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Abstract
A generalized method for computing the bed shear stress in unstratified combined wave and

current flows is presented.  The present approach follows from existing theories describing the
nonlinear wave and current interaction in the benthic boundary layer, but is designed for arbitrary
wave, current and roughness conditions, including the limiting case of pure waves or pure currents.
The stress model is intended for use with 3-dimensional shelf circulation models, where a broad
range of flow conditions are encountered.  Model results indicate that for moderately rough
conditions, the form of the eddy viscosity outside the wave boundary layer has little effect on the
value of the bed stress.  For very rough beds, the form of the eddy viscosity is important and must
be accurately resolved.  High-quality data for combined flows and pure waves are used with the
present stress formulation to better refine empirical model closure constants in the fully rough
turbulent regime.  Introducing a first order correction to the definition of the wave boundary layer
thickness produces accurate estimates of both the measured friction factor and wave boundary layer
height.  A speed of convergence test indicates that the present model is significantly more efficient
than previous models that use the same turbulent closure scheme.  This is primarily due to an
improved solution algorithm that avoids the nested iterations common to established combined wave
and current bottom boundary layer models.
1.0 Introduction

An important physical process for coastal circulation modeling is the interaction in the
bottom boundary layer between waves and currents and how these both interact with the bottom to
modify bedforms and move sediment.  A very important result of wave-current interaction theorized
over two decades ago is the enhancement of the current shear stress due to waves (Smith 1977;
Grant and Madsen 1979).  Repeated measurements on storm-dominated shelves have illustrated that
nonlinear wave-current interaction can significantly enhance the roughness of the bed and the stress
felt by the current (e.g., Cacchione and Drake 1982; Wiberg and Smith 1983; Grant et al. 1984;
Drake et al. 1992).  Therefore, wave-current interaction is expected to play a dominant role in the
momentum balance of low frequency shelf motion and should be considered in any realistic
modeling effort in storm-dominated shelf regions.  This is especially important if one of the primary
purposes is to study shallow water sediment transport.

Modeling studies of shelf circulation patterns that incorporate wave-current effects in the
bottom boundary layer have been conducted in the past (e.g., Spaulding and Isaji 1985; Cooper and
Thompson 1989; Signell et al. 1990; Davies and Lawrence 1993; Keen and Slingerland 1993a, b;
Keen and Glenn 1994; Keen and Glenn 1995).  Keen and Glenn (1994) provide a brief summary of
coupled and uncoupled versions of the Grant and Madsen (1979) (hereinafter referred to as GM) and
Glenn and Grant (1987) bottom boundary layer models (BBLMs) implemented in shelf circulation
models.  Their review identifies a number of responses directly related to enhanced bottom shear
stress due to waves on continental shelves including a reduction in current speed near the bottom,
modification of sediment transport rates, and enhanced turning of the current vector in the bottom
Ekman layer that increases upwelling and downwelling.  Keen and Glenn (1995) also showed
increased offshore rotation of the current vector during downwelling, and reduction in bottom
current speeds in shallow water in a simulation of storm and tidal flow in the Middle Atlantic Bight.
More recently, Keen and Glenn (1998) carried out a quantitative skill assessment of model
performance using moored current meter data from the Gulf of Mexico during Hurricane Andrew.
One of the sensitivities they studied included a three order of magnitude variation in bottom
roughness length; the largest roughness serving as a surrogate for the enhanced apparent bottom
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roughness known to occur in combined wave and current flows.  Modeled currents showed the
greatest sensitivity to bed roughness when compared to bottom currents measured in a water depth
of 15 m.  Normalized peak speed differences between measured and modeled currents decreased
when the apparent roughness was increased from 0.1 cm to 10 cm.  Because their model did not
include wave-current interaction, the roughness and stress fields could not evolve in response to
changing wave conditions.  Even so, the higher correlation between modeled and measured currents
in shallow water for simulated roughnesses comparable to that associated with the presence of
surface waves reemphasizes the fact that wave-current effects are very important on storm-
dominated continental shelves.

The above results of Keen and Glenn are based on a streamlined version of the GM wave and
current BBLM (Keen and Glenn 1994).  Like the original GM model, the streamlined version
assumes that the roughness length is small compared to the wave boundary layer height, and that
the height of the reference current needed to drive the model (usually the lowest grid point) is
greater than the wave boundary layer height.  For arbitrary roughness lengths and model grid
heights, it is possible that under some conditions neither of these requirements will be met.  The
streamlined version also uses the discontinuous eddy viscosity adopted by GM and Glenn and Grant
(1987), which has been shown to be less accurate than more physically reasonable continuous eddy
viscosity profiles for combined flows (Glenn 1983; Madsen and Wikramanayake 1991; Lynch et al.
1997; Styles and Glenn 2000) and pure waves (Sleath 1991; Nielsen 1992; Davies and Villaret
1997).

Here we present a robust method for computing bottom stress in combined wave and current
flows on the continental shelf that can be easily implemented as a subroutine in shelf circulation
models.  The model is basically an extension of the Styles and Glenn (2000) version of the GM
model, but has been modified to incorporate arbitrary roughness configurations and a broader range
of turbulence closure schemes (i.e., different eddy viscosity profiles).  The approach adopted here
is based on systematic scaling of the equations and careful selection of key non-dimensional
parameters so that a closed solution can be formulated.

