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Using Objective Analysis of Scanning Radiometer
Measurements to Compute the Water Vapor

Path Delay for Altimetry
Jacques Stum, Philippe Sicard, Loren Carrère, and Juliette Lambin

Abstract—An objective analysis (OA) method is implemented
to compute the water vapor path delay (PD) correction of the
altimeter range using total precipitable water measurements from
scanning microwave radiometers (Advanced Microwave Sound-
ing Unit A, Advanced Microwave Scanning Radiometer-Earth
Observing System, Tropical Rain Measuring Mission Microwave
Imager, and Special Sensor Microwave Imager). The European
Centre for Medium Range Weather Forecasts (ECMWF) model-
derived water vapor PD correction given in the altimeter products
is used as the first-guess field. The calculation of the statistical
variables required by the OA is presented: These include the
variance and correlation function of the radiometer observations
minus its first guess, as well as the observation error variance.
The performance of the OA-derived water vapor PD correction
is assessed, using four months of Jason-1 altimeter data. It is
shown that the OA-derived correction is more accurate than the
ECMWF-derived correction but remains less accurate than the
one derived from the Jason microwave radiometer.

Index Terms—Altimetry, ECMWF, objective analysis, water
vapor path delay.

I. INTRODUCTION

P ERMANENT gases in the atmosphere induce propagation
delay to pulses emitted by satellite-borne radar altime-

ters to the ocean surface: The range measurement has to be
corrected for this effect. The range correction due to water
vapor has been called “wet tropospheric correction” or “path
delay” (hereafter referred to as PD). It varies from 1 cm in
dry cold air to 40 cm in wet hot air and is highly variable
in space and time. It has long been recognized that the most
accurate way to measure it is to fly a microwave radiome-
ter together with the radar altimeter, sensing the atmosphere
at frequencies near the 22.235-GHz water vapor absorption
line, along the altimeter path (i.e., nadir viewing). A second
possibility is to compute the PD from meteorological models
but with poorer accuracy because such models often cannot
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map the atmospheric humidity short space and timescales [1].
In this paper, an alternate approach is proposed which com-
bines, through an objective analysis (OA) method, all existing
scanning radiometer columnar water vapor observations to
derive the PD for any altimeter mission. This paper is motivated
by the need to offer an improved PD correction, the main inter-
est being for altimeter missions that do not embark a microwave
radiometer. This alternate PD correction may also benefit the
sea level rise studies using altimeter missions for which the long
term stabilities of both the aboard radiometer PD and the model
PD are uncertain. First, the scanning radiometer measurements
used are assessed in Section II. Section III describes the OA
method. Finally, Section IV is devoted to the method validation
with a four-month Jason-1 altimeter data set.

II. DESCRIPTION OF THE SCANNING

RADIOMETER MEASUREMENTS

A. Satellites and Sensors

Total precipitable water measurements are made by several
existing scanning radiometers on board a variety of satellite
platforms for meteorological operational applications or water
cycle research. These are the Advanced Microwave Sounding
Unit A (AMSU-A) sensor on board the National Oceanic
and Atmospheric Administration (NOAA) satellite series or
on board the European Organisation for the Exploitation of
Meteorological Satellites MetOp-A satellite, the Special Sen-
sor Microwave Imager (SSMI) sensor on board the Defense
Meteorological Satellite Program (DMSP) satellite series, the
Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E) sensor on board the National Aeronautics
Space Administration (NASA) Aqua satellite, and the Tropical
Rain Measuring Mission (TRMM) Microwave Imager (TMI)
on board the joint NASA and Japan Aerospace Exploration
Agency TRMM satellite.

