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Abstract

Global climate simulations do not capture the exact time history, making it dif-

ficult to directly compare them with observations. In this study we simulate the

sampling of altimeter observations from a seven-member wind and wave climate

ensemble. This allows us to assess the skill of the climate simulations, relative

to satellite observations instead of the typical approach which uses reanalysis

or hindcast datasets as reference. Out of the sampling methods tested, we find

that a systematic sampling technique performs the best. We then apply system-

atic sampling to wind fields from EC-Earth and wave fields generated using the

wave model (WAM) to replicate the changing sampling of the satellite observa-

tions. Next we then quantitatively assess the climate simulations and find that

the probability density functions (PDFs) computed from the EC-Earth wind

speed samples match the shape of the PDFs obtained from the altimeter ob-

servations. EC-Earth consistently underestimates the wind speed with respect

to the altimeter observations. Contrary to the wind speed underestimation,
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the wave simulations overestimate wave heights especially in the extra-tropics.

The wind speed seasonality in EC-Earth is larger than the seasonality evalu-

ated from altimeter observations while the opposite is true for the wave height

seasonality; suggesting the wave physical parameterizations can be improved.

We find that the wave height inter-annual variability of the modeled data is

considerably less than the inter-annual variability evaluated from the altime-

ter observations; suggesting long-term climate variability is not well captured.

Overall the wave ensemble captures the important features of the global wave

climate. The methodology can be adapted to other climate simulations and

observational datasets.

Keywords: , wave climate, COWCLIP, wind and wave projections, EC-Earth,

altimeter observations, inter-annual variability, climate ensemble

1. Introduction1

Global climate models (GCM) are tools to study future changes in climate2

and can potentially be used to mitigate impacts to humans and infrastructure.3

The most recent climate projections use ensembles, where the simulations of fu-4

ture conditions are generated using multiple climate models or different initial5

conditions, rather than a single climate simulation. Ensembles are used to ex-6

plore and reduce the uncertainties inherent in the simulations that arise from the7

model’s internal variability (Hawkins & Sutton, 2009; Knutti & Sedlacek, 2010;8

Rauser et al., 2015). Uncertainties in climate modeling inevitably occur due to9

errors in the physical parameterizations, missing physical parameterizations, or10

small scale processes not resolved due computational constrains (Stocker et al.,11

2013). These uncertainties have often been limiting factors in climate studies,12

particularly on regional scales (Falloon et al., 2014; Payne et al., 2015).13

The Intergovernmental Panel on Climate Change (IPCC) recognized ocean14

waves as a significant driver of hazardous events in the coastal area (Stocker15

et al., 2013); thus, together with the expected sea level rise, waves will likely16

play an increasingly important role in dangerous high water levels (Hemer et al.,17
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2013). Despite the important role of waves within the Earth system, there is still18

no coupled ocean-wave-atmosphere climate model system in operation. There-19

fore, global wave climate studies rely on the forcing from GCM projections, and20

are produced as separate simulations. Both statistical and dynamical methods21

have been used to simulate future wave climate. While statistical methods are22

less computationally demanding, they require a priori conditions and these are23

typically based on GCM projections (Perez et al., 2015; Camus et al., 2017). The24

dynamic approach uses wind speeds and sea-ice coverage from GCMs to drive25

a wave model and perform wave climate projections. The first global wave26

climate projections were developed under the auspices of the World Climate27

Research Program - Joint Technical Commission for Oceanography and Marine28

Meteorology (WRCP-JCOMM) Coordinated Ocean Wave Climate Projections29

(COWCLIP) project (Mori et al., 2010; Hemer et al., 2012; Semedo et al., 2013).30

These studies led to an ensemble of statistical and dynamical global wave cli-31

mate projections and the ensemble was used to quantify future wave conditions32

(Hemer et al., 2013). Recent studies used multi- Coupled Model Intercompar-33

ison Project Phase 5 (CMIP5) GCM projections to produce dynamical wave34

climate projections (e.g. Hemer & Trenham, 2016).35

Since the wave climate simulations are not time constrained, most studies36

compare different statistics such as seasonal or long-term averages, between the37

climate simulations and wave hindcasts (Hemer et al., 2013; Semedo et al., 2013;38

Hemer & Trenham, 2016). Some examples of wave hindcasts and reanalysis,39

are the National Center for Environmental Prediction (NCEP) climate forecast40

system (CFSR) (Chawla et al., 2013) or the European Centre for Medium-Range41

Weather Forecasts (ECMWF) reanalysis (ERA-Interim) (Dee et al., 2011). The42

problem with using reanalysis and hindcast datasets as reference is that there are43

known errors associated with the driving wind fields (Stopa & Cheung, 2014a),44

and the physical parameterizations implemented in the wave model (Stopa et al.,45

2016). In addition, it can be difficult to assess the ability of the wave climate46

simulations to reproduce extreme waves since hindcasts tend to underestimate47

the largest sea states (Rascle & Ardhuin, 2013).48

3



The goal of this study is two-fold. Our first objective is to develop a method49

to compare sparse observational datasets (altimeter observations in our case)50

to climate simulations from GCMs. Our second objective is to demonstrate the51

sampling method on an ensemble of CIMP5 EC-Earth wind simulations and52

associated wave simulations to determine the models’ performance. Comparing53

sparse observations with GCMs is not straightforward because the quantity54

of the satellite observations changes in time and space as new platforms are55

activated and others are decommissioned. Therefore, sufficient efforts related56

to the first objective are taken to adequately sample the climate simulations57

to capture the statistical properties such as the mean, percentiles, probability58

density functions, and variance of the altimeter observations. For the second59

objective, we assess the performance of CIMP5 EC-Earth wind simulations and60

associated wave simulations in reproducing the wind and wave climate relative61

to altimeter observations. The EC-Earth and WAM simulation wind and wave62

ensembles, composed of seven members each, was evaluated with respect to in-63

situ observations and wave reanalysis datasets (Semedo et al., 2018). This group64

of simulations was arbitrarily chosen and other CIMP5 simulations are available65

