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A B S T R A C T

Wave hindcasts are tools to study climate and are regularly used in offshore and coastal engineering applica-
tions. The growing number of wind datasets and reanalysis products create more opportunity for generating
wave hindcasts. Each wind dataset or reanalysis product has different resolution, model implementation, and
assimilation scheme and if the wave model implementation is not calibrated to the input wind field the resulting
wave field can have large biases solely due to the wind. In this work, we calibrate the wind to wave growth
parameter within the spectral wave model WAVEWATCH III for 10 reanalysis datasets and 2 datasets composed
of merged satellite observations. The calibration is performed globally by minimizing the differences between
altimeter wave height observations and the model output for the year of 2001. We place special emphasis on
ensuring the largest sea states are well captured and are not underestimated because of the important en-
gineering applications of these data. After the calibration we compare the datasets and find each product re-
produces the average sea states similarly, but high sea states have large discrepancies. We demonstrate that the
space-time distribution of the extreme waves are very different even after calibration. We summarize by pro-
viding recommendations of the most accurate wind datasets to generate wave hindcasts.

1. Introduction

Understanding the wave climate is essential to understanding in-
tegrated ocean–atmosphere–wave interactions and mitigating damages
caused by ocean surface waves. The design of structures in offshore and
coastal regions is still largely based on data generated from wave
hindcasts. This is due to the fact that they have high time and space
resolution, are of high fidelity, and some are openly available (e.g.
Rascle and Ardhuin, 2013; Chawla et al., 2013; Perez et al., 2017). In
remote areas with limited in-situ and remote sensing observations,
wave hindcasts are an attractive option to understand the wave climate
variability (Stopa et al., 2016b; Thomson et al., 2016). There are un-
certainties in the input wind fields and these impact the wave field. For
example the noted overestimation of the wind speeds in the Southern
Ocean before 1994 creates distinct positive biases in the wave field
(Chawla et al., 2013; Rascle and Ardhuin, 2013; Stopa and Cheung,
2014). Wave hindcasts are typically generated using reanalysis datasets
because they are evenly spaced in time and have high resolution. There
have been many successful implementations of reanalysis-driven wave
hindcasts (e.g. Cox and Swail, 2001; Caires and Sterl, 2005; Chawla
et al., 2013; Rascle and Ardhuin, 2013; Perez et al., 2017)

There are a growing number of accurate wind products, creating
more opportunity for generating wave hindcasts. Reanalysis assimilates

observations into models, which sometimes consist of atmospheric,
oceanic, land, and ice models, and generate evenly distributed global
data. The first notable release of a comprehensive reanalysis dataset
started with the National Center for Environmental Prediction (NCEP)
reanalysis 1 (R1) (Kalnay et al., 1996). The European Center for
Medium-Range Weather Forecasts (ECMWF) 15-year and 40-year re-
analyzes (ERA15; ERA40) (Uppala et al., 2005) and the Japanese Me-
teorological Agency’s (JMA) 25-year reanalysis (JRA25) (Onogi et al.,
2007) followed suit with improvements. These efforts established best
practices to collect, manage, and archive observations that are the
backbone of the reanalysis products (Kistler et al., 2001). Now most
weather centers have released updated and improved reanalysis ver-
sions: the NCEP the climate forecast system (CFSR) 1979-present
(versions 1 and 2) (Saha et al., 2010; 2014), the ECMWF ERA-Interim
(ERAI) 1979-present (Dee et al., 2011), the JMA 55-year (JRA55) 1958-
present (Kobayashi et al., 2015), and the NASA Modern Era Retro-
spective-Analysis for Research and Applications v2 (MERRA)
(Gelaro et al., 2017). Many of these datasets start in 1979 with the
modern satellite era or when global radiosonde observations were es-
tablished in 1958. In addition, there are reanalysis datasets that are
constrained by atmospheric pressure observations to recreate the entire
20th century such as the Cooperative Institute for Research in En-
vironmental Sciences (CIRES) R20C (Compo et al., 2011) and the
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ECMWF ERA20C (Stickler et al., 2014). With the large amount of sa-
tellite wind observations from scatterometers and radiometers collected
in the last 25 years there have been efforts to create merged and
gridded products at regular time intervals (Atlas et al., 2011; Bentamy
et al., 2016). As improvements to models, computing power increases,
and better quality satellite observations become available it is expected
that there will be continued efforts to generate reanalysis products
every 5 to 10 years. Therefore, there are many options to generate wave
hindcasts and there needs to be continual efforts to assess these pro-
ducts and their suitability to generate wave hindcasts (e.g. Caires et al.,
2004; Stopa and Cheung, 2014).

Each wind dataset has different space-time resolution and the re-
analysis datasets have different physical parameterizations, assimila-
tion schemes, and assimilate different observations. All of these aspects
change the characteristics of the surface wind field and when used to
force a model will generate different wave fields. To introduce this idea,
probability density functions (PDF) and quantile–quantile (QQ) plots
are given in Fig. 1 for the near surface wind speed (U10) and the sig-
nificant wave height (Hs) using several of the noted datasets. It is clear
the U10 PDFs are different especially for high wind speeds
( > 25ms 1− ). When using the same wave model implementation as in
Fig. 1(d,e,f), the generated wave field may not be consistent with wind
forcing (e.g. R20C has no occurrences of U10 > 35ms 1− but has the
largest sea states). The details of these plots will be discussed
throughout the manuscript. Our first goal is to demonstrate that some
biases in the wave field can be corrected by calibrating the wave model
parameterization to the input wind field. Since the wave field is a
smoothed version of the atmosphere, it is unclear how each of the
differences in the forcing wind fields impact the wave field. Therefore,
after calibration we compare the output wave fields to understand their
differences. We place special emphasis on high sea states and provide

recommendations of more accurate products to drive a wave hindcast.
The manuscript is organized as follows. In Section 2, we describe the

datasets, various reanalysis products, and wave model implementation
used to create 1-year wave hindcasts. In Section 3, we calibrate the
wave model parameterization to the different wind datasets by com-
paring Hs to satellite altimeters for 2001. In Section 4, we compare the
12 different calibrated one-year hindcasts to understand their behavior.
Our recommendations and conclusions follow in Section 5.

2. Datasets and model implementation

In this section we describe the satellite and buoy observations, input
wind fields, and model implementation.

2.1. Observations: merged altimeter dataset and moored buoys

The multi-platform altimeter product (abbreviated ALT herein), is
quality controlled and calibrated between platforms and to moored
buoys (Queffeulou and Croize-Fillon, 2015). In this work we chose the
year of 2001 for the analysis since all datasets overlapped during this
period. In 2001, there are three altimeter platforms in orbit: European
Remote Sensing 2 (ERS2) (1996–2011), TOPEX/Poseidon (TPX)
(1993–2005), and Geosat Follow-on (GFO) (2000–2007). The multi-
mission dataset is calibrated between platforms and thus, we expect it
to be a fairly homogeneous dataset. Since the 1-Hz altimeter mea-
surements capture the instantaneous Hs it is an unfair comparison with
the time-space averaged spectral wave model. Therefore we smooth the
altimeter tracks for each platform within the wave model grid cell (0.5°)
by taking a running mean of 5-points since each platform has a spatial
footprint of 7–10 km. This dataset includes calibrated Hs and U10.