B. Product Data Set

For the needs of this paper, a one-year 2008 data set
has been used, built from five AMSU-A sensors (flying on
board the NOAA-15, NOAA-16, NOAA-17, NOAA-18, and
MetOp-A), the SSMI sensor on board the DMSP-F13, the
AMSR-E, and the TMI. Level-2 swath products from these
sensors all contain the total precipitable water together with
the pixel latitude, longitude, and time. Pixel quality flags are
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Fig. 1. Scatter plot of NOAA-15 AMSU-A versus JMR PD (in meters). Gray
tones denote the concentration of the samples from (black) low to (white) high.

also given for some of them (e.g., AMSR-E) and are useful
to edit data contaminated by rain or sea ice. The pixels are
provided every 10 km for the AMSR-E and the TMI, every
25 km for the SSMI, and every 50 km for the AMSU-A (at
the swath middle). For the AMSU-A and the SSMI, these
level-2 products have been made available by the NOAA
through its Comprehensive Large Array-Data Stewardship Sys-
tem (CLASS). For the AMSR-E, the level-2 product data set
was downloaded from the National Snow and Ice Data Cen-
ter (ftp://n4ftl01u.ecs.nasa.gov/SAN/AMSA/AE_Ocean.002/),
and for the TMI, the level-2 product data set was
acquired from the Global Hydrology Resource Center
(ftp://ghrc.nsstc.nasa.gov/pub2/data/tmi-op/2008/).

C. Calculation of PD From Total Precipitable Water

The total precipitable water content W in centimeters is
given by

W =

H∫
0

ρv dz (1)

where ρv is the water vapor density in grams per cubic centime-
ter, z is the altitude, and H is the altitude above which the water
vapor density is considered to be negligible.

The water vapor PD correction can be approximated by [2]

PD = 1763

H∫
0

ρv
T

dz (2)

where PD is in centimeters and T is the temperature in kelvin.
The ratio between PD and W can be described by a de-

creasing function of water vapor content (e.g., see Fig. 1 in [3]),
which expresses its temperature dependence. In this paper, the

Fig. 2. Scatter plot of the AMSR-E versus JMR PD (in meters). Gray tones
denote the concentration of the samples from (black) low to (white) high.

temperature and humidity profiles from the European Centre for
Medium Range Weather Forecasts (ECMWF) model outputs
were used to derive the following function to calculate PD
from W :

PD/W = a0 + a1W + a2W
2 + a3W

3 (3)

with a0 = 6.8544, a1 = −0.4377, a2 = 0.0714, and a3 =
−0.0038.

This function gives PD values about 1% lower than those
derived from the function given in [3], with a PD/W ratio of
6.48 for W = 1 cm and 5.97 for W = 6 cm.

D. Comparison of the Water Vapor PDs of the
Different Sensors

As the goal of this paper is to combine the PDs from
the different sensors, it is thus necessary to estimate their
errors and correct for possible biases before using it in the
OA. The Jason-1 Microwave Radiometer (JMR) is used as a
common reference for the comparison. The first four months
of 2008, corresponding to Jason-1 cycles 221 to 232, have
been used to compute the PD from each scanning radiometer
at the time and location of the altimeter measurements, using
bilinear interpolation from the four closest surrounding pixels
and selecting only the scan times less than half an hour apart
from the altimeter time. Only good quality JMR measurements
(edited for rain and ice contamination) are kept. The obtained
scatter plots of the NOAA-15 AMSU-A, AMSR-E, TMI, and
SSMI versus JMR PD are shown in Figs. 1–4, respectively, and
Table I summarizes the statistics for all sensors. There is more
scatter for the AMSU-A than for the other sensors (the standard
deviation is about 12 mm). This may be explained by the less
accurate total water vapor contents because of the lack of a low-
frequency channel (around 18 GHz) to estimate the contribution
of the surface wind-induced emissivity variation in the water
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Fig. 3. Scatter plot of the TMI versus JMR PD (in meters). Gray tones denote
the concentration of the samples from (black) low to (white) high.

vapor retrieval. It also may be explained by the coarse AMSU-A
pixel resolution (∼50 km at the nadir and more than 100 km at
the swath edge). Not shown here are the other AMSU-A scatter
plots, but the same conclusions can be derived. In particular,
some increased scatter is observed for the NOAA-17 AMSU-A
for low PD values, which may be due to the loss of the 86-GHz
channel used to edit pixels contaminated by sea ice. Among
all these five AMSU-A sensors, the most accurate one seems
to be the one aboard MetOp-A (see Table I). It is also remark-
able to see the good intercalibration of these sensors (no bias
observed). By contrast, Fig. 4 shows that the SSMI on F13 is
clearly overestimating the PD by ∼10%. The most accurate
sensors are the AMSR-E and the TMI (see Figs. 2 and 3). In
particular, the agreement between the AMSR-E and JMR PDs
is excellent, with no bias, and has a standard deviation of about
7 mm.