In the following section, the model formulation is described emphasizing the modifications
required to extend the bottom stress theory to include very rough flow conditions.  Model
sensitivities to the eddy viscosity profile and a calibration of poorly constrained internal model
closure constants is presented in Section 3.  This is followed by a speed of convergence test, and the
results are summarized in Section 4.
2.0 Model Formulation

The stress model developed here follows that of GM, in which the maximum combined shear
stress, Jcw, is written as the vector sum of the time averaged component associated with the current,
Jc, plus the maximum component associated with the wave, Jwm,

where bold face denotes a vector quantity.  Writing the stresses in terms of their respective shear
velocities, u* = (J/D)½, and taking the magnitude gives
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(5)

(6)

where D is the fluid density and Ncw (0 # Ncw # B/2) is the angle between the wave and current.  To
obtain a closed set of equations for the shear velocities, we adopt the usual gradient transport
relation for the wave,

and for the current,

where K is the time independent eddy viscosity, uw is the modulus of the wave solution in the lower
part of the wave boundary layer, U is the magnitude of the horizontal current, z is the vertical
coordinate measured positive upwards from the bed and z0 is the hydraulic roughness.  Given
profiles for the eddy viscosity, wave and current, the nonlinear system (2), (3) and (4) can be solved
to produce the bottom stress vectors Jcw, Jwm and Jc.
2.1 Small to intermediate roughness

For conditions in which the height of the roughness elements are small in comparison to the
wave boundary layer thickness, Glenn (1983) proposed the following 3-layer continuous eddy
viscosity over the original 2-layer discontinuous formulation used by GM:

where 6 is von Karman’s constant (0.4), z1 is an arbitrary constant scale height and z2 = z1u*cw/u*c,
which is determined by matching the eddy viscosities at z = z2 (Figure 1a).

Substituting the above eddy viscosity into (3) gives

where the non-dimensional wave shear is defined by
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Figure 1 Schematic illustrating eddy viscosity profiles. 

(7)

(8)

and ub is the bottom wave orbital velocity.  The non-dimensional vertical coordinate, > = z/lcw (>0 =
z0/lcw), is originally derived from GM’s governing equation for the wave, where the scale height of
the wave boundary layer for combined flows, lcw, is defined by

and T is the wave radian frequency.  Since several eddy viscosities will be explored in this analysis,
the non-dimensional wave shear is introduced as a convenience.  The solution to 'ws is provided in
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(10)

(11)

Styles and Glenn (2000).  By virtue of the eddy viscosity, (6) provides a relationship between u*wm
and u*cw.

Substituting (5) into (4) and integrating gives the mean current profile:

where the no-slip condition at z0 and the matching requirement that the velocity be continuous at z1
and z2 have been imposed.  Although (9) is an explicit solution for the current, in this application,
a current, ur, is specified at a given height off the bottom, zr, and u*c is calculated as an inverse
problem.  This produces a relationship between u*c and u*cw.
2.2 Large roughness

If the roughness length, kb (= 30z0), and the wave boundary layer thickness are of the same
order of magnitude, then the physical situation is indicative of a fully rough turbulent environment.
Under these conditions, z0 can become greater than z1, and the no-slip condition is applied in the
range z1 < z0 < z2.  The eddy viscosity is constant (Figure 1b) near the bed and the profile throughout
the constant stress layer is given by

The corresponding kinematic maximum wave stress becomes

where it is understood that 'ws implicitly reflects the change in the solution for the wave shear due
to the fact that the eddy viscosity where the no-slip condition is applied is now constant instead of
linearly increasing as in (5).  The solution for 'ws is presented in Appendix A.  Similarly, the
solution for the current becomes
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(12)

(13)

(14)

(15)

where the no-slip condition is now applied above z1.
2.3 Large roughness with vanishingly small waves

For the case of vanishingly small waves, z2 6 z1 and z0 may even become greater than z2.  The
eddy viscosity where the no-slip condition is applied then becomes

(Figure 1c), so that

Note the change in velocity scale from u*cw to u*c, which is due to the eddy viscosity above z2 being
a function of u*c and not u*cw.  This means that for very small, though finite waves, the much greater
shear stress associated with the current can still affect the wave.  The solution to 'ws for the eddy
viscosity given by (13) is presented in Appendix A.  Substituting (13) into (4), the current reduces
to the classic logarithmic profile,

2.4 Non-dimensionalization of the equations
An efficient solution algorithm can be obtained by recasting the bottom stress equations into

a suitable non-dimensional form.  Introducing u*cw as the logical choice for the velocity scale
produces the following non-dimensional parameters that will be useful in formulating the bottom
stress solution:
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(16)

(17)

(18)

(19)

(20)

where F is related to a combined wave and current friction factor ( ), , is a measure of
the relative contribution from the current to the total stress, and : is a measure of the relative
contribution from the wave to the total stress.  Squaring both sides of (2) and rearranging gives

which is quadratic in u*c
2 with the solution

where the + is chosen to ensure that u*c is positive.  Dividing both sides of (18) by u*cw
2 and

substituting : and , from (16) yields

The kinematic stress for the wave has three different formulations corresponding to the
expressions given by (6), (11) and (14).  Dividing both sides of these equations by u*cw

2 and
substituting : and F from (16) gives

where >1 = z1/lcw and >2 = z2/lcw.  Similarly, (9), (12) and (15) can be used to formulate three separate
expressions for F.  Rather than outlining the details for all three cases, the non-dimensionalization
is illustrated using (9).  Given a specified current, ur, at a height, zr, above z2, and solving for F yields



9

(21)

(22)

(23)

If the observed current, ur, is specified at values of zr that are less than z2 or z1, but greater than z0,
three more equations emerge.  The resulting solutions for all six formulations are listed in Table 1,
along with their appropriate ranges of validity.

The results of the above derivations reveal that : and F are dependent on various non-
dimensional length scales that arise from the eddy viscosity formulation and boundary conditions.
These unspecified parameters still must be determined to obtain a closed solution.  It can be shown
that : is a function of >0, >1, F and ,.  Only the first two remain unspecified and they will be
addressed in turn.

