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A B S T R A C T

Global climate simulations do not capture the exact time history, making it difficult to directly compare them
with observations. In this study we simulate the sampling of altimeter observations from a seven-member wind
and wave climate ensemble. This allows us to assess the skill of the climate simulations, relative to satellite
observations instead of the typical approach which uses reanalysis or hindcast datasets as reference. Out of the
sampling methods tested, we find that a systematic sampling technique performs the best. We then apply sys-
tematic sampling to wind fields from EC-Earth and wave fields generated using the wave model (WAM) to
replicate the changing sampling of the satellite observations. Next we then quantitatively assess the climate
simulations and find that the probability density functions (PDFs) computed from the EC-Earth wind speed
samples match the shape of the PDFs obtained from the altimeter observations. EC-Earth consistently under-
estimates the wind speed with respect to the altimeter observations. Contrary to the wind speed under-
estimation, the wave simulations overestimate wave heights especially in the extra-tropics. The wind speed
seasonality in EC-Earth is larger than the seasonality evaluated from altimeter wind observations while the
opposite is true for the wave height seasonality; suggesting the wave physical parameterizations can be im-
proved. We find that the wave height inter-annual variability of the modeled data is considerably less than the
inter-annual variability evaluated from the altimeter observations; suggesting long-term climate variability is not
well captured. Overall the wave ensemble captures the important features of the global wave climate. The
methodology can be adapted to other climate simulations and observational datasets.

1. Introduction

Global climate models (GCM) are tools to study future changes in
climate and can potentially be used to mitigate impacts to humans and
infrastructure. The most recent climate projections use ensembles,
where the simulations of future conditions are generated using multiple
climate models or different initial conditions, rather than a single cli-
mate simulation. Ensembles are used to explore and reduce the un-
certainties inherent in the simulations that arise from the model’s in-
ternal variability (Hawkins and Sutton, 2009; Knutti and Sedlacek,

2010; Rauser et al., 2015). Uncertainties in climate modeling inevitably
occur due to errors in the physical parameterizations, missing physical
parameterizations, or small scale processes not resolved due computa-
tional constrains (Stocker et al., 2013). These uncertainties have often
been limiting factors in climate studies, particularly on regional scales
(Falloon et al., 2014; Payne et al., 2015).

The Intergovernmental Panel on Climate Change (IPCC) recognized
ocean waves as a significant driver of hazardous events in the coastal
area (Stocker et al., 2013); thus, together with the expected sea level
rise, waves will likely play an increasingly important role in dangerous
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high water levels (Hemer et al., 2013). Despite the important role of
waves within the Earth system, there is still no coupled ocean-wave-
atmosphere climate model system in operation. Therefore, global wave
climate studies rely on the forcing from GCM projections, and are
produced as separate simulations. Both statistical and dynamical
methods have been used to simulate future wave climate. While sta-
tistical methods are less computationally demanding, they require a
priori conditions and these are typically based on GCM projections
(Perez et al., 2015; Camus et al., 2017). The dynamic approach uses
wind speeds and sea-ice coverage from GCMs to drive a wave model
and perform wave climate projections. The first global wave climate
projections were developed under the auspices of the World Climate
Research Program - Joint Technical Commission for Oceanography and
Marine Meteorology (WRCP-JCOMM) Coordinated Ocean Wave Cli-
mate Projections (COWCLIP) project (Mori et al., 2010; Hemer et al.,
2012; Semedo et al., 2013). These studies led to an ensemble of sta-
tistical and dynamical global wave climate projections and the en-
semble was used to quantify future wave conditions (Hemer et al.,
2013). Recent studies used multi- Coupled Model Intercomparison
Project Phase 5 (CMIP5) GCM projections to produce dynamical wave
climate projections (e.g. Hemer and Trenham, 2016).

Since the wave climate simulations are not time constrained, most
studies compare different statistics such as seasonal or long-term
averages, between the climate simulations and wave hindcasts (Hemer
et al., 2013; Semedo et al., 2013; Hemer and Trenham, 2016). Some
examples of wave hindcasts and reanalysis, are the National Center for
Environmental Prediction (NCEP) climate forecast system (CFSR)
(Chawla et al., 2013) or the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis (ERA-Interim) (Dee et al.,
2011). The problem with using reanalysis and hindcast datasets as re-
ference is that there are known errors associated with the driving wind
fields (Stopa and Cheung, 2014a), and the physical parameterizations
implemented in the wave model (Stopa et al., 2016). In addition, it can
be difficult to assess the ability of the wave climate simulations to re-
produce extreme waves since hindcasts tend to underestimate the lar-
gest sea states (Rascle and Ardhuin, 2013).

The goal of this study is two-fold. Our first objective is to develop a
method to compare sparse observational datasets (altimeter observa-
tions in our case) to climate simulations from GCMs. Our second ob-
jective is to demonstrate the sampling method on an ensemble of CIMP5
EC-Earth wind simulations and associated wave simulations to de-
termine the models’ performance. Comparing sparse observations with
GCMs is not straightforward because the quantity of the satellite ob-
servations changes in time and space as new platforms are activated
and others are decommissioned. Therefore, sufficient efforts related to
the first objective are taken to adequately sample the climate simula-
tions to capture the statistical properties such as the mean, percentiles,
probability density functions, and variance of the altimeter observa-
tions. For the second objective, we assess the performance of CIMP5 EC-
Earth wind simulations and associated wave simulations in reproducing
the wind and wave climate relative to altimeter observations. The EC-
Earth and WAM simulation wind and wave ensembles, composed of
seven members each, was evaluated with respect to in-situ observations
and wave reanalysis datasets (Semedo et al., 2018). This group of si-
mulations was arbitrarily chosen and other CIMP5 simulations are
available (e.g. Hemer and Trenham, 2016). Our intent is to demonstrate
the method as well as assess the wind speeds and wave heights from the
EC-Earth and wave simulations against altimeter observations spatially
and for a wide range of sea states.

