
BLOCKING OF PERIODIC AND RANDOM WAVES

Ketut Suastika1 and Jurjen Battjes2

Abstract: This paper describes an experimental and modelling investigation
of wave blocking. The modelling takes breaking-induced dissipation into ac-
count and consists of a WKB-solution for slowly varying waves away from the
blocking region, which is matched to a uniformly valid expansion for the rapidly
varying waves in the blocking region.

INTRODUCTION

Blocking of gravity surface waves by a counter current is a significant phenomenon in
several river outfalls and tidal inlets around the world. Existing models for wave blocking
typically are either dissipationless, with a uniformly-valid approximation in the vicinity of
the blocking point including 100% reflection (e.g. Smith 1975), or they use a wave action
balance with breaking-induced dissipation (e.g. Chawla and Kirby 1998, 2002; Suastika et
al. 2000). Neither is satisfactory because the shortening and steepening of the waves in the
approach to blocking usually gives rise to breaking (except for very low initial steepness),
which is absent in the former category of models, whereas the solution on the basis of a
wave action balance is in principle singular in the blocking point and therefore not valid in
that region, although the dissipation plays a moderating role and so can save the situation to
some extent.

In the present work, a model was developed that includes breaking-induced dissipation.
This was included in a wave action balance equation for the slowly varying waves in the far
field, in the approach to the blocking point, matched to a uniformly-valid approximation for
the rapidly varying waves near the blocking point. The model has been elaborated both for
periodic waves and for random waves.

EXPERIMENTS

A 40 m long flume was used, equipped with a wave generator at one end, with permeable
wave damping material at the opposite end where also a flow of water could be let into
the flume with controlled discharge. Large-scale turbulence and swirling motions in the
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inflowing current were dampened by a honeycomb. At both ends the full flume width (0.8
m) and height (1.0 m) were available to the waves and the current, respectively, but with the
aid of a vertical false wall and a false bottom the available width and height were reduced to
0.4 m and 0.7 m in the measurement section in the middle part of the flume.

Previous laboratory experiments of wave blocking have utilized a constant discharge and
varied the cross-section to obtain a longitudinal gradient of mean longitudinal velocity, by
placing an impermeable plane sloping bottom or a false vertical wall along a segment of the
flume. We have designed and built a novel experimental arrangement in the present study,
in which the flume cross-section is held constant but the discharge, and therefore the flow
velocity, has a longitudinal variation, obtained by withdrawal of water through a perforated
false bottom extending over 12 m (Suastika et al., 2000). The result is a virtually linear
decrease of the discharge and of the cross-sectionally averaged flow velocity in this interval
from a maximum at the upstream (down-wave) cross-section to zero at the downstream (up-
wave) cross-section. Downstream from the measurement section with variable discharge a
20 m-long region exists where the discharge, and therefore the cross-sectionally averaged
current velocity, is zero. In this stagnant region waves were generated by a piston-type wave
generator with second-order control and automatic reflection absorption.

A MODEL FOR BLOCKING OF PERIODIC WAVES

In this chapter we present a linear model for the amplitude evolution of periodic gravity
surface waves blocked by a collinear adverse current. The model essentially combines a
linear ray approximation in the region far from the blocking point (far field) with a linear
uniformly-valid approximation in the vicinity of the blocking point (near field). Wave energy
dissipation is modelled both in the far field and in the near field.

Ray Approximation for the Far Field
The spatial evolution of the incident wave amplitude in the far field is represented by a

wave action balance:
d

dx
[( cg + U)

E

σ
] +

D

σ
= 0. (1)

In Eq. (1)E is the wave energy density,σ is the intrinsic wave frequency,cg is the intrinsic
wave group velocity,U is the mean current velocity andD is the rate of wave energy dissi-
pation per unit area of bottom. Due to the current, the wave frequency is Doppler shifted,
given asω = σ + kU , whereω is the wave frequency relative to the fixed bed andk is the
wave number. The intrinsic group velocitycg is given ascg = ∂σ/∂k.

