
Ocean Modelling 75 (2014) 65–83
Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier .com/locate /ocemod
Intercomparison of wind and wave data from the ECMWF Reanalysis
Interim and the NCEP Climate Forecast System Reanalysis
http://dx.doi.org/10.1016/j.ocemod.2013.12.006
1463-5003/� 2013 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 (808) 956 3485; fax: +1 (808) 956 3498.
E-mail addresses: stopa@hawaii.edu (J.E. Stopa), cheung@hawaii.edu

(K.F. Cheung).
1 Tel.: +1 (808) 956 8198; fax: +1 (808) 956 3498.
Justin E. Stopa 1, Kwok Fai Cheung ⇑
Department of Ocean and Resources Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA

a r t i c l e i n f o
Article history:
Received 9 July 2013
Received in revised form 9 December 2013
Accepted 26 December 2013
Available online 8 January 2014

Keywords:
Climate Forecast System Reanalysis
ERA-Interim
Wind wave modeling
Reanalysis intercomparison
Wave hindcasting
a b s t r a c t

The recent release of the ECMWF Reanalysis Interim (ERA-I) and NCEP Climate Forecast System Reanal-
ysis (CFSR) allows for studies of global climate and its cycles with unprecedented detail. While the devel-
opers have performed verification and validation, there is little information on their relative performance
in particular related to their use in ocean modeling. This study focuses on the intercomparison of wind
speeds and wave heights from ERA-I and CFSR utilizing the same set of altimetry and buoy observations
and error metrics to assess their consistency in time and space. Both products have good spatial homo-
geneity with consistent levels of errors in the Northern and Southern Hemispheres. ERA-I proves to be
homogenous through time, while CFSR exhibits an abrupt decrease in the level of errors in the Southern
Ocean beginning 1994. ERA-I generally underestimates the wind speed and wave height with lower stan-
dard deviations in comparison to observations, but maintains slightly better error metrics. Despite having
a small positive bias, CFSR provides a better description of the variability of the observations and
improved performance in the upper percentiles associated with extreme events. Overall ERA-I has better
homogeneity through time deeming it more reliable for modeling of long-term processes; however cau-
tion must be applied with analysis of the upper percentiles.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction The data, however, is limited to discrete locations with the major-
Studies of wind and wave climate require datasets of sufficient
duration and adequate resolution. Datasets with long time series
have additional applications essential for maritime commerce,
infrastructure design, and hazard mitigation. Voluntary observing
ships, satellite altimetry, synthetic aperture radar (SAR), and buoys
have been the source of measurements. Ship data has the longest
duration but varied quality, sparse coverage, and limited extreme
events due to shipping routes (Gulev et al., 2003). Satellite altime-
try covers a large expanse of the ocean with high precision mea-
surements. Despite being limited to only a few sea state
parameters, it has provided a valuable resource for climate studies
(e.g., Young, 1999; Woolf et al., 2002; Chen et al., 2002; Hemer
et al., 2010; Young et al., 2011). SARs have the ability to provide
a frequency-direction spectrum of the sea state for parameteriza-
tion of wave processes (Hasselmann and Hasselmann, 1991;
Hwang et al., 2013). Buoys provide the most comprehensive mea-
surements and present a critical source of information (e.g., Bro-
mirski et al., 2005; Menendez et al., 2008; Genmrich et al., 2011).
ity in the Northern Hemisphere.
Recent advances in numerical modeling have greatly supple-

mented the various sources of wind and wave measurements with
higher spatial and temporal resolution. Forecast models have been
operational for at least two decades in the National Centers for
Environmental Predictions (NCEP) and the European Centre for
Medium-Range Weather Forecasts (ECMWF). The archived opera-
tional forecasts have provided an important source of wind and
wave information to the community. The datasets, however, exhi-
bit inhomogeneity due to upgrades in model physics, resolution,
and assimilation techniques over the years, deeming unsuitable
for the analysis of multi-year climate signals. Reanalysis incorpo-
rates observations from a wide range of platforms, while imple-
menting the same model and data assimilation technique for
consistency. The constantly improving quality, coverage, and reso-
lution of the observations used in the assimilation may still repre-
sent a source of non-physical variations that require attention in
modeling of ocean wave climate (Hines et al., 2000; Kistler et al.,
2001; Sterl, 2004; Reguero et al., 2012; Chawla et al., 2013; Rascle
and Ardhuin, 2013).

Well-established datasets include the NCEP global Reanalysis I
(R1) and Reanalysis II (R2) at 1.9� resolution and the ECMWF ERA-
15 and ERA-40 at 1.5� resolution (Kalnay et al., 1996; Kanamitsu
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et al., 2002; Sterl et al., 1998; Uppala et al., 2005). While the ECMWF
datasets are derived from a coupled atmosphere-wave model, the
NCEP R1 wind data is typically used to force a wave model sepa-
rately. For example, Cox and Swail (2001) implemented a second-
generation wave model with R1 winds to produce 40 years of global
wave hindcast. Caires et al. (2004) performed an inter-comparative
study of these reanalysis datasets and identified their strengths and
weaknesses. Newly available datasets, such as the NCEP Climate
Forecast System Reanalysis (CFSR) and the ECMWF Reanalysis Inter-
im (ERA-I), have updated physics, improved assimilated data, and
higher resolution of 0.3� and 0.7� respectively (Saha et al., 2010;
Dee et al., 2011). Similar to ERA-40, ERA-I is a coupled atmo-
sphere-wave model producing a wind and wave dataset. Chawla
et al. (2013) utilized the CFSR surface winds at 0.5� to hindcast the
global wave conditions the third generation spectral model WAVE-
WATCH III (WW3) of Tolman et al. (2002). This is NCEP’s first official
release of a reanalysis wave dataset, which we refer to as CFSR
Waves (CFSR-W) throughout this article.