The study is organized as follows. In Section 2, we describe the al-
timeter observations and the EC-Earth and the wave climate simula-
tions. In Section 3, we test several sampling techniques to best capture
the variance and sampling of the altimeter observations and in
Section 4, we compare the wind and wave simulations to the altimeter
measurements for a characteristic period of 10 years (1996–2005). Here
we emphasize on assessing the model-observation differences spatially

and statistically through probability density functions, as well as as-
sessing the extremes, seasonality, and inter-annual variability of the
modeled and sampled wave properties. Our discussion and conclusions
follow in Section 5.

2. Datasets

2.1. EC-Earth ensemble

EC-Earth is a full physics coupled atmosphere-ocean-sea-ice earth
system model, developed from the ECMWF Integrated Forecast System
(IFS) operational seasonal forecast system (Hazeleger et al., 2011). Note
that a wave model is not included in the system. The EC-Earth version
2.2, used here, is based on the ECMWF seasonal forecast system 3
(https://www.ecmwf.int/en/forecasts/documentation-and-support/
evolution-ifs/cycles/implementation-seasonal-forecast-system). The at-
mospheric model in EC-Earth is the same as the ECMWF IFS cycle 31r.
The EC-Earth atmospheric model uses a T159 (triangular truncation at
wavenumber 159) grid with horizontal spectral resolution of 125 km
and 62 vertical levels of a terrain-following mixed sigma-pressure hy-
brid coordinates, of which about 15 are within the planetary boundary
layer. The lowest model level is at 30 m height, and the highest level is
at 5 hPa. The ocean model in EC-Earth is the Nucleus for European
Modeling of the Ocean (NEMO) (Vancoppenolle et al., 2009). NEMO
uses a horizontal resolution of roughly one degree. The EC-Earth per-
formance skills have been evaluated in several studies (e.g.
Hazeleger et al., 2011).

The EC-Earth runs were provided by several research groups, as
detailed in Table 1. Out of the seven EC-Earth runs used to force WAM,
six are part of the regular CMIP5 EC-Earth ensemble. A seventh EC-
Earth run (PC20-6), with an increased number of vertical levels, is also
used. The EC-Earth runs were initialized between 1850 and 1855,
spanning until 2005. Each EC-Earth simulation is independent and no
bias corrections were applied.

The seven dynamical wave simulations were produced by forcing
the 3rd generation wave model WAM (WAMDI-Group, 1988) with U10
components (East-West and North-South) every 6 hours and daily sea
ice concentration from each of the CMIP5 EC-Earth runs. We use WAM
cycle 4.5.3, an update of the WAM cycle 4, described in
Gunther et al. (1992) and Janssen (2008). The source function in-
tegration scheme made by Hersbach and Janssen (1999) and the model
updates by Bidlot et al. (2007) are incorporated. The WAM simulations
were performed on a regular global latitude-longitude grid, covering a
latitude range of 78° N to 78° S and using a fixed spatial grid size of 1-
degree. The spectral domain is discretized into 25 frequency bins in a
geometrical progression with a common ratio of 1.1 that cover the
range from 0.04177 to 0.41145 Hz. Wave directions are discretized into
15° bins. The 1-minute world gridded elevations/bathymetry (ETOPO1)
data (Amante and Eakins, 2009), defines the water depths. WAM was
run for each ensemble member for an (approximate) twentieth century
time slice from 1970 to 2005, representing the present or historical

Table 1
Ensemble member details.

Ensemble member CMIP5 experiment Data provider

PC20-1 r1i1p1 University of Lisbon
PC20-2 r3i1p1 Danish Meteorological Institute
PC20-3 r1i1p1 Danish Meteorological Institute
PC20-4 r1i1p1 Swedish Meteorological and

Hydrological Institute
PC20-5 r2i1p1 Swedish Meteorological and

Hydrological Institute
PC20-6 r2i1p1 Danish Meteorological Institute
PC20-7 r3i1p1 Swedish Meteorological and

Hydrological Institute
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climate. The ensemble members will hereafter be mentioned for con-
venience by PC20 (present climate 20th century) followed by their
ensemble number (PC20-i, where i is 1 to 7; see Table 1), and the en-
semble as PC20E. For convenience we will use the PC20 for both the
EC-Earth and wave climate runs, since we will analyze both the wind
speed (U10) and significant wave height (Hs). The WAM cycle 4.5.3 did
not implement a sub-grid parametrization which causes the sea states in
regions with islands smaller than the computational grid to be over-
estimated (e.g. Semedo et al., 2013; 2018).

2.2. Multi-platform altimeter dataset

The multi-platform altimeter product, abbreviated as ALT herein,
was quality controlled and calibrated by Queffeulou and Croize-
Fillon (2017). It was produced as part of the GlobWAVE project and is
now extended to form the first version of the Sea State Climate Change
initiative database (SeaStateCCI-V0). Here we use a 10 year period to
assess the simulations from 1996 through 2005. This period is chosen
because there are the largest number of observations during the “his-
torical” EC-Earth simulations 1970–2005. For the period 1996–2005,
there are 6 missions: ERS1 (1991–96), ERS2 (1996–2011), ENVISAT
(2002–12), TOPEX (1993–2005), JASON1 (2002–13), and GFO
(2000–07). Observations from each platform have been cross-calibrated
between platforms and calibrated to moored buoys (Queffeulou and
Croize-Fillon, 2017). The multi-mission dataset is expected to be con-
sistent in time with very little deviation between platforms.

Since the 1 Hz altimeter measurements capture the instantaneous
and spatially localized estimate of Hs it is an unfair comparison with the
time-space averaged outcome of the spectral wave model (e.g. Chawla
et al., 2013; Stopa and Cheung, 2014a). Therefore, we average all ob-
servations within the 1-degree bin from the various satellite platforms
that fall within a one hour window. The 1-degree bin matches the
output of the WAM simulations. This one-hour average represents the
satellite observation and is comparable to the time-scales resolved by
the phase-averaged spectral wave model at 1-degree resolution
(Chawla et al., 2013).