The non-dimensional roughness height, >0, can be written

where, in analogy with planetary boundary layers (e.g., Grant and Madsen 1986; Wiberg 1995), R*
= u*cw/z0T is an internal friction Rossby number for combined flows.  The parameter R* can be
interpreted as the ratio of the nonlinear interaction height to the flow roughness.  According to
Madsen and Wikramanayake (1991), the dimensional height z1 is expected to be a function of the
wave boundary layer thickness.  Therefore, z1 is written as, z1 = "lcw, where " is a free parameter that
represents the fraction of the wave boundary layer that the eddy viscosity varies linearly with height,
and that must be determined experimentally.  This defines >1 = ", which gives >2 = "/,.  The
parameter : is now a function of R*, ", F and ,.

Examination of the various solutions presented in Table 1 shows that as a minimum

where the explicit functional dependance on z2/z1 and zr/z2 has been omitted as z2 = z1/,.  Using the
definition for lcw, z1/z0 can be written z1/z0 = "6R*.  An analogous expression can be defined for z1/zr,
i.e., z1/zr = "6R*r, where R*r = u*cw/(zrT).  The two expressions are related by R*/R*r = zr/z0, where
zr/z0 is an independent external parameter.  R* and F are also related since R*F = ub/Tz0 = Ab/z0.
Equation (23) is now an implicit function of the external parameters ub/ur, zr/z0, Ab/z0 and the internal
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(24) (25)

(26) (27)

(28) (29)

(30)

Table 1 Expressions for F derived from the current solution discussed in the text.  Inequalities
signify applicable ranges for a given expression.

zr > z2 > z1 > z0 z2 > zr > z1 > z0

z2 > z1 > zr > z0 zr > z2 > z0 > z1

z2  > zr > z0 > z1 zr > z0 > z2 > z1

parameters " and ,.  It can be shown that , is a function of Ab/z0, F, " and Ncw, so that F is a function
of the external parameters ub/ur, zr/z0, Ab/z0, Ncw and the internal closure constant ".  Although the
system of coupled equations resulting from this analysis does not produce an algebraic expression
for the shear stresses, a closed theoretical solution exists.  The nonlinear system therefore can be
solved iteratively.
2.5 Solution algorithm for the 3-layer model

The procedure adopted here is to recast the series of non-dimensional expressions derived
above into a root finding algorithm for F.  Applying the pure current (ub = 0) or pure wave (u*cw =
u*wm) limit shows that F is bounded by 0 # F # ub/u*wm.  The solution for the pure wave limit is
obtained by setting : equal to 1 and can be computed independently of the combined stress solution.
Depending on the root finding algorithm, at least one initial guess for F is needed to start the
iteration.  For combined flows, we use the bisection method (Atkinson 1989) since the root is
guaranteed to lie between the pure wave and pure current limits.  The next step is to determine :,
which has a functional dependence that can be described by
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The first two parameters are given, the third is assigned an initial value that lies between the
universal limits and the last parameter is unknown.  Recalling that , is related to : and the external
parameter Ncw through (19), an internally consistent value can be computed by recasting the coupled
equations (19) and (20) into a root finding algorithm for , similar to that used to determine F.
Again, the bisection method is chosen since , is bounded by universal limits (0 # , # 1).  Once :
and , have been computed, z1/z0 is determined by z1/z0 = "6R* = "6Ab/z0/F, and z1/zr is determined
by z1/zr = "6R*r = "6Ab/zr/F.  The parameters z2/zr and z2/z0 are related to z1/zr and z1/z0 through ,,
which is now known.  Given the above estimates for these non-dimensional length scales, along with
ub/ur, which is an external parameter, a new value for F is computed from the equations listed in
Table 1.  The relative difference between the new and old value is checked to see if it is below some
prescribed tolerance. If it is not, then the process is repeated until F converges.
2.6 Simplification for :

The solution procedure described above reveals that a nested iteration scheme is required,
in which an inner loop is first initiated to produce internally consistent estimates of : and ,, and then
an outer loop is executed to solve for F.  These iterations represent the most computationally
expensive operations in the stress solution.  If the inner loop can be removed from the solution
procedure, then the total number of computations will be reduced, increasing the speed of
convergence.

Examination of the governing equation for the wave (Styles and Glenn 2000), indicates that
the velocity scale (u*c) for the stress term when z > z2 is identical to the formulation above the wave
boundary layer derived by GM.  Using scaling arguments for the governing equation for the wave,
GM demonstrated that as long as u*c was on the order of the wave velocity or less, then the stress
term for the wave outside the wave boundary layer could be neglected.  For the case here, which
considers pure currents as a possible limit, their assumption may not apply when the current is much
stronger than the wave.  Under these circumstances, the wave shear and associated wave stress for
z > z2 are relatively weak, so that the wave solution in the outer region is well described by the linear
theory, except possibly under very rough conditions (Styles and Glenn 2000).  If the stress term for
the wave is neglected above z2, then the solution for : becomes independent of , and therefore z2.
This eliminates the inner iteration loop required to produce an internally consistent value for : and
,, and accelerates the speed of convergence without appreciably altering the results of the stress
model based on a 3-layer eddy viscosity for :.

Appendix B presents a derivation of 'ws and : based on a simpler, continuous 2-layer eddy
viscosity (Figure 1d,e), in which the stress term for the wave above z2 is neglected.  The solution
procedure follows that described in Section 2.5 except that : no longer depends on ,. Instead, , is
computed explicitly through (19).
3.0 Model results

To illustrate the properties of the stress model, results are presented based on the simplified
solution for : discussed in Section 2.6.  The input parameters consist of the external variables Ab/z0,
zr/z0, ub/ur and Ncw, and the internal closure constant ".

