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PREFACE.

IT is now some years since I was requested by the Syndics

of the University Press to allow my papers on mathematical and

physical subjects, which are scattered over various Transactions and

scientific Journals, to be reprinted in a collected form. Many of

these were written a long time ago, and science has in the mean

time progressed, and it seemed to me doubtful whether it was

worth while now to reprint a series of papers the interest of which

may in good measure be regarded as having passed away. How

ever, several of my scientific friends, and among them those to

whose opinions I naturally pay the greatest deference, strongly

urged me to have the papers reprinted, and I have accordingly

acceded to the request of the Syndics. I regret that in con

sequence of the pressure of other engagements the preparation

of the first volume has been so long in hand.

The arrangement of the papers and the mode of treating them

in other respects were left entirely to myself, but both the Syndics

and my friends advised me to make the reprint full, leaning rather

to the inclusion than exclusion of a paper in doubtful cases. I

have acted on this advice, and in the first volume, now presented

to the public, I have omitted nothing but a few papers which

were merely controversial.

As to the arrangement of the papers, it seemed to me that the

chronological order was the simplest and in many respects the
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VI PREFACE.

best. Had an arrangement by subjects been attempted, not only

would it have been difficult in some cases to say under what head

a particular paper should come, but also a later paper on some one

subject would in many cases have depended on a paper on some

different subject which would come perhaps in some later volume,

whereas in the chronological arrangement each paper reaches up
to the level of the author s knowledge at the time, so that forward

reference is not required.

Although notes are added here and there, I have not attempted
to bring the various papers up to the level of the present time. I

have not accordingly as a rule alluded to later researches on the

same subject, unless for some special reason. The notes introduced

in the reprint are enclosed in square brackets in order to distin

guish them from notes belonging to the original papers. To the

extent of these notes therefore, which were specially written for

the reprint, the chronological arrangement is departed from. The

same is the case as regards the last paper in the first volume,

which suggested itself during the preparation for press of the

paper to which it relates. In reprinting the papers, any errors

of inadvertence which may have been discovered are of course

corrected. Mere corrections of this kind are not specified, but

any substantial change or omission is noticed in a foot-note or

otherwise.

After full consideration, I determined to introduce an innova

tion in notation which was proposed a great many years ago, for

at least partial use, by the late Professor De Morgan, in his article

on the Calculus of Functions in the Encyclopaedia Metropolitan^

though the proposal seems never to have been taken up. Mathe

maticians have been too little in the habit of considering the

mechanical difficulty of setting up in type the expressions which

they so freely write with the pen ;
and where the setting up can

be facilitated with only a trifling departure from existing usage as

regards the appearance of the expression, it seems advisable to

make the change.

Now it seems to me preposterous that a compositor should be

called on to go through the troublesome process of what printers

call justification, merely because an author has occasion to name
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some simple fraction or differential coefficient in the text, in which

term I do not include the formal equations which are usually

printed in the middle of the page. The difficulty may be avoided

by using, in lieu of the bar between the numerator and denomi

nator, some symbol which may be printed on a line with the type.

The symbol
&quot;

:

&quot;

is frequently used in expressing ratios
;
but for

employment in the text it has the fatal objection that it is appro

priated to mean a colon. The symbol
&quot;

-r-
&quot;

is certainly distinctive,

but it is inconveniently long, and dy -r dx for a differential coef

ficient would hardly be tolerated. Now simple fractions are fre

quently written with a slant line instead of the horizontal bar

separating the numerator from the denominator, merely for the

sake of rapidity of writing. If we simply consent to allow the

same to appear in print, the difficulty will be got over, and a

differential coefficient which we have occasion to name in the text

may be printed as dyjdx. The type for the slant line already

exists, being called a solidus.

On mentioning to some of my friends my intention to use

the &quot;solidus&quot; notation, it met with a good deal of approval, and

some of them expressed their readiness to join me in the use of it,

amongst whom I may name Sir William Thomson and the late

Professor Clerk Maxwell.

In the formal equations I have mostly preserved the ordinary

notation. There is however one exception. It frequently happens
that we have to deal with fractions of which the numerator and

denominator involve exponentials the indices of which are fractions

themselves. Such expressions are extremely troublesome to set

up in type in the ordinary notation. But by merely using the

solidus for the fractions which form the indices, the setting up
of the expression is made comparatively easy, while yet there

is not much departure from the appearance of the expressions

according to the ordinary notation. Such exponential expressions

are commonly associated with circular functions; and though it

would not otherwise have been necessary, it seemed desirable

to employ the solidus notation for the fraction under the symbol
&quot;sin&quot; or

&quot;cos,&quot;
in order to preserve the similarity of appearance

between the exponential and circular functions.
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In the use of the solidus it seems convenient to enact that

it shall as far as possible take the place of the horizontal bar

for which it stands, and accordingly that what stands immediately

on the two sides of it shall be regarded as welded into one. Thus

sin mrx/a means sin (mrx -f- a), and not (sin mrx} + a. This welding

action may be arrested when necessary by a stop : thus sin nO . /r
n

means (sin nd) -f- r
n and not sin (n9 -r- r

n
).

The only objection that I have heard suggested against the

solidus notation on the ground of its being already appropriated

to something else, relates to a condensed notation sometimes

employed for factorials, according to which x (x + a) . . . to n

factors is expressed by xnla or by xnja. I do not think the ob

jection is a serious one. There is no risk of the solidus notation,

as I have employed it, being mistaken for the expression of

factorials; of the two factorial notations just given, that with

the separating line vertical seems to be the more common, and

might be adhered to when factorials are intended
;
and if a

greater distinction were desired, a factorial might be printed

in the condensed notation as xn ^
a

,
where the &quot;

(

&quot;

would serve

to recall the parentheses in the expression written at length.

G. G. STOKES.

CAMBKIDGE,

August 16, 1880.
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{From the Transactions of the Cambridge Philosophical Society,

Vol. vii. p. 439.]

ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.

[Bead April 25, 1842.]

IN this paper I shall consider chiefly the steady motion of

fluids in two dimensions. As however in the more general case

of motion in three dimensions, as well as in this, the calculation

is simplified when udx + vdy + wdz is an exact differential, I

shall first consider a class of cases where this is true. I need

not explain the notation, except where it may be new, or liable

to be mistaken.

To prove that udx + vdy + wdz is an exact differential, in

the case of steady motion, when the lines of motion are open

curves, and when the fluid in motion has come from an expanse
of fluid of indefinite extent, and where, at an indefinite distance,

ential. JNow from the way in which this equation is obtained,

lf
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MATHEMATICAL AND PHYSICAL PAPEES.

{From the Transactions of the Cambridge Philosophical Society,

Vol. vir. p. 439.]

ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.

[Bead April 25, 1842.]

IN this paper I shall consider chiefly the steady motion of

fluids in two dimensions. As however in the more general case

of motion in three dimensions, as well as in this, the calculation

is simplified when udx + vdy + wdz is an exact differential, I

shall first consider a class of cases where this is true. I need

not explain the notation, except where it may be new, or liable

to be mistaken.