To build a more homogenous multisensor PD data set, each
sensor has then been corrected using the a and b values of
Table I

correctedPD = (1/a)(PD − b). (4)

III. OBJECTIVE ANALYSIS

OA was introduced in oceanography by Bretherton et al. [4]
and has been widely used for the global mapping of different
oceanic variables, like sea surface temperature [5], sea level
anomalies [6], or phytoplankton concentration [7]. Its purpose
is to estimate the value of a field F at a given point P , starting
from a first-guess value G and using N measurements of the
field made at different locations and times in the vicinity of
point P

F (P ) = G(P ) +
N∑
i=1

WiAnomi. (5)

Fig. 4. Scatter plot of the F-13 SSMI versus JMR PD (in meters). Gray tones
denote the concentration of the samples from (black) low to (white) high.

In (5), Anomi is the field anomaly, i.e., the difference be-
tween the field measurement Fi and the first-guess value G(P )

Anomi = Fi −G(P ). (6)

In this paper, the field measurements Fi are the sensor PD
measurements, and we chose for the first-guess value G(P ) the
PD derived from the ECMWF model analysis. This choice
will be discussed further on. The anomalies are thus the
(sensor–ECMWF) PD differences.
Wi denotes the weights, built using a priori knowledge of the

statistical properties of the anomalies and of the measurement
errors

Wi =
N∑
j=1

CjA
−1
ij . (7)

In (7), Cj is the covariance of the anomaly between point j,
which is some distance and time away from point P , and point
P where the estimation is done

Cj =
CorAno(j, P )

√
VarAno(j)VarAno(P )

VarAno(P )
(8)

where CorAno(j, P ) is the space and time correlation coeffi-
cient of the anomaly between point j, which is some distance
and time away from point P , and point P . VarAno denotes the
variance of the field of the PD anomaly (the signal variance).
The closer in space and time a measurement from point P is,
the higher is its weight Wi.

In (7), Aij(= Aji) denotes the variance-covariance matrix
of the anomalies, and A−1

ij is its inverse matrix. The diagonal
terms Aii and nondiagonal terms Aij for i �= j are computed as
follows:

Aii =
VarErr(i) + VarAno(i)

VarAno(P )
(9)
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TABLE I
STATISTICS OF (SENSOR–JMR) PD DIFFERENCE: NUMBER OF SAMPLES, MEAN, STANDARD DEVIATION IN CENTIMETERS, SLOPE a,

AND INTERCEPT b OF THE LINEAR REGRESSION LINE (SensorPD) = a× (JMRPD) + b WITH PD AND b IN CENTIMETERS

Fig. 5. Hourly PD anomaly map for January 1, 2008, built from eight sensors. Color scale is from (left) −30 mm to (right) +30 mm.

where VarErr is the variance of the measurement error

Aij =
CorAno(i, j)

√
VarAno(i)VarAno(j)

VarAno(P )
. (10)

In (8)–(10), the variances and covariances are normalized
with respect to the signal variance at point P .

Associated to the estimated value F (P ) given by (5) is the
estimation formal error variance E(P ) given here normalized
with respect to the signal variance

E(P ) = 1−
N∑
i=1

N∑
j=1

CiCjA
−1
ij . (11)

E(P ) is thus a dimensionless quality indicator of the esti-
mated value F (P ). It tends to zero when measurements are

available close in space and time from point P ; it is one when
no measurements are available at all.

Four quantities are thus needed to compute F (P ):

1) the first-guess value G(P );
2) the variance of the measurement error VarErr;
3) the signal variance VarAno;
4) the correlation function of the field of the PD anomaly

CorAno.

A. Choice of the First Guess

The ECMWF water vapor PD given in the altimeter Geo-
physical Data Records (GDR) is used as the first-guess field.
The main interest in choosing this first guess is to ensure the
computation of a seamless PD correction for every altimetric
measurement. Indeed, when sensor observations are not close
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Fig. 6. January mean of the 12-h variance of the water vapor PD anomaly. Color scale is from (left) 20 mm2 to (right) 250 mm2.