CFSR and ERA-I, which have improved performance compared
to their respective predecessors R1 and ERA-40, represent an
important data source of atmospheric forcing for the ocean model-
ing community. It is essential to know how the two latest reanal-
ysis datasets perform in relation to each other since they have
different resolutions, constituent models, physics, and assimilation
techniques. An objective assessment of the product homogeneity
in time and space will increase confidence in the datasets for appli-
cation in climate research. This study utilizes buoy and altimetry
Fig. 1. Buoy locations g
observations to compare the performance, validity, and consis-
tency of the CFSR and ERA-I datasets. Section 2 summarizes the
background information of the two reanalysis datasets and
provides details of the observations from buoys and altimeters.
Section 3 describes the methodology and error metrics used in
the inter-comparison. The results are presented in Section 4 with
subsections dedicated to the wind and waves separately. We first
identify the patterns and trends and then allude to their interrela-
tions and explanations. A summary of the major findings is given in
Section 5 to conclude the study.
2. Reanalysis and observation datasets

2.1. Reanalysis datasets

Saha et al. (2010) have demonstrated improved performance of
CFSR in comparison to its predecessors, R1 and R2, also developed
at NCEP. The main advancements include coupling between the
ocean, atmosphere, and land surface, an interactive sea ice model,
assimilation of satellite radiances, and increased horizontal and
vertical resolution in the atmospheric model. The Global Forecast
System (GFS) of Yang et al. (2006) constitutes the atmospheric
model, which has �38 km horizontal resolution and 64 vertical
layers extending from the surface to 0.26 hPa. The Geophysical
Fluid Dynamic Lab’s Modular Ocean Model (MOM) version 4 de-
scribes the ocean circulation at 0.25� resolution in the equatorial
rouped by regions.
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region and 0.5� above the tropics with 40 levels extending to
4737 m depth. The NOAH land model of Ek et al. (2003) includes
4 soil layers and the ice model of Wu et al. (2005) has 2 layers to
account for variations below the surface. Prior reanalysis efforts
with R1, R2, ERA-15, and ERA-40, have laid the groundwork and
best practice to assemble and convert observations into an interna-
tionally agreed upon data format for model assimilation (Kleist
et al., 2009). CFSR uses the same model and data assimilation tech-
niques in three space dimensions (3D-Var) at the each initializa-
tion of the model hindcast.

CFSR does not have a model component for ocean surface
waves. Chawla et al. (2013) utilized WAVEWATCH III (WW3) of
Tolman et al. (2002) and wind forcing at 0.5� from CFSR to repro-
duce the wave conditions for 1979–2009. WW3 is a phased-aver-
aged model that evolves the action density for a range of
frequencies and 360� of directions under wind forcing and geo-
graphical constraints. Features smaller than the grid spacing, such
as smaller islands and atolls are accounted for by prorating the en-
ergy transfer through a given computational cell (Tolman, 2003;
Chawla and Tolman, 2008). The physical processes are governed
by the action balance equation with the source terms accounting
for nonlinear effects such as wind–wave interactions, quadruplet
wave–wave interactions, and dissipation through whitecapping,
bottom friction, and wave breaking. The source term package from
Tolman and Chalikov (1996) was implemented as the first stage of
the NOAA Partnership Program (NOPP) initiative to improve wave
modeling (Tolman et al., 2013). Hourly surface winds at 10-m ele-
vation along with the temperature difference between the ocean
and atmosphere from CFSR provided the forcing to WW3. Passive
microwave sensors aboard the SMM/R and SSM/I satellites were
used to define the reanalysis daily ice concentrations at 0.5� reso-
lution. The hindcast consists of a mosaic of 16 computational grids
with resolution ranging from 1/2� to 1/15�. For the present study,
only data from the global grid at 0.5� and 3 h increment are
utilized.

ERA-I (release Cy31r2) is the most up-to-date reanalysis prod-
uct of ECMWF available for 1979-present. Dee et al. (2011) showed
its improved performance in comparison to ERA-40 due to the use
of additional observations, updated data assimilation techniques,
increased resolution, and better physics in the models. ECMWF’s
Integrated Forecast System (IFS) incorporates three fully coupled
models of the atmosphere, land surface, and ocean waves. The
atmospheric model has approximately �79 km grid spacing and
37 pressure levels extending from the surface to 0.1 hPa. The land
surface model uses the tiled ECMWF scheme to evolve the thermal
and water content exchanges in four layers (Viterbo and Betts,
Fig. 2. Available altimetry obser
1999). ERA-I assimilates data in four dimensions (4D-Var), which
Whitaker et al. (2009) have shown to outperform 3D-Var assimila-
tion techniques. ERA-I utilizes the WAve Model known as WAM
(WAMDIG, 1988), which is a third-generation spectral model based
on the same governing equation as WW3. The updated WAM
source terms from Bidlot et al. (2005, 2007) and Janssen (2008)
better describe the physical phenomenon of wave growth and dis-
sipation. The two-way coupling scheme in ERA-I passes the wind
fields and other atmospheric parameters that influence wave
growth to WAM and information is returned regarding the surface
roughness by use of the Charnock parameter (Janssen, 1991).

ERA-I also includes assimilation of measured significant wave
heights from polar orbiting satellites to constrain the predicted
wave spectra. The reprocessed wave measurements from European
Remote Sensing Satellites 1 and 2 (ER1 and ER2), Environmental
Satellite (ENV), JASON-1 (JS1), and JASON-2 (JS2) have been incor-
porated into their data assimilation since 1991, but the sparse data
may become a source of spatial inhomogenity in the wave field.
Bidlot et al. (2005) reported a slight change of the bias in the model
data most notably in the South Pacific due to assimilation of ob-
served wave heights beginning in 1991. The assimilated wave
model is resolved on a �0.7� grid using 24 directions and 30 fre-
quencies and data is available every 6 h and the results are directly
implemented in the present study.

2.2. Observation datasets

Both buoys and satellite altimeters provide measurements to
compare with the reanalysis datasets. The National Oceanographic
Data Center (NODC) provides quality controlled records of wind
speeds and significant wave heights from buoys (http://
www.nodc.noaa.gov/BUOY/). Fig. 1 shows the locations of 25 Na-
tional Data Buoy Center (NDBC) buoys selected for this study. The
buoys are chosen because they are deep water and far from coast-
lines and typically have time series covering a large portion of the
31 years analyzed. Direct comparison can be made to prior studies
of reanalysis data that typically used a subset of these buoys (Caires
et al., 2004; Chawla et al., 2013; Reguero et al., 2012). The wind
speed measurements have been included in the Comprehensive
Ocean–Atmosphere Data Set (COADS) as noted by Woodruff et al.
(1998) and possibly some were assimilated into CFSR. However,
the significant wave height records from these buoys were not used
in the production of either ERA-I or CFSR-W datasets, thus repre-
senting an independent source of information for validation.