Because the stress model is designed for a broad range of input wave and current conditions
that may be produced by a shelf circulation model, the parameter ranges for Ab/z0 and zr/z0 are 10-3

# Ab/z0 # 106 and 1.01 # zr/z0 # 106.  The lower limit is chosen to represent a maximum relative
roughness for the wave (z0/Ab) of 103.  The upper limit is chosen to represent a 100 cm current height
(zr) or excursion amplitude (Ab) over a ripple-free bed with a minimum grain diameter roughness of
~10-3 cm (10 :m).  Other model parameters have been fixed with values of " = 1, Ncw = 0 and ub/ur
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= 1.  The latter is chosen so that the wave and current outside the wave boundary layer are about the
same order of magnitude.  Past expressions for " have ranged between about 0.15 and 2 (Glenn
1983; Madsen and Wikramanayake 1991; Lynch et al. 1997).  We therefore choose an intermediate
value to illustrate the model characteristics.
3.1 Fundamental model characteristics

Figure 2 depicts selected internal model parameters identified in the text as a function of the
independent external parameters zr/z0 and Ab/z0.  Individual model parameters show varying degrees
of sensitivity to zr/z0 and Ab/z0, especially for extreme values.  The first two parameters, : = u*wm/u*cw
and , = u*c/u*cw, illustrate the dynamic features of the stress model since they define the relative
proportions of the wave and current shear velocities to the total.  The pure wave or pure current
limits are easily interpreted graphically, as : 6 1 and , 6 0 for pure waves, and : 6 0 and , 6 1 for
pure currents.  As zr/z0 6 1 for a fixed ur, the current shear becomes very large.  This results in a
large stress associated with the current (, 6 1) that will dominate over the wave in the combined
flow.  As this ratio increases, the current shear begins to decrease, with an associated reduction in
,.  Eventually, zr/z0 will become so large that the turbulent stresses associated with the current (for
constant ur) must vanish and , = 0.  In this limit, the solution becomes that of a pure wave (: 6 1).
The rate at which the pure wave limit is approached is also a function of Ab/z0.  For constant ub,
decreases in Ab/z0 lead to greater frictional drag for the wave and an associated increase in bottom
stress.  This behavior is apparent in the first two plots, as the pure wave limit proceeds more rapidly
as a function of zr/z0 for smaller Ab/z0.

Another notable feature is that both : and , become independent of Ab/z0 when this ratio is
less than 1.  This can be understood by examining the non-dimensional length scales z1/z0 and z2/z0
and the parameter F as a function of zr/z0, when 10-3 # Ab/z0 # 10-1.  Figure 2 reveals that z1/z0 and
z2/z0 are always less than 1 in this range, so that the eddy viscosity where the no-slip condition is
applied becomes constant and  (Appendix B).  Substituting F from (29) into the above
expression for : gives

which is independent of Ab/z0.  The parameter , is related to : through (19), so it too is independent
of Ab/z0.

The second group of parameters, z1/z0, z2/z0, z1/zr and z2/zr, represents the length scales of the
flow.  All four parameters exhibit a strong dependence on Ab/z0, but only z1/zr and z2/zr are dependent
on zr/z0 when this ratio becomes very large.  An important consideration for modeling applications
is that all four parameters are well behaved for the broad range of Ab/z0 and zr/z0 used here.  The only
exception is when zr/z0 = 1 (ur = 0), which is a degenerate case. 

'ws is sensitive to smaller values of zr/z0, and to Ab/z0 as long as z1/z0 > 1.  When z1/z0 < 1, the
eddy viscosity that defines the maximum wave shear is constant, and the resulting equation for 'ws,
which is derived in Appendix B, is independent of Ab/z0.  The final two parameters, R* and F,  



13

Figure 2 Selected internal model parameters as a function of zr/z0 and Ab/z0.  Definitions of the
internal variables are provided in the text.  Values for Ab/z0 range from 10-3 to 106 in decadal
increments.
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(33)

are both sensitive to smaller values of zr/z0, and R* is sensitive to Ab/z0 for all values.  The parameter
F is not very sensitive to the very large changes in either zr/z0 or Ab/z0.  This demonstrates the
advantage of selecting F as the function best suited for a root finding algorithm to close the stress
solution.

The stress model also depends on ub/ur, which is a measure of the relative strength of the
wave to the current.  Figure 3 shows :, , and F for the same conditions illustrated in Figure 2 but
with ub/ur = 10 (large wave) and 0.1 (small wave).  The general trends are the same as the ub/ur = 1
case, with the exception that for larger ub/ur, the solution approaches that of a pure wave much faster
as a function of zr/z0, and for ub/ur = 0.1 the change is more gradual.  Since a larger ub/ur signifies
a stronger ambient wave, it is expected that the solution should converge to the pure wave limit
much more rapidly as zr/z0 increases.  The opposite is true for a relatively large current (ub/ur = 0.1).
The parameter F also is not as sensitive to Ab/z0 when the current is much stronger than the wave.
3.2 Sensitivity to the direction between the wave and current

Equation (19) expresses a closed relationship between , and : given the external parameter
Ncw.  A plot of , as a function of : for several values of Ncw is shown in Figure 4.  For small :, , is
not very sensitive to : or Ncw.  As : becomes larger, and the shear stress associated with the wave
becomes significant, , becomes much more sensitive to Ncw.  This sensitivity can be described
mathematically, since (19) reduces to

for codirectional flow (Ncw = 0), and to

for orthogonal flow (Ncw = B/2).   Both the larger exponent for : and the radical in (33) tend to make
, larger when the wave and current are at right angles.  Physically, this means that for a fixed
maximum wave stress vector in the presence of a current, the magnitude of the time averaged shear
stress must continually increase as  Ncw goes from 0 to B/2, if the magnitude of the maximum total
stress vector is to remain constant.  The direction of the maximum total stress vector will of course
change as the time averaged shear stress vector rotates toward B/2.  During storms, the wave and
current vectors near the coast are generally at a high angle and both are relatively strong.  If
topographic steering or an evolving current (e.g., tides) produces local regions where Ncw becomes
small, an associated increase in the magnitude of the total shear stress may occur.  There has been
little observational work to characterize the stress field within the wave boundary layer for arbitrary
wave and current vectors.  Some preliminary studies seem to indicate that a first order effect is a
reduction in the bottom roughness for the current as Ncw increases (Sorenson et al. 1995; Styles
1998).  This is due to ripples.
3.3 Bottom stress sensitivity to the eddy viscosity profile