To prove that udx + vdy + wdz is an exact differential, in

the case of steady motion, when the lines of motion are open

curves, and when the fluid in motion has come from an expanse
of fluid of indefinite extent, and where, at an indefinite distance,

the velocity is indefinitely small, and the pressure indefinitely

near to what it would be if there were no motion.

By integrating along a line of motion, it is well known that

we get the equation

P^V-i^ + v +w^+C (1),

where dV= Xdx-\- Ydy + Zdz, which I suppose an exact differ

ential. Now from the way in which this equation is obtained,

\ \ s. 1



ON THE STEAD I MOTION OF INCOMPRESSIBLE FLUIDS.

it appears that G need only be constant for the same line of

motion, and therefore in general will be a function of the para

meter of a line of motion. I shall first shew that in the case

considered C is absolutely constant, and then that whenever it

is, udx + vdy + wdz is an exact differential *.

To determine the value of C for any particular line of motion,

it is sufficient to know the values of p, and of the whole velocity,

at any point along that line. Now if there were no motion we

should have

t
............................ (2),

P! being the pressure in that case. But considering a point in

this line at an indefinite distance in the expanse, the value of

p at that point will be indefinitely nearly equal to p^ and the

velocity will be indefinitely small. Consequently C is more nearly

equal to G
t
than any assignable quantity : therefore C is equal to

Cj ;
and this whatever be the line of motion considered

;
therefore

C is constant.

In ordinary cases of steady motion, when the fluid flows in

open curves, it does come from such an expanse of fluid. It is

conceivable that there should be only a canal of fluid in this

expanse in motion, the rest being at rest, in which case the

velocity at an infinite distance might not be indefinitely small.

But experiment shews that this is not the case, but that the

fluid flows in from all sides. Consequently at an indefinite dis

tance the velocity is indefinitely small, and it seems evident that

in that case the pressure must be indefinitely near to what it

would be if there were no motion.

Differentiating therefore (1) with respect to x, we get

1 dp ^ du dv dw
- ^r = ^-u-r -v-r -w-r ;

p dx dx dx ax

1 dp ^ du du du
- = -- V - W

dv du\ dw du
whence

[* See note, page 3.]
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. ., , (dw dv\ fdu dv\
Similarly, w (-r --r )

+ u (_- =0,
\dy dzj \dy dx)

fdu dw\
(dv

dw\ _
\dz dx) \dz dy)

i dv du dw dv du dw
whence* JT=-J- &amp;gt; j~ = ^-j ~r ~ ~j~ &amp;gt;dx dy dy dz dz dx

and therefore udx + vdy + wdz is an exact differential.

When udx -f vdy + wdz is an exact differential, equation (1)

may be deduced in another wayf% from which it appears that

C is constant. .Consequently, in any case, udx -{ vdy + wdz is, or

is not, an exact differential, according as C is, or is not, constant.

Steady Motion in Two Dimensions.

I shall first consider the more simple case, where udx + vdy
is an exact differential. In this case u and v are given by the

equations

J* +^ = ........................... (3),dx dy

----0 M-
dy dx~~

&quot; () &amp;gt;

andp is given by the equation

The differential equation to a line of motion is

dy = v_

dx u

*
[This conclusion involves an oversight (see Transactions, p. 465) since the

three preceding equations are not independent, as may readily be seen. I have not

thought it necessary to re-write this portion of the paper, since in the two classes

of steady motion to which the paper relates, namely those of motion in two dimen

sions, and of motion symmetrical about an axis, the three analogous equations are

reduced to one, and the proposition is true. None of the succeeding results are

affected by this error, excepting that the second paragraph of p. 11 must be re

stricted to the two cases above mentioned.]
t See Poisson, Traite de Mecanique.

12



4 ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.

Now from equation (3) it follows that udy vdx is always

the exact differential of a function of x and y. Putting then

dU = udy vdx,

U=G will be the equation to the system of lines of motion,

C being the parameter. U may have any value which allows

d U/dy and d Ujdoc to satisfy the equations which u and v satisfy.

The first equation has been already introduced
;
the second leads

to the equation which U is to satisfy ;
viz.

The integral of this equation may be put under different forms.

By integrating according to the general method, we get

Now it will be easily seen that U must be wholly real for all

values of x and yt
at least within certain limits. But ^(a) may

be put under the form F
l (a) 4- \f^l Fz (a), where Fl (a) and F

3 (a)

are wholly real. Making this substitution in the value of U, we

get a result, which, without losing generality, may be put under

the form

U = F(^ + V^l y)+F(x - V^l y]

=l y} -f(x- a#)},

changing the functions.

If we develope these functions in series ascending according

to integral powers of y, by Taylor s Theorem, which can always

be done as long as the origin is arbitrary, we get a series which

I shall write for shortness,

2 cos
(A y)

F(x)
- 2 sin

(^ y]f (),

the same result as if we had integrated at once by series by
Maclaurin s Theorem.

It has been proved that the general integral of (5) may be

put under the form

U=
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where a
2 + {3*

= 0. Consequently a and /3 must be, one real, the

other imaginary, or both partly real and partly imaginary. Putting

then a =
1
+ V-la2 , /3

=^ + V- 1 /32 , introducing the condition

that a
2 + /3

2 = 0, and replacing imaginary exponentials by sines and

cosines, we find that the most general value of U is of the form

U = 2Uew(cos Y-*- sin Y- y+a\ cos n (sin 7 . x + cos 7 . y + 6),

where A, n, 7, a and & have any real values, the value of U being

supposed to be real.

If we take the value of U

and develope each term, such as axn
,
in F (x) or f (x), in a series,

and then sum the series by the formula

cos nO + V- 1 sin nO = cos
n

&amp;lt;9 (l +
j
V^T tan -...V

we find that the general value of U takes the form

As long as the origin of x is arbitrary, only integral powers
of x will enter into the development F (x) and f(x), and there

fore the above series will contain only integral values of n. For

particular positions of the origin however, fractional powers may
enter. The equation

d 2U I dU 1 d*U _
dr*

+
r ~dr

+
r* dP

&quot;

which (5) becomes when transferred to polar co-ordinates, is satis

fied by the above value of U, whatever n be, even if it be

imaginary, in which case the value of U takes the form

U = 2Armend cos (mO
-

loge
r
n + B).

We may employ equation (5), to determine whether a proposed

system of lines can be a system in which fluid can move, the

motion being of the kind for which udx + vdy is an exact

differential.

Let / (x, y)
=

U^ C be the equation to the system, C being
the parameter. Then, if the motion be possible, some value of
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U which satisfies (5) must be constant for all values of x and y
for which U^ is constant. Consequently this value must be a

function of U . Let it=^(C^). Then, substituting this value

in (5), and performing the differentiations, we get

\ dx \dy

Now, if the motion be possible, the second term of this equa
tion must be a function of U

l ; a?, y and U^ being connected by
the equation f(x, y}= U^. Consequently, if by means of this

latter equation we eliminate x or y from the second term of (6),

the other must disappear. If it does not, the motion is impossible ;

if it does, the integration of equation (6), in which the variables

are separated, will give &amp;lt; (U^) under the form

A and B being the arbitrary constants. The values of u and v

will immediately be got by differentiation, and then p will be

known. Nothing will be left arbitrary but a constant multiplying
the values of u and v, and another added to the value ofp.