Altimetry covers a large expanse of the oceans allowing better
spatial validation of the wind and wave data. Zieger et al. (2009)
vations from 1985 to 2010.

https://domicile.ifremer.fr/BUOY/,DanaInfo=www.nodc.noaa.gov+
https://domicile.ifremer.fr/BUOY/,DanaInfo=www.nodc.noaa.gov+


Table 1
Error metrics for wind speed at buoys using all available data during 1979–2009.

Wind Speed

Region n Average (m/s) Reanalysis NBIAS (%) RMSE (m/s) CRMSE COR SI (%) NSTD

Peru 70,360 6.57 CFSR 6.14 1.37 1.31 0.81 19.87 0.88
ERA-I 0.54 1.02 1.02 0.88 15.52 0.80

Hawaii 71,6480 7.50 CFSR �3.90 1.37 1.34 0.86 17.82 0.88
ERA-I �5.70 1.26 1.18 0.89 15.69 0.76

Gulf of Mexico 883122 6.11 CFSR 0.42 1.52 1.52 0.87 24.81 0.85
ERA-I �4.98 1.41 1.36 0.90 22.32 0.75

NW Atlantic 105,8995 7.08 CFSR 4.23 1.73 1.70 0.89 24.01 0.98
ERA-I �1.70 1.56 1.55 0.90 21.91 0.83

Alaska 542,834 8.15 CFSR 3.90 1.70 1.66 0.91 20.42 1.05
ERA-I 0.91 1.56 1.56 0.92 19.14 0.91

NE Pacific 713,020 7.63 CFSR 2.38 1.50 1.49 0.91 19.48 1.02
ERA-I 0.69 1.33 1.33 0.93 17.44 0.92
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provided quality controlled altimetry data against buoy measure-
ments for comparison with the reanalysis datasets. They consid-
ered seven altimeter missions with global coverage of the
significant wave height and wind speed derived from the Ku-
microwave band. Fig. 2 lists the platforms and their periods of
operation spanning 23 years since 1985. The calibrated data from
these platforms shows a consistent level of accuracy with the
root-mean-square (RMS) errors less than 0.25 m for the significant
wave height and 1.7 m/s for the 10-m wind speed. It should be
pointed out the post-processing of the altimetry winds using the
1-paramater Ku-microwave band has been shown to be inaccurate
in low wind speeds (Gourrion et al., 2002). Data sets collected by
GEOSAT Follow-On (GFO), its predecessor GEOdetic SATellite
Fig. 3. Taylor diagram of error metrics for wind speed at buoys grouped by region. Cyan
on the x-axis with a NSTD equal to one.
(GEO), and TOPEX/Posedion (TPX) were not used in the reanalysis
assimilation providing an independent source for validation. How-
ever, a systematic instrumental bias exists in the GEO wind data
that excludes its use in the comparison here.
3. Methodology

The buoy and altimetry measurements represent a large vol-
ume of spatial and temporary data that requires a systematic ap-
proach for their intercomparison with the ERA-I and CFSR-W
datasets. The objective is to assess the validity and consistency
of each reanalysis dataset by independent measurements not
symbols represent CFSR and red symbols represent ERA-I. A perfect model would lie



Fig. 4. Normalized wind speed biases for buoys by region.
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used in the assimilation whenever possible. The 25 buoys are
grouped into the six regions as shown in Fig. 1 each with similar
environmental conditions. The wind speed observations are all
adjusted to the 10-m standard elevation using a logarithmic pro-
file under the assumption of neutral stability, which is used in the
absence of the vertical temperature flux measurements. The qual-
ity controlled altimetry measurements by Zieger et al. (2009)
have spacing of approximately 5.8 km and are available every
second along the satellite track. Their wind speeds were esti-
mated from the surface stress also assuming a neutrally stable
atmosphere. The altimetry measurements are smoothed by a run-
ning mean of 15 adjacent points that covers a distance compara-
ble to the grid spacing (Chawla et al., 2013). Gridded wind speeds
and significant wave heights from CFSR-W and ERA-I are linearly
interpolated in time and space to match the buoy and altimetry
observations. The altimetry measurements allow assessment of
spatial patterns across the globe. To examine the variation over
time, we provide spatially integrated results for the Northern
Hemisphere (north of 20�N), Equatorial region (20�S–20�N), and
the Southern Hemisphere (south of 20�S).

We use a number of error metrics to measure the difference
between the observed and reanalysis data. Let x and y denote the
observed and computed values of the wind speed or significant
wave height over time. The normalized bias, root-mean-square
error, correlation coefficient, scatter index, and normalized
standard deviation are defined as
Fig. 5. The 95th percentile wind speed normalized by altimetry observations and integr
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where the over bar indicate mean values through time and n de-
notes the number of data pairs. Taylor (2001) proposed a graphical
approach to describe how well one dataset matches the other in
terms of the NSTD, COR, and the normalized centered RMSE, which
is defined as
ated across the Northern Hemisphere, Equatorial region, and Southern Hemisphere.
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CRMSE ¼
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The NBIAS, CRMSE, and NSTD are normalized by the observations to
allow comparison across different locations and time periods. It
should be pointed out that the observations also contains errors
and are simply used as a reference for the inter-comparison.

The Mann–Kendall (MK) technique with Sen’s slope is a non-
parametric test that detects data consistency and trend through
time (Mann, 1945; Kendall, 1975; Sen, 1968). Hirsch et al. (1982)
generalized the MK test to account for seasonal cycles, which
would otherwise lead to a biased estimate. We use the technique
to evaluate the trend of the monthly error e between x and y at a
given percentile. The MK statistic and its variance are computed
for each month across all years. The procedure begins with compu-
tation of the Sen’s slope for the kth month

Q k ¼
ekj � eki

j� i
; ð7Þ

where i and j are indices in the time series such that j > i. The med-
ian of Qk gives an unbiased estimate of the slope. The corresponding
MK statistic Sk and its variance are defined as

Sk ¼
Xnk�1

i¼1

Xnk

j¼iþ1

sgnðekj � ekiÞ; ð8Þ
Fig. 6. Normalized wind speed biases for TP
VARðSÞ ¼ 1
18
½nðn� 1Þð2nþ 5Þ�: ð9Þ

The overall statistic and variance are computed for all 12 months as
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VARðS0Þ ¼
X12

k¼1

VARðSkÞ þ
X12
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X12

l¼1

covðSkSlÞ; ð11Þ

where k – l and cov represents the covariance. The null hypothesis
is tested using the Z-statistic

