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Elastic Waves at the Surface of Separcttion of Two Solids. 

By R. STONELEY, M.A., University of Leeds. 

(Communicated by Prof. H. F. Baker, F.R.S.-Received June 23, 1924.) 

? 1. Introduction: 

In considering how the energy of a seismic disturbance is dissipated one is 
led to enquire into the possibility of the existence of waves, analogous to 

Rayleigh waves and Love waves, that are propagated in the interior of the 
earth along the junction of strata, or chiefly within a certain stratum, so that 
the energy is dissipated by internal viscosity without the occurrence of any 
appreciable surface displacement. 

Two surfaces of discontinuity of density and elastic properties are commonly 
believed to exist below that part of the earth's crust which is accessible to 

geologists, namely, the junction of the granitic layer with the basic rocks, and 
the surface of separation of, the Wiechert metallic core from the rocky shell. 
It becomes of interest to examine whether a wave of the Rayleigh type can 
be propagated along such an interface; an enquiry may also be made into the 
circumstances in which a wave of the Love type may exist if a stratum of 
uniform thickness is bounded on both sides by very deep layers of different 
materials. 

It has been pointed out to me by Dr. Harold Jeffreys that the former 

problem is in some respects a particular case of Prof. Love's discussion* of 
the effect of a surface layer on the propagation of Rayleigh waves; the 

"layer " is here taken as of infinite thickness. Whereas, however, Prof. Love's 

problem is concerned with a disturbance confined chiefly to the free surface, 
the present paper deals with a wave motion that is greatest at the surface of 

separation of the two media, and is not restricted to the case of incompressible 
solids. Some simplification is effected, however, when the media are taken as 

incompressible, and several such particular cases have, accordingly, been 
solved in detail; these throw some light on the general problem, and, in fact, 

suggested in the first place the investigation of ? 3. 

GENERALISED RAYLEIGH WAVE. 

? 2. The Wave- Velocity Equation. 
The two media will be distinguished by suffixes 1 and 2, and will be 

supposed in " welded" contact along an infinite plane face, and otherwise 
* ' Geodynamics,' p. 163. 
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extending to infinity, so that there is no slipping at the interface, in which 
an origin and a set of axes of x and y are taken; the axis of z is drawn 

positively into the medium 1. Let p denote the density and 2, p the usual 
elastic constants. 

If for a wave propagated in the x direction we assume for the displace- 
ment in medium 1 a solution of the type (U, V1, W1) e,iK (Ct), where 

U1, V1, W1 are functions of z only, we find in the usual way* that a solution 

tending to zero at infinite distance from z = 0 is given by 
(U, V1, W1) = (U1, V', W1') + (U1 , V"l, Wl ), (1) 

where 

(U11, Vl, WT1) = - 2.1 (i, 0, - r) De-riz, (2) 
p/ 1K2c2 

(U1", V", Wl"l = (sl, a, itc) Qle-z, (3) 
in which D1, Q1, al, are constants, 

rl2=K2( i 
- -c2 ) (4) 

2( 
p c2 t 

s=2 ( / 1 - -P (5) 
\ S I 

In medium 2 we find in a similar manner, for a disturbance which becomes 
insensible at a great distance from z = 0, 

(U2, V2, W2) (U2 V2, W2 ') + (U2, V2 , W2), (6) 
where 

(U2', V2', W2') - 2+2 (iK, O, r2) Eer,z2 (7) 

(U2', V'" , W ) (2, , ) Q2e2, (8) 
in which E, Q2, a2 are constants, 

r2 K2 1- 2,2 (9) 

and s22 =g2(1 PL2 (10) 
\ ' ^2 

At the bounding surface the displacements and stresses are supposed 
continuous. Thus, if (ul, vl, Wl), (u2, V2, W2) are the displacements in the 
two media, we have 

/a 
aw a2 a 

(II) ,c az+ ax / 2 - ax/ 

?a( .a ,j ilg /82 + t ) (12) l(vz az a y/= 
+ (2) 

awl aw2 AiAl + '- 2E A2 +A- 2u2az--- (13) 
* Love: 'Elasticity,' 3rd Edition, p. 311, et seq. The notation is based on that of 

Jeffreys, ' The Earth,' p. 157. 
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where A is the dilatation, 
1 = U2 (14) 

V1 = v2 (15) 
W1 - w2 (16) 

at the boundary, which to the first order of small quantities may be taken as 
z = 0. 