Fig. 7. Same as Fig. 6 except that it is for July.

enough in space or time to the altimeter point, the weights in (5)
tend to zero, and the returned value F (P ) tends to G(P ). In the
altimeter GDR, the ECMWF PD G(P ) is provided at the time
and location of the altimeter measurement by the interpolation
in the ECMWF Gaussian (native) grids (spatial resolution of
about 25 km) provided every 6 h by the French Met Office,
Météo-France.

B. Variance of the Measurement Error

The estimation of the accuracy of the water vapor content
retrieved by a spaceborne radiometer is difficult to achieve due

to the lack of accurate reference measurements. Radiosonde
observations have long been used as “ground truth” but suffer
from their own inaccuracies and limited number over ocean.
For example, Brown et al. [8] only found 38 coincident ra-
diosonde samples within 75 km and 1 h from the JMR over an
∼1-year time period. In this paper, the square of the
(sensor–JMR) standard deviation reported in Table I has been
taken as a preliminary estimate of the variance of the measure-
ment error for each sensor. This clearly assumes that the PD
scatter seen in Figs. 1–4 is due to the sensor alone (i.e., the JMR
measurement is without error) and thus probably overestimates
the sensor error. The main advantage of this approach is to
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Fig. 8. January mean of the time correlation radius of the PD anomaly in hours. Color scale is from (left) 1.5 h to (right) 5.5 h.

Fig. 9. Same as Fig. 8 except that it is for July.

provide consistent numbers (the same reference data set for all
sensors), establishing a sensor error variance ranking from the
most accurate (AMSR-E) to the least accurate (AMSU-15). In
the OA, this gives more weight to the AMSR-E compared to the
AMSU.

C. Building a PD Anomaly Data Set

To compute the variance and correlation function of the
field of the PD anomaly, it is first necessary to build a long
time series of PD anomaly. The one-year product data set has

been used together with the ECMWF Gaussian grids to build
hourly maps of PD anomalies (sensor–ECMWF) at a 0.25◦

grid resolution. As an example, Fig. 5 shows the PD anomaly
map for January 1 between the 3h and 4h UTC. The eight
sensors are present and contribute each to the hourly geographic
coverage: the large swaths of the five AMSUs, the medium
swaths of the SSMI and the AMSR-E, and the smallest low
inclination swath of the TMI. The combination of the eight
sensors allows a complete ocean coverage in about 4 to 5 h.
PD anomalies vary rapidly in space. If we assume that the
sensor PD is correct, then this depicts the error of the ECMWF
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Fig. 10. January mean of the zonal correlation radius of the PD anomaly in kilometers. Color scale is from (left) 55 km to (right) 85 km.

Fig. 11. January mean of the meridional correlation radius of the PD anomaly in kilometers. The same color scale as that for Fig. 10.

model-derived PD. This error is due both to the intrinsic inac-
curacy of the ECMWF model to map the humidity field and to
its poor temporal resolution (one model output every 6 h).

D. Signal Variance

It is necessary to compute the temporal variance of the field
of the PD anomaly over a few hours (timescales of atmospheric
humidity) and to characterize the geographical dependence and
the seasonal variations of this variance. To obtain a statistically
meaningful signal variance in practice, sets of 12 consecutive

PD hourly maps are used to estimate the 12-h variance in 2◦ ×
2◦ geographical cells, and the variance results are averaged on
a monthly basis. Fig. 6 shows the variance map obtained for
January. As expected, low signal variance (less than 50 mm2)
is observed in the areas of atmospheric subsidence or low water
vapor content. The Pacific and Atlantic zonal circulation areas
exhibit medium variance values, and the highest variance values
(more than 250 mm2) are found in the vicinity of the Intertrop-
ical Convergence Zone (ITCZ) and South Pacific Convergence
Zone, where the PD values are high and often poorly mapped
by the model. Fig. 7 shows the variance map obtained for July.
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Fig. 12. Same as for Fig. 10 except that it is for July.

Fig. 13. Same as for Fig. 11 except that it is for July.