Z0 ¼

S0�1ffiffiffiffiffiffiffiffiffiffiffi
VARðS0 Þ
p if S0 > 0

0 if S0 ¼ 0

S0þ1ffiffiffiffiffiffiffiffiffiffiffi
VARðS0 Þ
p if S0 < 0

8>>>>><
>>>>>:

ð12Þ

against the normal distribution (Gilbert, 1987). A trend exists if
|Z| > Z1�a/2, where a defines a statistically significant level. The tech-
nique has been applied extensively in hydrology and also to ocean
waves by Wang and Swail (2001) and Young et al. (2011).
X in December–January–February (DJF).
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4. Inter-comparison of ERA-I and CFSR-W

ERA-I and CFSR-W represent major advancements in global
reanalysis since the comprehensive assessment performed by
Caires et al. (2004). To set a baseline for the inter-comparison,
we utilized their methodology to provide a consistent analysis
of the two datasets in relation to the predecessors listed in
Table S1 of the supplementary material. Tables S2–S6 and S7–
S11 summarize the error metrics for the wind speed and signifi-
cant wave height. The results show the CFSR and ERA-I wind data
performs superior to those of R1 and ERA-40 with lower RMSEs,
lower scatter indices, and better correlation. The corresponding
comparisons of the wave data for CFSR-W and ERA-I also show
a similar level of improvement. The errors in the Northern and
Southern Hemispheres are comparable for the new datasets
showing improved spatial consistency of the products. Both
ERA-I and CFSR-W winds have the largest errors in the Equatorial
region that might result from the lack of atmospheric stability
considerations in deducing the measured data. Since this is a rel-
atively calm and not a major wave generation region, the errors in
the waves are lower in comparison to the wind data. The overall
comparison shows significant improvements in ERA-I and CFSR-W
and confirms they are at the best available reanalysis datasets
from ECMWF and NCEP.
Fig. 7. Normalized wind speed biases
4.1. Wind speed

The grouping of the buoys by similar environment allows com-
putation of representative error metrics in each region for inter-
comparison of ERA-I and CFSR. Table 1 summarizes the
aggregated error metrics of the winds for the six regions. The com-
parison involves large numbers of buoy records and the average
values provide an indication of the local environment. The Taylor
diagrams in Fig. 3 confirm the data consistency at the individual
buoys while illustrating the variability between the two reanalysis
datasets. In general, ERA-I has better comparisons than CFSR with
lower RMS and CRMS errors, larger correlation coefficients, and
smaller scatter indices. CFSR typically overestimates the wind
speed except near Hawaii, but ERA-I has low negative biases for
all regions. The normalized standard deviation reveals that ERA-I
has lower variability than the observations by 10–20%. CFSR
matches the variability very well but has slightly higher values
than the observations near Alaska and in the NE Pacific. The large
scatter indices in the Gulf of Mexico and the NW Atlantic might
be a result of the larger wind variability and reduced performance
of model parameterizations for short fetches (Bidlot et al. 2005,
2007; Ardhuin et al. 2007). The neutral stability assumption in
converting the observed data standard 10-m elevation may also
contribute to the larger scatter indices in these regions.
for TPX in June–July–August (JJA).
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Fig. 4 shows the normalized monthly biases between the re-
corded and reanalysis winds to illustrate the variability of errors
over time. The most notable features are the large seasonal cy-
cles with predominant negative biases in high seasons and vice
versa. Buoy 32302 near Peru provided essential information of
the Southern Hemisphere trade winds. CFSR gives higher predic-
tions of the wind speed than ERA-I in particular for the early
period around 1986–1987. The buoys near Hawaii measure the
year-round trade winds in the Northern Hemisphere. ERA-I and
CFSR are comparable with average negative biases around 6%
throughout. In the Gulf of Mexico, ERA-I also consistently under-
estimates the wind speed around 6%. CFSR has a better match to
the buoy observations, but with larger seasonal variability
ranging ±20%. The buoys in NW Atlantic recorded a mix of ex-
tra-tropical and trade wind conditions. Both datasets have large
seasonal biases, but ERA-I has average values closer to zero. Ex-
tra-tropical storms dominate in the Alaska region and influence
the weather in NE Pacific. The results show reduced seasonal
variations in comparison to other regions. In general, CFSR tends
to give higher predictions of the wind speed and larger positive
biases than ERA-I. Other than that, both datasets exhibit similar
features including anomalous weather events that either dataset
is not able to reproduce. These include large positive trends or
modulations in the 1980s and a reduction of the bias in the early
1990s. This is most likely due to improvement in the quality and
Fig. 8. Sen’s slope with statistically significant results from the seasonal MK test of norm
results are plotted with fine (red) dots. (For interpretation of the references to color in
quantity of the assimilated wind data with the introduction of
the SSM/I in 1994.

Satellite altimetry provides independent wind measurements
not used in the assimilation to evaluate the reanalysis winds across
the globe from 1992 onward. Fig. 5 shows the monthly 95th
percentile of the reanalysis wind speed normalized by the corre-
sponding altimetry measurements in the Northern Hemisphere,
Equatorial region, and Southern Hemisphere. The comparison at
the 95th percentile offers a more rigorous test than the normalized
bias for conditions that have more influence on wave generation.
As in the buoy comparison, the results show strong seasonal
variations with a range of 15% in the Northern and Southern Hemi-
spheres. The comparison reflects the decreased seasonal variability
in the Equatorial region associated with the consistent weather
year round. Both datasets generally underestimate the stronger
winds at the 95th percentile. ERA-I underestimates the measure-
ments by 8% on average, while CFSR matches the observations
better with underestimations of around 3%. In the Southern Hemi-
sphere, the comparison with the ER2 measurements shows anom-
alous features in the beginning of the years 2000–2004 in both
datasets that are not evident with data from the other platforms
and may be due to the sea state bias. These anomalous features
are also evident in the post-processed ER2 measurements of Quef-
feulou and Croizé-fillon (2012). Overall, the CFSR bias shows a
decreasing trend through 1994. While Chawla et al. (2013) and
alized monthly wind speed percentiles using TPX and GFO. Statistically significant
this figure legend, the reader is referred to the web version of this article.)



Fig. 9. Normalized biases as a function of wind speed. Dashed vertical lines are the average percentiles to indicate the amount of data the error metric represents.