The equations (15) and (12) give respectively 
alQ1 = a2Q2; - lalQlsl ==u2ca2Q2s2, whence al= a = 0, 

and therefore Vl =2 = 0. (17) 
Write 

(1i + 2/u.)/p1 - 12; ,I/Pl = P12 

(P2 + 2U2)/pC2= a; f2/P2 = P22 ( 

then, on substituting in (11), (13), (14), (16) the values of the displacements 
given by (1) and (6), we obtain 

/. / ) ca2 D 
a , _ 2 E 2 )i 2 2 

+ (2 ( )Q2=0 (19) 

(2 - + 2,) ( 2 ) D + 22) (1 22 E-2,ui (12- K 2 2Q1 
C2 , ! C2 

2 i 2/'t1 12 E - 2 I 

+ 2u2( 1--) iK2Q2 =0. (20) 

2_2 (1 
- D + - 

1 
- 

- E - iE Q 2Ql +i2Q = 0 (22) 

Eliminating D, E, it2Q1, iK2Q2 from these four equations, and substituting for 

t 1, G2, (21+22i1), (2 +2t2), we obtain as an equation for the wave- 

velocity c 
2p l-^ ;2p' (l c2)2 c2 ) 2 2( C2 

2p (c2-2~) ; - -- (C2- 22); - 2pl1(- 
- 2 

; 222p (22 - 28 / 2 

- 1Y ; --, 1 ; ; c 2 2 --(c 

(. - 1-- ;* ( * -i; 1- 

\ 1 ' 1 ' 1 ? C2 

\ i12/ 
2 

= 0. (23) 
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?3. Compressible Media. 

On writing Al=; A2 =(- 

B1=j 1- C2 ;B = 

K = 2 (pii2 _ 22), 

the equation (23) of the preceding section reduces to 

co {(Pi - P2)2 - (piA2 + p2A1) (p1B2 + p2B1)} 

+ 2Kc2 {pIA2B2 - p2AB1L - pi + P2} 

- K2 (AlBl-1) (A2B2- 1) 0. (1) 

It is easy to show that when P2 = 0 this equation reduces to the ordinary 

equation for Rayleigh waves 

J css 92 22 .- 

ic2" 2} 4 [1a22} FI 2}* (2) 

On account of the ambiguity introduced by squaring both sides of an 

equation it is advisable, where practicable, to work with the equation (1) as 
it stands, not attempting to rationalise. 

An important particular case of (1) arises when l = c2 and P1 = 3-. 

These conditions appear to be satisfied at the Wiechert surface of dis- 

continuity within the earth, as may be seen from Knott's table of wave- 
velocities.* If we write 

CC1 =C2- = ; A -= A= A; P-i= - = - ; B1 =B2=B; 

y =2/2; c2/32 =x, 

we obtain 

f (x) x2 {(P- p2)2- + p22 ( ) ( - x) (1 --yx) }. 

+ 4 (pl- p2)2 {(l-x) (2-yx) +(1-yx) (l--x)~ (x -2) = 0. (3) 

We see at once that f(1) = (pi - P2)2, which is positive. f(O) is equal to 

zero, implying that some power of x is a factor of f(x). If x is small, so 
that A and B may be expanded as power series in x, we find in fact 

f (x)/x2 = - (PI + P2)2 + y2 (P1 - P2)2 + terms containing x as a factor; thus 
the limiting value of f(x)/x2 as x tends to zero is - (pi + p2)2 + y (p, - P2)2. 
But P1+P2 > IP1 - P2, and y < , so that (pl + p2)2 >y2(pl- p2)2, and 

accordingly {f ()/x2}.,=o is negative, while {f (x)/x2} 1 is positive. Thus 

* ' Roy. Soc. Proc., Edin.,' vol. 39 (2), p. 168 (1918-1919). 
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a root of f (x)/x2 = 0 always exists between x = 0 and x = 1, in other words, 
a wave can be propagated along the interface with a velocity less than the 
common velocity of distortional waves. 