Compared to January, the signal variance generally is increased
in the Northern Hemisphere and decreased in the Southern
Hemisphere, and the values can vary by a factor of two in some
places.

E. Correlation Function of the Field of PD Anomaly

As no analytical model of the correlation function of the
field of the PD anomaly is available in the literature, a simple
Gaussian function has been chosen

CorAno(x, y, t)=exp

(
− x2

R2
x

)
exp

(
− y2

R2
y

)
exp

(
− t2

R2
t

)
(12)

TABLE II
PERCENTAGE OF ALTIMETER POINTS WITH OA-DERIVED PD (WITH

FORMAL ERROR < 1) AS FUNCTION OF JASON-1 CYCLE NUMBER

where x is the zonal distance, y is the meridional dis-
tance, t is the time lag from point P where the estima-
tion is done, and Rx, Ry, and Rt are the corresponding
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Fig. 14. Mean of (top) the (JMR–OA) PD difference and (bottom) the (JMR–ECMWF) PD difference in centimeters for the Jason-1 12-cycle period.
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Fig. 15. Variance of (top) the (JMR–OA) PD difference and (bottom) the (JMR–ECMWF) PD difference in square centimeters for the Jason-1 12-cycle period.
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Fig. 16. Standard deviation of the crossover SSH differences (cm), as function of Jason-1 cycle number, for the three PD corrections (JMR, OA, and ECMWF).
Moy and StdDev refer to the mean and standard deviation of the crossover SSH differences standard deviation over the 12 cycles.

correlation radii. The calculation of the correlation func-
tion is thus restricted to the calculation of the correlation
radii.

1) Time Correlation Radius: Series of maps of the time
correlation coefficient between two PD anomaly maps sepa-
rated by a given ΔT time interval have first been computed
in 2◦ × 2◦ cells for different values of ΔT (between 1 and 6 h).
Then, the time correlation radius map is simply derived from
the series of correlation coefficient maps by finding the cor-
responding e-folding time ΔT leading to a correlation coeffi-
cient of 1/e. Fig. 8 shows the map obtained for January. The
main feature is the contrast between the regions where zonal
circulation dominates, characterized by small time correlation
radii (less than 2 h), and low-latitude regions with higher
correlation radii (up to 5 h), with some exceptions like the
southern branch of the ITCZ, where low correlation radius
prevails. An arbitrary low (0.5 h) time correlation radius has
been assigned to regions where no radiometer measurements
are available (e.g., ice-covered polar oceans). Fig. 9 shows
the map obtained for July. The seasonal change is noticeable
through the northward extension of the small time correlation
radii in the Southern Hemisphere (enhanced zonal circulation
due to the winter season) and the corresponding increase of the
correlation radii in the Northern Pacific and Atlantic (summer
season).

2) Spatial Correlation Radii: The derivation for spatial cor-
relation radii is similar to that for the temporal radii. First,
the zonal and meridional correlation coefficients of the PD
anomaly field Rx and Ry have been computed in 2◦ × 2◦

cells for different values of zonal and meridional distances
Δx and Δy (between 25 and 100 km). Then, the zonal
and meridional correlation radii are deduced from the series
of correlation coefficient maps by finding the corresponding
e-folding distance Δx or Δy leading to a correlation coefficient
of 1/e. Figs. 10 and 11 show the January mean of the zonal
and meridional correlation radii, respectively. The values range

from less than 55 km to more than 85 km. The zonal radii
are generally greater than the meridional ones. In some areas
(e.g., Equatorial Pacific), low meridional radii coincide with
high zonal radii. Figs. 12 and 13 show the July zonal and
meridional radii, respectively. The same patterns already seen
in January are observed, and seasonal variations seem less
pronounced.

The OA estimates the PD at a given point P from a subset
of radiometer observations Fi(x, y, t) present in a small subdo-
main around P . The Fi of this subset, by definition, satisfies the
following equation:

x2

R2
x

+
y2

R2
y

+
t2

R2
t

≤ 1. (13)

From Figs. 10 and 11, one can deduce that the size and ec-
centricity of the ellipse-shaped subdomain will thus be strongly
dependent on the geographic position.