Table 2
Error metrics for significant wave height at buoys using all available data during 1979–2009.

Significant wave height

Region n Average (m) Reanalysis NBIAS (%) RMSE (m) CRMSE COR SI (%) NSTD

Peru 68216 2.14 CFSR-W 24.77 0.62 0.29 0.88 13.70 1.14
ERA-I 8.29 0.33 0.27 0.89 12.83 0.60

Hawaii 715116 2.37 CFSR-W 7.26 0.43 0.39 0.89 16.28 1.37
ERA-I �5.61 0.34 0.31 0.91 12.91 0.64

Gulf of Mexico 859929 1.11 CFSR-W 4.95 0.28 0.28 0.93 24.87 1.03
ERA-I �6.20 0.29 0.28 0.93 24.94 0.70

NW Atlantic 1035607 1.79 CFSR-W 2.36 0.39 0.39 0.93 21.54 0.86
ERA-I �6.87 0.42 0.39 0.94 22.02 0.65

Alaska 586911 2.83 CFSR-W 4.13 0.56 0.55 0.93 19.26 1.01
ERA-I �5.73 0.51 0.48 0.95 16.81 0.69

NE Pacific 718693 2.78 CFSR-W 10.79 0.57 0.46 0.95 16.55 1.15
ERA-I �1.23 0.43 0.43 0.96 15.32 0.70
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Rascle and Ardhuin (2013) identified a discontinuity in 2007, this
feature is not clearly discernible here despite the increasing bias
from the GFO platform.

The time series comparisons indicate regional and seasonal
variations of errors in the reanalysis datasets that we further inves-
tigate by computing normalized biases in 2� bins across the
globe for the summer and winter seasons. Figs. 6 and 7 plot the
computed biases against TPX measurements for December–
January–February (DJF) and June–July–August (JJA) in the repre-
sentative years of 1993, 1998, and 2003 during the platform
operation. The results illustrate the overall spatial distribution of
the errors and the seasonal extremes over a decade. In general,
the biases of ERA-I and CFSR follow similar patterns with different
levels of errors. Fig. 6 shows predominant positive biases in the
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Southern Hemisphere during DJF. The positive bias is typically
greater in CFSR than ERA-I with the largest difference of 10% in
1993. The negative bias near the Equator becomes the most dominant
feature in 1998. This year coincides with the end of the strongest El
Nino on record. Stopa et al. (2013) demonstrates distinct patterns
of the climate cycle in CFSR, but the negative bias might represent
small-scale processes that neither dataset is able to resolve. While
the level and spatial expanse of the biases generally decrease over
the years, CFSR still overestimates in the trade wind regions near
Chile and East Africa and ERA-I underestimates the wind speed
in the NW Pacific and NW Atlantic by 2003. Fig. 7 shows a reverse
pattern in JJA with predominant positive biases of the two datasets
in the Northern Hemisphere. The larger positive biases in CFSR
extend to the Equatorial region in 10�S–10�N, while ERA-I has pre-
dominant negative biases in the Southern Hemisphere. In addition,
ERA-I gives lower predictions of the wind speed than CFSR near
5–10�N in the Eastern Pacific and Atlantic. CFSR shows an overes-
timation of the Southern Hemisphere trade wind region offshore of
Chile. The negative biases near the Equator associated with the El
Nino of 1998 are not as prominent this time of year.

Some of the biases in Figs. 6 and 7 might stem from the interpo-
lation and post-processing of the altimetry measurements. Artifacts
from the ground tracks, which are spaced up to 240 km near the
equator, result in non-physical features over larger patterns. In
addition, the altimeter measures wind speed relative to sea surface
currents, while the reanalysis winds reference a fixed position. This
might introduce errors in areas with strong currents as identified by
Chelton and Freilich (2005) in the QuikSCAT data. The ocean cur-
rents also influence the atmospheric boundary layer, which is as-
sumed to be neutrally stable in deducing the recorded wind speed
at the 10 m standard elevation. The consistent underestimation in
Fig. 10. Taylor diagram of error metrics for significant wave height at buoys grouped b
model would lie on the x-axis with a NSTD equal to one.
the Equatorial region 0–5�S may be attributed to instability of the
boundary layer because of the warm sea surface and currents. De-
spite the limitations, both the negative and positive biases reduce
showing improvement of the datasets over the years. Figs. 6 and 7
present the same features as the time series in Figs. 4 and 5 with
overestimations in the summer and underestimations in the winter.
These features are most notable in the Westerlies 30–60� of both
hemispheres. Qualitatively the results suggest a decreasing trend
of the errors for most regions. CFSR has the largest positive biases
in the North Pacific and North Indian Ocean in 1993 and improves
over time with a better match in 2003, while ERA-I biases remain
relatively small across the globe with subtle improvements over
the years. However, CFSR exhibits the largest range of errors in
the Southern Ocean from positive biases in 1993 to negative in
2003. The biases in both datasets are generally within 15% (or
1.5 m/s) with the exception of the 1993 CFSR in the Southern
Hemisphere.

The MK seasonal test with Sen’s slope can quantify the negative
trend of the wind speed biases against observations. The quality-
controlled measurements from TPX and GFO extend from 1992
to 2008 to best match the period of ERA-I and CFSR. This allows
assessment of the homogeneity of the datasets throughout the
time series and across the globe. Instead of the bias, we consider
the normalized monthly percentile to deduce the trends in terms
of the severity of wind events. Fig. 8 plots the Sen’s slope over 2�
bins for the normalized 50th, 90th, and 99th percentiles of the
two reanalysis datasets. A homogenous dataset should have a zero
slope indicating no trend over time. The Sen’s slope of all the per-
centiles for CFSR and ERA-I indicates a decreasing trend, which cor-
roborate the general improvement of the reanalysis data through
time. Both datasets have similar orders of magnitude and spatial
y region. Cyan symbols represent CFSR and red symbols represent ERA-I. A perfect



Fig. 11. Normalized wave height biases for buoys by region.
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distribution for all percentiles from typical to strong winds. An
exception occurs in the Equatorial region, which shows the largest
decreasing trend with larger affected areas under CFSR. The MK
seasonal test with a = 95% indicates there are few statistically sig-
nificant values, which are plotted with a red ‘‘dot’’. The weak error
trends confirm the homogeneity and consistency of the reanalysis
datasets over time.