(e.g. Hemer & Trenham, 2016). Our intent is to demonstrate the method as66

well as assess the wind speeds and wave heights from the EC-Earth and wave67

simulations against altimeter observations spatially and for a wide range of sea68

states.69

The study is organized as follows. In section 2, we describe the altimeter70

observations and the EC-Earth and the wave climate simulations. In section71

3, we test several sampling techniques to best capture the variance and sam-72

pling of the altimeter observations and in section 4, we compare the wind and73

wave simulations to the altimeter measurements for a characteristic period of74

10 years (1996-2005). Here we emphasize on assessing the model-observation75

differences spatially and statistically through probability density functions, as76

well as assessing the extremes, seasonality, and inter-annual variability of the77

modelled and sampled wave properties. Our discussion and conclusions follow78

in section 5.79
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2. Datasets80

2.1. EC-Earth ensemble81

EC-Earth is a full physics coupled atmosphere-ocean-sea-ice earth system82

model, developed from the ECMWF Integrated Forecast System (IFS) opera-83

tional seasonal forecast system (Hazeleger et al., 2011). Note that a wave model84

is not included in the system. The EC-Earth version 2.2, used here, is based on85

the ECMWF seasonal forecast system 3 (https://www.ecmwf.int/en/forecasts/documentation-86

and-support/evolution-ifs/cycles/implementation-seasonal-forecast-system). The87

atmospheric model in EC-Earth is the same as the ECMWF IFS cycle 31r. The88

EC-Earth atmospheric model uses a T159 (triangular truncation at wavenum-89

ber 159) grid with horizontal spectral resolution of 125 km and 62 vertical levels90

of a terrain-following mixed sigma-pressure hybrid coordinates, of which about91

15 are within the planetary boundary layer. The lowest model level is at 30 m92

height, and the highest level is at 5 hPa. The ocean model in EC-Earth is the93

Nucleus for European Modeling of the Ocean (NEMO) (Vancoppenolle et al.,94

2009). NEMO uses a horizontal resolution of roughly one degree. The EC-Earth95

performance skills have been evaluated in several studies (e.g. Hazeleger et al.,96

2011).97

The EC-Earth runs were provided by several research groups, as detailed98

in Table 1. Out of the seven EC-Earth runs used to force WAM, six are part99

of the regular CMIP5 EC-Earth ensemble. A seventh EC-Earth run (PC20-6),100

with an increased number of vertical levels, is also used. The EC-Earth runs101

were initialized between 1850 and 1855, spanning until 2005. Each EC-Earth102

simulation is independent and no bias corrections were applied.103

The seven dynamical wave simulations were produced by forcing the 3rd gen-104

eration wave model WAM (WAMDI-Group, 1988) with U10 components (East-105

West and North-South) every 6 hours and daily sea ice concentration from each106

of the CMIP5 EC-Earth runs. We use WAM cycle 4.5.3, an update of the WAM107

cycle 4, described in Gunther et al. (1992); Janssen (2008). The source function108

integration scheme made by Hersbach & Janssen (1999) and the model updates109
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by Bidlot et al. (2007) are incorporated. The WAM simulations were performed110

on a regular global latitude-longitude grid, covering a latitude range of 78◦ N111

to 78◦ S and using a fixed spatial grid size of 1-degree. The spectral domain is112

discretized into 25 frequency bins in a geometrical progression with a common113

ratio of 1.1 that cover the range from 0.04177 to 0.41145 Hz. Wave directions are114

discretized into 15◦ bins. The 1-minute world gridded elevations/bathymetry115

(ETOPO1) data (Amante & Eakins, 2009), defines the water depths. WAM116

was run for each ensemble member for an (approximate) twentieth century time117

slice from 1970 to 2005, representing the present or historical climate. The en-118

semble members will hereafter be mentioned for convenience by PC20 (present119

climate 20th century) followed by their ensemble number (PC20-i, where i is120

1 to 7; see Table 1), and the ensemble as PC20E. For convenience we will use121

the PC20 for both the EC-Earth and wave climate runs, since we will analyze122

both the wind speed (U10) and significant wave height (Hs). The WAM cycle123

4.5.3 did not implement a sub-grid parametrization which causes the sea states124

in regions with islands smaller than the computational grid to be overestimated125

(e.g. Semedo et al., 2013, 2018).126

2.2. Multi-platform altimeter dataset127

The multi-platform altimeter product, abbreviated as ALT herein, was qual-128

ity controlled and calibrated by Queffeulou & Croize-Fillon (2017). It was pro-129

duced as part of the GlobWAVE project and is now extended to form the first130

version of the Sea State Climate Change initiative database (SeaStateCCI-V0).131

Here we use a 10 year period to assess the simulations from 1996 through 2005.132

This period is chosen because there are the largest number of observations dur-133

ing the ”historical” EC-Earth simulations 1970-2005. For the period 1996-2005,134

there are 6 missions: ERS1 (1991-1996), ERS2 (1996-2011), ENVISAT (2002-135

2012), TOPEX (1993-2005), JASON1 (2002-2013), and GFO (2000-2007). Ob-136

servations from each platform have been cross-calibrated between platforms and137

calibrated to moored buoys (Queffeulou & Croize-Fillon, 2017). The multi-138

mission dataset is expected to be consistent in time with very little deviation139
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between platforms.140

Since the 1 Hz altimeter measurements capture the the instantaneous and141

spatially localized estimate of Hs it is an unfair comparison with the time-space142

averaged outcome of the spectral wave model (e.g. Chawla et al., 2013; Stopa &143

Cheung, 2014a). Therefore, we average all observations within the 1-degree bin144

from the various satellite platforms that fall within a one hour window. The 1-145

degree bin matches the output of the WAM simulations. This one-hour average146

represents the satellite observation and is comparable to the time-scales resolved147

by the phase-averaged spectral wave model at 1-degree resolution (Chawla et al.,148

2013).149

3. Methodology and assessment of sampling techniques150

The ensemble uses a single forcing and a single wave model so it is ex-151

pected that the intra-ensemble variability of PC20E is small. We create a wind152

speed ensemble and wave height ensemble using equal weighting of the seven153

simulations from EC-Earth and WAM respectively. In order to compare the154

performance of the dynamic climate simulations to the altimeter observations it155

is essential to capture the wind speed and wave height magnitudes and variance156

of the satellite observations which change as a function of time and space. An157

example time series is given in Figure 1a taken from a location in the North158

Atlantic (20◦W, 46◦N). The location is denoted by the black ”X” in Figure 1b.159

This point was chosen arbitrarily and used as an example to show the effects of160

satellite sampling. Notice that the number of satellite observations per month161

changes and there area a larger number of measurements from 2002 to 2005162

when there were 4 concurrent missions. We are not concerned with the sparsity163

of satellite observations; we only consider the altimeter observations to be the164

reference dataset. The different number of satellite observations in single bins165

compared to the regularly time-spaced wave simulations impacts the statistics.166