Dissipation at Sidewalls and Bottom
Wave energy dissipation in the boundary layers at the sidewalls and at the perforated

bottom is expressed in terms of an amplitude decay modulus (imaginary part of the wave
number)µ. The corresponding expression for the energy dissipation rate is

Db = 2µcgE, (2)

in which µ = µw + µp, with µw the damping modulus for sidewall dissipation andµp

the damping modulus for perforated bottom dissipation. The former is estimated using the
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laminar-flow result of Hunt (1952):

µw =
2k

b

√
ν

2σ

sinh 2kh

2kh + sinh 2kh
(3)

whereb is the flume width andν is the kinematic viscosity of the water. The dissipation due
to flow through the perforated bottom can be estimated on the basis of a linearized theory for
energy loss in oscillatory flow through orifices, but since this still requires empirical values
for contraction and loss coefficients, we have used empirical values forµp (obtained for
waves on still water) in the model-data comparisons shown below.

Dissipation due to Wave Breaking
The rate of wave energy dissipation due to wave breaking is modelled with a modified

form of the bore dissipation model by Battjes and Janssen (1978), according to which the
power dissipated per unit span in a wave with heightH breaking in shallow water of mean
depthh is approximated as

D′ ∼ 1

4
ρg(β′H)3

√
g

h
, (4)

whereβ′H is the height of the foam region in a (spilling) breaker. For saturated breakers,
β′ = 1. This model was developed for waves breaking on a sloping bottom, due to limiting
water depth. In the present case, the waves break on relatively deep water due to limiting
wave steepness. Therefore, here we shall use the wave heightH as a characteristic vertical
length scale instead of the water depthh, and the (linear) finite-depth intrinsic phase speedc
instead of

√
gh:

D′ ∼ 1

4
ρg(β′H)3 c

H
∼ 1

4
β′3ρgH2c (5)

A similar adaptation to the shallow-water dissipation approximation was made by Chawla
and Kirby (2002), except that they use a transitional expression for the vertical length scale,
approaching the depthh in shallow water and the wave length (actually,k−1) in deep water,
as compared to our use of the wave height for the latter condition. Expressed in terms of the
wave energy densityE = 1

8
ρgH2, and absorbing the unspecified proportionality factor in

the parameterβ′, this can be written as

D′ = 2β′3cE. (6)

It follows that the average rate of wave energy dissipation per unit area of bottom,Dr =
D′/λ, whereλ = 2πc/σ is the wave length, is given by

Dr =
β′3

π
σE = CbrσE, (7)

whereσ is the intrinsic wave frequency andCbr = β′3/π is a constant.

A criterion for onset of breaking was used as a threshold for the application of Eq. (7) ,
based on a maximum wave steepness(ka)max ≈ 0.3, or

Hm ≈ 0.1λ, (8)

whereHm is the maximum wave height.
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Uniformly-valid Approximation for the Near Field
To model the near-field waves, we follow the heuristic Taylor expansion method of Pere-

grine and Smith (1979), extended through the addition of a dissipation function. The equa-
tion for the one-dimensional wave propagation in the near field, including dissipation, is
represented symbolically as

G(
∂

∂t
,

∂

∂x
, x)φ + F(

∂

∂t
,

∂

∂x
, x)φ = 0, (9)

whereG andF are linear operators, representing propagation and dissipation, respectively
(to be specified below). For a single harmonic waveφ = φ̂ exp(iχ), whereχ is a phase
function, given asχ = kx − ωt, wherek is the wave number andω is the wave frequency
relative to the fixed bed, Eq. (9) is identified with its ’Fourier transform’ as

G(ω, k, x)a exp(iχ) + F (ω, k, x)a exp(iχ) = 0, (10)

whereG = 0 is the dispersion equation anda is a complex wave amplitude. Using a Taylor
expansion of the functionsG andF with repect toω, k andx about their values at the caustic
(ω0, k0, x0 = 0), whereGk = 0, the equation for the complex wave amplitudea is given as

xGxa− 1

2
Gkk

d2a

dx2
+ Fa− iFk

da

dx
+ xFxa + · · · = 0. (11)

The functionsG andF and their derivatives are evaluated at (ω0, k0, x0 = 0). Subscripts
denote partial derivatives.

In our experiments, the waves are practically in deep water in the blocking region, allow-
ing the use of the deep-water dispersion equation so thatG(ω, k, x) = (ω−kU)2− gk, from
which it follows that

Gx = 2k(kU − ω)
dU

dx
= −2kσ

dU

dx
(12)

and
Gkk = 2U2. (13)

In absence of dissipation,F = 0, in which case Eq. (11) simplifies to

1

2
Gkk

d2a

dx2
− xGxa = 0, (14)

which is the classical Airy equation for waves near a caustic in the absence of dissipation.
BecauseGx > 0 (note thatU < 0) andGkk > 0, the solution is oscillatory forx ≤ 0 (at the
up-wave side) and monotonic forx > 0 (at the down-wave side).