I shall mention a few examples. Let U = ar2 cos J^. In this

case the lines of motion are similar parabolas a,bout the same

focus. The velocity at any point varies inversely as the square

root of the distance from the focus.

Again, let U = axy. In this case the lines of motion are

rectangular hyperbolas about the same asymptotes. Also,

dU dU
u = -j

= ax, and v = -j =
ay.

dy dx

In this case therefore the velocity varies as the distance from the

centre, and the particles in a section parallel to either of the axes

remain in a section parallel to that axis.

I shall now consider the general case, where udx -f vdy need

not be an exact differential.
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In this case p, u and v, are given by the equations

I dp du du- -^=X-u-j
--

V-Y- ................... (7),
p dx dx dy

1 dp v dv dv
--T- = Y-u-j-- v -j- .............. ..(8)
p dy dx dy

du dv

We still have ^ = -
, for the differential equation to a line of

motion, where udy vdx is still an exact differential, on account
of equation (9). Eliminating p by differentiation from (7) and

(8), and expressing the result in terms of U, we get the equation
which U is to satisfy, viz.

dU
d^ (d*U

&amp;lt;PU\
__
dU

d^ (d*U d*U\ _
dy dx (da?

&quot; h
dy

2
) dx dy ( dx

2 +
~dtf)

~
0)

or, for shortness,

d__dU _
(dy dx dx dy) (~%?

+
~df)

......... (10)
*

*
[This equation may be applied to prove an elegant theorem due to Mr F. D.

Thomson {see the Oxford, Cambridge, and Dublin Messenger of Mathematics, Vol.
in. (I860), p. 238, and Vol. iv. p. 37}, that if a vessel bounded by a cylindrical sur
face of any kind and by two planes perpendicular to its generating lines be filled

with homogeneous liquid, and the whole be revolving uniformly about a fixed axis

parallel to its generating lines, then if the vessel be suddenly arrested the motion
of the liquid will be steady.

If w be the angular velocity, we shall have for the motion before impact

dx)
- J w (ce

2 + ?/
2
)
= -

s wr
2
,

omitting the constant as unnecessary. If u, v be the components of the change of

velocity produced by impact, it follows from the equations of impulsive motion that
udx+ vdy will be a perfect differential

d&amp;lt;p,
where satisfies the partial differential

d2 d2

equation V0= 0, V standing for^2 + ^. If U be the 17-function corresponding

to this motion and such a function exists by virtue of the equation of continuity
whether the motion be steady or not we have

, rfd&amp;lt;t d(f&amp;gt; , \ /Yd0 1 d&amp;lt;t&amp;gt; . \U = n~ dy--^- dx\= ( ~rd6 -/ dr } ,

J \dx
b

dy ) J \dr r dd J

where the quantity under the sign J is a perfect differential by virtue of the equa-
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In this case, since p = I (~ dx
-\--jr

dy\ , equations (7) and

(8) give

tion V0= ;
an^ we see at once *^at V^ = - Hence for the whole motion just

after impact

which satisfies the equation of steady motion (10); and as the condition at the

boundary, namely that the fluid shall slide along it, is satisfied, being satisfied ini

tially, it follows that the initial motion after impact will be continued as steady

motion.

To actually determine the function
&amp;lt;/&amp;gt;

or U
,
and thereby the motion in any given

case, we must satisfy not only the general equation y0=0 but also the equation

of condition at the boundary, namely that there shall be no velocity in a direction

normal to the surface, which gives

(-)*-(!?)*- .................................
&amp;lt;&amp;gt;

at any point of the boundary. If f(x,y)=Q be the equation of the boundary, we

must substitute - df / dx -r- df I dy for dy/dx in (a), and the resulting equation will

have to be satisfied when/=0 is satisfied.

There are but few forms of boundary for which the solution of the problem can

be actually effected analytically, among which may be mentioned in particular the

case of a rectangle. But by taking particular solutions of the equation V0 = &amp;gt;

substituting in (a) and integrating, which gives

or what comes to the same thing taking particular solutions of the equation v^ =

and substituting in
(/3),

which gives the general equation of the lines of motion, we

may synthetically obtain an infinity of examples in which the conditions of the

problem are satisfied, any one of the lines of motion being taken as the boundary

of the fluid.

Thus for U = fcr*cos 30 we have for the lines of motion

-iwr2 + fcr
3cos30=C ....................................... (7),

or -Icor2 + &{4(rcos0)
3 -3r2

.rcos0}=&amp;lt;7 ................ (5),

which therefore are cubic curves, recurring when is increased by 120. (5) is

satisfied by
r cos 6 = a,

giving a straight line, provided

Hence when Tc has the above value the cubic curve (7) breaks up, for the particular

value of the parameter G above written, into three straight lines forming the sides

of an equilateral triangle, and the vessel may therefore be supposed to be an equi

lateral triangular prism. The various lines of motion correspond to values of the

parameter C from to -
-f
wa2

. This case is given by Mr Thomson.

U = kr*cos 20 leads to the case of steady motion in similar and concentric ellipses

considered in the text a little further on, which therefore may be conceived to have

been produced from motion about a fixed axis as pointed out by Mr Thomson. In

fact, any case of steady motion in two dimensions in which yU= const, may be

conceived to have been so produced.]
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= V - L_^ *F_\ dx
P J\\dy dxdy dx dy* J

fdU d*U dUd*U\
}

\dx dxdy dy dx2
) *)

AT 1,7 f/^Y , (dU\*\ fdU d 2U
,

dU dz

U\ ,

Now Ja-u-j-J + -j- }\= -j
--

j-^ + ~j- -j,T\dx
\\dxj \dy J } \dx dx dy dxdy)

(dU d 2U dU d2U
^\dx dxdy

+
dy dtf

whence,

dU d2U , dU d*U , dU d zU . dUd*U,
-j- , , dx + -j -j

=- av --=- -=- dx --Y- -y-g- ctv
dx dy dy dx

V.AH7V) fd*U d*U\ (dU ,
,

dU .
\

I
+

TT&quot; ) r
~

^7&quot;&quot;2&quot;
+

^j^&quot; ^j~ &quot;* + ~j~ dy ;

/ v dy J J \ cfo dy J \ dx dy
y
j

and therefore

^2
^7 rf?7\ /dtr , .

dU
dy

It will be observed that -, 2 +-j-a
=

%(^)&amp;gt;
^s a nrs^ integral

of (10). Consequently this latter term, which is the value of C in

(1), comes out a function of the parameter of a line of motion as

it should.