3. Methodology and assessment of sampling techniques

The ensemble uses a single forcing and a single wave model so it is
expected that the intra-ensemble variability of PC20E is small. We
create a wind speed ensemble and wave height ensemble using equal
weighting of the seven simulations from EC-Earth and WAM respec-
tively. In order to compare the performance of the dynamic climate
simulations to the altimeter observations it is essential to capture the
wind speed and wave height magnitudes and variance of the satellite
observations which change as a function of time and space. An example
time series is given in Fig. 1(a) taken from a location in the North
Atlantic (20° W, 46° N). The location is denoted by the black “X” in
Fig. 1(b). This point was chosen arbitrarily and used as an example to
show the effects of satellite sampling. Notice that the number of sa-
tellite observations per month changes and there are a larger number of
measurements from 2002 to 2005 when there were 4 concurrent mis-
sions. We are not concerned with the sparsity of satellite observations;
we only consider the altimeter observations to be the reference dataset.
The different number of satellite observations in single bins compared
to the regularly time-spaced wave simulations impacts the statistics.
Therefore, our goal is to properly sample the simulations so that the
statistical properties such as the median and various percentiles match
the ones from the altimeter observations.

Three fundamental sampling methods are tested: 1) simple random
sampling 2) systematic sampling and 3) stratified sampling. Simple
random sampling uses an equal weighting to select an event (without
replacement) from the larger population. An event in our application is
an individual time step. This method minimizes biases but it can be
vulnerable to sampling errors especially in the tails of the distribution.

Systematic sampling first orders the dataset and then chooses events at
regular intervals based on a random starting position. For our appli-
cation we sort the data by time. A disadvantage of systematic sampling
is that it might not capture events that are periodic in nature, such as
diurnal cycles. Stratified sampling is the process of first dividing all
possible events into mutually exclusive subgroups or strata before
sampling. In our case, the strata are months and the events are the
individual time steps. For each month or strata, we use simple random
sampling or systematic sampling to select the events. We tested a
combination of these sampling techniques and summarize them with
the following four cases. In each 1-degree bin, letM be the total number
of time steps available from the GCM simulation and N be the number
of altimeter observations where M≫N.

• Case 1: Simple random sampling - N time steps are randomly chosen
from the entire climate simulation time series of length M without
replacement.
• Case 2: Systematic sampling - data are selected every

=dx INT M N( / ) where INT denotes the greatest integer (the floor
function) by randomly choosing an initial index I0 within the range
[1, dx] of the time series.
• Case 3: Monthly stratified with simple random sampling version 1-
here we select a variable number of events from each monthly PC20-
i strata. The number of events selected directly corresponds to the
number of satellite observations for the given month. For example,
in Fig. 1(a) there are 3 observations in January 2001. This means we
randomly select 3 events from the model simulations in January
2001.
• Case 4 Monthly stratified with simple random sampling version 2-
here we select the same number of events each month. The number
of events for a given location is defined by the average number of
satellite observations for the complete time series. Referring to
Fig. 1(a), there is an average of 6 samples per month for
(1996–2005); thus, 6 events are selected from each month.

Assuming the complete 6-h model simulation represents the “true”
probability density function f, we can estimate the variance for a given
percentile P∈ [0, 1] as:

=
f x

P P
N

1
( ( ))

(1 )
p

2
2 (1)

where xp represents the given variable Hs or U10 at the given percentile.
The total number of satellite observations in 1-degree bins are shown in
Fig. 1(b) for the period 1996–2005. The asymptotic variance (Eq. (1))
was assessed by Brown and Wolfe (1983) for smaller sample sizes
(N < 160) than our application. Therefore, we expect Eq. (1) is an
unbiased estimator of the variance since there are at least 350 samples
in each 1-degree bin. We repeat the sampling procedures above for a
number of trials. The final statistics are created by averaging all of the
trials.

Without loss of generality we use the Hs from PC20-1 to assess both
the magnitude and variance of the sub-sampled datasets. In Fig. 2 we
show results of the different sampling methods relative to statistics of
the full time series using the time series in Fig. 1. For a single trial
(Fig. 2(a) and (e)), all methods capture the percentile within 5% of the
expected value, however the variance can have large discrepancies
(10–15%). Notice the extremes of the distribution are not well captured
especially for percentiles > 90%. If we use ten trials and then average
the statistics we can reduce the differences in sampled magnitudes and
variance of the full time series as shown in Fig. 2(b) and (f). However it
is still difficult to capture the variance of the largest events.

Next we assess the ability of the sampling methods to capture the
seasonality and use December–January–February (DJF) (Fig. 2(c) and
(g)) and June–July–August (JJA) (Fig. 2(d) and (h)) as representative
seasons. In DJF (Fig. 2(c) and (g)) when the waves are large, all cases
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match the percentiles (< 10% difference). All sampling techniques
perform similarly and the largest differences are still in the tails of the
distribution. For percentiles less than 90–95 all sampling methods
capture the magnitude and variance reasonably well. In JJA, when Hs is
smaller, we find similar results. Case 3 sampling has the most pro-
nounced deviations from the reference full 6-hourly time series with
variances varying ± 2% (Fig. 2(h)). Overall, case 2 seems to perform

the best because the percentiles are within 1% (Fig. 2(b)) and the
variance is well matched for the majority of the percentiles (Fig. 2(f)).

In order to optimize our sampling technique various trials were
tested using the 95th percentile (P95) PC20-1 Hs time series in the
North Atlantic (not shown). After 25 trials, all of the sampling methods
are less than 3% of the P95 observations (not shown). Cases 1 and 2
systematically converged with a lower number of trials than cases 3 and

Fig. 1. Example Hs time series in the North Atlantic showing
the simulated data from ensemble member 1 (black dots),
merged altimeters (blue circles), and number of altimeter
samples per month (red line) for a 1-degree window (panel
(a)). Panel (b) shows the number of hourly-averaged altimeter
observations for the period 1996–2005. The black “X” denotes
the location of the example time series shown in panel (a).
(For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)

Fig. 2. Comparison of the percentiles and variances of the example time series in the North Atlantic for ensemble member 1 for: Case 1 - simple random sampling,
Case 2 - systematic sampling, Case 3 - stratified simple random sampling with actual number of altimeters per month, Case 4 - stratified simple random sampling with
average number of altimeters per month. The top panels show the ratio of Hs percentiles (sampled/full time series) and the bottom panels show the ratio of Hs
variances as a function of percentile. (a,e) represents 1 sample (b,f) represent the average of 10 samples, (c,g) represent the average of 10 samples for the month of
January, and (d,h) represent the average of 10 samples for the month of July.
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4. After 10 trials only marginal improvements were observed; therefore,
in the remainder of the study, we average 10 trials to represent the
statistics from the sampled simulations.