We can deduce that a Rayleigh wave must always exist at the free surface 
of an infinite solid. The direct proof is, however, very simple, for the 

ordinary equation, obtained by squaring (2) may be written 

x3 - 8x2 + 24x- 16yx - 16 + 16y = 0. (4) 

When x 0 and 1 the left-hand side takes the values 16 (y- 1) and 1 

respectively, so that there is a root between 0 and 1. The value so obtained 
is either a solution of (2) or else a solution of that equation with the right- 
hand side changed in sign; since the left-hand side is essentially positive the 
latter possibility is ruled out, and thus a Rayleigh wave always exists. 

In Lord Rayleigh's original paper* the numerical solutions given are found 
from a rationalised equation, and the fact that these must satisfy an equation 
equivalent to (2) is not explicitly stated. 

As a check on the preceding work we may put pi = P2, so that the two 
media are the same; the equation (3) now gives x= 1 or 1/y, corresponding 
to c =- or c == o, as would be expected. 

Analogy with the incompressible case (? 4) suggests that in the general 

problem a wave does not necessarily exist. 

It will be supposed that az and P31 do not differ greatly from oc2 and 32 

respectively; in these circumstances a wave motion of the assumed type may 
be shown to exist if the differences are small enough. Put 

1/c22 = (1 - )/cl12 ; /22 (1 )/ 12; P2/1 = o. (5) 

Then equation (1) gives 

f (x) - x2 [( 1 - )2 -{(1 - y(l --) x) +a(1 -x)} 

{(-(1- n)x) +a (1-x)2 }] 

. 4(l- _ ) {(l -yx(( -))t(1o-x(1 r -))- 

- ( - yx) (1 x- x)+a - 1} 

+4(1 - ){(1-yx(l-m))(1 --x(I -n))-1} 

{(1-yxY(1-x)-l} =0. (6) 
It is found that f (1) is equal to 

(1 - ()2 - n (1 - y) {4a2 - 3a + 1}, 

together with terms of degree n, n3m2, mn1 2, and higher orders. 

* ' Proc. Lond. Math. Soc.,' vol. 17, p. 7 (1885). 
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Whatever the value of o, then, by taking n sufficiently small we can ensure 
that f (1) is positive. 

Taking now the case of x small, we have 

f (x)/x2 = -4a - (1 - )2 (1 -y2) 

+ (1 - ) [n(1 + a - ya -y -2y2a) + my (1 -y +a + ay)] 
+ terms in x; X2 ... etc., 

which can always be made negative by taking m and n sufficiently small. 

Thus, we can definitely assert that when the wave-velocities are not too widely 
different for the two media, a wave of the Rayleigh type can exist at the 
interface. If the wave velocity is not very different from p1, we may use the 
value off (1) to obtain, for given values of a and y, the approximate limits of 

permissible variation of the quantity n; the variation of velocity of distortional 
waves thus appears to be of more importance than an equal variation in the 

velocity of compressional waves. 

? 4. Incompressible Media. 

The results obtained in the preceding section are true in particular of 

incompressible media, when A1 and A2 both become unity. This assu'mption, 
however, considerably simplifies the numerical work in actual examples, 
several of which have been examined. 