The solution presented above neglects the stress term in the governing equation for the wave
above z2 but retains it for the current.  This was justified on the assumption that u*c was on the order
of the wave velocity or less (GM).  Styles and Glenn (2000) also have argued that the details of the
eddy viscosity outside the wave boundary layer are not important in determining the bed stress  
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Figure 3 Similar to Figure 2, but showing only :, , and F.  Left column is for ub/ur = 10 (large
waves) and right column is for ub/ur = 0.1 (large currents).
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Figure 4  Sensitivity of the parameters , and : to the direction between the wave and the
current.

except possibly for very rough beds.  Both the Styles and Glenn (2000) 3-layer eddy viscosity
depicted in Figure 1(a, b, c) and the simplified 2-layer continuous eddy viscosity for the wave
depicted in Figure 1(d, e) are identical as z 6 z0, but diverge above z2.  Another eddy viscosity profile
that has been used extensively in the past is the linearly increasing, discontinuous form originally
proposed by GM (Figure 1f).  Since all three formulations are different above the wave boundary
layer but the same below z1, the present stress model can be used to examine how the details of the
eddy viscosity profile outside the wave boundary layer affect bed stress estimates.

A stress model based on the GM eddy viscosity does not include the z1 or z2 terms.  Instead,
GM prescribe the height of the wave boundary layer, *cw, which is also formulated as a constant, n,
times lcw (*cw = nlcw).  For this comparison n is set equal to 2, which is the typical value used in
applications (Glenn and Grant 1987; Madsen et al. 1993; Madsen 1994; Keen and Glenn 1994).  To
highlight the differences between the three eddy viscosity formulations, the ranges of the input
variables are reduced to 10-1 # Ab/z0 # 103 and 1.01 # zr/z0 # 103.  Other parameters are set with
values of Ncw = 0, ub/ur = 1 and " = 1.  To illustrate the dynamical properties of the three modeling
approaches, the comparison focuses on the parameters :, , and F, which are depicted in Figure 5.
For Ab /z0 $ 100, all three models produce about the same result, and, therefore, the solution is not
sensitive to the form of the eddy viscosity in the outer wave boundary layer and above.  This point
is argued by Styles and Glenn (2000), who claim that the stratification correction also introduces
arbitrary changes to the eddy viscosity and, therefore, can be neglected in the wave stress solution.
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For a larger relative roughness, the three solutions begin to diverge.  This is most apparent for the
2-layer continuous eddy viscosity, which was shown to produce an upper bound on : and a lower
bound on , and F when z1/z0 < 1.  The GM and Styles and Glenn (2000) eddy viscosity profiles for
the wave are not constant in the outer portion of the constant stress layer, so that F, : and , remain
functions of Ab/z0 when the relative roughness is very large.

In the limit of a pure current (zr/z0 6 1), both : and , based on the stress models derived
using the GM and Styles and Glenn (2000) eddy viscosities converge.  This limit was mentioned
above as a possible case when u*c might be important in the governing equation for the wave outside
the wave boundary layer.  Since the result based on the Styles and Glenn (2000) eddy viscosity
profile includes the stress term above z2 and the GM eddy viscosity does not, the importance of
retaining the stress term for this case appears minimal.  The fact that the three models produce
dissimilar results for a large relative roughness (Ab/z0 . 10) suggests that careful consideration of the
parameterization of the turbulent stresses for a rough bed is important.
3.4 Evaluation of "

The above analysis has revealed that the model is most sensitive to the eddy viscosity profile
for very rough beds (kb/Ab / 1.0).  On storm-dominated sandy continental shelves the roughest beds
are speculated to be associated with the presence of relic ripples, which can have maximum ripple
heights that exceed 10 cm (Traykovski et al. 1999).  The amount of time that relic ripples dominate
the roughness signature on sandy continental shelves is very hard to quantify considering the
difficulties of obtaining long-term measurements of ripple degradation in the wake of storms.
Assuming that relic ripples persist for some time after storm events, it is possible to estimate the
average amount of time that relic ripples may be present.  Studies of storm forced transport on the
New Jersey shelf (Styles 1998) have indicated that the average storm, as defined by the time that the
shear stress based on skin friction exceeds the minimum for the initiation of sediment motion, lasts
about 24 hours and that approximately 10 such storms occur annually.  Assuming that biological
activity sufficiently degrades ripples within a week or two after a storm (Traykovski et al. 1999),
gives an annual maximum relic ripple period of 2 to 5 months.  This can be a significant amount of
time and suggests that BBLMs must be properly calibrated for use in very rough conditions that are
likely to occur on wave-dominated continental shelves.

Model sensitivity to the form of the eddy viscosity profile can be investigated by modulating
the parameter ".  If " is very large then the eddy viscosity in the vicinity of z0 increases linearly.
This is the same as the GM model deep within the wave boundary layer.  For intermediate values
of ", the eddy viscosity profile is identical to Madsen and Wikramanayake (1991) and Styles and
Glenn (2000).  If " is very small, then the eddy viscosity in the vicinity of z0 is a constant, and it is
similar to vertically independent forms that have been suggested for very rough beds (Nielsen
1992;Sleath 1991).  Modifying " in the present model effectively reproduces the eddy viscosity
profiles discussed above, which were shown to produce different results when kb/Ab was greater than
about 1. 