A quantitative approach to resolve the nonlinear behavior of the
errors is to compute the biases in incremental bins of wind speeds.
Fig. 9 plots the normalized biases of ERA-I and CFSR against buoy
and altimetry measurements for binned wind speeds of 1 m/s.
Available buoy data over time is grouped by region and all full
years of altimetry data are used globally. The average percentiles
of each observation group are calculated from all the data to give
an estimate of the distribution for each region or year. Consistent
with the results presented so far, both ERA-I and CFSR follow a sim-
ilar pattern with overestimation of the lower wind speeds and
underestimation of the upper wind speeds. However, sampling
artifacts from computing the error metrics in incremental bins
tend to exaggerate these features (Tolman, 1998). The sharp drop
in the altimetry wind speed above 23 m/s may also be the result
of the post-processing algorithm of the satellite data as already
pointed out by Quilfen et al. (2006) and Hanafin et al. (2012). De-
spite the sampling artifacts and processing errors, the observations
provide a common reference to evaluate the relative differences
between the two datasets.
Fig. 12. The 95th percentile wave height normalized by altimetry observations and integ
At the buoys, ERA-I gives lower predictions than CFSR with
average biases of 3% to �10% between the 20th and 99th percentile
across all regions. The upper 1% wind speeds diverge with larger
negative errors and increasing variability among the regions. The
CFSR gives larger positive biases in comparison to ERA-I at low per-
centiles; however these winds contribute little to the generation of
waves. From the 20th to 99th percentile, CFSR matches the obser-
vations very well with 2% to �8% biases. The divergence occurs at
higher percentiles in comparison to ERA-I. Data from altimetry
exhibits similar features based on a larger bank of independent
observations (4.0 million buoy records versus 6.9 million points
for altimetry). The upper 10% of the ERA-I data shows increasing
negative errors, while CFSR stays relatively consistent with small
errors through the upper 99.8th percentile. The bulk of the data be-
tween 10 to 90th percentiles have average biases of �6% for ERA-I
and -2% for CFSR. Since the upper percentile wind speeds are ana-
lyzed for engineering design or as indicators of climate change,
caution must be exercised with ERA-I and CFSR above their respec-
tive 90th and 99.8th percentile thresholds.

4.2. Significant wave height

Now that the errors and trends of the ERA-I and CFSR wind
datasets are quantified, we apply the same procedures to evaluate
the wave datasets. The parallel assessment of the wave data in
relation to the wind forcing provides general guidance of their
rated across the Northern Hemisphere, Equatorial region, and Southern Hemisphere.
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implementation for ocean modeling. Table 2 summarizes the error
metrics of the significant wave heights from the two reanalysis
datasets at the buoys. The error matrices are based on the same
set of records as the wind intercomparison, but with slightly differ-
ent numbers due to random data outage. The average recorded
wave height ranges from 1.11 m in the Gulf of Mexico to 2.83 m
near Alaska. The comparison is obscured by the respective wave
models used in ERA-I and CFSR-W and to a lesser extent the assim-
ilation of wave data in the former. Both datasets have small RMSEs
on the order of 0.5 m, high correlation coefficients above 0.9, and
comparable scattered indices in each region. ERA-I typically has
lower wave heights indicated by the negative normalized biases,
except near Peru, while CFSR-W shows systematic overestimations
in all regions. As in the wind comparisons, large scatter indices of
over 20% occur in regions such as Gulf of Mexico and NW Atlantic,
which are susceptible to tropical cyclones. The high correlation
coefficient over 0.93 suggests that the majority of storms are in-
cluded in both datasets; however the intensity cannot be ade-
quately resolved with the spatial grid resolution (Chawla et al.
2013). The Taylor diagrams in Fig. 10 show ERA-I have reduced er-
rors and larger correlation coefficients, but typically underestimate
the standard deviation of the buoy measurements by 30% due to
the lower variability of the input winds. CFSR-W shows a better
match to the variability of the observations with a predominant
positive trend of the normalized standard deviation especially in
Fig. 13. Normalized wave height biases for TP
regions dominated by swell, such as Peru, Hawaii, NE Pacific. The
consistent lower variability of ERA-I in comparison to observations
is indicative of a smoother model that does not capture the ex-
tremes of weather processes.

Fig. 11 presents the monthly normalized biases of the signifi-
cant wave height from the buoys to illustrate the variation of the
errors over time. The seasonal cycle in the reanalysis winds is car-
ried over to the waves. The wave data, which also includes distant
swells, might not show direct correlation with the wind errors pre-
sented in the previous section. Offshore of Peru both CFSR-W and
ERA-I have large positive biases over 30% in the beginning of the
time series. Despite the short record, the errors appear to decrease
and become less variable over time. Near Hawaii, ERA-I begins
with persistent negative biases around �8% that improve with
time to nearly zero. CFSR-W has predominant positive biases with
large seasonal variations explaining the increased variability
shown in the Taylor diagrams. The Gulf of Mexico is a semi-en-
closed basin with limited fetch and locally generated waves.
ERA-I and CFSR-W follow the pattern of the wind data in Fig. 4 with
biases averaged approximately �7% and 6%. The variability in this
region reflects the larger scatter index associated with the wind
waves generated over short fetches as presented in Table 2. In
the NW Atlantic, ERA-I have small negative biases while CFSR-W
show positive biases throughout the time series. Both datasets
have rather consistent errors with no obvious trend.
X in December–January–February (DJF).
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Extra-tropical storms dominate in the upper latitudes near
Alaska. The biases in the wind and wave data show a similar pat-
tern with values that are largest in the early 1980s and then de-
crease with time. ERA-I consistently underestimates the wave
heights around 6%, while CFSR-W overestimates at 4%, but with a
noticeable negative trend that results in more accurate prediction
with time. The NE Pacific has similar patterns to Alaska with
noticeable trends in both datasets and the predictions are more
accurate in recent years. CFSR-W has positive biases at 10%
throughout the time series while ERA-I has minimal negative
biases. The region is dominated by swells. CFSR-W has more sea-
sonal extremes with positive biases in the winter season as seen
in other swell dominated environments like Hawaii. The increasing
trend of the CFSR-W biases in these swell-dominated regions start-
ing in 2007 is likely related to the shift of upper percentile winds in
the reanalysis as noted by Chawla et al. (2013) and Rascle and Ard-
huin (2013). The winds also account for some of the wave variabil-
ity in the 1980s in both datasets most notably in Alaska and the NE
Pacific. Weather patterns that might not be adequately resolved re-
sult in biases in both reanalysis datasets. For example, the biases at
buoys 46001 in Alaska, and 46002, 46003, and 46006 in NE Pacific
show cycles of 10 years that might be related to the Pacific Decadal
Oscillation. Overall, both ERA-I and CFSR-W improve with time due
to the better quantity and quality of data included in the
assimilation.
Fig. 14. Normalized wave height biases
Altimetry offers another view of the data error through time.
Fig. 12 shows the monthly 95th percentile of the ERA-I and CFSR-
W significant wave heights normalized by altimetry measurements
from 1985 onward. It must be noted that GEO, TPX, and GFO were
not used in the assimilation of ERA-I and thus are independent. In
the Northern Hemisphere, ERA-I underestimates the waves by 8%,
while CFSW shows an initial overestimation that decreases with
time. Near the Equator, ERA-I underestimates the waves by approx-
imately 6% with a better match in the 2000s. CFSR-W consistently
overestimates the wave heights at approximately 7%. In the
Southern Hemisphere, ERA-I has a similar underestimation to the
Northern Hemisphere of 8% and an abrupt transition in 2004 to
5%. CFSR-W has a prominent discontinuity in 1993–1994 when
the overestimation drops from 12% to 4% in the Southern hemi-
sphere. This discontinuity is noticeable but not as drastic in other
regions. Chawla et al. (2013) attributed the error reduction in the
upper percentiles to the introduction of SSM/I winds into the assim-
ilation in 1994 and the subsequent improvement in the wave field.
The increasing trend in both datasets after 2001 might be due to
assimilated data in the atmospheric model common to both.

