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The Effect of the Ocean on Rayleigh Waves. By R. Stoneley, M.A.
(Recetved 1026 April)

1. Introduction.

In view of Gutenberg’s * resnlts concerning the velocities of Rayleigh
waves below continents and below the oceans, it becomes of interest to
examine the effect of the ocean on the propagation of surface waves over
a homogeneous elastic solid. In this discussion Love waves will not
be considered, since the only effect would arise from the viscous drag of
oceanic waters.

The effect of an incompressible ocecan has already been studied by
Bromwich,} who finds that for waves of ordinary period the change in
velocity is small, and that the wave-velocity ¢is equal to cp{1--0-52274/A},
where 7 is the ratio of the densities of water and rock. % the depth of the
sea, A the wave-length, and cg the velocity of R-waves.f Forh=3km,
and waves of 15 sce. period, the reduetion in velocity is about cg/go.

At the same time some dispersion is introduced. Using the formula
C=c—Adc/dA we obtain for the group-veloaity C=cg{1—1-0443h/A}, so that
the group-velocity in the foregoing example exceeds cg by about ¢g/45.
This correction is far too small to affect the rough measures at present
available,

The formula for C shows that for actual wave-lengths the group-velo-
city, which is the velocity observed in practice,§ decreases linearly with 1 A,

The essential difference between the effects of incompressible and
compressible fluid is summed up in the statement that in the former the
velocity ¢, of a compressional wave is treated as very large compared
with ¢, whereas in the latter case (and this corresponds with what
actually oceurs) ¢y is much less than cg.

When compressibility is taken into account, therefore, a new f@'atmf’
may arise ; planes may exist resembling the nodal Planes of Love W%}Zi%, :
where the vertical velocity iszero; As an illustration, one may consider
the motion of the air inside a tube, open at one end and fltt@d.‘}’lt'zl g
movable piston at the other: the piston may be supposed massive d‘m
controlied by a strong spring.  The effect of the air will be tq Intro u%?
a small modification 1n the natural period of oscillation of the piston. |
the period is long compared with the time taken for a pulse to trave

along the tube, we have the analogue of an alm?st incompres;ébig;ﬁefﬁle-
It ime take : -t be is long compar bt
f the time taken to travel along the tube g D e tube -

natural period, a number of nodal planes may be set up 1 u
| superposition of motions

the actual motion will be made up by the
corresponding b6 the existence of o, 1, 2, . . . nodes up to the greates

possible number. : E '!
1t is not difficult to show that for such a system the velocity potential |

takes the form ¢, sin M(l~z) - ¢int, where n satisfies a frequency
p .

. 107
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Ie. Rayleigh waves.
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equation pre/(Mn?—u)=cot (nljc), in which p is the density, ¢ the velocily
of sound, { the length of the pipe, M the mass of the piston, p the S:trengt-h
of the spring* For a podal planc éd/dr=0, i.c. w{l—x)fe="3%m, o . .
Putting d=zme/n, the distance which the sound-wave advances per period,
%, becomes [—(2s-+1)d/q, s0 that if [<4d therc will be no node; it #d=>1>3d,
one node ; if £d>0>3d, two nodes, and so on. The summation signm ¢
extends over all the adrissible values of .

When the depth of the water is small compared with the wave-length,
both forms (¢,>cp and cp>¢o) tend to the same result, which is, 1n fact,
the approximate form obtained by Bromwich.

2. Motion wn the Compressible Fluid.

Consider an ocean of uniform depth £, of density p, when at rest,
and of incompressibility k. Let the axis of z be drawn vertically upwards
50 that the equations of the undisturbed free surface and occan floor are
z=h and z=0 respectively. If a wave of wavelength 2m/k is propa-
gated in the direction z with velocity ¢, we will suppose all displacements
small (so that their squares may be neglected) and proport&ona? to
exp ik{z—ct). More strictly, pyshould be treated as a function of z, given
in terms of the surface value p, by py=p, exp gps(h—2)/k; for an ocean
of depth 3 km. the variation does not exceed about 1 per cent.