Expressions for the Energy Dissipation and Resulting Evolution Equation
To make the dissipation functionF (ω, k, x) explicit, we follow Booij (1981), who mod-

elled dissipation in the mild-slope equation by adding a damping termC∂φ/∂t, where
C = D/E. We therefore identify the dissipation operatorF with C∂/∂t. For the single
harmonic wave as considered above, the functionF (ω, k, x) becomes

F (ω, k, x) = −iωC. (15)
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The actual expression for the damping coefficientC in terms of the wave parametersω andk,
and the water depthh, depends on the dissipation process under consideration. Considering
deep water waves (in the vicinity of the blocking point),C = C(ω, k). Its spatial dependence
is incorporated viak(x). The partial derivatives ofF with respect tok andx in the(ω, k, x, t)
space are, respectively

Fk = −iωCk, (16)

Fx = −iωCx. (17)

With C = C(ω, k), Cx = 0, thusFx = 0. By inserting Eqs (15) and (16) into Eq. (11), we
finally obtain the evolution equation for the complex wave amplitudea(x) as

1

2
Gkk

d2a

dx2
+ ωCk

da

dx
− (xGx − iωC)a = 0. (18)

The coefficients of the differential equation (18) are evaluated at(ω0, k0, x0 = 0). Eq. (18)
is the equation for the local wave amplitude in the vicinity of the blocking point including
dissipation.

The damping coefficientC is given asC = D/E = (Db + Dr)/E, considering the same
energy dissipation processes as in the far field. We then find forCb, pertaining to the total
dissipation at the side walls and the perforated bottom:

Cb =
Db

E
= 2µcg;0 =

µg

2ω
(19)

and forCr, pertaining to wave breaking,

Cr =
Dr

E
= Cbrσ0 = 2Cbrω (20)

where the latter equalities, in terms of the constantω, apply because the left-hand side ex-
pressions are to be evaluated at the blocking point and because the waves are assumed to be in
deep water there. The corresponding expressions for the dissipation parameterCk = ∂C/∂k
have been derived from these equations while neglecting the variation ofµ andCbr with k,
with the result:

Cb,k =
1

2
µg−1/2k0

−3/2 =
µ

16

g2

ω3
(21)

for dissipation at the side walls and the bottom, and

Cr;k = Cbrcg;0 = Cbr
g

4ω
(22)

for dissipation due to wave breaking.

Match between Far Field and Near Field Approximations
Having established models for the far field and the near field, these need to be matched

in a region which we choose just downstream from the blocking point, in a pointx = xm

where the reflected waves may be assumed to have been completely dissipated. This point
is estimated at a distanceδ downstream from the blocking pointx0, in which δ indicates
the order of magnitude of the width of the blocking region. Considering this region as a
boundary layer, this magnitude is estimated by Trulsen and Mei (1993) as

δ = O(ε−2/3/k), (23)
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whereε is a small parameter given asε = (kL)−1/2, k = ω2/g andL is the horizontal length
scale of the current (L ∼ U/(dU/dx)). In the model-data comparison presented below, we
have used a best-fit value for the distance of the matching point from the blocking point given

by x0 − xm = 1.1(kL)
−1/3

/k.

Given the wave amplitude in the still-water region at the downstream (up-wave) end of
the flow section as an initial value, the far field action balance (Eq. 1) can be integrated
to yield the amplitude at the matching point. This provides the boundary condition for the
second-order amplitude evolution equation for the near field (Eq. 11) on the oscillatory side
of the blocking point. The other boundary condition isa → 0 asx →∞.