The distribution of icebergs prominently in the Southern Ocean
has strong inter-annual variability and might influence some of the
trends in this region. Ice bergs also represent an error source with
far-reaching effects extending to the Equator (Ardhuin et al. 2011).
Extension of the obstructions technique to include icebergs can
for TPX in June–July–August (JJA).
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alleviate wave biases across ocean basins (Tolman 2003). The
introduction of wave data assimilation in ERA-I in 1991 explains
the slight improvement in metrics against the ER1, ER2, ENV, and
JS1 observations, but does not seem to affect the results from the
independent platforms. In general, ERA-I follows the pattern
shown in the winds with a consistent underestimation. The CFSR
winds match the altimetry winds reasonably well with even a min-
or underestimation, but the waves show a consistent overestima-
tion for all regions. The lack of direct correlation between winds
and waves alludes to difference caused by the source terms. More
in-depth studies using the approach of Durrant et al. (2013) will
help to isolate the effects of input wind biases and source terms
on the wave field.

We compute the normalized biases against TPX measurements
in 2� bins across the globe to examine the spatial variability asso-
ciated with the summer and winter seasons. Figs. 13 and 14 plot
the results for DJF and JJA in 1993, 1998, and 2003. The spatial dis-
tributions for ERA-I and CFSR-W are drastically different. Through-
out the years in DJF, ERA-I has small negative biases around most
of the globe with notable exceptions in the eastern tropical regions.
The positive biases in these swell-dominated regions are likely due
to the lack of swell dissipation in the WAM source terms (Bidlot
et al., 2005). ERA-I has uniform errors of less than ±15% (0.5 m)
through the years with only a slight increase of the negative biases
in the Northern Hemisphere in 2003. In contrast, CFSR-W has large
Fig. 15. Sen’s slope with statistically significant results from the seasonal MK test of norm
results are plotted with fine (red) dots. (For interpretation of the references to color in
positive biases for the majority of the globe with extremes of over
30% (�1 m) in 1993. The large positive biases occur in the wave
generation regions dominated by the Westerlies in both hemi-
spheres and propagate eastward in the ocean basins. The overesti-
mation of the upper percentile CFSR winds in the Westerlies has
far-reaching effects on the wave field across the basins. The areas
sheltered from the swells in CFSR-W have errors more comparable
to ERA-I’s biases of ±15%. The CFSR-W errors decrease in magni-
tude and spatial coverage abruptly in the Southern Hemisphere
in 1994 due to additional assimilation data for the winds from
the SSM/I satellite.

The biases for JJA in Fig. 14 show a reverse pattern associated
with the seasonality shown in the time series comparison. The
majority of the globe shows negative biases in ERA-I with the main
exception of the eastern Pacific and Atlantic basins between 30�S–
30�N, where the wave fields are dominated by swells. The negative
biases of 5–15% in the Southern Hemisphere are likely related to
the wind speed underestimation of up to 10% as shown in Fig. 7.
ERA-I has relatively stable errors with only a slight increase in
the negative biases in the Southern Hemisphere through the years.
On the other hand, CFSR-W has predominantly positive biases
across the globe. The spatial distributions of the ERA-I and CFSR
wind biases have similar patterns, but the wave biases are rather
different alluding to the disproportionate effects of the upper per-
centile winds and the implementation of different source terms in
alized monthly wave height percentiles using TPX and GFO. Statistically significant
this figure legend, the reader is referred to the web version of this article.)
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the wave models. In 1993, CFSR-W has large positive biases of over
20% covering the majority of the Southern Hemisphere and a re-
gion in the North Pacific. The biases intensify toward the eastern
halves of the oceans and even extend into the Northern Hemi-
sphere via propagation of swells. The same pattern exists through
2003 but the intensity of the errors is greatly reduced and CFSR-W
is more accurate in recent years. In the absence of wind biases,
Durrant et al. (2013) shows the source terms of Tolman and Chali-
kov (1996) actually provide slight underestimations across the
majority of the oceans in contrast to the CFSR-W results in Figs. 13
and 14. This stresses the importance of having accurate wind forc-
ing and implies the errors in the ERA-I and CFSR waves are primar-
ily due to the wind input.