The National Data Buoy Center (NDBC) provides quality controlled

Fig. 1. Probability density functions and quantile–quantile plots of surface wind speeds (U10) and significant wave heights (Hs) for different wind products (a,b,c)
and wave output using the same physical parameterization (d,e,f) within WAVEWATCH for the year of 2001. The left panels display the output from the full hourly
time series interpolated to the 0.5° wave model grid for U10 (a) and Hs output from the model (d). The middle panels display the model U10 (b) and Hs (e) co-located
with the merged altimeters. The y-axis in the zoomed upper right sub-panels of (a), (b), (d), and (e) are logarithm of the number of observations N (e.g. log(N)). The
right panels display the quantile–quantile plots for U10 (c) and Hs (f). The colors denote various wind reanalysis or wave hindcast datasets. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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wave data from their network. Our model implementation is at the
global scale (55 km) so we chose buoys sufficiently far ( > 30 km) from
the coastlines and located in deep water. In total there are 32 buoys that
met our criteria and they grouped by regions: Hawaii (HAW): 51001,
51002, 51003, 51004; North Pacific (NoP): 46001, 46035, 46066;
Northeast Pacific (NEP): 46002, 46005, 46006, 46011, 46012, 46014,
46022, 46023, 46025, 46028, 46042(2D), 46047, 46053, 46054,
46059, 46063; Gulf of Mexico (GoM): 42001(D), 42002(2D),
42003(2D), 42039(2D), 42040(2D); Northwest Atlantic (NWA): 41001,
41002, 41010, 44004. Only a select number of buoys have frequency-
direction spectra (2D) available for comparison to the wave model as
noted above. See Fig. 7(a) for their locations, which are limited to the
Northern Hemisphere near the United States coastlines. The frequency-
direction wave spectra are created using the maximum entropy method
(MEM) (Earle et al., 1999). The highest frequency adequately resolved
by the buoys is 0.4 Hz. The model spectra are interpolated in time and
space to match the buoy observations.

2.2. Forcing fields: wind and sea ice datasets

In the following subsections we will briefly describe the model
forcing datasets used in this study consisting of reanalysis and merged
satellite products. Reanalysis assimilate various in-situ and satellite
observations using the same assimilation method and model settings.
Some reanalysis assimilate data in 4 dimensions (4D-VAR: x,y,z,t) (e.g.
Dee et al., 2011), while others use 3 dimensions (3D-VAR) (x,y,z) for an
initialization time step followed by a short forecast (typically 6h) (e.g.
Saha et al., 2010). Most of the reanalysis datasets, with the exception of
CFSR, have prescribed sea ice concentrations from external sources
such as radiometers and sea surface temperatures (e.g. Dee et al., 2011;
Hirahara et al., 2014). We summarize pertinent information below and
in Table 1. The readers are referred to each of the references for detail
on each product.

2.2.1. NCEP R1
The NCEP R1 was the first long-term reanalysis and has been used in

a wide array of studies (Kalnay et al., 1996; Kistler et al., 2001). This
product starts in 1949 and continues to update the time series using the
same model and assimilation scheme. The atmospheric model is spec-
tral and uses a spherical grid spacing. The spatial resolution in atmo-
spheric models is commonly specified by “T” followed by a number. R1
has a resolution of T62, (210 km) which indicates spectral triangular
truncation at wavenumber 62 with a linear grid. R1 uses 3D-VAR.

2.2.2. ECMWF ERA40
ERA40 is based on its predecessor ERA15 developed at ECMWF and

uses 3D-VAR (Uppala et al., 2005). This system has a truncated Gaus-
sian atmospheric model (T159, N80 nominally) (140 km); these data
were re-gridded onto a regularly spaced longitude–latitude grid using a

spline interpolation. This system includes a wave model which assim-
ilates satellite altimeter observations, but this does not affect our in-
dependent hindcasts.

2.2.3. JMA JRA25
JMA25 is the first long-term atmospheric reanalysis produced by

JMA (Onogi et al., 2007). It uses the JMA assimilation system and
observations from satellites from centers world-wide, including the
National Climatic Data Center (NODC) and ECMWF. The atmospheric
model resolution is T106 (125 km) and uses 3D-VAR. Ice concentrations
were included using the Special Sensor Microwave Imager (SSMI) and
Scanning Multichannel Microwave Radiometer (SMMR).

2.2.4. NCEP CFSR
The NCEP CFSR is a global coupled system composed of atmo-

sphere, ocean, land, and ice models and begins with the modern sa-
tellite era 1979–2010 (v1) (Saha et al., 2010). The atmospheric re-
solution is 38 km (T382) and uses 3D-Var initialized every 6 h. Version
2 starts in 2011 and has shown improvement in the product especially
in the tropical regions, with increased resolution 22 km (T574)
(Saha et al., 2014). CFSR uses 3D-VAR with assimilations being updated
every 6 h. CFSR is the only reanalysis product that has a dynamic sea
ice model. It uses the elastic-viscous model of Hunke and
Dukowicz (1997).

2.2.5. ECMWF ERAI
The ECMWF ERAI improved atmospheric model and assimilation

system compared to its predecessor ERA40 (Dee et al., 2011). ERAI
established the 4D-VAR assimilation scheme used in reanalysis. The
atmospheric model is 76 km (T255). This system contains a coupled
wave–atmosphere component and the wave model assimilates altimeter
observations.

2.2.6. JMA JRA55
JRA55 is the JMA second official release of a reanalysis starting in

1958, when the use of global radiosondes were established
(Kobayashi et al., 2015). This product improves many of the aspects for
JRA25 by implementing 4D-VAR with variational bias correction for
satellite radiances, including a new radiation scheme, and introducing
greenhouse gases that vary with time. The atmospheric resolution is
62 km (T319). A notable impact to wave modeling is the inclusion of an
embedded parametric model to best capture the intensity of the tropical
cyclones using information for the best track database; it captures 95%
of the events (Murakami, 2014).

2.2.7. NASA MERRA (v2)
The MERRA (v2) (called MERRA herein) is a NASA reanalysis that

uses the Goddard Earth observing system Data assimilation System
(GEOS) (Rienecker et al., 2011; Gelaro et al., 2017). One of the original

Table 1
Summary of wind datasets used to generate wave hindcasts in this study. *Daily iIce concentractions are estimated using the Special Sensor Microwave Imager
(SSMI).