For a given set of external wave, current and roughness conditions, the boundary shear stress
becomes sensitive only to the value of ".  In laboratory flumes, all of these parameters can easily
be prescribed or measured independently of a combined flow model with the exception of the
bottom roughness.  This is because the precise mathematical formulation depends on the size and
shape of  the bedforms present, which means that kb varies as a function of the experimental
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Figure 5 Comparison of :, , and F for the GM (thin solid), Styles and Glenn (2000) (dash) and
2-layer continuous (thick solid) eddy viscosity profiles.  Ab/z0 ranges from 10-1 to 103 in decadal
increments.
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(34)

conditions and is not universal in form.  Therefore, the experimental setting must conform as closely
as possible to the actual environmental conditions to which the calibration results apply.  In this
case, the experimental conditions must include roughness elements that simulate the approximate
shape of wave-generated ripples and more importantly they must return a consistent roughness value
based on several independent methods of determination.

The data sets used to evaluate " for combined flows are obtained from Mathisen and Madsen
(1995a, b) (hereinafter referred to as MM).  MM conducted detailed experiments of co-directional
wave and current flows in a laboratory flume.  To ensure rough turbulent conditions, they modified
the bed of their flume with triangular shaped bars that were scaled to simulate the geometry of 2-D
wave-generated ripples.  In nearly all of their experiments, kb/Ab  > 1, which is ideal for evaluating
the present stress model for rough conditions.  MM reported all necessary input data to drive the
model including bottom roughness height and the wave friction factor, which was determined by
measuring the decay in wave height over the length of the flume and relating that to dissipation due
to bottom friction.  Noting that , friction factor curves can be generated and compared
to their measurements.  Setting kb equal to the  roughness determined for pure currents (MMa, Table
2) and using the measured water particle amplitudes, orbital velocities and mean currents, a family
of friction factor curves as a function of " are generated.  The current roughness is chosen since
MM’s results demonstrated that kb was nearly the same for waves in the presence and absence of
currents, and currents in the presence and absence of waves.  Also, their current roughness estimates
are independent of the GM combined wave and current model, whereas this model is used to
determine the roughness for all their cases with waves.  As noted above, increasing "  leads to an
eddy viscosity profile that is very similar to the GM formulation.  The choice then to use the
roughness for pure currents ensures that the present method to determine " is not inherently
dependent on the GM model (through the bottom roughness), which may bias the results to favor
larger values of ".  To quantify the comparison between the model and data, we adopt the relative
error defined by

where Yi is the measured data point,  is the corresponding model estimate and N is the number of
data points (Wikramanayake and Madsen 1991).  The friction factor curve that minimizes e
identifies the optimum ".

Using values that range from 0.15 to 2 (Glenn 1983; Madsen and Wikramanayake 1991;
Lynch et al. 1997; Styles 1998), the lowest error (e = 1.3) is obtained when " is set equal to 0.75.
The corresponding modeled wave boundary layer thickness, as determined by *cw = nlcw (n = 2) is
a factor of 3 too low when compared to the observed height derived from wave and current profile
measurements in the flume.  MM also underestimate the height of the wave boundary layer using
the GM model.  MM attribute the enhanced boundary layer thickness to the increased bed roughness
associated with their fixed artificial roughness elements.  Relic ripples may play a role similar to
artificial roughness elements, and, therefore, may produce an enhanced boundary layer thickness
relative to smoother flow conditions.  Although the main purpose here is to describe an algorithm
to compute the total bed stress, the resulting wave and current stress components are integral
components of suspended sediment concentration and velocity profile models (i.e., Smith 1977;
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Wiberg and Smith 1983; GM; Glenn and Grant 1987).  A model designed to predict current and
suspended sediment concentration profiles should be able to reproduce accurately both the friction
factor (stress) and the wave boundary layer thickness.

The fact that the model tends to underestimate the thickness of the wave boundary layer, yet
accurately predicts the wave friction factor, suggests that it is the internal length scales, which define
the height and thickness of the various regions in the boundary layer, as opposed to the velocity
scales, which define the shear stresses, that should be reexamined.  The present and GM models
have as adjustable internal length scales z1 and *cw, respectively.  We hypothesize that for very rough
conditions (kb/Ab / 1) the constants multiplying lcw in the definition of z1 and *cw are now functions
of the relative roughness.  A very simple approximation that incorporates explicitly the relative
roughness in the definition of z1, but reverts to the existing formulation in the limit kb/Ab 6 0 is to
modify z1 as z1 = " lcw(a0 + a1kb/Ab  + a2(kb/Ab )2 + ...).  Since kb/Ab is expected to become a leading
order term only for very rough beds, the series can be truncated to first order to give, z1 = " lcw(1 +
$kb/Ab).  A similar expression is proposed for *cw: *cw = n lcw(1 + $kb/Ab).  For smooth to moderately
rough turbulent conditions (kb/Ab . 0.1) the GM model has been shown to accurately predict the
shear stress and apparent roughness with n = 2 (e.g., Grant et al. 1984; Drake and Cacchione 1992;
Drake et al. 1992).  This leaves two undetermined parameters (" and $) that must be calibrated from
data.  Optimal values are found by choosing the combination that minimizes the relative difference
for both the friction factor and the wave boundary layer thickness.  Using a range of values for $
similar to those chosen for ", the lowest error (e = 1.2) is obtained when " = 0.3 and $ = 0.7.  The
results for combined flows are presented in Figure 6.  The model compares well with the measured
combined wave and current friction factors, and the average wave boundary layer thickness of 6.2
cm determined from the model (" = 0.3) compares well with the measured value of 6 cm.