Therefore, our goal is to properly sample the simulations so that the statistical167

properties such as the median and various percentiles match the ones from the168
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altimeter observations.169

Three fundamental sampling methods are tested: 1) simple random sampling170

2) systematic sampling and 3) stratified sampling. Simple random sampling171

uses an equal weighting to select an event (without replacement) from the larger172

population. An event in our application is an individual time step. This method173

minimizes biases but it can be vulnerable to sampling errors especially in the174

tails of the distribution. Systematic sampling first orders the dataset and then175

chooses events at regular intervals based on a random starting position. For our176

application we sort the data by time. A disadvantage of systematic sampling177

is that it might not capture events that are periodic in nature, such as diurnal178

cycles. Stratified sampling is the process of first dividing all possible events179

into mutually exclusive subgroups or strata before sampling. In our case, the180

strata are months and the events are the individual time steps. For each month181

or strata, we use simple random sampling or systematic sampling to select the182

events. We tested a combination of these sampling techniques and summarize183

them with the following four cases. In each 1-degree bin, let M be the total184

number of time steps available from the GCM simulation and N be the number185

of altimeter observations where M >> N .186

• Case 1 Simple random sampling - N time steps are randomly chosen from187

the entire climate simulation time series of length M without replacement.188

• Case 2 Systematic sampling - data are selected every dx = INT (M/N)189

where INT denotes the greatest integer (the floor function) by randomly190

choosing an initial index I0 within the range [1, dx] of the time series.191

• Case 3Monthly stratified with simple random sampling version 1- here we192

select a variable number of events from each monthly PC20-i strata. The193

number of events selected directly corresponds to the number of satellite194

observations for the given month. For example, in Figure 1a there are 3195

observations in January 2001. This means we randomly select 3 events196

from the model simulations in January 2001.197
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• Case 4 Monthly stratified with simple random sampling version 2- here198

we select the same number of events each month. The number of events for199

a given location is defined by the average number of satellite observations200

for the complete time series. Referring to Figure 1a, there is an average201

of 6 samples per month for (1996-2005); thus, 6 events are selected from202

each month.203

Assuming the complete 6-hour model simulation represents the ”true” proba-204

bility density function f , we can estimate the variance for a given percentile205

P ∈ [0, 1] as:206

σ2 =
1

(f(xp))
2

P (1− P )

N
(1)

where xp represents the given variable Hs or U10 at the given percentile. The207

total number of satellite observations in 1-degree bins are shown in Figure 1b for208

the period 1996-2005. The asymptotic variance (Equation 1) was assessed by209

Brown & Wolfe (1983) for smaller sample sizes (N<160) than our application.210

Therefore, we expect Equation 1 is an unbiased estimator of the variance since211

there are at least 350 samples in each 1-degree bin. We repeat the sampling212

procedures above for a number of trials. The final statistics are created by213

averaging all of the trials.214

Without loss of generality we use the Hs from PC20-1 to assess both the215

magnitude and variance of the sub-sampled datasets. In Figure 2 we show results216

of the different sampling methods relative to statistics of the full time series217

using the time series in Figure 1. For a single trial (Figure 2a,e), all methods218

capture the percentile within 5% of the expected value, however the variance219

can have large discrepancies (10-15%). Notice the extremes of the distribution220

are not well captured especially for percentiles > 90%. If we use ten trials and221

then average the statistics we can reduce the differences in sampled magnitudes222

and variance of the full time series as shown in Figure 2b,f. However it is still223

difficult to capture the variance of the largest events.224

Next we assess the ability of the sampling methods to capture the seasonality225

and use December-January-February (DJF) (Figure 2c,g) and June-July-August226
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(JJA) (Figure 2d,h) as representative seasons. In DJF (Figure 2c,g) when the227

waves are large, all cases match the percentiles (<10% difference). All sampling228

techniques perform similarly and the largest differences are still in the tails of229

the distribution. For percentiles less than 90-95 all sampling methods capture230

the magnitude and variance reasonably well. In JJA, when Hs is smaller, we231

find similar results. Case 3 sampling has the most pronounced deviations from232

the reference full 6-hourly time series with variances varying ±2% (Figure 2h).233

Overall, case 2 seems to perform the best because the percentiles are within 1%234

(Figure 2b) and the variance is well matched for the majority of the percentiles235

(Figure 2f).236

In order to optimize our sampling technique various trials were tested using237

the 95th percentile (P95) PC20-1 Hs time series in the North Atlantic (not238

shown). After 25 trials, all of the sampling methods are less than 3% of the P95239

observations (not shown). Cases 1 and 2 systematically converged with a lower240

number of trials than cases 3 and 4. After 10 trials only marginal improvements241

were observed; therefore, in the remainder of the study, we average 10 trials to242

represent the statistics from the sampled simulations.243

The spatial distribution of the sampling effects for Hs P95 in Figure 3 are244

analyzed next. We compare both the ratio of Hs P95 (P95sample/P95all) and245

the ratio of Hs P95 variance (V arsample/V arall) for all cases. Cases 1 and 2246

perform similarly and the ratios of Hs P95 are close to one, meaning nearly247

a perfect match. The spatial distribution of the variance of the sampled time248

series from case 1 and 2 is nearly uniform across the basins (Figure 3b,d). The249

variance of the time series using case 1 and case 2 sampling is typically 5%250

larger that the full 6-hourly time series. It is expected that the sampled dataset251

has a larger variance than the 6-hour time series because the full time series has252

approximately 10 times more data.253

The case 3 ratios (P95sample/P95all) of Hs P95 in Figure 3e have a distinct254

spatial pattern with ±2% deviations from the P95 Hs full time series used as255

reference. In the North Atlantic, Western Pacific, and Northern Indian Oceans,256