We may employ equation (10), precisely as before, to enquire

whether a proposed system of lines can, under any circumstances,

be a system of lines of motion. Let f (x, y)
=

U^
= C, be the

equation to the system; then, putting as before, U =
(f&amp;gt;(Ul),

we get

+
dy dx dx dy dx dy J

U d dU d\fU.

or,
P&amp;lt;f&amp;gt;&quot; ( U^} + Qf ( fTJ

=
0, suppose.
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Hence, as before, if we express y in terms of x and U
lt

from

the equation f(x, y)
= U

lt
and substitute that value in

p,
the

result must not contain x. If it does, the proposed system of lines

cannot be a system of lines of motion
;

if not, the integration of

the above equation will give &amp;lt; (Z7J, under the form

and we can immediately get the values of u, v and p, with the

same arbitrary constants as in the previous case.

One case in which the motion is possible is where the lines of

motion are a system of similar ellipses or hyperbolas about the

same centre, or a system of equal parabolas having the same axis.

In the case of the ellipse, the particles in a radius vector at any

time remain in a radius vector, and the value of p has the form

When however the ellipse becomes a circle, P and Q vanish in the

equation P&amp;lt;/&amp;gt;&quot; (tTj + Q&amp;lt;f&amp;gt; (UJ = 0. Consequently the form of &amp;lt;

may be any whatever. The value of U^ being x* + #
2

,
we have

whence, v? + v* = 4
(&amp;lt;/&amp;gt;

( U,)}
9

(a? + /) = 4 U, {&amp;lt; ( U,)}
9
.

Hence, the velocity may be any function of the distance from the

centre. It is evident that we may conceive cylindrical shells of

fluid
&amp;gt; having a common axis, to be revolving about that axis with

any velocities whatever, if we do not consider friction, or whether

such a mode of motion would be stable. The result is the same if

we enquire in what way fluid can move in a system of parallel lines.

In any case where the motion in a certain system of lines is

possible,
if we suppose two of these lines to be the bases of bound

ing cylindrical surfaces, and if we suppose the velocity and direc

tion of motion, at each point of a section of the entering, and also

of the issuing fluid, to be what that case requires, I have not

proved that the fluid must move in that system of lines. When

the above conditions are given there may still perhaps be different

modes of steady motion
;
and of these some may be stable, and

others unstable. There may even be no stable steady mode of
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motion possible, in which case the fluid would continue perpetually

eddying.

In the case of rectangular hyperbolas, the fluid appeared, on

making the experiment, to move in hyperbolas when the end

at which the fluid entered was broad and the other end narrow,

but not when the end by which the fluid entered was narrow.

This may, I think, in some measure be accounted for. Suppose
fluid to flow out of a vessel where the pressure is p{

into one where

it is pz) through a small orifice. Then, the motion being steady,

we have, along the same line of motion, p/p C J-y
2

,
where v is

the whole velocity. At a distance from the orifice, in the first

vessel, the pressure will be approximately p: ,
and the velocity

nothing. At a distance in the second vessel, the pressure will

/2 If) q} }

be approximately^, and therefore the velocity
= A/ &quot;,

nearly. The result is the same if forces act on the fluid. Hence
the velocity must be approximately constant

;
and therefore, the

fluid which came from the first vessel, instead of spreading out,

must keep to a canal of its own of uniform breadth. This is found

to agree with experiment. Hence we might expect that in the

case of the hyperbolas, if the end at which the fluid entered were

narrow, the entering fluid would have a tendency to keep to a

canal of its own, instead of spreading out.

In ordinary cases of steady motion, when the lines of motion

are open curves, the fluid is supplied from an expanse of fluid, and

consequently udx + vdy + wdz is an exact differential. Conse

quently, cases of open curves for which it is not an exact differen

tial do not ordinarily occur. We may, however, conceive such

cases to occur
;
for we may suppose the velocity and direction of

motion, at each point of a section of the entering, and also of the

issuing stream, to be such as any case requires, by supposing the

fluid sent in and drawn out with the requisite velocity and in the

requisite direction through an infinite number of infinitely small

tubes.

In the case of closed curves however, in whatever manner the

fluid may have been put in motion, it seems probable that, if we

neglect the friction against the sides of the vessel, the fluid will

have a tendency to settle down into some steady mode of motion.

Consequently, taking account of the friction against the sides of
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the vessel, it seems probable that the motion may in some cases

become approximately steady, before the friction has caused it to

cease altogether.

Motion symmetrical about an axis, the lines of motion being
in planes passing through the aods.

Before considering this case, it may be well to prove a prin

ciple which will a little simplify our equations.

The general equations of motion are,

Putting tsTj,
trr

2 ,
r
3 ,

for the last three terms in (11), (12), (13),

respectively, we have

^ = V - / (efjdx + *r
tdy + OT

8 dz).

Hence the pressure consists of two parts, the firs,t, p V, the same

as if there were no motion, the second, the part due to the velocity.

Now the velocities are given by equation (14), and by the three

equations which result on eliminating p from (11), (12), and (13).

These latter equations, as well as (14), will be the same as if there

were no forces since

_^ = ^^.
dy

~
dx dz

~
dx dz dy

and therefore we shall not lose generality by omitting the forces

in (11), (12) and (13), since we shall only have to add pV to the

value ofp so determined.

When the motion is symmetrical about an axis, and in planes

passing through that axis, let z be measured along the axis, and
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r be the perpendicular distance from the axis, and s be the ve

locity perpendicular to the axis. Then, transforming the co-ordi

nates to z and r, and omitting the forces, it will be found that

equations (11), (12) and (13) are equivalent to only two separate

equations, which are

1 dp ds ds
~-r = -s-r-w-r
p dr dr dz

1 dp dw dw
--T- = S-J- W-T-
p dz dr dz

and the equation of continuity becomes

J+
s- +^ = 0.. ,..(17).dr r dz

In the case where udx + vdy + wdz is an exact differential, it

will be found that the three equations

du _ dv du _dw dv _ dw

dy
~
dx dz dx dz dyt/ i7

are equivalent to only one equation, which is

ds dw

In the general case we get, by eliminating p from (15)

and (16),
d

f
ds ds\ _ d f dw

dz \ dr dz) dr\ dr
w
dz

,

ds ds ds dw d?t
or ~~ ~~jj ^^jdr dz dz dz drdz

dw dw dw ds d*w dz
io

The differential equation, between z and r, to a line of

motion is

dz _w
dr s

Let ju be a factor which renders sdz wdr an exact differential,

,, diis _
then ~ + - = 0,

dr dz
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/n ^_v du, da S
or, using (17), s + w =

f
,..

whence we easily see that
//,
= r is one such factor.

Let then dU= rsdz rwdr,

IdU IdU
so that s =

7 , w = ---, .

r dz r a/

The equation which U is to satisfy will be got by expressing s

and w in terms of U, and substituting in (19) in the general case,

or by substituting in (18), in the case where udx + vdy + wdz is

an exact differential.