MM also conducted experiments for pure waves (MMa, Table 1).  The roughness elements
were the same as in the combined flow and pure current cases.  Given that MM demonstrated similar
roughnesses for waves in the presence and absence of currents permits an additional opportunity to
refine the closure parameters in the case of pure waves.  Setting the roughness height equal to the
average obtained by MM for the pure current case, and using their experimental input wave
parameters, friction factor curves are generated from the model and compared to their data.  The
results are shown in Figure 7.  The lowest error (e = 1.2) for the friction factor was obtained with
" = 0.3 and $ = 0.8.  The average wave boundary layer thickness determined from the model was
6.0 cm.  When $ was set equal to 0.7 the lowest error for the friction factor still occurred with " =
0.3, but the modeled wave boundary layer thickness had a mean of 5.4 cm.  In both the combined
and pure wave case, a consistent result emerges in which the calibration coefficients maintain similar
values.  It must be emphasized that the suggested values for the closure constants are only valid as
long as they are applied to the stress model presented above (MM).  Other wave/current bottom
boundary layer models that include similar modifications must be calibrated before they should be
used in applications.

The modifications presented above are not without a theoretical or empirical basis.  The first
order correction to z1 leads to an eddy viscosity profile that is similar in functional form to
expressions developed by Nielsen (1992) and Sleath (1991).  For rough oscillatory flow very near
the bed, Nielsen (1992) proposed the eddy viscosity K = 0.004Ab

3/2kb
1/2T for Ab/kb < 16.  Similarly,

Sleath (1991) suggested K = 0.0025AbkbT in the range 1 < Ab/kb < 120.  Both expressions share a
common functional dependence, namely the nonlinear product Ab

ckb
dT, with the constraint that c +

d = 2. The calibration results presented above are formulated in terms of an eddy viscosity in the
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Figure 6 Combined wave and current model calibration results for the closure parameters " and
$.  (a) Measured (*) and modeled (+) friction factors as a function of ", including the best fit ("
= 0.3).  (b) Modeled wave boundary layer thickness for each of the 12 combined flow
experiments carried out by MM as a function of ".  Note that the family of friction factor curves
are not smooth, since fw for combined flows is a function of Ab/kb, " and , (Styles and Glenn
2000).
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Figure 7 Pure wave model calibration results for the closure parameters " and $.

transition layer (z1 < z < z2) that is written as K = 6 u*cw z1, with z1 = " lcw(1 + $kb/Ab).  Like the
Nielsen (1992) and Sleath (1991) results, this modification leads to an eddy viscosity profile that is
also an implicit nonlinear function of the product AbkbT.  To illustrate, we consider a pure wave in
which the roughness is large enough so that z1/z0 < 1.  In this case the eddy viscosity becomes K =
6 u*wm"lwm(1 + $kb/Ab).  Noting that  along with the definition of lwm (= 6u*wm/T),
the eddy viscosity can be written as K = "62fw/2AbT(Ab + $kb).  Expanding this expression, say, for
constant fw, gives an eddy viscosity that is proportional to Abkb T, which has the same functional
form as Sleath (1991).  Depending of the definition of fw, other nonlinear expressions emerge.  As
an example, Kajiura (1968) derived a friction factor of the form fw = 0.35(kb/Ab)2/3.  Substitution of
this expression gives K = 0.175"62(Ab

4/3kb
2/3T + $Ab

1/3kb
5/3T).  Although this functional form is

different from the results of Nielsen (1991) or Sleath (1992), all three formulations share a common
nonlinear dependence on the same external parameters kb, Ab and T.  The present modification, in
that the explicit dependence on kb/Ab vanishes in the limit of smoother bed conditions, is somewhat
more general than the Nielsen (1992) and Sleath (1991) models that apply only for kb/Ab greater than
about 0.008.
3.5 Speed of convergence tests

An advantage of the solution algorithm described above is that the nested iteration scheme
used in the Styles and Glenn (2000) and the family of Grant, Madsen and Glenn models (GM; Glenn
and Grant 1987) can be avoided.  Since the iterative root finding algorithm is the most
computationally expensive step in the solution procedure, it is of great advantage if the number of
times this operation must be executed can be substantially reduced.  In fact, Keen and Glenn (1994)
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spent considerable effort to optimize the initial guess for the friction factor and other variables to
speed the convergence in their streamlined version of the GM BBLM.

To illustrate the computational advantage of the present approach over the Styles and Glenn
(2000) model, which uses the same eddy viscosity profile but still uses a nested iteration scheme,
results of a speed of convergence test are presented.  Because the Styles and Glenn (2000) model
is restricted to a much narrower range of wave, current and roughness environments, the input
parameters represent only a small subset of the full capabilities of the stress model presented here.
The values of the input parameters, normalized run-time and total number of iterations are listed in
Table 2.  Each row represents 10,000 independent model runs with identical input and initial
conditions.  The run-time was recorded for each run, and normalized to produce the numbers listed
in Table 2.  The numbers in parentheses under the Styles and Glenn (2000) model denote the
maximum number of iterations required to converge the friction factor.  The other set of numbers
denote the number of iterations required to converge u*c in the Styles and Glenn (2000) model and
F in the present model.  The Styles and Glenn (2000) model uses the secant method, while the
present model uses a variation of Brent’s root finding algorithm (Atkinson 1989), in which the
iterations are performed using the bisection method but convergence is checked using the secant
method after only a few iterations.  A stopping tolerance of 10-4, or a 0.01% relative error between
the previous and present iteration is designated to established convergence.  The results indicate that
in all cases, convergence proceeds with fewer iterations, is at least twice as fast, and in some cases
an order of magnitude faster, thus illustrating the greater efficiency of the bottom stress algorithm
presented here.  A similar speed of convergence comparison was performed between the present and
the GM model, which can also be formulated without a nested iteration scheme (Grant and Madsen
1986).  The results were similar except for the smoother conditions (kb = 1 or 10), in which case the
present formulation usually converged 20 to 30 percent faster.  Since the present model uses a more
physically reasonable eddy viscosity profile, has a correction to produce accurate estimates of the
wave boundary layer thickness for very rough beds, and is more efficient for smoother conditions
than the Grant and Madsen (1986) model, it is recommended for applications in which estimates of
the near-bed flow and suspended sediment concentration profiles are desired.
4.0 Summary