case 3 sampling underestimates Hs P95; while, in the Indian, North Eastern257
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Pacific, and South Atlantic Oceans, case 3 sampling overestimates Hs P95. In258

case 3 sampling, we select the actual number of altimeter observations from259

the corresponding month of the simulated dataset. This means the number of260

events selected from the simulated time series in January 1996 corresponds to261

the actual number of altimeter observations in January 1996. Consequently,262

case 3 sampling favors months in 2003-2005 since there are more satellites in263

operation (see Figure 1). This sampling strategy introduces the largest spatial264

differences with respect to the full time series because the months that have265

more altimeter observations do not correspond to same months in the GCM266

forced wave simulations. For all cases the variance of the sampled dataset is267

5-10% larger than variance of the full time series (shown in panels b, d, f, and268

h in Figure 3).269

The magnitude of the Hs P95 ratios (P95sample/P95all) between the sam-270

pled and full time series using Case 4 sampling in Figure 3g is nearly one, similar271

to cases 1 and 2 (Figure 3a and c). There is a subtle tendency for case 4 to272

overestimate Hs P95 in the Northwest Pacific, North Atlantic (> 30◦N), and273

in the Mediterranean (Figure 3g). The variance ratio of the case 4 sampling274

in Figure 3h is slightly larger than cases 1 and 2: 6-7% for case 4 sampling275

compared to 4-5% for cases 1 and 2 (Figure 3b and d).276

The performance of each sampling procedure is summarized in Table 2 by277

comparing various Hs percentile and variance ratios ( sampled time series
full time series

) in per-278

centages. We compare the percentiles: 5th, 50th (median), and 95th in differ-279

ent zonal regions: Northern Hemisphere (NH) > 30◦N , Equatorial Region (EQ)280

< 30◦N/S, and Southern Hemisphere (SH) > 30◦S and seasons (DJF and JJA).281

All sampling methods capture the overall variance very well and the errors are282

typically less than 0.5%. The results in Table 2 reflect similar features seen in283

Figures 2-3 and are summarized as follows:284

• All sampling methods overestimate the small percentiles and the variance285

is often > 1%.286

• The medians are very well matched using any of the sampling methods.287
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• Case 3 sampling introduces spatial discrepancies.288

• Typically all sampled Hs P95 match the full-time series and Hs P95 ratios289

are << 0.1%.290

• The sampled datasets have larger variance than the full time 6-hourly291

series.292

Table 2 shows the variance can be considerably larger using the sampled time293

series for particular seasons (DJF and JJA) compared to the full time series, es-294

pecially for P95. We consistently find case 2 (systematic sampling) performs the295

best; therefore, this method is implemented to sample the climate simulations296

to match the satellite observations. We continue to use the average of the 10297

trials as a representative sample of the simulated climate wave data since using298

only one trial can have large differences of magnitude and variability relative to299

the observations (see Figure 2 a,e).300

4. Assessment of the wind and wave climate simulations301

In this section we assess the sampled U10 and Hs datasets (PC20-1 to PC20-302

7) relative to the altimeter observations by analyzing the spatial errors, the303

probability density functions (PDFs), seasonality, inter-annual variability, and304

large sea states.305

4.1. Spatial features and statistical properties306

First we highlight the spatial differences and variability between the ensem-307

ble and observations for various statistics such as the median (P50) and upper308

percentile (P95) wind speeds and wave heights for the entire 10-year period.309

Figure 4 shows the comparison between PC20E and ALT for both U10 and310

Hs at P50. The U10 P50 residuals (PC20E-ALT) in Figure 4b show that EC-311

Earth underestimates U10 by 1-2 ms−1 across the majority of the ocean. Near312

the Equator, there is a strong underestimation of U10 that is persistent for313

all simulations (PC20-1 to PC20-7). However, we should note that near the314
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Equator nadir-looking altimeters are not the best source of wind and/or wave315

data since the calm ocean surface coupled with weak winds can have nearly316

a specular reflection, thus producing erroneous high wind speeds (Elfouhaily317

et al., 1998). In addition, there are impacts from the sea state which distort318

U10 when only the radar cross section (one-parameter approximation) is used to319

estimate U10 (Gourrion et al., 2002). Consequently, the U10 from altimeters is320

often higher than the reference buoy wind speeds especially in low wind regions321

(Young et al., 2017). Near the ice edge in the Southern Ocean, there is a typical322

underestimation of 1-2 ms−1. Otherwise the ensemble data in the extra-tropics323

(30 − 50◦N/S), which are important wave generation regions, agree with al-324

timeter observations (|U10ALT −U10PC20−E | < 0.5 ms−1). The intra-ensemble325

variability (from the seven simulations) in Figure 4c is low (0.2 ms−1) with re-326

spect to the U10 differences (typically 1 ms−1) which equates to < 20% of the327

variability of the ensemble. Regions in the SH extra-tropics, Eastern-Equatorial328

Indian Ocean, and the trade wind regions of the NH and SH have the largest329

intra-ensemble variations.330

In Figure 4d,e,f we show the P50 Hs comparison between PC20E and ALT.331

Overall the Hs P50 of PC20E matches the observations within ±0.25 m. Across332

the majority of the ocean, the ensemble overestimates Hs. Otherwise, there are333

only select regions such as the NW Atlantic, Mediterranean, Gulf of Mexico,334

and Western Pacific where PC20E underestimates Hs. This might be partially335

related to discrepancies in U10. Altimeters tend to overestimate wave heights336

in low sea states (Sepulveda et al., 2015; Kudryavtseva & Soomere, 2017). So,337

wave intensity in regions like the Mediterranean and Gulf of Mexico, which338

typically have small wave heights, might be overestimated by the altimeters.339

Consequently, in low sea states it is difficult to assess the simulations when340

using the altimeters as reference. In the Pacific trade wind regions, the ensemble341

systematically overestimates Hs by > 0.5 m with a global maximum difference342

(P50 Hs PC20E-ALT) coinciding near Micronesia (130◦W, 20◦S). Some of these343

features are related to unresolved islands smaller than the 1◦ resolution; similar344

to features seen in (Semedo et al., 2013). The intra-ensemble variability is low345
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and the Hs deviations are less than 10 cm. So near the noted large differences in346

the trade wind regions, the intra-ensemble variability is < 4% of the residuals.347