In the latter case the equation which Z7is to satisfy is

idu
7 Q T o 7
dz dr r dr

In the general case, the equation is what I shall write

dL _dUd\(l(d^7 d^U_ldJA\_
dz dr dr dz) \r

z
\dz

z *
dr* r dr)}

~
&quot;

( &amp;gt;

The value ofp is given by the equation

p ((( ds ds\ 7 f dw dw\ 7 )

*L--\\{s-^+w-j-}dr + \8-r + to-T-\dz\.
p J [\ dr dz) \ dr dz) }

Now
1

, , 2N ^5
7

dw j ds
j

dw 7
i-d (s

2 + w )
= s -j- dr + w -j- dz + s -j- dz + w -j- dr ;dr dz dz &amp;lt; dr

and therefore

ds ds\ -, / dw dw

= J d (s
2 + w2

) + j- (wdr
-

sc?z) + -T-

/P 1/2 2\ [fds dw\ 1 7 77
whence = % (s + w } -f I

( -j-
=- -7- 1

-au
p J V^ ar/ r



ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS. 15

Hence the quantity under the integral sign must be a function

of U. And in fact, we can easily shew by trial that

d*U Id

is a first integral of (21). The last term of (22) is the value of

the constant in (1).

By expanding U in a series ascending according to integral

powers of z, which may be done as long as the origin is arbitrary,

it will be found that the integral of (20) may be written under the

form

U= cos
(V*) F (r) + sin

(v*) vYM,

where y
a

.F(r) denotes
(-3-5

--
-*-jF(r) t

and y
2nF (r) denotes

that the operation -^
2 ^-

is repeated n times on F (r).

We may employ equations (21) or (20) just as before, to

determine whether the motion in a proposed system of lines is

possible. If F(r, z)
= U

t
= C be the equation to the system, we

must have, as before, U
(f&amp;gt; ( U^ ;

whence we get, in the general

case,

^
dz y ^2

dr* ~r dr J] j

and in the more restricted case where udx -f vdy + wdz is an exact

differential, we get

ffU ffU IdU\ .

As before, the ratio of the coefficients of
0&quot; ( U^ and $ ( U^) must

be a function of U^ alone, when 3, r and C^ are connected by the

equation F (r, z)
= Z7r If the motion be possible, it will in general

be determinate, U being of the form Af (r, z] + B. If U^
= r how

ever, the form of remains arbitrary. In this case the fluid may
be conceived to move in cylindrical shells parallel to the axis, the

velocity being any function of the distance from the axis.
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Particular cases are, where the lines of motion are right lines

directed to a point in the axis, and where they are equal parabolas

having the axis of z for a common axis. In these cases

udx + vdy + wdz

is an exact differential.

We may employ equations (20) and (21) to determine whether

the hypothesis of parallel sections can be strictly true in any case.

In this case, the sections being perpendicular to the axis of z, we

must have

IdU
w ---

T-F(is) ;

r dr

dU
, Ny rl-W;

U1+ *(*)+/(*).

Substituting this value in (21), we find, by equating to zero

coefficients of different powers of r, that the most general case cor

responds to

If udoc -\- vdy 4- wdz be an exact differential, the most general

case corresponds to

U= (a + bz)



[From the Transactions of the Cambridge Philosophical Society,

Vol. vin. p. 105.]

ON SOME CASES OF FLUID MOTION.

[Read May 29, 1843.]

THE equations of Hydrostatics are founded on the principles

that the mutual action of two adjacent elements of a fluid is normal

to the surface which separates them, and that the pressure is equal

in all directions. The latter of these is a necessary consequence

of the former, as has been shewn by Mr Airy*. An exactly simi

lar proof may be employed in Hydrodynamics, by which it may
be shewn that, if the mutual action of two adjacent elements of a

fluid in motion is normal to their common surface, the pressure

must be equal in all directions, in order that the accelerating force

which acts on the centre of gravity of an element may not become

infinite, when we suppose the dimensions of the element indefi

nitely diminished. In Hydrostatics, the accurate agreement of the

results of our calculations with experiments, (those phenomena
which depend on capillary attraction being excepted), fully justifies

our fundamental assumption. The same assumption is made in

Hydrodynamics, and from it are deduced the fundamental equa

tions of fluid motion. But the verification of our fundamental law

in the case of a fluid at rest, does not at all prove it to be true

in the case of a fluid in motion, except in the very limited case of

a fluid moving as if it were solid. Thus, oil is sufficiently fluid to

obey the laws of fluid equilibrium, (at least to a great extent),

yet no one would suppose that oil in motion ought to be considered

a perfect fluid. It would appear from the following consideration,

that the fluidity of water and other such fluids is not quite perfect.

* See also Professor Miller s Hydrostatics, page 2.

S. 2
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When a mass of water contained in a vessel of the form of a solid

of revolution is stirred round, and then left to itself, it presently
comes to rest. This, no doubt, is owing to the friction against the

sides of the vessel. But if the fluidity of water were perfect, it

does not appear how the retardation due to this friction could be

transmitted through the mass. It would appear that in that case

a thin film of fluid close to the sides of the vessel would remain at

rest, the remaining part of the fluid being unaffected by it. And
in this respect, that part of Poisson s solution of the problem of an

oscillating sphere, which relates to friction, appears to me in some

degree unsatisfactory. A term enters into the equation of motion

of the sphere depending on the friction of the fluid on the sphere,
while no such term enters into the equations of motion of the

fluid, to express the equal and opposite friction of the sphere on

the fluid. In fact, as long as we regard the fluidity of the fluid as

perfect, no such term can enter. The only way by which to esti

mate the extent to which the imperfect fluidity of fluids may
modify the laws of their motion, without making any hypothesis
as to the molecular constitution of fluids, appears to be, to calculate

according to the hypothesis of perfect fluidity some cases of fluid

motion, which are of such a nature as to be capable of being accu

rately compared with experiment. The cases of that nature which

have hitherto been calculated, are by no means numerous. My
object in the present paper which I have the honour to lay before

the Society, has been partly to calculate some such cases which

may be useful in determining how far we are justified in regarding

fluids as perfectly fluid, and partly to give examples of the methods

by which the solution of problems depending on partial differential

equations may be effected.

In the first seven articles, I have mentioned and explained
some general principles, which are afterwards applied. Some of

these are not new, but it was convenient to state them for the

sake of reference. Others are I believe new, at least in their

development. In the remaining articles, I have given different

problems, of which I have succeeded in obtaining the solutions.

As the problem to be solved is usually stated at the head of each

article, I shall here only mention some of the results. As a parti

cular case of the problem given in Art. 8, I find that, when a

cylinder oscillates in an infinitely extended fluid, the effect of the

inertia of the fluid is to increase the mass of the cylinder by that of
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the fluid displaced. In part of Art. 9, I find that when a ball pen
dulum oscillates in a concentric spherical envelope, the effect of the

b
s
4- 2a3

inertia of the fluid is to increase the mass of the ball by -^jJ- 3T
2i(Jb a

)

times that of the fluid displaced, a being the radius of the ball, b

that of the envelope. Poisson, in his solution of the problem of the

sphere, arrives at the strange result that the envelope does not at

all retard the oscillating sphere. I have pointed out the errone

ous step by which he was led to this conclusion, which I am clearly
called upon to do, in venturing to differ from so high an authority.
Of the different cases of fluid motion which I have given, that

which appears to be capable of the most accurate and varied com

parison with experiment, is the motion of fluid in a rectangular
box which is closed on all sides, given in Art. 13. The experiment
consists in comparing the calculated and observed times of oscil

lation. I find that when the motion is small, the effect of the

fluid on the motion of the box is the same as that of a solid

having the same mass, centre of gravity, and principal axes, but

having different moments of inertia, these moments being given

by infinite series, which converge with great rapidity. I have also

in Art. 11, given some cases of progressive motion, deduced on the

supposition that the same particles of fluid remain in contact with

the solid, which do not at all agree with experiment.