IV. VALIDATION

OA has been used to compute the water vapor PD under
the altimeter tracks of Jason-1 cycles 221 to 232, correspond-
ing to the first four months of 2008. The new OA-derived
PD (with a formal error < 1) is compared to the JMR and
ECMWF PDs.

A. Coverage of the OA-Derived PD

Table II gives for each cycle the ratio of the number of
altimeter points with an OA-derived PD, relative to the number
of altimeter points with a valid JMR PD, in percent. One factor
explaining the disparity of the percentages is the difference in
the phasing of the sun-synchronous sensor orbits with the non-
sun-synchronous Jason-1 orbit [9], [10]. Some cycles have a
more than 100% percentage because altimeter points where the
JMR PD is locally not valid (e.g., due to rain contamination)
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Fig. 17. Relative variation of the variance of the crossover SSH differences (in percent) by using the (top) OA PD correction or (bottom) ECMWF PD correction.
Positive values associated with less accurate PD correction are more pronounced with the ECMWF than with the OA.
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are filled in with OA PD (which considers the radiometer
measurements around).

B. Statistical Comparison of the Three PD Corrections

Maps of the mean of the (JMR–OA) PD difference and
the (JMR–ECMWF) PD difference for the 12-cycle period are
shown in Fig. 14. There is almost no bias between the OA and
JMR PDs in open ocean, but there is some bias (about 1–2 cm)
in the areas covered by sea ice. The OA PD is less biased
than the ECMWF PD in tropical areas. The corresponding
maps of the variance of these differences are shown in Fig. 15.
The variance of the (JMR–OA) PD difference is also lower
than that of the (JMR–ECMWF) PD difference. This statistical
comparison shows that the OA PD correction is closer to that of
the JMR than the ECMWF one.

C. SSH Performance Analysis

Altimeter sea surface height (SSH) has been computed as
done in [11] using water vapor PD correction from the JMR,
ECMWF, and OA. Fig. 16 shows the standard deviation of the
SSH differences at Jason-1 crossovers, as a function of the cycle
number. As expected, the JMR PD correction (downward trian-
gles) leads to the lowest standard deviation. The OA-derived
PD correction (squares) performs better than the ECMWF PD
correction (upward triangles).

The performance of the PD corrections can also be
quantified by computing the relative increase (or decrease)
of the variance of crossover SSH differences G, e.g., for
the OA

GOA=(Var(ΔSSHOA)−Var(ΔSSHJMR))/Var(ΔSSHJMR)
(14)

where ΔSSHOA denotes the difference in the SSH computed
with the OA-derived PD correction, ΔSSHJMR denotes the
difference in the SSH computed with the JMR PD correction,
and Var() is the variance operator.

Fig. 17 shows the map of GOA (top) and the map of
GECMWF (bottom). The variance increase is higher for the
ECMWF compared to the OA, mainly in high water vapor
content areas, and confirms that the OA PD correction performs
better than the ECMWF one.

A similar variance analysis of the SSH differences has been
performed using sea level anomalies of the same Jason-1 passes
of consecutive cycles, leading to the same results.

V. CONCLUSION

This paper has shown that it is possible to compute a water
vapor PD correction for altimetry, with better quality than
the one derived from the ECMWF model, by using OA of
measurements from all existing scanning radiometers. It is clear
that the quality of this new correction depends on the number
of available sensors, as well as on their intrinsic accuracy. The
OA allows one to optimally combine their measurements but

requires a good a priori knowledge of the sensors error and of
the statistical properties of the field of the (sensor–ECMWF)
PD anomalies to be analyzed. Rough estimates of the sensor
errors have been used in this paper, and these need to be
improved (e.g., computing geographical maps of the sensors
error). The covariance model of the PD anomalies also should
be improved through a more realistic correlation function and
variance calculation. Although the JMR PD correction remains
the most accurate correction for Jason-1, its long-term stability
is problematic at the level of accuracy required by sea level
rise monitoring: The use of an alternate PD correction, such
as the one described in this paper, could thus be valuable. Its
application to altimeter missions with no radiometer on board,
like the Cryosat-2 mission, is also of high interest for ocean
applications.
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