The spatial distribution of the sampling effects for Hs P95 in Fig. 3
are analyzed next. We compare both the ratio of Hs P95 (P95sample/
P95all) and the ratio of Hs P95 variance (Varsample/Varall) for all cases.
Cases 1 and 2 perform similarly and the ratios of Hs P95 are close to

one, meaning nearly a perfect match. The spatial distribution of the
variance of the sampled time series from case 1 and 2 is nearly uniform
across the basins (Fig. 3(b) and (d)). The variance of the time series
using case 1 and case 2 sampling is typically 5% larger that the full 6-
hourly time series. It is expected that the sampled dataset has a larger
variance than the 6-hour time series because the full time series has
approximately 10 times more data.

Fig. 3. Hs 95% percentile comparison showing the ratios of the subsample time series to the entire time series. The magnitude is given in the left column (a,c,e,g) and
variance is given in the right column (b,d,f,h). Each row represents the various sampling strategies averaged using 10 sub-sampled time series. C1, C2, C3, and C4
correspond to the sampling strategies, cases 1 through 4, described in the text.
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The case 3 ratios (P95sample/P95all) of Hs P95 in Fig. 3(e) have a
distinct spatial pattern with ± 2% deviations from the P95 Hs full time
series used as reference. In the North Atlantic, Western Pacific, and
Northern Indian Oceans, case 3 sampling underestimates Hs P95; while,
in the Indian, North Eastern Pacific, and South Atlantic Oceans, case 3
sampling overestimates Hs P95. In case 3 sampling, we select the actual
number of altimeter observations from the corresponding month of the
simulated dataset. This means the number of events selected from the
simulated time series in January 1996 corresponds to the actual number
of altimeter observations in January 1996. Consequently, case 3 sam-
pling favors months in 2003–2005 since there are more satellites in
operation (see Fig. 1). This sampling strategy introduces the largest
spatial differences with respect to the full time series because the
months that have more altimeter observations do not correspond to
same months in the GCM forced wave simulations. For all cases the
variance of the sampled dataset is 5–10% larger than variance of the
full time series (shown in panels b, d, f, and h in Fig. 3).

The magnitude of the Hs P95 ratios (P95sample/P95all) between the
sampled and full time series using Case 4 sampling in Fig. 3(g) is nearly
one, similar to cases 1 and 2 (Fig. 3(a) and (c)). There is a subtle ten-
dency for case 4 to overestimate Hs P95 in the Northwest Pacific, North
Atlantic (> 30° N), and in the Mediterranean (Fig. 3(g)). The variance
ratio of the case 4 sampling in Fig. 3(h) is slightly larger than cases 1
and 2: 6–7% for case 4 sampling compared to 4–5% for cases 1 and 2
(Fig. 3(b) and (d)).

The performance of each sampling procedure is summarized in
Table 2 by comparing various Hs percentile and variance ratios
( )sampled time series

full time series in percentages. We compare the percentiles: 5th, 50th
(median), and 95th in different zonal regions: Northern Hemisphere
(NH) > 25° N, Equatorial Region (EQ) <25° N/S, and Southern
Hemisphere (SH) >25° S and seasons (DJF and JJA). All sampling
methods capture the overall variance very well and the errors are ty-
pically less than 0.5%. The results in Table 2 reflect similar features
seen in Figs. 2 and 3 and are summarized as follows:

• All sampling methods overestimate the small percentiles and the
variance is often >1%.
• The medians are very well matched using any of the sampling
methods.

• Case 3 sampling introduces spatial discrepancies.
• Typically all sampled Hs P95 match the full-time series and Hs P95
ratios are ≪ 0.1%.
• The sampled datasets have larger variance than the full time 6-
hourly series.

Table 2 shows the variance can be considerably larger using the
sampled time series for particular seasons (DJF and JJA) compared to
the full time series, especially for P95. We consistently find case 2
(systematic sampling) performs the best; therefore, this method is im-
plemented to sample the climate simulations to match the satellite
observations. We continue to use the average of the 10 trials as a re-
presentative sample of the simulated climate wave data since using only
one trial can have large differences of magnitude and variability re-
lative to the observations (see Fig. 2(a) and (e)).

4. Assessment of the wind and wave climate simulations

In this section we assess the sampled U10 and Hs datasets (PC20-1 to
PC20-7) relative to the altimeter observations by analyzing the spatial
errors, the probability density functions (PDFs), seasonality, inter-an-
nual variability, and large sea states.

4.1. Spatial features and statistical properties

First we highlight the spatial differences and variability between the
ensemble and observations for various statistics such as the median
(P50) and upper percentile (P95) wind speeds and wave heights for the
entire 10-year period. Fig. 4 shows the comparison between PC20E and
ALT for both U10 and Hs at P50. The U10 P50 residuals (PC20E-ALT) in
Fig. 4(b) show that EC-Earth underestimates U10 by 1–2ms 1 across
the majority of the ocean. Near the Equator, there is a strong under-
estimation of U10 that is persistent for all simulations (PC20-1 to PC20-
7). However, we should note that near the Equator nadir-looking alti-
meters are not the best source of wind and/or wave data since the calm
ocean surface coupled with weak winds can have nearly a specular
reflection, thus producing erroneous high wind speeds
(Elfouhaily et al., 1998). In addition, there are impacts from the sea
state which distort U10 when only the radar cross section (one-

Table 2
Hs statistics for various conditions given as a percentage ×( )1 100Sample time series

Full time series for the percentile and variance (given in parenthesis). These values represent the

average of ten independent sub-samples.