We have presented a fairly robust algorithm to compute the enhanced wave and current
boundary shear stress components for an unstratified bottom boundary layer.  The stress model was
designed for a broad range of wave and current flows, and was formulated without the need to
introduce fictitious currents in the constant stress layer to obtain closure.  Instead, the governing
equations for the wave and current were reviewed and used to identify important velocity and length
scales that could characterize the flow for a broad range of wave and current conditions, including
the limiting case of pure waves or pure currents.  Systematic non-dimensionalization of the
governing equations revealed three important internal parameters: , = u*c/u*cw, : = u*wm/u*cw and F
= ub/u*cw.  It was demonstrated that interpreting the functional dependence of ,, : and F graphically
helped to illustrate model stability and to distinguish the effects of different turbulence closure
methods (i.e., different eddy viscosity formulations).  The bed shear stress was most sensitive to the
form of the eddy viscosity in the outer wave boundary layer and above for rough flow conditions
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Table 2 Speed of convergence tests comparing the present method with the unstratified version of
the Styles and Glenn (2000) wave and current BBLM.  For all model runs, Ncw = 0 and zr = 100 cm.
The first three rows are for strong waves and currents (SS), the middle three rows are for strong
waves and weak currents (SW), and the last three rows are for weak waves and strong currents
(WS).  The last two columns list normalized run-time (RT) and total number of iterations (N) for
each method.  The Styles and Glenn (2000) model uses a nested iteration scheme.  The numbers in
parentheses indicate the maximum number of iterations for the inner loop, which usually occurred
during the first or second iteration of the outer loop.

ub
(cm/s)

Ab
(cm)

ur
(cm/s)

kb
(cm)

Present
RT           N

Styles & Glenn
RT            N

SS1 50 100 20 1.0 1 7 3.6 5 (10)

SS2 50 100 20 10 1 7 2.8 5 (9)

SS3 50 100 20 100 1 5 2.9 5 (7)

SW1 50 100 1 1.0 1 8 4.4 7 (8)

SW2 50 100 1 10 1 9 2.6 7 (7)

SW3 50 100 1 100 1 9 2 6 (6)

WS1 1 2 50 1.0 1 4 21 3 (37)

WS2 1 2 50 10 1 6 7.3 5 (17)

WS3 1 2 50 100 1 5 7 5 (18)

For very rough conditions, available combined wave and current data were utilized to refine
estimates of the empirical constant ".  In order to resolve the discrepancy between past formulations
that produced accurate estimates of the friction factor but underestimated the thickness of the wave
boundary layer, the scale heights z1 and *cw were modified to include an explicit dependence on the
relative roughness.  This introduced and additional closure constant, $, that was determined
experimentally to be about 0.7 for combined flows and 0.8 for pure waves.  Further analysis of
combined wave and current flows over very rough beds in natural flows is needed before a definitive
value can be prescribed to model the constant stress portion of the bottom boundary layer.  Until
then, it is presently suggested that " = 0.3 and $ = 0.7 for applications of the stress model presented
here.

Speed of convergence tests revealed that the present model converged in fewer total
iterations and much faster than the Styles and Glenn (2000) BBLM, which used the same eddy
viscosity profile.  Faster convergence was attributed to the more efficient solution method, which
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(35)

(36)

avoided the nested iteration scheme used by Styles and Glenn (2000) and the family of Grant,
Madsen and Glenn models.
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Appendix A

Here we present a derivation of 'ws and : for the eddy viscosity in (5) when >0 is greater than
>1 or >2.  Invoking the usual linear and boundary layer approximations, Styles and Glenn (2000)
present the governing equation for the wave within the wave boundary layer for the 3-layer eddy
viscosity as

where W = uw - ub.  We have assumed a simple harmonic motion (eiTt) so that the time dependence
is separable from the > dependence.  With the appropriate boundary and matching conditions (Styles
and Glenn 2000), the solution for the modulus of the wave is written

where A, B, C, D and G are complex constants, Ber, Bei, Ker and Kei are zero order Kelvin functions
and .  For convenience, we have dispensed with the eiTt term since in this example the
modulus of a complex number (f + ig) times eiTt is simply the modulus of f + ig.  The values of the
constants can be found in Madsen and Wikramanayake (1991) and reflect the specific condition that
>0 < >1 < >2.  Based on the governing equation (35) and solution (36), it is possible to extend the
wave solution to include cases when >1 < >0 < >2 and >1 < >2 < >0.
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(37)

(38)

(39)

(40)

Case 1) >1 < >0 < >2
Using the eddy viscosity profile given in (10), the governing equation for W can be written

as

Invoking the no-slip condition at the bed and given that the solution smoothly approaches the
potential flow result at the top of the boundary layer, the corresponding solution for the wave
modulus is

where,

and

The terms in (39) and (40) are defined as follows:
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(41)

(42)

(43)

(44)

(45)

Substituting the wave solution into (7), 'ws becomes

and

Case 2) >1 < >2 < >0
For this case (13) defines the eddy viscosity (Figure 1c), so that the solution for the wave

modulus in the vicinity of >0 becomes

Inserting (44) into (7) gives
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(46)

(47)

(48)

(49)

and

Appendix B
Here we present the solution for 'ws and : while neglecting the stress term in the governing

equation for the wave above >2.  
Case 1) 2-layer eddy viscosity (z0 < z1)

For the 2-layer eddy viscosity presented in Figure 1d, the governing equation for W is similar
in form to the lower two layers in (35).  Applying the appropriate boundary and matching
conditions, the modulus of the wave solution becomes

where

and

The terms in (48) and (49) are defined as follows:
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(50)

(51)

(52)

(53)

(54)

(55)

Substituting the modulus into (7) yields

and

Case 2) 2-layer eddy viscosity (z0 > z1)
If >0 is greater than >1, the wave modulus becomes

With the aid of (7), 'ws takes on the simple form

and
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