To the fizst order of small quantities the equations of motion,

DU 1op DW_ 1op

bY rop 1P . . 1)
Dt pow’ Di por I (

reduce to

ouU__1op

CW__19p, gp

o - Po oz k |
in which ’

P=DotP1; p=potp1=poli+3); dpyfdz=—gp, )
Suppose that
g @
(U, w):(a_m, _3;>¢ O O

Then the equations (2) become equivalent to a single equation, as may
be immediately shown by cross-differentiation, so verifying that the
motion is rrotational. The first equation of (2) is now

Té__ 1 Y
otox  py 6r ' '
The equation of continuity,

D
T)%?-FPV%EO,

* Cf. _Ramsey, Hydromechanics,
problem ig solved for a closed pipe.

part i, p. 340, in which the corresponding
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becomes, to the first order,

Gpy O dpy i 6
or, by (3), 5
Oy
Now assume
$= exp 'if{{%‘Cf-)} .8
D=1 exp 1r(z—ol)

where @ and IT are functions of 2 only.
Then (5) and {7) are respectively equivalent to

12eQ=—ixllfp;, . . . . (9)
and 0
“"iKGliz“kngz “-KZCI))"}“F)U‘Q:E . . . ({10}
leading to .
¢P_g i‘?_+xz(31_1>@zo N 1))
dz® ¢y dz T
Thus _
D =em#(P cos ez sIn kepz) . . . {12)
where _ .

2. A e
2??%29'/60“ ; Ky*=K {602 I 4604’

and the variation of ¢, with z is neglected.
’ K -3 .
For an ocean 3 km. deep, mz is at most 8x 1073 s0 that we may

Suppress the exponential term in (12). Sinee for wazves,of ai))%lfﬁi ff,?i
period s is about 10-% em.™?, and Jye may ta.ke f }:2 zg Ofizx o4
C.G.8. units, the ratio of 9*46,* to «X(?fe,*—1) is of the gr erk we ma}:
80 that for waves of the periods prevmhng_ n ac_tual ea]rlt lgl}aresﬂ ; }ohﬂ
Write s,2e 1%(c3feg?—1).  The approximation will no;a o ¢ ?ncréa}.-?:ingb?
waves (« small), and (11) shows that gmvzty._tl_ie'n TP ays '
preponderating rdle compared with eomp ressibility. ressible and in-
It 18 at this point that the distinetion between comp d is 5 periodic
Compressible fluids js seen. As long as ¢ is greater than ;CO’ ) nish% e
function of . Foy incompressible fluids, h(_)w%ver,l c%l{’onwa ;
D is exponential in respect of 2z, as in Bromwich’s solution.

3. Boundary Conditions.

At th-e free-surface we must have

(13)

p=0

. . are
At the ocean bottom the vertical displacement ;nd vez‘l;f}%foitzsiem_
continuous, while the horizontal traction on the o¢
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(13) 18 equivalent to s=o ; this may likewise be seen from the dynamical
surface condition Dp/Di=o0, which, to the first order, 1s

ap b dpy
wtE T

0s g 9
otk oz

this reduces to

while (6} is equivalent to

ds aﬁf’Poz
8tk ot V=0,

s0 that V=0, or s=o. This equation may be evaluated at the surface

z=h, s0 that P cos 1c,h+Q sin ic;h=0, and ¢ may be written in the form,
suitable for subsequent calculations,

{A sin ky(z—R) exp tx{z—cl)} /Ky cOS KA.

The displacements (u, w) in the R-wave motion in the earth must
tend to zero as z tends to —oo, and the appropriate values are :

(u, w):t-wgi%(ifc, 7B exp re+(—s, w)Q exp sz] exp tk(o—et) (14)

where A, u are the elastic constants in the usual notation, pe is the
density, E {3 are constants,

=i (1-pe?(Mtop)) and  sP=i(i—pycp) . (1S)

To the first order of small quantities we have at z=0, with the usual
notation for stresses,

0¢_ow (16)
oz &
and hence TP
3?31--1& % gp, 8?5 p:z {(A a’“’ 3“} .
and
. dw u 18)
Pze=0, Or é;’f“—a—z-*o . . -
{16), (17}, (18) give on substituting
A=—ike(—a¥ B/ Q) . (19)
]blk tan KJZ "rKl /KI Apeg @Kc!u,{ L(z—-—— ZZK«S‘Q} (20)
2l Qu® ( {32) (21)
K aer\” B
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n which a, 8 are respectively the velocities of compressional and dis-
tortional waves in the earth, and are given by

a?== (At 2u) /o, ; Br=ulp, . . . {z2)

After some reduction the elimination of A, Q, E from (rg), (20), (21)
gives, as an equation to determine ¢,

Kf3% tan ’flh__ﬁ@ggz[4<1_f)1u5<2wf§)2]/£ (23)
K3pe®  po B/ i

Or writing ¢%/82=£ ; yy fie=(cfo,2—1)b=e ; B2/a=y, and neglecting the
term 82,g/uctk,

(po tan k) pye{4(1~EP1—yb)h(a—EPYEL—yEN . (24)

‘ As a check on this work we may note that when A=o, the left-hand
side of this equation vanishes, and the numerator of the right-hand side,
when equated to zero, gives the ordinary R-wave equation.