Equation (1) of ? 3 now becomes, on squaring and rearranging, 

2 (1 - 2)(1 r PIP2 (P1 + P2)2 C4 = Ac6 + BC4 -+ Cc2 + D, (1) 

where 

A =(P + P2) P2'+ 
Pi 

P3i2 {2 

B = 4 (Pi + p2) K { - 22 - 2piP2 (3p2 - 2plP2 + 3P22), 

(2) 
C = 2K2 { 

P2 (PI. + 3P2) + 1(3p + 
P2)} +16KpIp (PI-P), 

K p p -l12 f 6KpP2(P-P2), 
D =4K { P2 

pK 4P1P2} + 1 ?22 

This equation is rational when pi = p2 = P, and it is easy to prove in this 

particular case the general result previously found, that a Rayleigh wave 

always exists. By putting P2 = 0 we obtain the usual equation for the 
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velocity of a Rayleigh wave at the surface of an incompressible solid. 

Writing pi = 8-2 and P2 = 32, as in Wiechert's density law, we have 

16889 6( )6- 4225-6 ()?+ 77976-0 ( - 519840 = 0, (3) 

which has a root corresponding to 

c = 0.99287 , (4) 

so that a wave may be propagated along the bounding surface with a 

velocity very slightly less than that of distortional waves in either medium. 
As pointed out by Rayleigh,* on general dynamical principles we shall 

not expect the complex roots to correspond to any real wave motion. We 

do, in fact, find for these complex roots 

c2/ P2 = 0-75806 ? 1-57720i. (5) 

On reintroducing s and cK, we may write the simplified equation (1) of ? 3 
in the form 

{(pl - P) (c2 22)}2 +4 (P - p2)2 4 

= s 
{4pa2 + (i - P2)2 (c2 - 2)2}, (6) 

IC 

and substituting s2/c2 from equation (5) of ? 2 we have, on reduction 

s 0-02261 TF 549478i 
ct -10-46019 ? 9-27612i 

On bringing this fraction to a real positive denominator it is found that the 

real part of the numerator is negative whether the upper or the lower sign be 

taken, and accordingly e-~ and e-" cannot both tend to zero at infinity. 
Thus the complex roots are inadmissible. 

It may be noted as a check that when Pi = P2, (6) can only be satisfied if 

c = 0, or if s = 0, the latter corresponding to c = [. 

Equation (1) becomes on squaring 

A2 - 4P12P22 (Pl + 
P2)4} 12+ .2AB + 4P12P22 (P + P2) (12 + 22)} c10 

2PI P2 J P2 
+ {B2 + 2AC - 4p12p2 (pl + p2)4} c8 + 2 (BC + AD) c6 + (C2 + 2BD) c4 

+ 2CDc2 + D2 = 0. (8) 

From a consideration of particular cases it appears that solutions of this 

equation corresponding to real waves may not always exist. It is essential 

that c should be positive and less than both P, and P2, otherwise sI and s2 

* Loc. it., p. 8; or ' Sci. Papers,' 2, p. 441. 
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will not both be real, and the disturbances will not be insensible at great 
distance from the surface of separation. 

A very simple case arises when pi = 2p2, 22 = 2 12, so that, K =0. 

Equation (8) then reduces to 

81. (c/)4 - 432 (c/l+)2 640 = 0, (9) 

which has not real roots. 

If PI = 2; P2 = 1; P12 = 2322, so that u-1 = 422, equation (8) becomes 

y6- 22 1033y5 + 199 446y4 - 970 280y3 + 2993'20y2 - 5006 80y 
+ 3265-31 = 0, (10) 

where y = c2/ 22. 

This equation has no roots between y = 0 and y = 1. 

By taking p- = 2; P2 = 1; 322 3= . 12 x= C/P1, we obtain 

x12- 9 17333x10 + 30 24000x8 - 44 09481x6 

+ 34-94123x4- 17 61580x2 +- 474272 - 0, (11) 

which has two solutions between x = 0 and x = 1, viz.: x2 = 0-9042 and 
x2 = -093615, corresponding to the values c = 0951(3 and c=- 0.967 3l. 
It would therefore appear at first sight that two waves, having different 

velocities, might exist. It is to be remembered, however, that the 

equation (1) of ? 3 has been twice squared in reduction to the form (8). On 
actual substitution it is found that neither of these roots will satisfy (1), but 
that both satisfy the equation derived from (1) by changing the sign of 
one side. 