Name Institution Spatial resolution Time resolution Period Assimilation Ice References

R1 NCEP 1.875°× 1.875° 6 h 1948-present 3D-VAR Yes Kalnay et al. (1996)
CFSR NCEP 0.3°× 0.3° (v1) 0.2°× 0.2° (v2) 1 h 1979-present 3D-VAR Yes Saha et al. (2010, 2014)
R20C NCEP 1.875°× 1.875° 3 h 1851-present Kalman Filter Yes Compo et al. (2011)
ERA40 ECMWF 1.125°× 1.125° 6 h 1957–2002 3D-VAR Yes Uppala et al. (2005)
ERAI ECMWF 0.75°× 0.75° 6 h 1979-present 4D-VAR Yes Dee et al. (2011)
ERA20C ECMWF 1.125°× 1.125° 6 h 1900–2011 4D-VAR Yes Stickler et al. (2014)
JRA25 JMA 1.125°× 1.125° 6 h 1979–2014 3D-VAR Yes Onogi et al. (2007)
JRA55 JMA 0.5625°× 0.5625° 3 h 1958-present 4D-VAR Yes Kobayashi et al. (2015)
MERRA NASA 0.5°× 0.625° (v2) 1 h 1980-present 3D-VAR Yes Molod et al. (2015)
CFDDA NCAR 0.4°× 0.4° 1 h 1985–2005 4D-VAR No: use R1 Rife et al. (2010); Rife et al. (2014)
CCMP RSS 0.25°× 0.25° 6 h 1987-present Scat/Rad No: use SSMI* Atlas et al. (2011)
SCT IFREMER 0.25°× 0.25° 6 h 1993-present Scat No: use SSMI* Bentamy et al. (2016)
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goals of the project (v1) was to simulate the hydrological cycle correctly
(Rienecker et al., 2011). The latest release of the product improves
many aspects, including the model, observing system data, radiance
assimilation, and the boundary conditions for sea surface temperature
and sea ice concentration based on Reynolds et al. (2002). The atmo-
spheric resolution is 55× 70 km and uses 3D-VAR with assimilations
being updated every 6h.

2.2.8. CIRES R20C
The NOAA Cooperative Institute for Research in Environmental

Sciences (CIRES) Climate Diagnostics Center led an effort to produce a
reanalysis dataset spanning the entire 20th century, assimilating only
surface observations of air pressure and boundary conditions observed
from monthly sea surface temperature and sea ice concentration
(Compo et al., 2006; 2011). R20C has been extended to 1851 and has
an advantage of not being subject to changes in the quality or quantity
of data assimilated in the modern era. This reanalysis applies a Kalman
filter for each 6-h analysis pressure field (3D-VAR) with an atmospheric
model of 200 km (T62).

2.2.9. ECMWF ERA20C
The ECMWF follows R20C practices and created a reanalysis for the

20th century (Stickler et al., 2014). In addition to atmospheric pressure,
surface winds are assimilated into the reanalysis. It includes a coupled
land and ocean wave model. The resolution is 125 km (T159) and uses a
4D-VAR assimilation scheme which is input approximately at 210 km.

2.2.10. NCAR CFDDA
The National Center for Atmospheric Research (NCAR) Climate Four

Dimensional Data Assimilation system (CFDDA) established a method
to downscale a mesoscale model (Hahmann et al., 2010). NCAR pro-
duced a 21-year (1985–2005) reanalysis based on the NCEP Reanalysis
2 (R2) (Kanamitsu et al., 2002). The mesoscale model (MM5) is im-
plemented at 40 km resolution using 4D-VAR. We chose to include this
reanalysis to give insights on using downscaling through a mesoscale
model. Also, it uses a 4D-VAR instead of the other NCEP products which
use 3D-VAR.

2.2.11. RSS CCMP (v2)
Remote Sensing Systems (RSS) produced a cross-calibrated multi-

platform (CCMP) gridded surface vector winds at regularly spaced time
interval (6 h) (Atlas et al., 2011). Data is combined from 7 radiometer
missions, 2 scatterometer missions (QuikSCAT, ASCAT), moored buoys,
and atmospheric models using a variational analysis method to produce
global maps at 0.25° (27 km). The most recent release (v2) uses updated
satellite observations compared to its predecessor (Atlas et al., 2011).
We use sea ice concentrations from radiometers produced by Institut
Francais pour la Recherche et lExploitation de la MER (IFREMER),
making the forcing fields completely derived by satellite observations.
The ice coverage is produced by using a transfer equation that relates
the polarization difference to ice concentration (Kaleschke et al., 2001).
The daily sea ice concentrations have an original spatial resolution of
12.5 km covering both poles. This dataset was used in an Arctic wave
hindcast and captures the daily ice features well (Stopa et al., 2016b).

2.2.12. IFREMER SCT
IFREMER created a merged satellite product consisting of radio-

meters and scatterometers from 1992 to 2016 (Bentamy et al., 2016;
Desbiolles et al., 2017). This product includes wind vectors from
IFREMER (ERS-1 and ERS-2), NASA (QuikSCAT), and EUMETSAT
(ASCAT-A, ASCAT-B), and radiometers from RSS (SSM/I SSMIS, and
WindSat). The use of ancillary data sources such as radiometer data
(SSMI, SSMIS, WindSat) and ERAI has enabled a blended product
available at spatial resolution and every 6 h with spatial resolution of
0.25° (27 km) by using optimal interpolation and kriging methods. Note
that data contained in either CCMP or SCT has also been assimilated

into the reanalysis datasets with the exclusion of R20C and ERA20C.
Indeed CCMP and SCT use the same datasets but the geophysical model
functions which relate the measured mean radar cross-section to U10
are different. CCMP uses the RSS GMF’s which are expected to be more
accurate for high wind speeds (e.g. Ricciardulli and Wentz, 2015). We
use the sea ice concentration dataset produced by Ifremer as input (like
CCMP).

2.3. Model implementation

The wave datasets are generated using WAVEWATCH III version
5.16 (abbreviated WW3 herein). WW3 integrates the spectral wave
action equation in space and time, with discretized wave numbers and
directions. Conservative wave processes like propagation, represented
by the local rate of change and spatial and spectral transport terms, are
balanced by the nonconservative sources and sinks. We implement the
same global model setup as Rascle and Ardhuin (2013). The model has
a spatial grid of 0.5° in longitude and latitude covering (78°S, 80°N) and
(0°E, 360°E), with spectra composed of 24 directions and 32 frequencies
exponentially spaced from 0.037 to 0.7 Hz at an increment of 10%.
Obstructions such as islands smaller than the spatial resolution are
accounted by apportioning the energy in the x and y-directions
(Chawla and Tolman, 2008). The nonlinear wavewave interactions are
modeled using the discrete interaction approximation (DIA) of
Hasselmann et al. (1985). Dissipation due to bottom friction uses the
SHOWEX formulation to parameterize sandy bottoms, here with a
constant sand grain size of 0.2mm (Ardhuin et al., 2003). The Ultimate
Quickest third order propagation scheme is implemented along with
garden sprinkler reduction (Tolman, 2002). All model simulations are
forced with the listed wind fields and sea ice concentrations in Table 1.

We implement physical formulations that describe the wind input
and dissipation of Ardhuin et al. (2010). This package of physical
parameterizations performs well especially in terms of higher order
moments of the wave spectrum and treatment of swell (Stopa et al.,
2016a). One major advance when using this package is its treatment of
swell which is described by a laminar-to-turbulent boundary within the
atmosphere and was formulated and calibrated by tracking swells from
synthetic aperture radar (Ardhuin et al., 2009; Stopa et al., 2016c). The
wind input is adapted from the Janssen (1991) formulation, with an
important reduction of input at high frequencies necessary to achieve a
balance with the whitecapping term. The original formulation from
Janssen (1991) is written in terms of the wave action N(k, θ) for each
wavenumber (k) and direction (θ)

S k θ β
ρ
ρ κ

e Z u
C

z θ θ σN k θ( , ) 1 * cos ( ) ( , )in MAX
a

w

Z
α

p
u2

4
2

in= ⎛
⎝

+ ⎞
⎠

−
(1)

where ρa, w are the atmosphere and water densities, κ is the von Karman
constant, pin is a constant that controls the directional distribution of
Sin, σ is the wave frequency, zα is a wave age dependent tuning para-
meter, u* is the friction velocity, and Z is a parameterized sea surface
roughness. The term βMAX is a non-dimensional growth parameter that
controls the wind to wave growth. In this work, we modify βMAX to
reduce the overall significant wave height bias. It is expected that other
variables such as the roughness length (zα) or even parameters in the
dissipation source term could be modified to reduce the errors asso-
ciated with different wind forcing.