Selection Case All Prc 5% Prc 50% Prc 95%

Global C1 (−0.0026) 0.0441(0.8431) 0.0196(−0.4224) 0.0083(5.6070)
C2 (0.0684) 0.0214(0.6426) 0.0120(−0.2947) 0.0132(4.9086)
C3 (0.1557) 0.1159(1.6766) 0.2265(−0.3319) 0.0905(5.4032)
C4 (0.0123) 0.0519(0.7970) 0.0250(−0.4021) 0.0078(5.8263)

NH C1 (−0.0617) 0.0594(0.6192) 0.0408(−0.3340) 0.0023(5.4733)
C2 (0.1648) 0.0207(0.5582) 0.0265(−0.1387) 0.0448(4.8654)
C3 (−0.0698) 0.3133(1.0741) 0.3216(−0.0928) −0.0084(4.4369)
C4 (0.2316) 0.1322(1.0685) 0.1989(−0.0783) 0.1415(5.8226)

EQ C1 (0.0105) 0.0429(0.9913) 0.0203(−0.4609) 0.0070(5.8203)
C2 (0.0668) 0.0250(0.6745) 0.0122(−0.3039) 0.0067(4.7875)
C3 (−0.0344) 0.1492(1.7396) 0.2495(−0.5814) 0.0172(4.5424)
C4 (0.0551) 0.0402(0.9188) 0.0149(−0.4198) 0.0096(6.1059)

SH C1 (0.0006) 0.0288(0.8190) 0.0129(−0.4390) 0.0095(5.6559)
C2 (0.0587) 0.0176(0.6951) 0.0093(−0.3403) 0.0115(5.1727)
C3 (0.6280) −0.0268(1.8382) 0.1663(−0.0239) 0.2469(6.8550)
C4 (−0.1088) 0.0178(0.5795) −0.0534(−0.5374) −0.0462(5.7805)

DJF C1 () 0.5127(9.3824) 0.1259(−3.9800) 0.1832(47.9340)
C2 () 0.2530(7.5153) 0.0857(−2.8300) 0.2699(38.4140)
C3 () 0.4234(10.2227) 0.1534(−3.6439) 0.3324(49.7517)
C4 () 0.5016(9.5815) 0.1134(−3.9303) 0.2056(52.3949)

JJA C1 () 0.4418(9.1540) 0.1212(−22.8537) 0.1260(−34.6021)
C2 () 0.1770(7.5202) 0.0747(−2.6227) 0.2381(34.9692)
C3 () 0.5340(9.6684) 0.1755(−4.4505) −0.0003(45.1828)
C4 () 0.4230(9.7168) 0.1054(−3.7443) 0.1284(46.9609)
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parameter approximation) is used to estimate U10 (Gourrion et al.,
2002). Consequently, the U10 from altimeters is often higher than the
reference buoy wind speeds especially in low wind regions
(Young et al., 2017). Near the ice edge in the Southern Ocean, there
is a typical underestimation of 1–2ms 1. Otherwise the ensemble data
in the extra-tropics (30–50° N/S), which are important wave
generation regions, agree with altimeter observations
( <U U| 10 10 | 0.5ALT PC E20 ms 1). The intra-ensemble variability
(from the seven simulations) in Fig. 4(c) is low (0.2ms 1) with respect
to the U10 differences (typically 1ms 1) which equates to < 20% of
the variability of the ensemble. Regions in the SH extra-tropics, Eastern-
Equatorial Indian Ocean, and the trade wind regions of the NH and SH
have the largest intra-ensemble variations.

In Fig. 4(d)–(f) we show the P50 Hs comparison between PC20E and
ALT. Overall the Hs P50 of PC20E matches the observations within
± 0.25 m. Across the majority of the ocean, the ensemble over-
estimates Hs. Otherwise, there are only select regions such as the NW
Atlantic, Mediterranean, Gulf of Mexico, and Western Pacific where
PC20E underestimates Hs. This might be partially related to dis-
crepancies in U10. Altimeters tend to overestimate wave heights in low
sea states (Sepulveda et al., 2015; Kudryavtseva and Soomere, 2017).
So, wave intensity in regions like the Mediterranean and Gulf of
Mexico, which typically have small wave heights, might be over-
estimated by the altimeters. Consequently, in low sea states it is difficult
to assess the simulations when using the altimeters as reference. In the
Pacific trade wind regions, the ensemble systematically overestimates
Hs by >0.5 m with a global maximum difference (P50 Hs PC20E-ALT)
coinciding near Micronesia (130° W, 20° S). Some of these features are
related to unresolved islands smaller than the 1° resolution; similar to
features seen in (Semedo et al., 2013). The intra-ensemble variability is
low and the Hs deviations are less than 10 cm. So near the noted large

differences in the trade wind regions, the intra-ensemble variability is
< 4% of the residuals. The intra-ensemble variability in the Southern
Ocean is 3 to 10 cm which is 12 to 25% of the typical 25 cm Hs P50
residual. So the ensemble reduces some of the uncertainty in the SH
compared to using only one simulation.

In Fig. 5 we show the corresponding plots for the U10 and Hs for the
upper percentiles (P95). The U10 P95 residuals in Fig. 5(b) have nearly
the same spatial structure as U10 P50 residuals in Fig. 4(b). The most
obvious difference is that the U10 P95 residuals have enhanced un-
derestimation near the western boundaries in the tropics (5–30° N/S)
relative to the U10 P50 residuals. These regions are affected by tropical
cyclones and the ensemble underestimates U10 P95 by 1–2ms 1. The
intra-ensemble variability in Fig. 5(c) is largest in the NH extra-tropics
(30–60° N). In the NH extra-tropics, there are EC-Earth U10 P95 de-
viations of 0.2–0.3ms 1. This is 40–60% of the average value of the
residuals (−0.5ms 1) in Fig. 5(b). Therefore in these regions (i.e. the
gold-colored areas in Fig. 5(c)), the use of the ensemble improves the
performance.