The intra-ensemble variability in the Southern Ocean is 3 to 10 cm which is 12348

to 25% of the typical 25 cm Hs P50 residual. So the ensemble reduces some of349

the uncertainty in the SH compared to using only one simulation.350

In Figure 5 we show the corresponding plots for the U10 and Hs for the351

upper percentiles (P95). The U10 P95 residuals in Figure 5b have nearly the352

same spatial structure as U10 P50 residuals in Figure 4b. The most obvious353

difference is that the U10 P95 residuals have enhanced underestimation near the354

western boundaries in the tropics (5−30◦N/S) relative to the U10 P50 residuals.355

These regions are affected by tropical cyclones and the ensemble underestimates356

U10 P95 by 1-2 ms−1. The intra-ensemble variability in Figure 5c is largest in357

the NH extra-tropics (30− 60◦N). In the NH extra-tropics, there are EC-Earth358

U10 P95 deviations of 0.2-0.3 ms−1. This is 40-60% of the average value of the359

residuals (-0.5 ms−1) in Figure 5b. Therefore in these regions (i.e. the gold-360

colored areas in Figure 5c), the use of the ensembles improves the performance.361

The bottom panels of Figure 5 show the corresponding plots for the Hs at362

P95. The Hs P95 residuals (PC20E-ALT) in Figure 5e are positive in the trade363

wind regions of the Pacific, meaning that PC20E overestimates Hs P95. The364

spatial pattern of the Hs P95 residuals in Figure 5e is similar to Hs P50 residual365

in Figure 4e. In the NH and SH extra-tropics (30 − 60◦N/S), the ensemble366

overestimatesHs at P95 by at least 0.5 m and in some areas theHs P95 residuals367

exceed 0.75 m. For example, in the North Pacific near the Aleutians and South368

Pacific near the ice edge, the Hs P95 is much higher (exceeds 0.75 m) than the369

observations. EC-Earth underestimates U10 P95 in the Western portion of the370

Pacific and Atlantic, and likely contributes to a portion of the underestimation371

of Hs. The underestimation in the Western portion of the Pacific and Atlantic is372

compounded by the fact that spectral wave models underestimate Hs in rapidly373

changing ”short-fetch” conditions (e.g. Ardhuin et al., 2010). Similar to U10374

P95, the intra-ensemble variability helps to reduce theHs P95 differences mostly375

in the NH extra-tropics with standard deviations of 0.2 m. This is approximately376
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20% of the common Hs P95 residual of 1 m.377

Next we compare the PDFs and the quantiles to give further insights on the378

performance of the climate simulations. Figure 6 shows the U10 probability dis-379

tributions and quantile-quantile (QQ) plots. The shape of the PDFs calculated380

from the simulations match the ones obtained from observations well, but the381

PDFs are mis-aligned. In particular, when U10< (5 − 10) ms−1 the probabil-382

ities obtained from the simulations are larger than the probabilities obtained383

from the altimeter observations. When U10> (5 − 10) ms−1 the probabilities384

obtained from the simulations are lower than those of the altimeters. In these385

plots each of the seven simulations is analyzed separately and its results plotted386

with a different color. The PDFs obtained from the simulations are nearly the387

same and only subtle differences are distinguishable in this representation. The388

QQ plots show EC-Earth underestimates U10 uniformly across all wind speeds389

by approximately 0.75 ms−1. Notice that in each region, the QQ plots are sim-390

ilar. Besides the noted spatial differences discussed in the previous section, the391

simulations perform equally well in the different latitude bands.392

We provide the corresponding PDFs for the Hs in Figure 7. The shape393

of PDFs obtained from the wave simulations is similar to the PDFs obtained394

from altimeter observations but they are mis-aligned. When Hs < (2 − 3)395

m the probabilities obtained from the simulations are smaller than the proba-396

bilities obtained from the altimeter observations. When Hs > (2 − 3) m the397

probabilities obtained from the simulations are larger than those of the altime-398

ter observations. The wave simulations favor the mid-range (2 < Hs < 3 m)399

more than the altimeter observations, as shown by the reduced width of the400

PDFs obtained from the wave simulations. We can see some distinction (2%401

difference) between the PC20-i members near the median. This effect is most402

evident in the SH. In the SH, there are the largest differences between the PDFs403

obtained from the wave simulations and the altimeter observations. Here the404

PDFs obtained from the simulations have higher occurrence of sea states with405

2 < Hs < 4 m compared to the PDFs obtained from the altimeter observations.406

The QQ plots show that the simulations of the lower percentiles (< median)407

15



are often 0.25 m larger than the altimeter observations. For the higher per-408

centiles (such as >P95) the simulations overestimate Hs by 0.25-0.5 m relative409

to the observations. The QQ Hs results here in Figure 7 are consistent with the410

buoy comparisons of Semedo et al. (2018) (their Figure 10) and show that Hs411

is typically overestimated. However, in our analysis the comparisons are global412

and extend to wave heights of 8 m; thus establishing the validity of the wave413

simulations to larger sea states.414

Notice that the global QQ Hs differences are reflective of the patterns ob-415

served in the SH; since in the NH, the PDFs obtained from the wave simula-416

tions match those of the observations reasonably well. Near the Equator (EQ:417

∈ 25◦N/S) in the lower percentiles (<P50), the wave heights are overestimated.418

The largest contribution comes from the lower latitudes (< 15◦) as shown in419

Figures 4e and 5e. These areas are dominated by swell and the underestimation420

of the swell dissipation in WAM might be contributing to the discrepancies. In421

the SH, the differences in the PDFs obtained from the wave simulations and422

altimeter observations are the largest. The Hs probabilities obtained from the423

simulations are lower than those of the altimeters for low sea states (Hs < 2424

m). For sea states with 2 < Hs < 5 m, the probabilities obtained from the425

simulations are higher than those of the altimeters. The Hs QQ plots show the426

thresholds for a given wave height quantile is overestimated in low seas (<P50)427

and high seas (>P95). We observe the largest variability between the ensemble428

members in the upper percentiles. In summary, U10 is underestimated by EC-429

Earth and Hs is overestimated by the wave simulations. This suggests the wave430

model physical parameterizations are causing the differences and not necessarily431

the forcing wind.432

4.2. Seasonality433

To assess the ability of the PC20-E members to capture seasonality we use434

a metric called the mean annual variability (MAV) (Stopa et al., 2013). It435

is defined as the average of the annual standard deviation normalized by the436
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annual average437