3. Calibration and validation

In the following, each wind dataset is optimally calibrated and then
each 1-year hindcast is compared to the altimeter and buoy observa-
tions to establish their performance. Our goal is to establish the optimal
βMAX that reduces the global sea state errors for the 0.5° model im-
plementation. There is a distinct seasonality in the Hs ratios (model/
altimeter) as shown in Chawla et al. (2013). Therefore we use a 1-year
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hindcast to avoid any over-fitting that would occur if a particular
month or season was used. The year 2001 is used since all datasets
overlap during this period, there are 3 altimeter platforms in operation,
and it is the middle of the modern reanalysis period from 1979 to 2016.

3.1. Calibration

As briefly discussed in the introduction, in Fig. 1 there are notable
differences of the wind products. The U10 PDFs have similar shapes and
the PDF maximum is within 6 to 8ms 1− (Fig. 1(a)). For upper wind
speeds (U10 > 25ms 1− ), there are distinct differences and the max-
imum U10 ranges from 24 to 43ms 1− . The lower spatial resolution
products (ERA40, ERA20C, R1) have less occurrences of high wind
speeds, which is expected since they cannot resolve the fine scale fea-
tures. The high resolution mesoscale model implemented by CFDDA has
lower wind speeds near the mean and upper wind speeds relative to the
other products and altimeters (Fig. 1(b)). R20C with its 210 km spatial
resolution consistently has higher wind speeds in the range
20 < U10 < 26 ms 1− compared to the altimeters. In Fig. 1(b), near
the U10 average, most datasets are shifted to the left of the altimeter.
The geophysical model function (GMF) relates the measured satellite
normalized radar cross section (NRCS) of the altimeter to estimate U10.
When waves are present this 1-parameter fit can result in an over-
estimation of U10 (Gourrion et al., 2002). The U10 from ALT deviates
from all other products near the 5th through 30 percentile. It is ex-
pected that this systematic over-estimation of the derived U10 from
altimeters at low-wind speeds causes the shift in the PDF relative to the
other datasets. The cause of the overestimated U10 from altimeters
under light wind speeds ( < 4 ms 1− ) could be due to specular reflection
of the nadir-looking altimeter and/or sea state impact to the radar cross
section. Notice that when U10 > 8ms 1− CFSR, CCMP, and SCT more
closely match the observations. The same data is plotted in QQ plots in
Fig. 1(c). It is clear most products have reduced wind speeds relative to
the altimeters in the range (3, 10) ms 1− and when U10 > 12 ms 1− the
products begin to deviate from each other with the most drastic de-
viation when U10 > 20 ms 1− . CFSR and CCMP perform well, with
their U10 within 0.5 ms 1− of the altimeter observations even at the 99th
percentile.

The growth parameter βMAX is arbitrarily set to 1.45 for all hindcasts
in Fig. 1(d,e,f). There are some consistent features between the U10 and
Hs PDFs. The coarser spatial resolution products (R1, ERA40, JRA25,

ERA20C, ERAI) also have lower Hs. In Fig. 1(d) the shapes of the PDFs
are similar and the mean is within [1.5, 2.2] m. CFDDA has a higher
occurrence of small wave heights, while R20C has the lowest occur-
rence of small wave heights when Hs < 1.5 m. When Hs > 5.6 m,
R20C systematically has the largest probability relative to all other
hindcasts. Even though CCMP and SCT both incorporate data from
scatterometers, they use different GMFs, and these differences are
clearly seen in the wave heights. When comparing to the altimeters
(Fig. 1(e)), most datasets follow the features seen in the winds and the
PDFs are shifted the left of the altimeters close to the average sea states
(1 < Hs < 2.2 m). We have more confidence in the Hs from altimeters,
so most of the forcing wind products might indeed have difficulties in
estimating calm wind speeds, which also contributes to the differences
observed in the U10 PDFs (Fig. 1(b)). The calm winds located in the
tropics are expected to have larger uncertainties (Saha et al., 2014). The
QQ plot (Fig. 1(f)) shows a wide range of the wave heights from the
hindcasts. So simply using the same βMAX for every input wind dataset
results in a wide range of Hs errors. For the highest sea states (Hs >
10m the 99.9 percentile), R1, ERA40, ERAI, ERA20C underestimate Hs

and JRA55, CCMP, and R20C overestimate Hs when βMAX=1.45.
Using CFSR as an example, βMAX is varied and the corresponding Hs

PDFs and QQ plots co-located with ALT are given in Fig. 2. It is clear
that larger values of βMAX result in taller wave heights. Our goal is to
optimally determine the value for βMAX where the Hs PDFs output from
the wave model and the altimeter observations best align. The optimal
βMAX is determined for each dataset by searching the entire space of
βMAX, which is typically within [1.0,2.1], with the exception of CFDDA.
We require the 50 percentile (P50) and P99 of the significant wave
height are well matched between the hindcasts and the altimeters:
(−0.1m P P50, 99 50, 99WW Hs ALT Hs3, ,< − <0.1m) and require that P99
does not underestimate Hs. This second criteria is due to the important
engineering applications of capturing the extreme wave heights. In
general, we place more emphasis on capturing the largest sea states
often at the expense of moderate seas. In this example (Fig. 2), the
hindcast using βMAX=1.385 best matches the P50, P99, and the upper
wave heights (Hs > 10 m). In the QQ plot (Fig. 2(b)) βMAX=1.385
closely fits the bisector line.

In Fig. 3, we objectively adjust βMAX to determine the optimal value
to reduce Hs residuals of the P50 and P99. These plots show βMAX (x-axis)
versus various percentile differences (WW3-ALT) and the root means
square error. The coarser resolution products such as R1, ERA40,

Fig. 2. Hs PDFs (a) and QQ (b) plots created by modifying the wind to wave growth parameter βMAX and using the CFSR winds as input. The colors denote different
wave hindcasts implementing various coefficient for βMAX. The altimeter observations in black are given for reference in (a). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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ERA20C have optimal performance when βMAX is larger ( > 1.7). On the
other hand, the higher resolution products such as CFSR, CCMP, and SCT
have lower values for βMAX. But in general this is not a rule since R20C
with 210 km spatial resolution has an optimal performance when βMAX is
close to 1.10. An ideal behavior is when all percentiles intersect with
negligible residual; this means the PDFs are well matched for all sea
states. Therefore ERA40, CFSR, ERAI, CCMP, and SCT all have good
agreement with the altimeters for the majority of the sea states. The only

datasets which do not match our criteria of having Hs residuals
± 10 cm are R20C and CFDDA. For R20C the median Hs residual is
underestimated by 12 cm and the P99 Hs residual overestimated by
15 cm. For CFDDA, we chose β 2.55MAX = because the RMSE has a very
subtle minimum. We tested larger values of βMAX (up to 3.5) to get a
better match of the extreme seas, but the PDFs did not resemble the
altimeter observations. Clearly this dataset is not suitable to drive a wave
hindcast. These plots can be used to understand how to calibrate the

Fig. 3. Calibration of the wind datasets based on modifying βMAX and comparing to altimeter Hs. The green line with squares is the P10 (WW3-ALT), the blue line
with circles is the median (P50) (WW3-ALT), the red line with triangles is the P99 (WW3-ALT)), and the magenta dashed line with diamonds is the root mean square
error. The chosen βMAX value is specified by the vertical black line.
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models for different applications. For example, to study the average sea
states different criteria can be implemented. It is important to reinforce
the fact that these charts are valid for the spatial resolution of 0.5° and
applicable for a global implementation. Models with different spatial
resolution and coverage will need refinement and possible re-calibration.

