 
approaches the exact solution. Fig. 16 shows a similar plot using the results of the 
equations of Radder and Dingemans (1985). Again the solutions show large discrepancy 
from the exact solution. 

4. Conclusion 

Two time-dependent wave equations to include the effect of rapid depth variation 
have been developed by different theoretical approaches (Green’s formula method and 
Lagrangian formulation), but the resulting equations have been shown to be identical. 
Without the higher-order bottom effect terms, the former and the latter reduce to the 
time-dependent mild-slope equations developed by Smith and Sprinks (1975) and 
Radder and Dingemans (1985) respectively. For a monochromatic wave, the developed 
equation reduces to the Massel’s (1993) extended refraction-diffraction equation for 
propagating wave alone and the modified mild-slope equation by Chamberlain and 
Porter (1995) which in turn, without the higher-order bottom effect terms, reduces to the 
Berkhoff’s mild-slope equation. 

For the case of monochromatic waves, the capability of the equation developed for 
rapidly varying topography has been verified by applying it to waves propagating over a 
plane slope with different inclination (Booij’s problem) and the resonant Bragg reflec- 
tion of surface waves due to singly or doubly periodic bottom topography. Comparison 
with other numerical results or experimental data showed that the developed equation 
was capable of predicting the wave scattering phenomena which were undetected by the 
Berkhoff’s mild-slope equation. It was also shown that when only the bottom slope is 
concerned the mild-slope equation can give accurate results up to 1:l slope rather than 
1:3 slope, which, until now, has been known as the limiting bottom slope for the proper 
application of the mild-slope equation. This, however, does not imply that further effort 
to improve the mild-slope equation is not necessary. In fact, in the Booij’s test, the 
inclusion of the bottom curvature term played an important role in improving the 
accuracy of the mild-slope equation for milder slopes. 

For random waves, the time-dependent wave equations have been numerically tested 
for the transmission (or the Bragg reflection inversely) of unidirectional random waves 
normally incident on a finite ripple patch. The solutions were compared against the finite 
element model solution which may be regarded as an exact solution for linear random 
waves. The feature of the Bragg reflection of random waves was found to be very 
similar to that of monochromatic waves, that is, the wave components whose frequency 
is nearly or exactly resonant with the bottom experience fairly significant reflection by 
the ripple patch, while the reflection is very small for the wave components whose 
frequency is far out of the resonant frequency. 

The use of a single carrier frequency could give a reasonably accurate result in the 
case of a narrow spectrum, but when the spectrum is broad, accurate results could be 
obtained by dividing the frequency range into several bands and modeling each of them 
with a representative carrier frequency. 

Finally, the present equation which does not include the nonpropagating evanescent 
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modes fails to predict quantitatively the higher-order Bragg resonances for doubly 
sinusoidal beds. Presently modification of the equation is being made to include the 

evanescent modes and the result will be reported in another paper. 
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Appendix A. Components of terms R, and R, 

khk, hhk, hk,, h2k2 Ah2k2 
Iv,=-?h+2;+2--4-+-+~-2- 

h k k A k2 h 

W2=2k-2;+2hk, 

2 

w,=2kh-++2: 

w, = _2? 

k;: 

w5= -A 

W,=lC? 

,,=1+: 

.lJ,= _; 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

I, = 
/ 

’ cosh2k( h + z)dz (42) 
-h 
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I2 = 
/ 

’ cash k( h + z)sinh k( h + z)dz 
-h 

13= 
/ 

’ (h+z)coshk(h+z)sinhk(h+z)dz 
-h 

f4= 
/ 

” (h+z)cosh2k(h+z)dz 
-h 

Is= Uii(h+z) / 2cosh2k( h + z)dz 

k,+ hk 

Ah + sinh2kh 
2 

k,,, = ; = - 
hktl 

2+ 
kt hk, 

Ah + sinh2kh 
~ smh 2 kh 

h 

h = - = k tanh kh 
R 
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