MAV =

(

σi

xi

)

(2)

where index i refers to the year, σ is the standard deviation, and the overbar438

denotes average. We compare the MAV between the ensemble average (PC20-E)439

and ALT in Figure 8. Note that the altimeter patterns of the U10 and Hs are440

provided as reference in Figure 8a,c. The spatial pattern and magnitudes of the441

MAV computed from the altimeter observations is similar to that of the MAV442

computed from the CFSR wave hindcast of Chawla et al. (2013) and presented443

in (Stopa et al., 2013) (their Figure 6). U10 from EC-Earth has more seasonal444

variability than the altimeters (see Figure 8b). In particular, PC20E has a445

larger seasonality in the Southern Ocean extra-tropics. This might partially be446

influenced by the ice coverage. Near the Equator PC20E has a larger MAV North447

of the Inter Tropical Convergence Zone (ITCZ) and a smaller MAV South of the448

ITCZ relative to the observations. However, it is expected the altimeter U10 is449

of poorer quality near the ITCZ due to sea state impacts when the wind is calm450

and specular reflection is strong (Gourrion et al., 2002). The Hs comparison in451

Figure 8d shows the ensemble typically underestimates the wave seasonality by452

as much as 15% but typically 4-8%. It is possible that there are missing physical453

parameterizations within the wave model or the physical parameterizations are454

not responding correctly to the wind input; since we observe higher MAV in455

U10 and lower MAV in the wave field.456

The seasonality within the ensemble is further analyzed in Figures 9 and457

10. Here we present only results from the P95 since the spatial patterns for458

other percentiles and the average were nearly the same. In DJF (Figure 9b),459

the U10 P95 differences between PC20-E and ALT are largest in the SH trade460

wind regions in the Pacific and in the NW Atlantic. Otherwise the differences461

are less than 1 ms−1. EC-Earth is overestimating U10 P95 in the SH extra-462

tropics but usually less than 0.5 ms−1. The intra-ensemble variability in Figure463

9c is largest in the NH, SH extra-tropics, and near the EQ in the Indian Ocean.464

The corresponding Hs P95 residuals of PC20E-ALT in Figure 9e are similar to465
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the U10 P95 residuals with the zonal pattern: PC20E overestimates in 40 −466

60◦N/S and PC20E underestimates 20 − 30◦N/S. Near the EQ, the U10 and467

Hs P95 residuals have opposite signs with an overestimation in Hs and an468

underestimation of U10.469

In JJA (Figure 10b), EC-Earth underestimates U10 P95 relative to ALT470

across the majority of the global ocean. There are some exceptions where EC-471

Earth overestimates U10 P95 such as regions in the North Pacific, NW Atlantic,472

and near Eastern Africa in the NH. The U10 and Hs from the wind and wave473

ensembles are not capturing the tropical cyclones that are more common this474

time of the year especially in the Western Pacific (Figure 10b,e). The intra-475

ensemble variability is largest in the SH for both U10 and Hs P95 (Figure476

10c,f). If a single member was used, the differences in the SH might be larger477

than PC20-E shown in Figure 10b where the average is -1 ms−1. The ensemble478

produces a better estimation of the seasonality especially in the SH. The spatial479

pattern of Hs P95 residuals in Figure 10e do not match the U10 P95 residuals480

except for the region in the Western Pacific. PC20-E overestimates the Hs481

P95 relative to ALT on average by 0.35 m with some regions in the SH and482

NH extra-tropics exceeding 0.5 m. In both the NH and SH extra-tropics the483

intra-ensemble variability is largest and > 0.25 m (Figure 10f). In the wave484

generation regions of the extra-tropics, PC20E underestimates U10 P95 while485

PC20E underestimates Hs P95.486

Some of the other Hs discrepancies are due to land mask used in the WAM487

set up, which is different from the one used in ERA-Interim. Additionally the488

WAM version (v4.5.3) used here is known to dissipate swell improperly in the low489

latitudes, contributing to an overestimation of the wave heights there (Semedo490

et al., 2013). These differences such as higher waves in the tropics, around Poly-491

nesia, Micronesia, the Maldives, and near the Aleutians Islands might also occur492

due to unresolved sub-grid scale bathymetry. The intra-ensemble variability in493

U10 and Hs is largest in the NH and SH extra-tropics.494
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4.3. Inter-annual variability495

Lastly, we assess the ability of the ensemble to capture inter-annual variabil-496

ity (IAV) over this 10-year period (Stopa et al., 2013). The IAV is defined as the497

standard deviation of the annual averages normalized by the overall average:498

IAV =
σxi

x
. (3)

We compare the IAV between PC20-E and ALT in Figure 11. The spatial499

patterns of the altimeter observations in Figure 11a,c qualitatively look similar500

to the IAV of CFSR presented in Stopa et al. (2013) (their Figure 7). The501

U10 IAV maxima of the altimeter observations (Figure 11a) are located in the502

Eastern and Western Equatorial Pacific. The Hs IAV maxima of altimeter503

observations (Figure 11c) are located in the Southern Ocean near Chile and in504

the Western Pacific (120◦E,15◦N). The U10 IAV residuals between PC20E and505

ALT are largest near the Equator especially in the Pacific which might be related506

to not properly capturing the El Nino Southern Oscillation (ENSO) which is507

know to be the dominant mode of inter-annual variability in this region (e.g.508

Stopa & Cheung, 2014b). Otherwise the EC-Earth U10 ensemble has differences509

less than 1% across 84% of the global ocean (Figure 11b) suggesting EC-Earth510

U10 captures a large amount of the U10 IAV. The Hs IAV difference in Figure511

11d shows that the IAV for PC20-E is considerably less than the IAV of the512

altimeter observations. These large differences between PC20-E and ALT mean513

the IAV of the wave field is not well captured in PC20-E and is typically much514

smaller than the observations at least over this period of 10 years.515

5. Discussion and conclusion516

The U10 and Hs climate simulations were sampled such that their statisti-517

cal properties such as average, variance, and percentiles replicated those of the518

altimeter observations. We analyzed both the magnitude and the variance of519

several sampling techniques at various percentiles. We found that systematic520

sampling (case 2) performed better than the other tested sampling methods.521
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Properly sampling climate simulations that do not capture the exact time his-522

tory is particularly important when the reference observations are sparse and/or523

the number of observations changes in time and space. Our methodology can524

be adapted to other climate simulation datasets.525

We systematically analyzed the skill of the ensemble in reproducing the526

wind speeds (U10) and the resulting wave heights (Hs) relative to the altime-527

ter observations. EC-Earth underestimates the magnitude of U10 uniformly528

across all percentiles. The PDFs obtained from the U10 of EC-Earth and those529

obtained from the altimeter observations are very similiar suggesting that EC-530