3.2. Validation

The optimal βMAX values are given in Table 2 and are chosen from
Fig. 3. Here we summarize the overall performance of the 12 1-year
hindcasts that use different wind forcing. We compute standard error
metrics: the bias, root mean square error (RMSE), scatter index (SI), and
slope of the linear regression (see Stopa et al., 2016a for equations).
There are clear differences in the performance of the older reanalysis
datasets (R1, ERA40, JR25, and CFDDA) compared to the recent re-
analysis datasets (CFSR, ERAI, JRA55, and MERRA). The older re-
analysis (R1, ERA40, JRA25, CFDDA) have higher RMSEs and SIs of
> 0.43 m and > 15% compared to < 0.41 m and < 15% for more
recent reanalysis (CFSR, ERAI, JRA55, and MERRA). The 20th century
reanalysis datasets (R20C and ERA20C) perform worse than the other
reanalysis datasets. Both R20C and ERA20C have similar error metrics.
R20C underestimates the Hs but has slightly better match of the linear
regression slope. Both of the merged satellite-observation datasets
(CCMP and SCT) perform well with RMSE < 35 cm and SI < 13%.

We generate similar error metrics for the extreme sea states
(Hs > 10 m); the values are provided in parenthesis in Table 2. The
performance of all hindcasts degrade at the extremes. All hindcasts have
Hs RMSEs that exceed 1m and some have biases that underestimate Hs by
at least 1.5m, such as R1, CFDDA, R20C, ERA20C. The hindcasts that

best capture the largest waves are CFSR, MERRA, CCMP, and SCT, shown
by the RMSEs < 1.5 m and linear regression slopes between 0.88 and
1.14. ERAI is a precise forcing wind field (SI < 10%), but under-
estimates the largest heights as reported by others (Rascle and Ardhuin,
2013; Stopa and Cheung, 2014). CFDDA is out of the reasonable range
and significantly underestimates the largest waves.

The PDFs and QQ plots are given in Fig. 4 after calibration to
complement Fig. 1. Now the Hs PDFs (Fig. 4(a,b)) closely resemble each
other and the altimeter observations with the exception of CFDDA. At
the extreme sea states the lower resolution products (R1, ERA20C,
ERA40) still have reduced probability relative to the others and alti-
meter observations. The QQ plots are relatively close for all products
and deviate less than 0.5 m up Hs=8.4m (P99.5). Notice we calibrated
βMAX at P99 and required all products do not underestimate Hs. At the
largest quantile shown (P99.9) the Hs range is about 1m between
products.

Often in engineering and oceanographic applications other variables
besides Hs, such as the wave period and direction, are important. We
use the buoys from the NDBC network to compare Hs, average wave
periods (Tm02)

Tm m m02 /0 2= (2)
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We truncate the integration of the buoys at 0.4 Hz since beyond this
frequency the data is often noisy. We use the same frequency range in
the wave model output to ensure a fair comparison between the com-
puted parameters.

The results summarized in Table 3. The RMSEs and SIs are given for
both the Hs and Tm02. For θavr the RMSE is reported as well as the
normalized standard deviation NSTD
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std θ
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×
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where std is the standard deviation and the NSTD is given in a per-
centage. Note that we are using circular mathematics for the θavr error
metrics. We see the Hs RMSEs are typically between 0.2 and 0.6m and
the SIs are between 9% and 37%. For Tm02 the RMSEs are between 0.7
and 1.7 s and the SIs are typically between 6% and 20%. Nearly all the
hindcasts have θavr RMSEs of 30° for the Northeast Pacific and 50° in the
Gulf of Mexico. Therefore the directional components of the wave
model need improvement similar to the findings of Stopa et al. (2016a).
The θavr NSTDs of the hindcasts are typically 0 to 43% less than the
buoy observations. This means the directional components are

Table 2
Error metrics comparing 12 hindcasts with altimeter Hs for all sea states and only
when Hs > 10m (values in parenthesis) for 2001. The number of altimeter
observations is 10,767,248 and 8,850 for all observations and Hs > 10m, re-
spectively. The βMAX given in the second column is the calibrated value used for
the hindcast.

Name βMAX Bias (m) RMSE (m) SI (%) Lin. slope

R1 1.750 −0.05 (−1.94) 0.64 (2.62) 23.85 (15.81) 0.91 (0.55)
ERA40 2.050 +0.00 (−1.08) 0.43 (1.57) 15.96 (10.16) 0.97 (0.78)
JRA25 1.500 −0.05 (−1.11) 0.49 (2.05) 18.22 (15.44) 0.95 (0.81)
CFSR 1.385 +0.01 (−0.42) 0.35 (1.19) 13.15 (9.98) 0.95 (0.88)
ERAI 1.660 −0.02 (−0.91) 0.38 (1.37) 14.13 (9.14) 0.98 (0.69)
JRA55 1.215 −0.06 (−0.49) 0.41 (1.27) 15.26 (10.46) 0.98 (0.86)
MERRA 1.630 −0.06 (+0.24) 0.36 (1.22) 13.26 (10.72) 0.97 (1.06)
CFDDA 2.550 −0.09 (−3.30) 0.87 (3.96) 32.05 (19.60) 0.73 (0.73)
R20C 1.100 −0.09 (−1.54) 0.66 (2.67) 24.48 (19.54) 0.94 (0.65)
ERA20C 1.710 −0.00 (−2.52) 0.68 (3.46) 25.36 (21.27) 0.89 (0.50)
CCMP 1.300 −0.06 (+0.33) 0.33 (1.30) 12.20 (11.29) 0.95 (1.14)
SCT 1.490 −0.04 (+0.10) 0.35 (1.48) 12.95 (13.26) 0.95 (1.14)

Fig. 4. Hs PDFs (a,b) and QQ plots (c) for 12 wind datasets (color) using an optimal value for βMAX and comparing to the altimeter observations (black in b). The βMAX

was chosen by reducing the differences in the P50 and P99 and ensuring P99 is not underestimated.
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Fig. 5. The normalized root mean square error of the significant wave height using the satellite altimeters as reference for 2001 in 2° bins. The percentage of oceans
that have a NRMSE < 8% is given for each hindcast.