COMPARISON BETWEEN MODEL RESULTS AND EXPERIMENTS: PERIODIC WAVES

We present here a comparison of model results with observations for periodic waves with
periodT = 1.1 s and target wave amplitude in still watera0 = 1.0 cm. The adverse current
discharge has a maximumQmax = 0.12 m3/s, yielding a maximum cross-sectionally averaged
flow velocity of 0.55 m/s in the measurement section above the perforated bottom at 0.55 m
below still water level. The discharge decreases linearly from its maximum atx = 23.0 m
to zero atx = 11.0 m, so that the gradient of the cross-sectionally averaged flow velocity
is dU/dx = −0.046(m/s)/m. The predicted blocking point is atx = x0 = 20.45 m and the
matching point is atx = xm = 19.4 m. Because the blocking point position was seen to
oscillate spatially in the longitudinal direction, apparently as a result of sideband instability
(see Chawla and Kirby 1998), observations at a fixed point in fact cover a finite portion of
the blocking region. For this reason, the model results presented in Fig. 1 have been spatially
averaged over a distance of 40.0 cm in the regionx ≥ x0 − 2δ.

Dissipation in the boundary layers at the sidewalls is estimated on the basis of Eq. (3) due
to Hunt (1952), but on account of the turbulent mean flow the molecular viscosity has been
replaced by a turbulence viscosity given byνt = 10−4b|U |. The decay modulus accounting
for the perforated bottom was obtained from observations of wave decay on still water (µp =
0.014 m−1 for these conditions), whereas the breaker saturation parameter was obtained as
a fit parameter (β′ = 0.35, indicating unsaturated breakers). Breaking-induced dissipation is
effective in the near field only since the steepness in the far field does not exceed the adopted
critical value(ak)max = 0.3 .

The predicted pattern of wave amplitude evolution was seen to agree well with the obser-
vations, except that it lies somewhat further downstream (up-wave) than the observed one,
which is ascribed to nonlinear effects. These would result in a higher current velocity re-
quired to block the waves, thus moving the blocking point further upstream. Such (small)
mismatch in location does not matter in practice, but if needed a nonlinear wave speed can
be used instead of the linear approximation used here. To illustrate the effect without doing
the nonlinear calculations, Fig. 1 shows the comparison between modelled and observed
magnitude of the wave amplitude for this test, with the predicted pattern shifted 0.5 m in
the upstream (down-wave) direction. (This corresponds to 4% larger current velocity, im-
plying a necessary 4% increase in group velocity.) The predicted pattern so shifted agrees
very well with the observed pattern. Note that the uniformly-valid approximation resolves
the singularity of the wave amplitude at the blocking point, which would occur in the ray
approximation that is used in the far field.
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Fig. 1. Modelled (curve) and observed (points) wave amplitude forT = 1.1 s,a0 = 1.0
cm. The predicted blocking point is atx = x0 = 20.45 m. The model results have been
shifted 0.5 m in the upstream (down-wave) direction.

A MODEL FOR BLOCKING OF RANDOM WAVES

The periodic-wave model described above has been used without essential changes as a
basis for a random-wave model, except of course for a translation from a a single frequency
to a spectrum.

The linear(ized) dissipation at the sidewalls and at the bottom are estimated per frequency
on the basis of Eq. 2, with the spectral energy densityE(ω) now replacing the total energyE.
The sidewall dissipation model uses Hunt’s frequency-dependent expression Eq. (3) forµw

as well as a frequency-dependentcg, with the same turbulence viscosity as in the periodic-
wave case, whereas in the case of the bottom perforations we use a frequency-independent
µp,c andcg,c, based on a single characteristic frequency chosen asωc = m0/m−1, in which
mn is thenth moment of the energy spectrum aboutω = 0.

The bulk breaking-induced dissipation is based on the Battjes-Janssen (1978) model for
random waves:

Dr;tot =
α

8π
QbσcρgH2

m, (24)

whereα is a coefficient of order 1,σc is a characteristic intrinsic wave frequency, corre-
sponding toωc defined above,Hm is the nominal maximum wave height given by

Hm =
γ

kc

, (25)

whereγ is a breaking parameter andkc is a characteristic wave number, andQb is the prob-
ability that a wave height is associated with a breaking or broken wave:

1−Qb

ln Qb

= −(
Hrms

Hm

)2, (26)

in whichHrms is the root mean square wave height. Following Eldeberky and Battjes (1996),
the bulk dissipation rateDr;tot is spectrally distributed in proportion to the spectral density
to obtainDr(ω).
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The far-field model is based on the action balance Eq. (1), withcg, E and D now
frequency-dependent. To obtain the near-field model, the energy spectrumEηη(ω) at the
matching point is discretized into bins of width∆ω, from which amplitudes at the matching
point are estimated according to

1

2
a2

j ' Eηη(ωj)∆ω. (27)

The near-field amplitude evolution model derived for periodic waves is applied to this dis-
crete set of spectral amplitudes to obtain their local values in the near field, after which Eq.
(27) is applied to estimate the local energy spectrum.