The bottom panels of Fig. 5 show the corresponding plots for the Hs
at P95. The Hs P95 residuals (PC20E-ALT) in Fig. 5(e) are positive in the
trade wind regions of the Pacific, meaning that PC20E overestimates Hs
P95. The spatial pattern of the Hs P95 residuals in Fig. 5(e) is similar to
Hs P50 residual in Fig. 4(e). In the NH and SH extra-tropics (30–60° N/
S), the ensemble overestimates Hs at P95 by at least 0.5m and in some
areas the Hs P95 residuals exceed 0.75m. For example, in the North
Pacific near the Aleutians and South Pacific near the ice edge, the Hs
P95 is much higher (exceeds 0.75m) than the observations. EC-Earth
underestimates U10 P95 in the Western portion of the Pacific and
Atlantic, and likely contributes to a portion of the underestimation of
Hs. The underestimation in the Western portion of the Pacific and
Atlantic is compounded by the fact that spectral wave models

Fig. 4. Wind speed (U10) (a,b,c) and wave height (Hs) (d,e,f) comparisons of the median (P50) in units of ms 1 and m respectively. (a) and (d) display the altimeter
observations for reference. (b) and (e) display the difference between PC20E and the altimeters (PC20E-ALT). (c) and (f) display the standard deviation of the PC20-1
to PC20-7.

Fig. 5. Same as Fig. 5 except for the 95th percentile (P95).
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underestimate Hs in rapidly changing “short-fetch” conditions (e.g.
Ardhuin et al., 2010). Similar to U10 P95, the intra-ensemble varia-
bility helps to reduce the Hs P95 differences mostly in the NH extra-
tropics with standard deviations of 0.2m. This is approximately 20% of
the common Hs P95 residual of 1m.

Next we compare the PDFs and the quantiles to give further insights
on the performance of the climate simulations. Fig. 6 shows the U10
probability distributions and quantile-quantile (QQ) plots. The shape of
the PDFs calculated from the simulations match the ones obtained from
observations well, but the PDFs are mis-aligned. In particular, when
U10 < (5–10) ms 1 the probabilities obtained from the simulations are
larger than the probabilities obtained from the altimeter observations.
When U10 > (5–10) ms 1 the probabilities obtained from the simu-
lations are lower than those of the altimeters. In these plots each of the
seven simulations is analyzed separately and its results plotted with a
different color. The PDFs obtained from the simulations are nearly the
same and only subtle differences are distinguishable in this re-
presentation. The QQ plots show EC-Earth underestimates U10 uni-
formly across all wind speeds by approximately 0.75ms 1. Notice that
in each region, the QQ plots are similar. Besides the noted spatial dif-
ferences discussed in the previous section, the simulations perform

equally well in the different latitude bands.
We provide the corresponding PDFs for the Hs in Fig. 7. The shape of

PDFs obtained from the wave simulations is similar to the PDFs ob-
tained from altimeter observations but they are mis-aligned. When
Hs< (2–3) m the probabilities obtained from the simulations are
smaller than the probabilities obtained from the altimeter observations.
When Hs> (2–3) m the probabilities obtained from the simulations are
larger than those of the altimeter observations. The wave simulations
favor the mid-range (2<Hs<3 m) more than the altimeter observa-
tions, as shown by the reduced width of the PDFs obtained from the
wave simulations. We can see some distinction (2% difference) between
the PC20-i members near the median. This effect is most evident in the
SH. In the SH, there are the largest differences between the PDFs ob-
tained from the wave simulations and the altimeter observations. Here
the PDFs obtained from the simulations have higher occurrence of sea
states with 2<Hs<4 m compared to the PDFs obtained from the al-
timeter observations. The QQ plots show that the simulations of the
lower percentiles (< median) are often 0.25m larger than the alti-
meter observations. For the higher percentiles (such as >P95) the si-
mulations overestimate Hs by 0.25–0.5 m relative to the observations.
The QQ Hs results here in Fig. 7 are consistent with the buoy

Fig. 6. Wind speed probability distribution comparison (a,b,c,d) and quantile-quantile comparison (e,f,g,h) globally (a,e), in the Northern Hemisphere (> 25° N)
(b,f), near the Equator (∈ 25° N/S) (c,g), and in the Southern Hemisphere (> 25° S) (d,h).

Fig. 7. Same as Fig. 6 except for Hs.
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comparisons of Semedo et al. (2018) (their Figure 10) and show that Hs
is typically overestimated. However, in our analysis the comparisons
are global and extend to wave heights of 8m; thus establishing the
validity of the wave simulations to larger sea states.

Notice that the global QQ Hs differences are reflective of the pat-
terns observed in the SH; since in the NH, the PDFs obtained from the
wave simulations match those of the observations reasonably well. Near
the Equator (EQ: ∈ 25° N/S) in the lower percentiles (< P50), the wave
heights are overestimated. The largest contribution comes from the
lower latitudes (< 15°) as shown in Figs. 4(e) and 5(e). These areas are
dominated by swell and the underestimation of the swell dissipation in
WAM might be contributing to the discrepancies. In the SH, the dif-
ferences in the PDFs obtained from the wave simulations and altimeter
observations are the largest. The Hs probabilities obtained from the
simulations are lower than those of the altimeters for low sea states
(Hs<2 m). For sea states with 2<Hs<5 m, the probabilities obtained
from the simulations are higher than those of the altimeters. The Hs QQ
plots show the thresholds for a given wave height quantile is over-
estimated in low seas (< P50) and high seas (> P95). We observe the
largest variability between the ensemble members in the upper per-
centiles. In summary, U10 is underestimated by EC-Earth and Hs is
overestimated by the wave simulations. This suggests the wave model
physical parameterizations are causing the differences and not ne-
cessarily the forcing wind.