That there should be an even number of roots of the wave-velocity 

equation for these values of p, and P2, P1/P2, between c = 0 and c =- , 
can be seen by reverting to equation (1) of ? 3, and writing Al = A2 = 1. 
It is then found that {f(x)/x2})_o is equal to - 25/12, in the notation of 

(3), ? 3, and thatf (1) is -(3/16)2. 
It thus appears that a wave of the type under discussion will exist when 

the velocity of distortional waves in the two media is the same, but not if the 
wave-velocities are greatly different. The method of the preceding section 

may be applied to obtain a rough estimate of how widely (l and p2 may 
differ for given values of Pl and P2. In the notation of ?3, (6), f(1) is 

approximately (1 - -)2 - n {4a2- 3a + 1}, and {f(x)/x2} a=o is approxi- 

mately - (1 + a)2 + n (1 - a2); this may be regarded as a particular case of 

? 3, with y = 0, or it may be obtained more simply from ? 3, (1) by putting 
Al = A2 = 1. It is seen that by making n sufficiently small, f(x)/x2 can be 
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made to change sign between x = 0 and x = 1. Moreover, if n is very small, 
nt is large compared with n, so that if 4a2 - 3o- + 1 and 1 - a2 are comparable, 
the range of variation of f(x)/x2 is greater in the neighbourhood of x = 1 than 
at x = 0. If, then, we disregard the possibility that {f(x)l/2}x=0 may 

change its sign for a small variation of n, the condition that there shall be a 
root between x = 0 and x = 1 is that na is not greater than 

(1- o)2/(4a2- 3a+ 1), 

for the denominator is always positive. In this way it is possible to obtain 

roughly the result of the preceding paragraph, but the approximation is too 

rough to be convincing. In other respects these waves conform to the 

Rayleigh type. When c is known, expressions may be written down for the 

displacements of any particle, and by corresponding reasoning it may be 
shown that particles describe ellipses about their mean positions. 

Furthermore, this appears to be the only type of wave that can be pro- 

pagated along the surface. It is easy to verify that transverse waves of the 

Love type cannot exist. The displacements in the two media would be 

(0, A1, 0) e-Si ex"C-ct) 
and 

(0, A2, O) e+-s e-ct) ; 

the conditions that the displacement and stress at z = 0 must be continuous 

would then give the incompatible relations 

A ==A2; -,-lAslj = P2A2s2; UlA1 = ^2A2. 

The geophysical interest of this discussion is that in addition to that portion 
of the energy of an earthquake which is dissipated by solid friction before 

reaching the surface, a further fraction may be "trapped" by surfaces of 

discontinuity, and may involve a correction to estimates* of the energy 
involved in a seismic disturbance. 

TRANSVERSE WAVES IN AN INTERNAL STRATUM. 

? 5. A Generalised Type of Love Wave. 

Suppose the medium (1) to extend from z = oo to z = 0, the medium (2) 
to extend from z = 0 to z =- T, and the medium (3) from z - T to 

z - oo. Then in any layer we may take as the components of displace- 

* e.g., see Jeffreys: 
' M.N.R.A.S.,' Geophys. Suppt., vol. I, 2, p. 22 (Jan. 1923). 
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ment (u, v, w) in a plane wave travelling in the direction of x increasing the 
real parts of 

(0, V, 0) ei(x-c (1) 

where V is a function of z only. 
It is at once verified that the dilatation is everywhere zero, and if p, p/ 

denote respectively the density and the rigidity, the only equation to be 
satisfied is 

a2V 
P a -V2v (2) 

or, on substituting from (1), 

d2V (1 c ) K2V =0 . (3) dZ2 -- 
.- 

For a type of wave in which V is periodic in medium (2) and exponential 
in (1) and (3) we have 

c2 >c2; c2<c2; c2<c32, (4) 

where cl, c2, C3 denote the velocities of distortional waves in the three 
media. We thus have 

V1 = De-Sl ' 
V = A cos s2z +B sin s2z / (5) 

V3 = Eesz J 

where A, B, D, E are constants, 

SI 1 c 1- 2 ,K S2 A=C c -2-1} and s3 =-- 1 -c-- C1 -^C22 C32 ? 