4. Discussion of the Wave-Velocity Equation.

We can further obtain the equation corresponding to ¢y>¢, and as a
special case the equation for an incompressible fluid ; x,%1s now negative,
but the right-hand side of (24) is independent of «. The left-hand side
basses over into (pgx tanh x,f)/pyre;, Where now o 2=x*(1—c%c?). I
Cq tends to infinity, x;=«, and the left-hand side of (24) becomes simply
(Po/ps) tanh wc b, “These two cases reduce to one only when «h is small,
namely, the left-hand side is approximately pyrch/p,, in accordance with
Bromwich’s result, which, as would be expected, is independent of the
compressibility of the water. _

'For the purposes of illustration it will suffice to consider the earth
a5 Incompressible, so that y=o. Then a rough graph of F(&)={4(1-£P
~(2—£)/é2 shows that ¥(£), which has the value —1 when £=1,
Increases o zero as ¢ diminishes to 091275 . . . (i€ c=cy), and
inereases continually to infinity as ¢ diminishes to zero §2F_(§) has a
maximum within this range. It can be proved that F_(§) increases
continually within this range® Tor £>1 the left-hand side of {z4) 13
real, while the right-hand side is complex. When xh 1s rather small, so
that the left-hand side is positive but small, the value of ¢ that will
satisfy the equation must be slightly less than cg, so that if gravity 1s
neglected, the effect of a shallow ocean is to diminish the wave-velocity
of %—W&ves.

all the left-hand side of (24) T(£). :
%°/B% T(£) decreases from 'T(E)dito +pohipy; this value of £ for the
€arth is about o-2. At this point the tangent becomes a hyperbolic
tangent, and T(¢) will decrease continually to the finite value
{pg tanh kh){p, when £=o0, at which point F (£) s infinite. Thus there
must always be at least one root within this range.

Then as ¢ decreases from I 1o

h * My proof, which is rather cumbrous, is not of sufficient interest to reproduce
Bre,
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We may consider the possibilities in order. However small «h,
T(1) is greater than whpy/p,, provided exh is positive, as is the case.
I kb <dm when £=1, T(£) will decrease as ¢ decreases, remaliing
positive all the while. Tn these circumstances there will be a root ¢
loss than op. If dm<(ich)er<m, T(1) is negative, in which case T(£)
diminishes to —oo with deereasing £, and then subsequently diminishes
in the same way as before from -+ ; thus again there will be a root, ar,
in fact, two roots if 0>T(1)>—1. I w<(kh)i=1<Fm there will certainly
be two roots, and proceeding in this way it is seen that the number of
roots inereases as rh incresses, 1.6 as the wave-length diminishes.

Further, when more roots than one exist, between any two con
secutive roots tan x f becomes infinite, so that cos x;h vanishes. When
we consider the motion corresponding to the larger root ¢, we note that
K h= (e, — 1)k takes the value dm between (c2/ce2—1)ikh and zero.
Now 8¢/dz contains a factor cos x (h—2), and hetween the surface and
the ocean floor k,{h—2) varies continuously from zero to (e2/eg®— I)*Kk,
and therefore must take the value 17 somewhere between these lirnits.
At such a point the vertical displacement vanishes, and there exists

what may be called a “ quasi-nodal ” plane, where the motion is every-
where horizontal.*

5. Numerical Examples.

To illustrate the order of magnitude of the effect, we may consider
waves of period about 15 seconds, and write accordingly x=2/15 km.™;
for an ocean of depth 3 km., then, kh=%. TFor water k=z2-2x 10" dynes
em.2, so that ¢2=2-2x10"® (em.fsec.)®. Putting py/pr=%; pr=10t
(cm.fsec.)® and solving by successive approximation ¢*=882X 10*,
or ¢=2-97 km./sec., while czg=3-02 km.fsec., a difference of I-7 per
cent,

The effect of dispersion can be illustrated roughly by solving for the
case k=044, say, when it is found that 8¢ is about —o-c05 km./sec., 0
that x . defdx is about —o-05 km./sec. Thus the group-velocity is about
o't km /sce, less than the velocity of R-waves (without dispersion, as in
the classical treatment).

1t may be mentioned here that this twolold effect of a small dis-
persing cause, namely, in altering both wave-velocity and group-
velocity, leads to a curious result when gravity is the cause considered.
Bromwich’s formula T is ¢=cg{1+0-213)\/a), where @ is the radius of the
earth, from which it follows that the gronp-veloeity is simply ¢g, so thab
50 far as a seismograph record is concerned, on account of the cancelling
of thp two corrections referred to, gravity does not alter the time of
transit of R-waves.