In almost all the cases given in this paper, the problem of

finding the permanent state of temperature in the several solids

considered, supposing the surfaces of those solids kept up to con

stant temperatures varying from point to point, may be solved by
a similar analysis. I find that some of these cases have been

already solved by M. Duhamel in a paper inserted in the 22nd

Cahier of the Journal de lEcole Polytechnique. The cases alluded

to are those of the temperature in a solid sphere, and in a rect

angular parallelepiped. Since, however, the application of the

formulae in the two cases of fluid motion and of the permanent
state of temperature is different, as well as the formulae themselves

to a certain extent, I thought it might be worth while to give
them.

1. The investigations in this paper apply directly to incom

pressible fluids, as the fluids spoken of will be supposed to be,

22
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unless the contrary is stated. The motions of elastic fluids may
in most cases be divided into two classes, one consisting of those

condensations on which sound depends, the other, of those motions

which the fluid takes in consequence of the motion of solid bodies

in it. Those motions of the fluid, which take place in consequence of

very rapid motions of solids, (such as those of bullets), form a con

necting link between these two classes. The motions of the second

class are, it is true, accompanied by condensations, and propagated
with the velocity of sound, but if the motions of the solids are not

great we may, without sensible error, suppose the motions of the

fluid propagated instantaneously to distances where they cease to

be sensible, and may neglect the condensation. The investigations

in this paper will apply without sensible error to this kind of

motion of elastic fluids.

In all cases also the motion will be supposed to begin from

rest, which allows us to suppose that udx + vdy + wdz is an exact

differential
d(f&amp;gt;,

where u, v and w are the components, parallel to

the axes of x, y, and z, of the whole velocity of any particle. In

applying our investigations however to fluids such as they exist in

nature, this principle must not be strained too far. When a body
is made to revolve continually in a fluid, the parts of the fluid

near the body will soon acquire a rotatory motion, in consequence,

in all probability, of the mutual friction of the parts of the fluid
;

so that after a time udx + vdy + wdz could no longer be taken an

exact differential. It is true that in motion in two dimensions

there is one sort of rotatory motion for which that quantity is an

exact differential
;
but if a close vessel, filled with fluid at first at

rest, be made to revolve uniformly round a fixed axis, the fluid

will soon do so too, and therefore that quantity will cease to be an

exact differential. For the same reason, in the progressive motion

of a solid in a fluid, the effect of friction continually accumulating,

the motion might at last be sensibly different from what it would

be if there were no friction, and that, even if the friction were

very small. In the case of small oscillatory motions however it

would appear that the effect of friction in the forward oscillation,

supposing that friction small, would be counteracted by its effect

in the backward oscillation, at least if the two were symmetrical.

In this case then we might expect our results to agree very nearly

with experiment, so far at least as the time of oscillation is con

cerned.
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The forces which act on the fluid are supposed in the following

investigations to be such that Xdx + Ydy + Zdz is the exact dif

ferential of a function of x, y and z, where X, Y, Z, are the com

ponents, parallel to the axes, of the acccelerating force acting on
the particle whose co-ordinates are x, y, z. The only effect of such

forces, in the case of a homogeneous, incompressible fluid, being
to add the quantity pf(Xdx + Ydy +Zdz) to the pressure, the forces,

as well as the pressure due to them, will for the future be omitted
for the sake of simplicity.

2. It is a recognized principle, and one of great importance in

these investigations, that when a problem is determinate any solu

tion which satisfies all the requisite conditions, no matter how ob

tained, is the solution of the problem. In the case of fluid motion,
when the initial circumstances and the conditions with respect to

the boundaries of the fluid are given, the problem is determinate.

If it were required to find what sort of steady motion could take

place between given surfaces, the problem would not be determi

nate, since different kinds of steady motion might result from dif

ferent initial circumstances.

It may be well here to enumerate the conditions which must
be satisfied in the case of a homogeneous incompressible fluid

without a free surface, the case which is considered in this paper.
We have first the equations,

1 dp I dp 1 dp

-p
dx

= w
&quot;

pdy
= ^

pd~2
= -^ ............^)J

... du du du du ,

putting ^fa + U +V + M an(i OT
2 &amp;gt;

OT
3&amp;gt;

for the cor

responding quantities for y and
,
and omitting the forces.

We have also the equation of continuity,

.. ,..
dx dy dz

(A) and (B) hold at all times for all points of the fluid mass.

If a- be the velocity of the point (x, ?/, z) of the* surface of a
solid in contact with the fluid resolved along the normal, and v

the velocity, resolved along the same normal, of the fluid particle,
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which at the time t is in contact with the above point of the solid,

we must have

v = * ........ ............................ (a)*,

at all times and for all points of the fluid which are in contact with

a solid.

If the fluid extend to infinity, and the motion at first be zero

at an infinite distance, we must have

u = 0, v = 0, w = 0, at an infinite distance............. (b).

An analagous condition is, that the motion shall not become

infinitely great about a particular point, as the origin.

Lastly, if u
0)

v
ot
w

,
be the initial velocities, subject of course

to satisfy equations (B) and (a), we must have

u u^ V = V
Q ,
w = w

,
when = ..................... (c).

In the most general cases the equations which u, v and w are

to satisfy at every point of the mass and at every time are (B) and

the three equations

. ~,

~dy~~dx* dz
~~

dy dx
~

dz
&quot;

These equations being satisfied, the quantity

will be an exact differential, whence p may be determined by inte

grating the value of dp given by equations (A). Thus the condi

tion that these latter equations shall be satisfied is equivalent to

the condition that the equations ( C) shall be satisfied

In nearly all the cases considered in this paper, and in all those

of which the complete solution is given, the motion is such that

udx + vdy + ^udz is an exact differential dty. This being the case,

the equations (C) are, as it is well known, always satisfied, the

value ofp being given by the equation

* For greater clearness, those equations which must hold for all values of the

variables within limits depending on the problem are denoted by capitals, while

those which hold only for certain values of the variables, or of some of them, are

denoted by small letters. The latter class serve to determine the forms of the

arbitrary functions contained in the integrals of the former.
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being an arbitrary function of t, which may if we please be

included in
(/&amp;gt;.

In this case, therefore, the single condition which

has to be satisfied at all times, and at every point of the mass is

(j5), which becomes in this .case

(E).