The boundary conditions are that the displacement and stress are 
continuous at z = 0 and z = - T. We thus obtain 

A = D; A cos s2T - B sin s2T - Ee-ST; 

- slllD = s2lu2B ; s2^2 (A sin s2T + B cos s2T) =- s313E-3T. (6) 

Eliminating A, D, B, E from these equations we have the equation deter- 

mining the wave velocity 

tan s2T = s2C2 (s81 + S3y3)/(S22,22 - SlU1S3i3). (7) 

If sl = fcal; s2 = K:a2; s3 -= C3, the equation (7) may be written in the 

equivalent form 

(aO22itu2 - Cr1L1.3/3) (tan Ka2T)/a2U2 = a(lul + -3-f3. (8) 

Suppose now cl> C3 > c > C2; (9) 
VOL. CVI.-A. 2 H 
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then when c = c2, 2= 0, 1 and a3 are positive, so that the left-hand side 
of (8) is negative and the right-hand side positive when c is slightly greater 
than C2. As c increases the right-hand side continually diminishes; 
(tan Ka2T)/a/2M2 increases. When c = c3 the factor (o2222 - c /o1a2/t2) is 

positive, and therefore changes sign between C2 and C3; this will happen 
when 

/h:\c-l a -^"Ls(l 
- 
Cc212 (10) P2 C 2- 1 

denote the corresponding value of c by c'. 
Then for c2 < c < c' the left-hand side is negative and the right-hand side 

positive unless ,cajT has passed the value lr, 2X, etc. (as, for example, when 
Ko2T varies from 0 to Xt in the range c2 to c'), in which case the left-hand 
side will have diminished to - oo, and then dwindled from + oo to zero, 
thus equalling at some point the value of the right-hand side. On 

reaching the value zero for Kc2T = t, the left-hand side either begins to 
increase (as an exceptional case), or (in general) it continues to diminish. 
In the latter case, if for c =c' (when the left-hand side vanishes) 
3< KcaT < -ft, then in this interval the left-hand side must have decreased 

to a minimum and increased to zero; this is in accordance with the fact 

that at c - c' the factor o22a22 - al,u13u3 changes from negative to positive. 
If now KcaT reaches the value :In before c == 3, there will be another root 

of the equation in this interval. There will thus be a root, or a series of 

roots, between c2 and c' if /T is made sufficiently large, either by making 
K or T large. 

Between c' and c3 there will be a root of the equation (8) if tan Kc2T is 

greater than q at c = C3, where 

q -U {1 -32}t/ { -1}C 
cl2 

~a 
C22 

for in this range the factor a2u2 - o1ll 3F033/02y2 continually increases from 

zero to ua2 (c2 - C22)/C2, so that the left-hand side takes the sign of tan KO2T, 

and has always a positive gradient. 
If KT is so small that, throughout the range c2 < c < c3, K/2T remains less 

than ?1, and at c = C3, tan Kca2T is less than q, there will be no root. Thus, 
if the wave length is sufficiently long or the middle layer too thin, no wave 
motion of the Love type is possible. This accords with the result found in 

? 4, that when T = 0, no Love wave exists. 
If c2 < c3 < c <c1, o3 is imaginary; the right-hand side of equation (7) is 

426 
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now complex and the left-hand side real. There are thus no real roots in 
this region. 

When c < c3 we have as in the foregoing discussion that roots, if they 
occur (and roots will exist if KT is large enough), must occur for c2 < c1. 