Table 3
Hs, Tm02, and θavr error metrics comparing 12 hindcasts with buoy observations in different regions: Hawaii (HAW), North Pacific (NoP), Northeast Pacific (NEP),
Gulf of Mexico (GoM), and the Northwest Atlantic (NWA). The RMSEs are the first value in each cell and the values in the parentheses are the SIs for Hs and Tm02 and
the NSTD for θavr given as a percentage. The number of data pairs (denoted by N) is given in the third row.

Name Hs (m) Tm02 (s) θavr (deg)

HAW NoP NEP GoM NWA HAW NoP NEP GoM NWA NEP GoM
N 34,047 19,683 134,589 37,018 31,022 34,047 19,683 134,589 37,018 31,022 8639 37,018

R1 0.39(13) 0.78(25) 0.68(29) 0.64(37) 0.45(25) 0.97(9) 0.99(11) 1.61(19) 1.74(19) 1.03(12) 30(−41) 53(0)
ERA40 0.23(10) 0.38(12) 0.59(24) 0.58(31) 0.29(15) 0.84(7) 0.84(6) 1.49(19) 1.75(17) 1.05(9) 31(−40) 53(1)
JRA25 0.29(9) 0.47(15) 0.56(24) 0.58(31) 0.31(17) 0.76(7) 0.77(7) 1.37(16) 1.74(18) 0.89(9) 32(−27) 52(−0)
CFSR 0.27(11) 0.36(12) 0.54(23) 0.55(30) 0.29(16) 0.71(8) 0.69(6) 1.34(15) 1.60(17) 0.82(8) 32(−23) 52(−1)
ERAI 0.27(9) 0.43(14) 0.57(24) 0.60(33) 0.31(15) 0.81(6) 0.80(7) 1.36(17) 1.77(17) 1.01(9) 31(−36) 51(4)
JRA55 0.39(10) 0.44(14) 0.56(23) 0.62(34) 0.33(17) 0.82(7) 0.72(7) 1.42(16) 1.74(18) 0.98(9) 32(−24) 51(4)
MERRA 0.35(11) 0.41(13) 0.55(23) 0.58(31) 0.31(16) 0.84(8) 0.80(6) 1.42(16) 1.74(17) 0.98(8) 32(−28) 53(−0)
CFDDA 0.53(19) 1.29(37) 0.89(36) 0.69(41) 0.50(23) 0.87(10) 1.91(20) 2.06(23) 1.51(19) 0.82(10) 33(−2) 54(−10)
R20C 0.40(13) 0.65(20) 0.60(26) 0.56(31) 0.48(25) 0.93(9) 0.84(10) 1.58(20) 1.57(18) 1.05(13) 30(−43) 59(−7)
ERA20C 0.29(12) 0.59(19) 0.61(27) 0.55(30) 0.40(22) 0.83(8) 0.89(9) 1.64(19) 1.61(17) 1.03(11) 28(−42) 56(−6)
CCMP 0.26(10) 0.40(12) 0.54(23) 0.55(30) 0.30(15) 0.76(8) 0.81(6) 1.43(17) 1.66(17) 0.97(8) 34(−17) 52(0)
SCT 0.22(9) 0.40(11) 0.56(23) 0.56(30) 0.33(18) 0.72(7) 0.87(6) 1.45(18) 1.68(17) 0.96(10) 34(−19) 53(−1)
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relatively smooth compared to the observations; this is particularly true
for the Northeast Pacific. In the Northeast Pacific and Gulf of Mexico
the hindcasts are performing the worst with the largest Hs and Tm02
RMSEs. In the Gulf of Mexico the θavr RMSEs are large, and possibly
small scale atmospheric features are not well captured by the products.
Notice ERAI has some of the lowest SIs for both Hs and Tm02, de-
monstrating it is a precise forcing wind field. CFSR systematically has
the lowest RMSEs and SIs for Tm02. Some other credible forcing fields
are modern reanalyzes (CFSR, JRA55, MERRA) and the satellite data-
sets (CCMP and SCT).

The spatial view of the hindcast performances relative to ALT are
given in Figs. 5 and 6 for the normalized RMSE (NRMSE) and the SI
respectively. These error metrics show the hindcasts’ accuracy and pre-
cision respectively. The wave hindcasts are interpolated in space and
time to match the altimeters and the error metrics are computed in 2°
bins for each 1-year hindcast. For the NRMSE (Fig. 5), it is clear that R1,
R20C, ERA20C, and CFDDA have worse performance compared to the
other products since the NRMSE is often > 15%. It is interesting to note
that the older reanalysis datasets such as ERA40 and JRA25 perform
reasonably well once they are properly calibrated. However, their per-
formance is worse than their successors ERAI and JRA55 respectively.
JRA55 has larger errors in the tropics compared to the other recent
hindcasts (CFSR, ERAI, and MERRA). ERA20C and R20C have similar

spatial patterns and clearly have improved performance in the Northern
Hemisphere (NH) compared to the Southern Hemisphere (SH). This is
expected since the majority of the pressure observations were recorded in
the NH. CFSR, ERAI, JRA55, MERRA, CCMP, and SCT all perform well.
CCMP has the best performance with approximately 68% of the oceans
having a NRMSE < 8%. The second best performance is SCT with 65%
of the oceans having a NRMSE<8%. For hindcasts driven by reanalyses,
CSFR and MERRA and have best performance and have NRSMEs less
than 8% for 62 and 58% of the oceans respectively.

The corresponding plots for the SI are given in Fig. 6. R1, CFDDA,
R20C, and ER20C have worse performance than the other hindcasts
with SI > 15%. R20C and ERA20C have lower precision (higher SIs) in
the SH. The SIs are less than 10% in the majority of the oceans for CFSR,
ERAI, JRA55, MERRA, CCMP, and SCT. CCMP, SCT, CFSR, and MERRA
are the top 4 best forcing fields with SIs less than 10% for 87%, 86%,
82%, and 79% of the oceans, respectively. In general, all wave hind-
casts have larger NRMSEs and SIs that are typically 2–5% higher near
the Equator compared to surrounding regions. In addition, near the ice
edge in the Southern Ocean all hindcasts have larger errors, and these
features are more pronounced in the older reanalysis products like R1,
ERA40, and JRA25. Therefore either ice edge location and/or the at-
mospheric models are performing better in the more recent reanalysis
datasets (CFSR, ERAI, JRA55, MERRA).