In the case of impulsive motion, if U
Q ,

v
OJ
w

,
be the velocities

just before impact, u, v, w, the velocities just after, and q the im

pulsive pressure, the equations (A) are replaced by the equations

1 da 1 da 1 da
-
-/-

= U + U
Q ,

~~ = V + VQ) --j
L = w + w6 ....(F):

pdx p dy pdz

and in order that these equations may be satisfied it is necessary
and sufficient that (u u )dx + (v v

) dy -f (w W
Q]
dz be an exact

differential
d&amp;lt;f),

which gives

q
= C-

pcf).

The only equation which must be satisfied at every point of the

mass is (B), which is equivalent to (E), since by hypothesis u
,
V
Q ,

and w satisfy (B}. The conditions (a) and (b) remain the same

as before.

One observation however is necessary here. The values of u,

v and w are always supposed to alter continuously from one point

in the interior of a fluid mass to another. At the extreme boun

daries of the fluid they may however alter abruptly. Suppose now

values of u, v and w to have been assigned, which do not alter

abruptly, which satisfy equations (5) and
( C) as well as the con

ditions (a), (b) and (c), or, to take a particular case, values which

do not alter abruptly, which satisfy the equation (B) and the same

conditions, and which render udx + vdy + wdz an exact differential.

Then the values of dp/dx, dp/dy and dpjdz will alter continuously

from one point to another, but it does not follow that the value of

p itself cannot alter abruptly. Similarly in impulsive motion the

value of q may alter abruptly, although those of dq/dx, dq/dy and

dqjdz alter continuously. Such abrupt alterations are, however,

inadmissible; whence it follows as an additional condition to be

satisfied,

that the value ofp or g, obtained by integrating
j

equations (A) or (F), shall not alter abruptly &amp;gt; ........ (d).

from one point of the fluid to another. J
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An example will make this clearer. Suppose a mass of fluid

to be at rest in a finite cylinder, whose axis coincides with that of

z
t
the cylinder being entirely filled, and closed at both ends. Sup

pose the cylinder to be moved by impact with an initial velocity C
in the direction of x

;
then shall

u = C, v = 0, 10 = 0.

For these values render udx + vdy + wdz an exact differential
d&amp;lt;f&amp;gt;,

where
&amp;lt;/&amp;gt;

satisfies (E) ; they also satisfy (a) ; and, lastly, the value

of q obtained by integrating equations (F), namely, C1

Cpx, does

not alter abruptly. But if we had supposed that
&amp;lt;f&amp;gt;

was equal
to Cx + C O, where 6 = tan&quot;

1

yjxt
the equation (E) and the con

dition (a) would still be satisfied, but the value of q would be
C&quot;

-
p ( Cx + C ff),

in which the term pG 6 alters abruptly from

%7rpC to 0, as 6 passes through the value 2?r. The condition (d)
then alone shews that the former and not the latter is the true

solution of the problem.

The fact that the analytical conditions of a problem in fluid

motion, as far as those conditions depend on the velocities, may be

satisfied by values of those velocities, which notwithstanding cor

respond to a pressure which alters abruptly, may be thus explained.

Conceive two masses of the same fluid contained in two similar

and equal close vessels A and B. For more simplicity, suppose
these vessels and the fluid in them to be at first at rest. Conceive

the fluid in B to be divided by an infinitely thin lamina which is

capable of assuming any form, and, at the same time, of sustaining

pressure. Suppose the vessels A and B to be moved in exactly

the same manner, the lamina in B being also moved in any arbi

trary manner. It is clear that, except for one particular motion

of the lamina, the motion of the fluid in B will be different from

that of the fluid in A. The velocities u, v, w, will in general be

different on opposite sides of the lamina in B. For particular

motions of the lamina however the velocities u, v, w, may be the

same on opposite sides of it, while the pressures are different.

The motion which takes place in B in this case might, only for

the condition (d) t
be supposed to take place in A.

It is true that equations (A) or (F), could not strictly speaking

be said to hold good at those surfaces where such a discontinuity

should exist. Still, to avoid the liability to error, it is well to

state the condition (d) distinctly.
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When the motion begins from rest, not only must udx+vdy+wdz
be an exact differential

d(f&amp;gt;,

and u, v, w, not alter abruptly, but

also
(j&amp;gt;

must not alter abruptly, provided the particles in contact

with the several surfaces remain in contact with those surfaces
;

for if this condition be not fulfilled, the surface for which it is not

fulfilled will as it were cut the fluid into two. For it follows from

the equation (D) that
d&amp;lt;f&amp;gt;/dt

must not alter abruptly, since other

wise p would alter abruptly from one point of the fluid to another;
and

d&amp;lt;p/dt
neither altering abruptly nor becoming infinite, it fol

lows that
(/&amp;gt;

will not alter abruptly. Should an impact occur at

any period of the motion, it follows from equations (F) that that

cannot cause the value of
(f&amp;gt;

to alter abruptly, since such an abrupt
alteration would give a corresponding abrupt alteration in the

value of
qr.

3. A result which follows at once from the principle laid down
in the beginning of the last article is this, that when the motion

of a fluid in a close vessel which is at rest, and is completely filled,

is of such a kind that udx + vdy + wdz is an exact differential, it

will be steady. For let u, v, w, be the initial velocities, and let

us see if the velocities at the same point can remain u, v, w. First,

udx + vdy + wdz being an exact differential, equations (A) will be

satisfied by a suitable value of p, which value is given by equation

(D). Also equation (B) is satisfied since it is so at first. The con

dition (a) becomes v = 0, which is also satisfied since it is satis

fied at first. Also the value of p given by equation (U) will not

alter abruptly, for dfyjdt 0, or a function of t, and the velocities

d(j)/dx &c., are supposed not to alter abruptly. Hence, all the

requisite conditions are satisfied
;
and hence, (Art. 2) the hypo

thesis of steady motion is correct*.

4. In the case of an incompressible fluid, either of infinite ex

tent, or confined, or interrupted in any manner by any solid bodies,

if the motion begin from rest, and if there be none of the cutting

motion mentioned in Art. 2, the motion at the time t will be the

*
[N.B. It is only within a space which is at least doubly connected that such a

motion is possible. Thus in the example given in the preceding article, the axis of

the cylinder, where the velocity becomes infinite, may be regarded as an infinitely

slender core which we are forbidden to cross, and which renders the space within

the cylinder virtually ring-shaped.]
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same as if it were produced instantaneously by the impulsive
motion of the several surfaces which bound the fluid, including

among these surfaces those of any solids which may be immersed in

it. For let u
t v, w, be the velocities at the time t. Then by a known

theorem udx + vdy + wdz will be an exact differential
d&amp;lt;f&amp;gt;,

and
&amp;lt;/&amp;gt;

will not alter abruptly (Art. 2). (f&amp;gt;

must also satisfy the equation

(E}&amp;gt;
and the conditions (a) and (b). Now if u, v

,
w

,
be the velo

cities on the supposition of an impact, these quantities must be

determined by precisely the same conditions as u, v and w. But

the problem of finding u
,
v and w , being evidently determinate, it

follows that the identical problem of finding u, v and w is also

determinate, and therefore the two problems have the same solu

tion
;

so that

u = u
,

v v, w = w .