Earth is a satisfactory predictor of wind speeds globally. Even though PC20E531

underestimates U10, the wave heights are overestimated. This suggests the im-532

plementation of WAM is not properly calibrated for the EC-Earth wind field533

and it is possible to correct this bias by reducing the wind wave growth pa-534

rameter (βmax) in the parametrization of Janssen (1991) as shown by (Stopa,535

2018). In the NH, the PDFs computed from U10 and Hs of both the simu-536

lations and altimeter observations are similiar; however in the SH, the PDFs537

are different. Therefore, the performance of the simulations in the NH is better538

than the SH. The QQ plots also support this point. The global discrepancies in539

the PDFs and QQ plots strongly reflect the discrepancies of the SH; stressing540

the importance of future efforts to better simulate the SH. The almost identical541

match of the PDFs for the 7 simulations limits the possibilities of the ensemble542

to improve forecasts or hindcasts since the ensemble variance is much less than543

typical simulation-observation error variances. For example, the Hs standard544

deviations of wave hindcasts errors at buoys typically ranged from ±40% or 0.3545

to 0.8 m as presented by Stopa & Cheung (2014a) (their Table 2). The Hs546

standard deviation of PC20-E is generally small and less than 0.06 (0.2) m at547

P50 (P95).548

We find PC20-E overestimatesHs in the tropics namely in the Pacific Ocean.549

This region has an abundance of swell (Semedo et al., 2011) and WAM is most550

likely underestimating the swell decay. In addition, large Hs discrepancies co-551

incide with island chains in the Pacific and are due to the treatment of sub-grid552
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features not resolved by the model grid resolution. Regions affected by tropical553

cyclones most notably in the Western Pacific are not well captured by the cli-554

mate simulations and we observe a severe underestimation of Hs at P95. The555

use of the ensemble has a minimal effect on improving the predictability in this556

case. Now that the wave simulations are sampled like the satellite measure-557

ments, it is possible to develop a bias correction for the wave simulations and558

it is topic for future work. Notice that all of the sampling techniques introduce559

errors of less than 2% for Hs at P95 (see Figure 3) while the Hs model-to-560

simulation discrepancies at P95 are typically on the order of 10-25% (Figure 5).561

So we expect that our results are robust and there is minimal impact from the562

sampling technique applied.563

The seasonality is reasonably captured by the U10 and Hs ensembles. We564

find some differences. For example, EC-Earth overestimates the U10 seasonal-565

ity while the wave ensemble underestimates the Hs seasonality. This seasonal566

mismatch was found in other datasets. For example, seasonal residuals be-567

tween a CFSR wave hindcast and altimeter observationss (both U10 and Hs)568

were observed in Chawla et al. (2013); Stopa & Cheung (2014a). This suggests569

the physical parameterizations in spectral wave models like WAVEWATCH and570

WAM have missing physical processes or the existing parameterizations can be571

improved to better capture the atmospheric response in both the strong and572

weak seasons (such as temperature differences or water density differences). We573

speculate that the current physical parameterizations in spectral wave models574

have the tendency to underestimate both growth and dissipation which might575

contribute to a portion of the Hs seasonality residuals. The ensemble improves576

the prediction of the seasons especially in the Southern Ocean. Otherwise the577

typical intra-ensemble variability is less than or approximately 10-30% of the578

PC20E-ALT residuals.579

The U10 from EC-Earth captures the important features of the inter-annual580

variability. On the other hand, the GCM wave simulations have lower inter-581

annual variability suggesting the time series of wave simulations forced by EC-582

Earth have a much smoother time series relative to the altimeter observations.583
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Our comparison of the inter-annual variability is a challenging test for the wave584

climate simulations. One possible reason why we have such large differences585

in the IAV between the simulations and satellite observations could be because586

we use a 10-year period. A longer time series might capture more of the long-587

term variability. Since the GCM forced wave simulations have difficultly in588

reproducing the IAV, caution should be taken when analyzing the inter-annual589

variability of future climate scenarios. Improving the ability of the wave climate590

simulations to reproduce the inter-annual variability is an opportunity for future591

efforts.592

Previous works use wave reanalysis or wave hindcasts to assess GCM-forced593

wave simulations. Here we take a novel approach and we use altimeter observa-594

tions as reference. This is important because the altimeter database is expected595

to better represent the large sea states and are not subjected to missing or im-596

proper wave parameterizations as in models. It also stresses the importance of597

having an accurate and quality-controlled altimeter database and is currently598

being re-assessed by the European Space Agency’s Sea State Climate Change599

Initiative. Using the altimeter observations to assess the GCM simulations600

especially at large sea states (Hs P95) is certainly a benefit of applying the601

method. In this study, we provide more spatial details of the simulation er-602

rors and validate the simulations across a wider range of sea states compared603

to Semedo et al. (2018) who used reanalysis datasets and in-situ buoys as ref-604

erence datasets. Future assessments of the historical wave simulations either605

dynamical or statistical could use a similar methodology and compare to sparse606

observational datasets like our example of using the altimeter observations as607

reference. Overall the EC-Earth simulations and associated wave simulations608

capture the essential features of the climate. Since we understand the discrep-609

ancies between the simulations and satellite observations, it is now possible to610

interpret the wave data for the future simulations which extend until the end of611

the 22nd century.612
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Table 1: Ensemble member details

Ensemble member CMIP5 experiment Data Provider

PC20-1 r1i1p1 University of Lisbon

PC20-2 r3i1p1 Danish Meteorological Institute

PC20-3 r1i1p1 Danish Meteorological Institute

PC20-4 r1i1p1 Swedish Meteorological and Hydrological Institute

PC20-5 r2i1p1 Swedish Meteorological and Hydrological Institute

PC20-6 r2i1p1 Danish Meteorological Institute

PC20-7 r3i1p1 Swedish Meteorological and Hydrological Institute
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Table 2: Hs statistics for various conditions given as a percentage
(

Sample time series

Full time series
− 1

)

×

100 for the percentile and variance (given in parenthesis). These values represent the average

of ten independent sub-samples.