Fig. 6. The scatter index (SI) of the significant wave height using the satellite altimeters as reference for 2001 in 2° bins. The percentage of oceans that have a SI
< 10% is given for each hindcast.
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4. Comparison and extremes

To assess the different hindcasts we compute the average and
standard deviation of different statistics from the ensemble (Fig. 7). In
this analysis we remove CFDDA since this hindcast was not in the
reasonable range compared to the observations. The median in
Fig. 7(a,b) shows the SH has larger sea states than the NH. More im-
portantly, the variability shown by the standard deviation of these 11
hindcasts is typically less than 30 cm globally. In fact 68%, 88%, and
97% of the ocean has standard deviation less than 10, 15, and 20 cm,
respectively. Note that in Pacific near the Equator there is a region with
standard deviations of 10 to 20 cm and the Hs P50 is only 1.5m. So this
region has a large relative variability (approx. 15%) compared to the
extra-tropics ( < 5%). For Hs P95 (Fig. 7(c,d)), the NH and SH now
have similar magnitudes with maximum in the Indian Ocean sector of
the Southern Ocean. The magnitude of Hs P95 is relatively smooth and
the standard deviation is mostly less than 20 cm. Specifically 64%,
90%, and 97% of the ocean has standard deviations less than 20, 30,
and 40 cm, respectively. The maximum Hs in Fig. 7(e,f) does not have a
smooth pattern, and impact from individual storms can be identified.
The standard deviation shows particular events can have very large Hs

differences exceeding 2.5 m. In the lower latitudes, the standard de-
viations of the hindcasts are less than 50 cm with the exception of
tropical cyclone regions that are most notable in the Western Pacific
and Atlantic. Most of the variability is in the extra tropics, and it is
common to have standard deviations greater than 1m. The maximum
Hs differences come from variations in the magnitude of the forcing
wind fields or space-time deviations of the storm locations.

In short, all hindcasts reproduce the average sea state conditions
and have Hs within 10 cm of each other; even the Hs P95 is well mat-
ched between hindcasts. The largest sea states have greater variability
between the hindcasts, and these differences are quantified by calcu-
lating the occurrence of Hs > 10m (based on hourly data). The results
are presented in Fig. 8. It is clear that the extra-tropics have the
strongest and most persistent storms. Tropical cyclones can indeed
breach this threshold, but their occurrence is low compared to extra-
tropical events. R1, ERA40, and JRA25 have similar patterns. JRA25
has slightly larger waves in both hemispheres. CFDDA is not applicable
to capture these high sea states, and most of the ocean has Hs < 10 m.
CFSR, ERAI, JRA55, and MERRA have similar spatial patterns. ERAI has
the least energy at high sea states, and it is known that ERAI under-
estimates these conditions (Stopa and Cheung, 2014). In the SH, CFSR
has reduced seas compared to JRA55 and MERRA. In the NH, MERRA
and CFSR have similar occurrence of Hs > 10m, but JRA55 has less
occurrences of elevated seas. R20C and ERA20C have similar patterns;
however R20C has more occurrences of elevated seas in the SH espe-
cially in the Indian Ocean; and perhaps this is too high with respect to
the other hindcasts. CCMP and SCT have nearly the same pattern with
slightly more wave activity in SCT. Notice the consistency between the
products produced by the same centers: NCEP (R1, CSFSR, R20C),
ECWMF (ERA40, ERAI, ERA20C), and JMA (JRA25, JRA55). The re-
cently released products have higher occurrence of elevated wave
heights (Hs > 10m), which is due to the fact that the spatial resolution
increases, physical parameterizations improve, and satellite observa-
tions at extremes improve.

It is clear that the bulk statistics are different for the upper wave

Fig. 7. The average (a,c,e) and standard deviation (b,d,f) for different Hs percentiles (P50 and P95) and the maximum for 2001 using the 11 different hindcasts
excluding CFDDA. Colors denote values are in meters. Panel (a) shows the NDBC buoy locations in five regions: Hawaii (HAW), North Pacific (NoP), Northeast Pacific
(NEP), Gulf of Mexico (GoM), and the Northwest Atlantic (NWA).
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heights so two particular storms are analyzed to further highlight the
differences. The largest altimeter record for 2001 (Hs > 16m) was
recorded in a Southern Ocean extra-tropical storm by GFO. This storm
from April 10 to April 13 traveled south of Australia in the Southern
Ocean (Fig. 9(a)). As the storm intensified on April 10 at 17:00, the
spatial patterns of the Hs exceeding 9m are different for each hindcast
(Fig. 9(c)). ERA40 has the smallest spatial coverage of Hs > 9 m at
1.6×105 km2, while most hindcasts (JRA25, CFSR, ERAI, R20C,
ERA20C, and SCT) have areas with Hs > 9m within
2.8 3.8 105− × km2. R1, JR55, MERRA, and CCMP have enhanced sea
states with regions of Hs > 9 m exceeding 4×105 km2 and Hs larger
than 12m. Notice that nearly all hindcasts have the storm in nearly the
same position. The exception is R1, which places the storm slightly
ahead of the others.

When the storm is nearly at its peak intensity, GFO crosses the storm
center on April 12 at 03:45. The storm contours are given in Fig. 9(d)
and all hindcasts have the storm in the same position with the exception
of R1. The spatial coverage of Hs > 9m between hindcasts varies by
7× 105 km2 with maximum being R20C and minimum ERA40. The
altimeter observations in Fig. 9(b) give insight to which models best
capture the maximum Hs and spatial extent of the storm waves. It is
confirmed that storm location in R1 is incorrect. Ignoring CFDDA and
R1, the hindcasts have the maximum Hs ranging from 12 to 18m for
this event. JRA55 captures the maximum of the storm very well with
only a small displacement to the South. MERRA is the only hindcast
that overestimates the peak of the event by 1.3 m. In addition JRA25,
R20C, ERA20C perform well and underestimate the altimeter Hs of
16.4 m by 50 cm. ERAI, CCMP, and SCT moderately underestimate the
peak Hs by 1–2m while CFSR and ERA40 unreasonably underestimates

the peak Hs by 3m. Towards the end of the event, on April 12 at 22:00,
there is large variability in the spatial coverage of Hs > 9m that ex-
ceeds 6× 106 km2 between hindcasts (Fig. 9(e)). Some hindcasts fall
below the Hs threshold of 9m and are not plotted. The time evolution of
the maximum Hs and area of Hs > 9m are given in Fig. 9(f,g). It is
clear that towards the end of the storm there is more variability in the
spatial distribution of the largest waves. Also notice that the hindcasts
have maximum Hs that vary from 4 to 8m for the duration of the event.

In Fig. 7(f) it is clear that regions affected by tropical cyclones have
larger variability with Hs standard deviations exceeding 2m. We pick
the tropical cyclone Utor in the Western Pacific near the Philippines
that occurred July 1–5 to demonstrate the large variability of the
hindcasts under extreme tropical cyclone wind forcing. This event is
clearly seen in Fig. 7(c). Utor grazed the island of Lazon in the Phi-
lippines and then made landfall in Southeast China on July 6. The cy-
clone overview is given in Fig. 10(a). There was a TPX pass that in-
tersected the storm center on July 3, 07:11. The spatial distribution of
the Hs > 8m on July 2, is similar for the various hindcasts and the
Hs=8m contours have a “C” pattern (Fig. 10(c)). Note that R1 has the
storm in different location relative to the other hindcasts, similar to the
last case.

When TPX crosses the storm on July 3, in Fig. 10(b) there is a large
range of Hs profiles. MERRA overestimates Hs and it is confirmed that
the location of Utor in R1 is mis-located compared to the altimeter
observations. In this case, ERAI best matches the TPX Hs but with an
underestimation of 1m. All other hindcasts (ERA40, JRA25, CFSR,
JRA55, CFDDA, R20C, ERA20C, CCMP, and SCT) underestimate the
maximum Hs of the event (H 11.2s = m) by 2 to 5m. The positions of the
storm in ERA40, CCMP, ERAI, and MERRA are approximately correct

Fig. 8. The occurrence of the number of events with Hs larger than 10m for 2001. This is based on hourly output from the hindcasts.