4.2. Seasonality

To assess the ability of the PC20-E members to capture seasonality
we use a metric called the mean annual variability (MAV) (Stopa et al.,
2013). It is defined as the average of the annual standard deviation
normalized by the annual average

=MAV
x

i

i (2)

where index i refers to the year, σ is the standard deviation, and the
overbar denotes average. We compare the MAV between the ensemble
average (PC20-E) and ALT in Fig. 8. Note that the altimeter patterns of
the U10 and Hs are provided as reference in Fig. 8(a) and (c). The
spatial pattern and magnitudes of the MAV computed from the alti-
meter observations is similar to that of the MAV computed from the
CFSR wave hindcast of Chawla et al. (2013) and presented in

(Stopa et al., 2013) (their Figure 6). U10 from EC-Earth has more
seasonal variability than the altimeters (see Fig. 8(b)). In particular,
PC20E has a larger seasonality in the Southern Ocean extra-tropics. This
might partially be influenced by the ice coverage. Near the Equator
PC20E has a larger MAV North of the Inter Tropical Convergence Zone
(ITCZ) and a smaller MAV South of the ITCZ relative to the observa-
tions. However, it is expected the altimeter U10 is of poorer quality near
the ITCZ due to sea state impacts when the wind is calm and specular
reflection is strong (Gourrion et al., 2002). The Hs comparison in
Fig. 8(d) shows the ensemble typically underestimates the wave sea-
sonality by as much as 15% but typically 4–8%. It is possible that there
are missing physical parameterizations within the wave model or the
physical parameterizations are not responding correctly to the wind
input; since we observe higher MAV in U10 and lower MAV in the wave
field.

The seasonality within the ensemble is further analyzed in Figs. 9
and 10. Here we present only results from the P95 since the spatial
patterns for other percentiles and the average were nearly the same. In
DJF (Fig. 9(b)), the U10 P95 differences between PC20-E and ALT are
largest in the SH trade wind regions in the Pacific and in the NW
Atlantic. Otherwise the differences are less than 1ms 1. EC-Earth is
overestimating U10 P95 in the SH extra-tropics but usually less than
0.5 ms 1. The intra-ensemble variability in Fig. 9(c) is largest in the NH,
SH extra-tropics, and near the EQ in the Indian Ocean. The corre-
sponding Hs P95 residuals of PC20E-ALT in Fig. 9(e) are similar to the
U10 P95 residuals with the zonal pattern: PC20E overestimates in
40–60° N/S and PC20E underestimates 20–30° N/S. Near the EQ, the
U10 and Hs P95 residuals have opposite signs with an overestimation in
Hs and an underestimation of U10.

In JJA (Fig. 10(b)), EC-Earth underestimates U10 P95 relative to
ALT across the majority of the global ocean. There are some exceptions
where EC-Earth overestimates U10 P95 such as regions in the North
Pacific, NW Atlantic, and near Eastern Africa in the NH. The U10 and Hs
from the wind and wave ensembles are not capturing the tropical cy-
clones that are more common this time of the year especially in the
Western Pacific (Fig. 10(b) and (e)). The intra-ensemble variability is
largest in the SH for both U10 and Hs P95 (Fig. 10(c) and (f)). If a single
member was used, the differences in the SH might be larger than PC20-
E shown in Fig. 10(b) where the average is −1ms 1. The ensemble
produces a better estimation of the seasonality especially in the SH. The
spatial pattern of Hs P95 residuals in Fig. 10(e) do not match the U10
P95 residuals except for the region in the Western Pacific. PC20-E

Fig. 8. U10 (a,b) and Hs (c,d) of the mean annual variability (MAV) given in a percentage. (a) and (c) display the altimeter observations for reference. (b) and (d)
display the MAV difference between ensemble and the altimeters (PC20E-ALT).
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overestimates the Hs P95 relative to ALT on average by 0.35m with
some regions in the SH and NH extra-tropics exceeding 0.5m. In both
the NH and SH extra-tropics the intra-ensemble variability is largest
and > 0.25 m (Fig. 10(f)). In the wave generation regions of the extra-
tropics, PC20E underestimates U10 P95 while PC20E underestimates Hs
P95.

Some of the other Hs discrepancies are due to land mask used in the
WAM set up, which is different from the one used in ERA-Interim.
Additionally the WAM version (v4.5.3) used here is known to dissipate
swell improperly in the low latitudes, contributing to an overestimation
of the wave heights there (Semedo et al., 2013). These differences such
as higher waves in the tropics, around Polynesia, Micronesia, the
Maldives, and near the Aleutians Islands might also occur due to un-
resolved sub-grid scale bathymetry. The intra-ensemble variability in
U10 and Hs is largest in the NH and SH extra-tropics.

4.3. Inter-annual variability

Lastly, we assess the ability of the ensemble to capture inter-annual
variability (IAV) over this 10-year period. The IAV is defined as the
standard deviation of the annual averages normalized by the overall
average:

=IAV
x

.xi
(3)

We compare the IAV between PC20-E and ALT in Fig. 11. The spatial
patterns of the altimeter observations in Fig. 11(a) and (c) qualitatively
look similar to the IAV of CFSR presented in Stopa et al. (2013) (their
Figure 7). The U10 IAV maxima of the altimeter observations
(Fig. 11(a)) are located in the Eastern and Western Equatorial Pacific.
The Hs IAV maxima of altimeter observations (Fig. 11(c)) are located in
the Southern Ocean near Chile and in the Western Pacific (120° E,
15° N). The U10 IAV residuals between PC20E and ALT are largest near

the Equator especially in the Pacific which might be related to not
properly capturing the El Nino Southern Oscillation (ENSO) which is
known to be the dominant mode of inter-annual variability in this re-
gion (e.g. Stopa and Cheung, 2014b). Otherwise the EC-Earth U10 en-
semble has differences less than 1% across 84% of the global ocean
(Fig. 11(b)) suggesting EC-Earth U10 captures a large amount of the
U10 IAV. The Hs IAV difference in Fig. 11(d) shows that the IAV for
PC20-E is considerably less than the IAV of the altimeter observations.
These large differences between PC20-E and ALT mean the IAV of the
wave field is not well captured in PC20-E and is typically much smaller
than the observations at least over this period of 10 years.