COMPARISON BETWEEN MODEL RESULTS AND EXPERIMENTS: RANDOM WAVES

In this section we compare model results with the observations. We consider both partial
and (nominally) complete blocking tests. The initial spectrum is of JONSWAP-type with
peak periodTp = 1.1 s and significant wave heightHs0 = 4.0 cm. The maximum current
discharge isQmax = 0.078 m3s−1 for the partial blocking test andQmax = 0.12 m3s−1 for the
(nominally) complete blocking test. Going upstream fromx = 25 m, the flow cross-section
gradually widens from 0.4 m in the reduced measurement cross sections to the full flume
width of 0.8 m, causing a corresponding decrease in mean flow velocity. This has been taken
into account in the computations. The perforated false bottom in the 12 m-long measurement
section is at 0.55 m below the still water level. For the dissipation due to the perforations,
the characteristic damping modulus is set atµp,c = 0.024 m−1, obtained from experiments
with periodic waves on still water withT = 1.1 s andH0 = 5.0 cm. For the dissipation due
to wave breaking, we have usedα = 1.0 as suggested by Battjes and Janssen (1978). The
parameterγ, needed for the breaker heightHm, is a calibration parameter.

Fig. 2 shows a comparison between the observed and modelledHm0 = 4
√

m0 and mean
zero-crossing periodTz =

√
m0/m2 along the flume for the partial blocking case, using

γ = 0.30. It shows a fairly good agreement between the modelled and the observed wave
heights, both with respect to the dominant blocking range and the transmitted wave height.
The longitudinal variation of the mean zero-crossing periodTz is well predicted, except for
a small deviation in the blocking region.
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Fig. 2. Comparison between observed (triangles) and modelled (dashed curve)Hm0

(left panel) andTz (right panel) for a case of partial blocking; γ = 0.30.
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Fig. 3. Comparison between observed (triangles) and modelled (dashed curve)Hm0 (left
panel) andTz (right panel) for a case of complete blocking;γ = 0.40.

Similar results for the case of complete blocking are shown in Fig. 3, forγ = 0.40. The
patterns are only fairly well predicted, but the position of the blocking range is grossly mis-
represented. Just as in the case of the periodic waves, it is predicted too far up-wave, but in
this case the discrepancy is too large to be explained by a nonlinear group velocity correc-
tion of a few %. Also, the wave height gradient across the blocking region is underpredicted.
We have no satisfactory explanation for these discrepancies, given the fact of a far smaller
mismatch in wave height gradient and in position in the cases of periodic waves or partially
blocked random waves.

CONCLUSIONS

The experimental and modelling study of wave blocking described above gives rise to the
following conclusions.

A novel experimental layout was used in order to eliminate unwanted geometric effects
on the waves due to variable depth or width, which occur in conventional arrangements.
Instead, the measurement cross-section was held constant and the discharge was varied by
distributed suction through a perforated false bottom. The system worked to satisfaction
except that it induces additional damping, more than had been anticipated, even for waves
that are normally considered in relatively deep water.

A model for the wave propagation was developed accounting for the effects of the non-
uniform counter current, consisting of a wave action balance for the slowly varying waves in
the approach to the blocking point, which was matched to a caustic-type model for the rapidly
varying waves in the blocking region. Dissipation in the boundary layers at the sidewalls,
at the perforated bottom and due to breaking was included in the model. One variant of
the model is for periodic waves, the other for random waves. In the latter case blocking
may be complete or partial, depending on the low-frequency cut-off in the spectrum and the
maximum counter current velocity.

The predictive capability of the model was fairly good in case of periodic waves as well
as partially blocked random waves, apart from a small spatial shift in the former case. In the
case of completely blocked random waves, the overall pattern is only fairly well predicted,
and for unknown reasons it is shifted too far up-wave compared to the observations.
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The model results referred to above were obtained in part with empirical coefficients as
input, mainly in the modelling of various processes of dissipation. A fully predictive model
for wave blocking under a variety of conditions is at present still out of reach.
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