For a more detailed numerical treatment, recourse may be had to
the met-hoc_l used by Jefireys.] By assuming a series of values of &,
corresponding values of xh may be calculated, and other values, and,
m addition, the group-velocity, may be obtained by interpolation.

* When the ea,rt_h is freated as compressible, it can be shown in like manner
that a real root exists, but the guestion of quasi-nodal planes would requiré &
more detailed examination.

¥ Loc. cit. I Loc. cit.
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When i is small the gravity term in (23) becomes important, and an
approximate value of ¢ has been used throughout, neglecting terms
depending on g. 'When « is large, 1.e. for very short waves, the number
of possible quasi-nodal planes becomes large, and tan x4 goes through
1ts range of values in a vanishingly small interval 8a. By computation
the following values were found :—

Eem g2, Kk /8.
o9 004303
orgo 019534
089 032001 0928
o-88 041686 a-912
087 040149 894
086 o 54960 o872
085 059608 0848
o84 063587 o821
0-83 066878
o082 o 69740

The group-velocity is given by

G [ d(C/ B)m 1 i K}& §_
ﬁ~ﬁ+xh oA {E+chdEf (s €
Since the first differences of xh are all negative, the group-velocity is less
than the wave-velocity. The value =092 gives h negative, corre:
sponding, presumably, to a wave with a quasi-nodal plane.

As ¢ diminishes, xch increases, but, as a glance at (24) w1 It show,‘ alt &
diminishing rate; consequently, while this approximation holds, U afso
continually diminishes, and there is no punimum gmup-vebmt)(fi ot
¢>c,. For the computations five-figure tables only bave been used, 80
that the last figure in the values of «h is likely to be seriously Ib ergoﬁl;
As a rough check on the table as a whole, it way be noted that the firs

differences of (/8 run fairly regularly.

6. Summary.

The effect of oceanic waters on Rayleigh waves, P Iewouﬁig stucggi_l
by Bromwich on the assumption of incompress1b1}1ty,jgs,_. .eeuau
cussed for the case of compressible liquid, and the 111ﬁ1;€!308 03 ¢ TII;B
velocity tabulated for values likely to Gecur in aciual recors. The
modifications introduced on this account are small, but i;fherea:il—)goda:
a3 & physical feature the possibility of the formation ol qu an-pipe
Planes, which in some ways resemble the nodes in an 9};;’111 Og}%e WI;%:

5 15 noted incidentally that gravity affects appreciably

Velocity, but not the group-veloeity.

G 26
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Note by Dr. Harold Jeffreys.

It can he proved. from Stoneley’s equation (24) that a winimum
group-velocity exists. Writing this equation in the form

T=r¢ . - . - O
where
Pl Bt )
P2 €
we see that if ¢<e, we may preserve the real form by writing
. e==tm  o<ny<t . . . . (3}
and
TP R )
Py i

Then T(£), when «h is infinite, has its lowest infinity indefinitely near to
¢=6y; while F(£) is infinite when ¢=o and decreases continually as ¢
increases to ¢,. Thus the limit of the wave-velocity when xh i great 18
less than ¢, Also A enters only through tanh n«ch, and when 7 is finitely
different from zero this differs from unity only by a quantity of order

e~k When «h 1s great, therefore, we shall have
== Cop -l KR . . . . (5}

where ¢, <c,. But sufficient conditions for a minimum group-velocity
to exist* are that c shall have finite limits when « tends to zero oF
infinity, the former being the greater, and that when « tends 10
infinity the difference between ¢ and its limit decreases as rapidly as
1/x*.  All these conditions are satisfied in this problem, and there-
fore a minimum group-velocity exisis. It seems probable, however,

?hat the corresponding period is too short to be of much seismological
interest.

The Elastic Yielding of the Earth. By R. Stoneley, M.A.

The object of this note is to summarise some calculations carried out
several years ago and abandoned in the hope of finding a closer approxi-
mation ; time has not yet permitted the completion of this work.

_ L’o_ make a comparison between the results of seismological and tidal
investigations, the elastic constants may be found from earthquake data
i some law of density is assumed ; the deformation produced in &
supposedly spherical earth by a disturbing potential represented by &
second-degree zonal harmonie is next calculated, and the quantities h
and k occurring in earth-tide theory are found. Further, the part of
(O—A}/A arising from elastic strain may be computed and compared

with the value derived from a knowledge of the free period of latitude
vaniation and the precessional constant.

* M.N.R.A.8., Geophys. Suppl , 1, 1925 Dec., 285.