Selection Case All Prc 5% Prc 50% Prc 95%

Global C1 (-0.0026) 0.0441(0.8431) 0.0196(-0.4224) 0.0083(5.6070)

C2 (0.0684) 0.0214(0.6426) 0.0120(-0.2947) 0.0132(4.9086)

C3 (0.1557) 0.1159(1.6766) 0.2265(-0.3319) 0.0905(5.4032)

C4 (0.0123) 0.0519(0.7970) 0.0250(-0.4021) 0.0078(5.8263)

NH C1 (-0.0617) 0.0594(0.6192) 0.0408(-0.3340) 0.0023(5.4733)

C2 (0.1648) 0.0207(0.5582) 0.0265(-0.1387) 0.0448(4.8654)

C3 (-0.0698) 0.3133(1.0741) 0.3216(-0.0928) -0.0084(4.4369)

C4 (0.2316) 0.1322(1.0685) 0.1989(-0.0783) 0.1415(5.8226)

EQ C1 (0.0105) 0.0429(0.9913) 0.0203(-0.4609) 0.0070(5.8203)

C2 (0.0668) 0.0250(0.6745) 0.0122(-0.3039) 0.0067(4.7875)

C3 (-0.0344) 0.1492(1.7396) 0.2495(-0.5814) 0.0172(4.5424)

C4 (0.0551) 0.0402(0.9188) 0.0149(-0.4198) 0.0096(6.1059)

SH C1 (0.0006) 0.0288(0.8190) 0.0129(-0.4390) 0.0095(5.6559)

C2 (0.0587) 0.0176(0.6951) 0.0093(-0.3403) 0.0115(5.1727)

C3 (0.6280) -0.0268(1.8382) 0.1663(-0.0239) 0.2469(6.8550)

C4 (-0.1088) 0.0178(0.5795) -0.0534(-0.5374) -0.0462(5.7805)

DJF C1 () 0.5127(9.3824) 0.1259(-3.9800) 0.1832(47.9340)

C2 () 0.2530(7.5153) 0.0857(-2.8300) 0.2699(38.4140)

C3 () 0.4234(10.2227) 0.1534(-3.6439) 0.3324(49.7517)

C4 () 0.5016(9.5815) 0.1134(-3.9303) 0.2056(52.3949)

JJA C1 () 0.4418(9.1540) 0.1212(-22.8537) 0.1260(-34.6021)

C2 () 0.1770(7.5202) 0.0747(-2.6227) 0.2381(34.9692)

C3 () 0.5340(9.6684) 0.1755(-4.4505) -0.0003(45.1828)

C4 () 0.4230(9.7168) 0.1054(-3.7443) 0.1284(46.9609)
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Figure 1: Example Hs time series in the North Atlantic showing the simulated data from

ensemble member 1 (black dots), merged altimeters (blue circles), and number of altimeter

samples per month (red line) for a 1-degree window (panel a). Panel (b) shows the number of

hourly-averaged altimeter observations for the period 1996-2005. The black ”X” denotes the

location of the example time series shown in panel a.
31



Figure 2: Comparison of the percentiles and variances of the example time series in the North

Atlantic for ensemble member 1 for: Case 1 - simple random sampling, Case 2 - systematic

sampling, Case 3 - stratified simple random sampling with actual number of altimeters per

month, Case 4 - stratified simple random sampling with average number of altimeters per

month. The top panels show the ratio of Hs percentiles (sampled/full time series) and the

bottom panels show the ratio of Hs variances as a function of percentile. (a,e) represents 1

sample (b,f) represent the average of 10 samples, (c,g) represent the average of 10 samples for

the month of January, and (d,h) represent the average of 10 samples for the month of July.
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Figure 3: Hs 95% percentile comparison showing the ratios of the subsample time series to

the entire time series. The magnitude is given in the left column (a,c,e,g) and variance is given

in the right column (b,d,f,h). Each row represents the various sampling strategies averaged

using 10 sub-sampled time series. C1, C2, C3, and C4 correspond to the sampling strategies,

cases 1 through 4, described in the text.

33



Figure 4: Wind speed (U10) (a,b,c) and wave height (Hs) (d,e,f) comparisons of the median

(P50) in units of ms−1 and m respectively. a) and d) display the altimeter observations for

reference. b) and e) display the difference between PC20E and the altimeters (PC20E-ALT).

c) and f) display the standard deviation of the PC20-1 to PC20-7.
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Figure 5: Same as Figure 5 except for the 95th percentile (P95).
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Figure 6: Wind speed probability distribution comparison (a,b,c,d) and quantile-quantile

comparison (e,f,g,h) globally (a,e), in the Northern Hemisphere (> 25◦N) (b,f), near the

Equator (∈ 25◦N/S) (c,g), and in the Southern Hemisphere (> 25◦S) (d,h).
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Figure 7: Same as Figure 6 except for Hs.
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Figure 8: U10 (a,b) and Hs (c,d) of the mean annual variability (MAV) given in a percentage.

a) and c) display the altimeter observations for reference. b) and d) display the MAV difference

between ensemble and the altimeters (PC20E-ALT).
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Figure 9: Same as Figure 4 except for the 95th percentile (P95) in the months of December-

January-February.
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Figure 10: Same as Figure 4 except for the 95th percentile (P95) in the months of June-July-

August.
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Figure 11: Same as Figure 8 except for the inter-annual variability (IAV).

41


	Introduction
	Datasets
	EC-Earth ensemble
	Multi-platform altimeter dataset

	Methodology and assessment of sampling techniques
	Assessment of the wind and wave climate simulations
	Spatial features and statistical properties
	Seasonality
	Inter-annual variability

	Discussion and conclusion
	Acknowledgements