The analysis has demonstrated the seasonal and long-term
trends in ERA-I and CFSR-W. The MK seasonal test with Sen’s slope
quantifies the trend against GEO, TPX, and GFO across the globe
from 1985 to 2008. Fig. 15 plots the Sen’s slope for the monthly
50th, 90th, and 99th percentiles of the significant wave height nor-
malized by measurements and the statistically significant locations
over 2� bins. The results reveal the spatial homogeneity of each
product as well as the trends in terms of the severity of wave
events through time. At a first glance, the Sen’s slope and its spatial
distribution are similar from the 50th to 99th percentiles for the
respective products. This indicates the error trend has similar or-
ders of magnitude in the bulk of each dataset. ERA-I has positive
trends in the western half of the ocean basins and a negative trend
Fig. 16. Normalized biases as a function of wave height. Dashed vertical lines are the
in east attributing to different wave regimes responsible for the er-
rors. The Southern Ocean sees a negative trend that expands with
higher percentiles, but the reason is obscured by the lack of
accounting for icebergs in the model. There are no statistically sig-
nificant points by the seasonal Mann–Kendall test revealing the
product is reasonably homogenous through time. On the other
hand, CFSR-W has predominantly negative trends across the globe
particularly in the Southern Ocean with a few statistically signifi-
cant bins near Australia in the 50th percentile. The strong discon-
tinuity shown in Fig. 12 plays a tremendous role in the trend and
this figure reveals the source of the errors primarily at latitudes
greater than 30�S. The rest of the globe shows a small negative
trend of less than 0.5% per year. The strong negative trend seen
in the normalized wind percentiles near the Equator is not evident
here because it is not a wave generation region.

Computation of the error metrics by incremental bins can reveal
the error distribution in terms of the wave height. Fig. 16 plots the
normalized biases against 4.0 and 4.5 million of buoy and altimetry
measurements at binned significant wave height of 0.5 m. Normal-
ized biases are computed for the buoys using the available periods
by region and the individual years from GEO, TPX, and GFO across
the globe. ERA-I and CFSR-W have similar patterns with overesti-
mations for small wave heights and underestimations of large
wave heights. In contrast to the wind comparison, the wave height
shows a negative trend of the biases across all percentiles. The
biases against the buoy measurements demonstrate the variability
average percentiles to indicate the amount of data the error metric represents.
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between regions, but overall, exhibit the same pattern around the
globe and correspond well with the respective altimetry compari-
sons. The large variations above the 99.9th percentile are due to
small numbers of data points. The biases against altimetry mea-
surements integrated around the globe are consistent from year
to year in the ERA-I data. However in the CFSR-W data, the years
before 1994 typically have more positive biases due to the discon-
tinuity discussed earlier. The second discontinuity in 2007 as iden-
tified by Rascle and Ardhuin (2013) only has subtle effects in the
results. The biases between the 10th and 90th percentiles have a
range of �8% to 5% for ERA-I versus 2 to 12% for CFSR-W after
1994. However, ERA-I underestimates the wave height by 5% to
18% for the upper percentiles between 90th and 99.9th that are
crucial in evaluation of extremes. In comparison, CFSR-W has
biases in a more favorable range of �8% to 4% for engineering
applications and climate studies. If either dataset is used to esti-
mate extreme events, like the 100-year design waves, barring
occurrences of tropical cyclones that might not be resolved in
either dataset, caution must be used in the analysis of these upper
percentiles. The errors may be larger by using the ERA-I dataset be-
cause the errors at the upper 0.1% waves are nearly double to those
of CFSR-W.
5. Conclusions and recommendations

The ERA-I and CFSR-W reanalysis datasets have improved per-
formance over their predecessors and have many applications
due to the high spatial resolutions and long durations of over
30 years. Their intercomparison with buoy and altimetry measure-
ments has identified systematic seasonal biases, temporal discon-
tinuities, and spatial error trends in terms of wind speed and
wave height. Time series plots of error metrics expose the temporal
homogeneity around the globe. The dominant features include
large seasonal cycles with negative biases in high seasons and vice
versa, strong variability in the 1980s, and an overall trend that
leads to improvement over time. Both datasets compare reason-
ably well at the buoys and altimetry tracks with ERA-I underesti-
mating and CFSR-W overestimating the measurements. CFSR-W
shows an abrupt drop of the high-percentile wind speed to provide
better agreement in the Southern Ocean in 1994 due to additional
assimilation data. The improvement to the regional wind predic-
tions has far-reaching effects on the wave field across the ocean ba-
sin. CFSR-W has considerable more seasonal variations in the
waves and better agreement with buoy measurements than ERA-
I despite having similar features in the winds. The consistently
lower variability of ERA-I implies a smoother data set lacking de-
tailed processes and weather extremes. The buoy comparisons in
the Gulf of Mexico have the largest variability suggesting poor
model performance for small fetches.

The biases of ERA-I and CFSR-W against altimetry measure-
ments demonstrate the spatial distribution and seasonal variation
of the contributing errors over the years. Both datasets show larg-
est discrepancies of the relatively calm and variable winds near the
Equator that might be a result of the observations not explicitly
accounting for atmosphere stability. CFSR-W gives consistently
higher predictions of the winds in the Westerlies that carry over
to the wave predictions extending to the swell-dominated regions.
The error metrics reveal that ERA-I has similar errors through time,
while CFSR-W has a negative trend with the predictions getting
more accurate in recent years. The seasonal MK test with the Sen’s
slope quantifies the error trend and demonstrates its independence
of the severity of the wind and wave events implying performance
consistency of both datasets. Both wind datasets show the largest
negative trends in the Equatorial region that are not important to
the dominant wave conditions. The ERA-I wave data indicate
a small Sen’s slope with minimal statistically significant points
from the MK test indicating homogeneity through time, but local-
ized spatial inhomogenities might exist due to the assimilated
wave data. CFSR-W has larger Sen’s slope most notably in the
Southern Ocean due to the discontinuity in 1994.

The errors for incremental wind speeds and wave heights con-
firm both datasets overestimate the small measurements and
underestimate the large. CFSR-W has consistently higher predic-
tions and matches the upper 50th percentiles better than ERA-I
deeming its reliability in analysis of extremes. Both ERA-I and CFSR
wind datasets have better agreement with the measurements than
the wave datasets between the 10th and 99th percentiles and a
diverging feature in the upper percentile waves heights. In sum-
mary, ERA-I is suitable for studies of multi-year signals and climate
cycles and CFSR-W has additional capabilities for analysis of the
extremes but caution must be taken with the discontinuity. Future
wave hindcasting efforts with CFSR will have to correct the tempo-
ral discontinuity of the winds and utilize updated source terms to
properly account for the dissipation of swell energy. This should
also mitigate the seasonal biases in the computed wave conditions.
Additional and improved measurements of the winds and waves
will provide further insights and explanations in areas with large
model errors. The methodology and results presented in this paper
provide a template and a benchmark for evaluation of improved or
future reanalysis datasets.
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