J.E. Stopa Ocean Modelling 127 (2018) 55–69

65



since the Hs profiles follow the TPX observations. The spatial coverage
of Hs > 8m varies greatly between products 10× 105 km2

(Fig. 10(c,d,e,g)). Towards the end of the event and as the storm moves
into the South China Sea, the spatial patterns of Hs > 8 m vary by
3× 105 km2. Fig. 10(f,g) shows the time series of the maximum Hs and
storm area with Hs > 8 m. It is clear that the maximum Hs has a large
variability between products. Of course some products like R20C and
ERA20C are not specifically designed to capture the small-scale features
of tropical cyclones. This particular example shows that the range in Hs

can be 8m between the hindcasts. Therefore extreme caution should be
used when using these hindcasts to understand extreme sea states,
especially for tropical cyclones.

5. Discussion and recommendations

In this work we calibrated 12 different wind products by adjusting
the βMAX parameter that describes the wind to wave growth in the
Janssen (1991) formulation. We demonstrate that modifying βMAX

reduces errors in the wave field. This is due to the fact that each wind
product has different characteristics. This exercise was performed on a
0.5° global grid, and we used altimeter observations as reference for the
calibration. Then we compare the hindcasts to NDBC moored buoys to
assess Hs, Tm02, and θavr. Our procedure can be adapted to regional
domains with different resolutions. However, one should take caution
when applying this approach, especially with a sufficiently small do-
main, because βMAX could be incorrectly compensating for missing or
improper model parameterizations.

Our criteria was to best match the Hs PDFs, and we ensured the
largest sea states Hs > P99 are not underestimated. We specifically
summarize the advantages and disadvantages of each hindcast in
Table 4 and here we generalize the conclusions. After calibration, even
the older reanalysis datasets, such as R1, ERA40, and JRA25, perform
well with respect to bulk statistics. Our results clearly demonstrate that
the more recent reanalysis wind fields from CFSR, ERAI, JRA55, and
MERRA are better forcing wind fields for wave hindcasting compared to
their predecessors. The NCEP 4D-VAR reanalysis that uses a mesoscale

Fig. 9. Extra-tropical storm in the Southern Ocean from April 10, to 13, 2001. (a) shows the storm track with Hs taken from the MERRA driven wave hindcast. Three
representative time periods are highlighted on April 10 at 12:00, April 12 at 04:00, and April 12 at 22:00. The contours represent Hs=9m using the MERRA-driven
wave hindcast. The altimeter aboard GFO intersects the storm center on April 12 at 03:45. (b) shows the GFO altimeter transect and the 12 other wave hindcasts.
(c,d,e) show the contours with Hs=9m for the representative phases of the storm. (f) shows the maximum Hs for the different hindcasts and (g) shows the area of the
storm with Hs > 9m.
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model, CFDDA, is not suitable for wave hindcasting. This wind forcing
cannot capture the high sea states; there is an extreme underestimation.
The 20th century reanalysis datasets R20C and ERA20C have similar
performance. These hindcasts do not perform as well as the higher re-
solution products and have less fidelity than the other hindcasts.
However, it is important to note that they capture the magnitude of the
extreme events especially in the extra tropics. R20C and ERA20C poorly
capture tropical cyclones. The hindcasts driven by satellite observations
(CCMP and SCT) perform well and are as good if not better than the
reanalysis products. However, their 6-h time step might not be suffi-
cient for some cases, such as rapidly intensifying storms.

The buoy comparison gives an independent check of the calibrated
wave hindcasts. The Hs error metrics between the buoys and altimeters
are similar; however, regional areas such as the Northeast Pacific and
Gulf of Mexico have larger errors. The RMSEs for the Tm02 are typically
1 s and exceed 1.6 s in the Gulf of Mexico. All wave hindcasts have
similar performance for average wave directions, which is most likely

due to the same model source term parameterization and im-
plementation of the DIA. In the Gulf of Mexico the θavr are poor with
RMSEs of 50°, suggesting model improvements are needed to better
capture the directionality of the wave field.

All hindcasts have similar average sea states (P50), and the varia-
bility between hindcasts is negligible ( < 5%). Even up to the 95th
percentile, the variability between hindcasts is typically less than 10%.
The hindcasts deviate only at the largest sea states. Extra-tropical
storms are well captured by the hindcasts. However, the variability for
the largest events and the occurrence of these events varies greatly
between products. For the example storms, the maximum Hs can exceed
6m for a large extra-tropical event and vary by 8m for a tropical cy-
clone. For practical applications it is important to understand that each
forcing wind field will give very different results for high sea states.
Using an ensemble approach such as this to study extreme events will
help quantify some of the uncertainty. In general it is clear that tropical
cyclones are not well captured. Some of the reanalysis products are able

Fig. 10. Tropical cyclone Utor in the Western Pacific Ocean from July 1 to 5 2001. (a) shows the storm track with Hs taken from the MERRA driven wave hindcast.
Three representative time periods are highlighted on July 2 at 07:00, July 3 at 07:00, and July 4 at 13:00. The contours represent Hs=8m using the MERRA-driven
wave hindcast. The altimeter aboard TPX intersects the storm center on July 3 at 07:11. (b) shows the TPX altimeter transect and the 12 other wave hindcasts. (c,d,e)
show the contours with Hs=8m for the representative phases of the storm. (f) shows the maximum Hs for the different hindcasts and (g) shows the area of the storm
with Hs > 8m.
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to capture the tropical events better than others (Murakami, 2014;
Hodges et al., 2017).

For wave hindcasting we recommend CFSR, ERAI, JRA55, MERRA,
CCMP, and SCT. For extreme waves CFSR, JRA55, MERRA, CCMP, and
SCT perform well in terms of bulk statistics. However, the case studies
revealed that CFSR underestimated both of the peak Hs events by
2–3m. On the other hand, ERAI has the storm in the correct position,
but maximum Hs was underestimated typically by 1m. ERAI reanalysis
is one of the most precise forcing fields and the SIs from wave para-
meters are typically the lowest. JRA55 matches the extreme waves very
well and is expected to better capture tropical cyclones since they are
blended into the product through use of a parametric model (Kobayashi
et al., 2015; Murakami, 2014). MERRA overestimates the largest waves.
Of course βMAX can be reduced, but this affects the entire Hs PDF (see
Fig. 3). A βMAX=1.45 matches the peak Hs of 16.4 and 11.1 m for the
extra and tropical cases studies, but the overall error metrics degraded
and a global underestimation was observed (not shown). Otherwise
most of the hindcasts underestimate the extreme sea states.

For climate studies, the consistency of the products in time is key,
and this is a topic of future work. Now with properly calibrated hind-
casts this task can be performed more diligently. In particular, R20C
and ERA20C might have the advantage of being less affected by
changes in the quantity and quality of the assimilated data. Another
critical point is the need for continual observations from scatterometers
and radiometers, which provide a tremendous resource for the com-
munity. As the reanalysis products continually improve, there is a need
to assess their ability to reproduce the wave field through hindcasts.
Additional and improved measurements of the winds and increased
spatial resolution will provide further insights and explanations of re-
gions with large uncertainties especially, for high sea states.
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