Within the layer (2) the displacement is Vei"(-ct), where V is of the form 

A {s2y2 cos s2z -s11u sin s2z}f/s22, 

which vanishes when tan s2z = s2x2/sllf. Now in this layer z is negative; 
if, then, s2z includes the range a to t for \zl < T, the displacement must 
vanish for a certain value of z and a "nodal plane " will exist, as it may in 
the case of the ordinary Love waves in a surface layer. If s2z includes the 

range from 0 to nt, while jzl remains less than T, n nodal planes will exist. 
A similar argument is applicable to the case C3 > cl > c >c2. 
If we suppose that in medium (2) c < c2, and therefore that 

K2. - 

we have V2 = A cosh s2z + B sinh s2Z in place of the harmonic terms. The 

boundary conditions now give 
A = D; A cosh sT - B sinh s2T = Ee-s; - slulD = s2auB; 

s2/2 {A sinh (-s2T) + B cosh (-s2T)} S= s3t3 Ee-3T (11) 
leading to 

(s/1 . S3/13 + s22,222) tanh s2T -- 
S2,2(s3,3 ?+ sll) (12) 

which gives no relevant solutions. 
In the other cases which might arise we should have either cl or C3 less 

than c, so that in one of these regions the solution would be periodic, and 
therefore the displacement would not be inappreciable at great distances from 
z =0, and, moreover, would require an infinite amount of energy to be 
present in a cylinder whose generators are perpendicular to z =0. The 
physical interpretation of this result is similar to that given by Dr. Jeffreys 
to the maintenance of Love waves. The velocity of distortional waves in 
either of the media adjoining the layer (2) is greater than the velocity in the 
layer, and a wheeling of the wave-front, analogous to that which occurs in 
the phenomenon of total internal reflection, would cause the wave motion to 
be confined mainly to the central layer. 

[Added-July 3.-The solution of a numerical example in the case where 
al = OC2 = aC; pi -- 2 = p, illustrates one or two points of difference from 
the corresponding example worked out in ? 4 for incompressible solids. The 
equations are numbered in continuation of those in ?3. 
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If we write M - (Pl + P2)2/(Pl - p2)2, equation becomes 

x2 + 4 (1 - x) (2 -yx) = {Mx2 + 4 (2 - x)}(l - x) (1 --yx)`, (7) 

where x, as previously, is c2/ 2. 

On squaring, it is found that the constant term and that in x vanish, so 
that the equation reduces to the quartic 

yM2x4 - {(l + y) M2 + 8yM}x3 + (M2 + 8M--1 +- 8y + 24My- 16y2)X2 
- 8(y-4y 2+ 3M+2yM) - (M-y2) 0. (8) 

The corresponding equation for incompressible media is a cubic, obtained by 
putting y = 0; this is in agreement with ? 4, equation (1). 

As a check on this equation, it may be observed that (8) should reduce to 
the ordinary Rayleigh wave equation when p- 0, i.e. when M = 1. It is, 
in fact, found that when M = 1, (8) becomes 

{yx - -y} {x3- _8x2 + 8x (3 - 2y) - 16( -- y)} = 0, (9) 

where the second factor, equated to zero, is the same as (2), and the former 
factor gives the inadmissible solution x = (1 + y)y. 

To bring the equation (8) into line with this result it is sufficient to observe. 

that, whatever M and y, the left-hand side of (8) reduces to - I when x is 

unity. Since M - y2 is essentially positive, the equation must possess a root 

greater than unity. 
At the Wiechert surface of discontinuity, pi = 8'2, P2 32, y = 0'2864.* 

The corresponding quartic equation has a root x = 0'9795 ... corresponding 
to c=0'9897 B, and by actual substitution it is verified that this value 

satisfies the unsquared equation (7). It may be noted that, as would be 

expected on general dynamical grounds, this velocity is less than that of a 

wave at the junction of incompressible media (see ? 4, (4)).] 

In conclusion, I wish to thank Dr. H. Jeffreys, who. has kindly read 

through the manuscript and made several valuable suggestions. 

* Knott: 'Roy. Soe. Proc., Edin.,' p. 170 (1918-1919). 
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