5. Discussion and conclusion

The U10 and Hs climate simulations were sampled such that their
statistical properties such as average, variance, and percentiles re-
plicated those of the altimeter observations. We analyzed both the
magnitude and the variance of several sampling techniques at various
percentiles. We found that systematic sampling (case 2) performed
better than the other tested sampling methods. Properly sampling cli-
mate simulations that do not capture the exact time history is parti-
cularly important when the reference observations are sparse and/or
the number of observations changes in time and space. Our metho-
dology can be adapted to other climate simulation and observational
datasets.

We systematically analyzed the skill of the ensemble in reproducing
the wind speeds (U10) and the resulting wave heights (Hs) relative to
the altimeter observations. EC-Earth underestimates the magnitude of
U10 uniformly across all percentiles. The PDFs obtained from the U10
of EC-Earth and those obtained from the altimeter observations are very
similar suggesting that EC-Earth is a satisfactory predictor of wind
speeds globally. Even though PC20E underestimates U10, the wave

Fig. 9. Same as Fig. 4 except for the 95th percentile (P95) in the months of December–January–February.

Fig. 10. Same as Fig. 4 except for the 95th percentile (P95) in the months of June–July–August.
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heights are overestimated. This suggests the implementation of WAM is
not properly calibrated for the EC-Earth wind field and it is possible to
correct this bias by reducing the wind wave growth parameter (βmax) in
the parametrization of Janssen (1991) as shown by Stopa (2018). In the
NH, the PDFs computed from U10 and Hs of both the simulations and
altimeter observations are similar; however in the SH, the PDFs are
different. Therefore, the performance of the simulations in the NH is
better than the SH. The QQ plots also support this point. The global
discrepancies in the PDFs and QQ plots strongly reflect the dis-
crepancies of the SH; stressing the importance of future efforts to better
simulate the SH. The almost identical match of the PDFs for the 7 si-
mulations limits the possibilities of the ensemble to improve forecasts
or hindcasts since the ensemble variance is much less than typical si-
mulation-observation error variances. For example, the Hs standard
deviations of wave hindcasts errors at buoys typically ranged from
± 40% or 0.3 to 0.8m as presented by Stopa and Cheung (2014a)
(their Table 2). The Hs standard deviation of PC20-E is generally small
and less than 0.06 (0.2) m at P50 (P95).

We find PC20-E overestimates Hs in the tropics namely in the Pacific
Ocean. This region has an abundance of swell (Semedo et al., 2011) and
WAM is most likely underestimating the swell decay. In addition, large
Hs discrepancies coincide with island chains in the Pacific and are due
to the treatment of sub-grid features not resolved by the model grid
resolution. Regions affected by tropical cyclones most notably in the
Western Pacific are not well captured by the climate simulations and we
observe a severe underestimation of Hs at P95. The use of the ensemble
has a minimal effect on improving the predictability in this case. Now
that the wave simulations are sampled like the satellite measurements,
it is possible to develop a bias correction for the wave simulations and it
is topic for future work. Notice that all of the sampling techniques in-
troduce errors of less than 2% for Hs at P95 (see Fig. 3) while the Hs
model-to-simulation discrepancies at P95 are typically on the order of
10–25% (Fig. 5). So we expect that our results are robust and there is
minimal impact from the sampling technique applied.

The seasonality is reasonably captured by the U10 and Hs en-
sembles. We find some differences. For example, EC-Earth over-
estimates the U10 seasonality while the wave ensemble underestimates
the Hs seasonality. This seasonal mismatch was found in other datasets.
For example, seasonal residuals between a CFSR wave hindcast and
altimeter observations (both U10 and Hs) were observed in
Chawla et al. (2013) and Stopa and Cheung (2014a). This suggests the
physical parameterizations in spectral wave models like WAVEWATCH
and WAM have missing physical processes or the existing

parameterizations can be improved to better capture the atmospheric
response in both the strong and weak seasons (such as temperature
differences or water density differences). We speculate that the current
physical parameterizations in spectral wave models have the tendency
to underestimate both growth and dissipation which might contribute
to a portion of the Hs seasonality residuals. The ensemble improves the
prediction of the seasons especially in the Southern Ocean. Otherwise
the typical intra-ensemble variability is less than or approximately
10–30% of the PC20E-ALT residuals.

The U10 from EC-Earth captures the important features of the inter-
annual variability. On the other hand, the GCM wave simulations have
lower inter-annual variability suggesting the time series of wave si-
mulations forced by EC-Earth have a much smoother time series re-
lative to the altimeter observations. Our comparison of the inter-annual
variability is a challenging test for the wave climate simulations. One
possible reason why we have such large differences in the IAV between
the simulations and satellite observations could be because we use a 10-
year period. A longer time series might capture more of the long-term
variability. Since the GCM forced wave simulations have difficulty in
reproducing the IAV, caution should be taken when analyzing the inter-
annual variability of future climate scenarios. Improving the ability of
the wave climate simulations to reproduce the inter-annual variability
is an opportunity for future efforts.

Previous works use wave reanalysis or wave hindcasts to assess
GCM-forced wave simulations. Here we take a novel approach and we
use altimeter observations as reference. This is important because the
altimeter database is expected to better represent the large sea states
and are not subjected to missing or improper wave parameterizations as
in models. It also stresses the importance of having an accurate and
quality-controlled altimeter database and is currently being re-assessed
by the European Space Agency’s Sea State Climate Change Initiative.
Using the altimeter observations to assess the GCM simulations espe-
cially at large sea states (Hs P95) is certainly a benefit of applying the
method. In this study, we provide more spatial details of the simulation
errors and validate the simulations across a wider range of sea states
compared to Semedo et al. (2018) who used reanalysis datasets and in-
situ buoys as reference datasets. Future assessments of the historical
wave simulations either dynamical or statistical could use a similar
methodology and compare to sparse observational datasets like our
example of using the altimeter observations as reference. Overall the
EC-Earth simulations and associated wave simulations capture the es-
sential features of the climate. Since we understand the discrepancies
between the simulations and satellite observations, it is now possible to

Fig. 11. Same as Fig. 8 except for the inter-annual variability (IAV).
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interpret the wave data for the future simulations which extend until
the end of the 22nd century.
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