This principle has been mentioned by M. Cauchy, in a memoir

entitled Memoire sur la Theorie des Ondes, in the first volume of

the Memoires des Savans Etrangers (1827), page 14. It will

be employed in this paper to simplify the requisite calculations by

enabling us to dispense with all consideration of the previous motion,

in finding the motion of the fluid at any time in terms of that of

the bounding surfaces. One simple deduction from it is that,

when all the bounding surfaces come to rest, each element of the

fluid will come to rest. Another is, that if the velocities of the

bounding surfaces are altered in any ratio the value of &amp;lt; will be

altered in the same ratio.

5. Superposition of different motions.

In calculating the initial motion of a fluid, corresponding to

given initial motions of the bounding surfaces, we may resolve the

latter into any number of systems of motions, which when com

pounded give to each point of each bounding surface a velocity,

which when resolved along the normal is equal to the given

velocity resolved along the same normal, provided that, if the

fluid be enclosed on all sides, each system be such as not to alter

its volume. For let u
,
v

f

, w, v
,

or
,
be the values of u, v, &c., corre

sponding to the first system of motions
; u&quot;, v&quot;, &c., the values of

those quantities corresponding to the second system, and so on
;

so that

v v a cr + a&quot; -f ... .
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Then since we have by hypothesis u dx + vdy + wdz an exact

differential
d&amp;lt;j&amp;gt;

, u&quot;dx + v dy + w dz an exact differential
d&amp;lt;f&amp;gt;&quot;

t
and

so on, it follows that udx + vdy + wdz is an exact differential. Again
by hypothesis v = a, v&quot;

=
a&quot;, &c., whence v = cr. Also, if the fluid

extend to an infinite distance, u, v, and w must there vanish, since

that is the case with each of the systems u, v, w\ &c. Lastly, the

quantities &amp;lt;

, &amp;lt;&quot;, &c., not altering abruptly, it follows that
&amp;lt;,

which is equal to &amp;lt; +
&amp;lt;/&amp;gt;&quot;+

...
,
will not alter abruptly. Hence the

compounded motion will satisfy all the requisite conditions, and

therefore (Art. 2) it is the actual motion.

It will be observed that the pressure p will not be obtained

by adding together the pressures due to each of the above systems
of velocities. To find p we must substitute the complete value of

(f)
in equation (D). If, however, the motion be very small, so that

the square of the velocity is neglected, it will be sufficient to add

together the several pressures just mentioned.

In general the most convenient systems into which to decom

pose the motion of the bounding surfaces are those formed by

considering the motion of each surface, or of a certain portion of

each surface, separately&quot;. Such a portion may be either finite or

infinitesimal. In fact, in some of the cases of motion that will be

presently given, where
(f&amp;gt;

is expressed by a double integral with a

function under the integral sign expressing the motion of the

bounding surfaces, it will be found that each element of the inte

gral gives a value of
(/&amp;gt;

such that, except about the corresponding
element of the bounding surface, the motion of all particles in

contact with those surfaces is tangential.

A result which follows at once from this principle, and which

appears to admit of comparison with experiment, is the following.

Conceive an ellipsoid, or any body which is symmetrical with

respect to three planes at right angles to each other, to be made

to oscillate in a fluid in the direction of each of its three axes in

succession, the oscillations being very small. Then, in each case,

as may be shewn by the same sort of reasoning as that employed
in Art. 8, in the case of a cylinder, the effect of the inertia of the

fluid will be to increase the mass of the solid by a mass having a

certain unknown ratio to that of the fluid displaced. Let the axes

of co-ordinates be parallel to the axes of the solid; let x, y, z
t
be
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the co-ordinates of the centre of the solid, and let M, M , M&quot;, be

the imaginary masses which we must suppose added to that of the

solid when it oscillates in the direction of the axes of x, y, z, respec

tively. Let it now be made to oscillate in the direction of a line

making angles a, /3, 7, with the axes, and let s be measured along
this line. Then the motions of the fluid due to the motions of

the solid in the direction of the three axes will be superimposed.
The motion being supposed to be small, the resultant of the pres
sures of the fluid on the solid will be three forces, equal to

2
&amp;lt;? ,72 &amp;lt;? /7

2
&amp;lt;?a -.ft f~.lv o -AIT 1 1 lit aM cos) M coS

respectively, in the directions of the three axes. The resultant of

these in the direction of the motion will be M
t
d2

s/df where

M
t
= ifcos2

a + M f

cos
2

/3 + M&quot; cos
2

7 .

Each of the quantities M, M ,
M&quot; and M

ft may be determined

by observation, and we may find whether the above relation holds

between them. Other relations of the same nature may be de

duced from the principle explained in this article.

6. Reflection.

Conceive two solids, A and B, immersed in a fluid of infinite

extent, the whole being at rest. Suppose A to be moved in any
manner by impulsive forces, while B is held at rest. Suppose the

solids A and B of such forms that, if either were removed, and

the several points of the surface of the other moved instantaneously

in any given manner, the motion of the fluid could be determined :

then the actual motion can be approximated to in the following

manner. Conceive the place of B to be occupied by fluid, and A
to receive its given motion

;
then by hypothesis the initial motion

of the fluid can be determined. Let the velocity with which the

fluid in contact with that which is supposed to occupy B s place

penetrates into the latter be found, and then suppose that the

several points of the surface of B are moved with normal velocities

equal and opposite to those just found, A a place being supposed

to be occupied by fluid. The motion of the fluid corresponding to

the velocities of the several points of the surface of B can then be

found, and A must now be treated as B has been, and so on. The

system of velocities of the particles of the fluid corresponding to
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the first system of velocities of the particles of the surface of B,

form what may be called the motion of A reflected from B ,
the

motion of the fluid arising from the second system of velocities of

the particles of the surface of A may be called the motion of A
reflected from B and again from A, and so on. It must be re

membered that all these motions take place simultaneously. It

is evident that these reflected motions will rapidly decrease, at

least if the distance between A and B is considerable compared
with their diameters, or rather with the diameter of either. In

this case the calculation of one or two reflections will give the

motion of the fluid due to that of A with great accuracy. It is

evident that the principle of reflection will extend to any number
of solid bodies immersed in a fluid

;
or again, the body B may be

supposed to be hollow, and to contain the fluid and A, or else A
to contain B. In some cases the series arising from the successive

reflections can be summed, in which case the motion will be deter

mined exactly. The principle explained in this article has been

employed in other subjects, and appears likely to be of great use

in this. It is the same for instance as that of successive influences

in Electricity.

7. If a mass of fluid be at rest or in motion in a close vessel

which it entirely fills, the vessel being either at rest or moving in

any manner, any additional motion of translation communicated

to the vessel will not affect the relative motion of the fluid. For

it is evident that on the supposition that the relative motion is

not affected the equation (B) and the condition (a) will still be

satisfied. Also, if Wj, tn-
2 ,

v?
3 ,
be the components of the effective force

of any particle in the first case, and U, V, W, be the components
of the velocity of translation, then

dU dV dW

will be the components of the effective force of the same particle

in the second case. Now since by hypothesis vr^dx + vr
zdy -f vr

s
dz

is an exact differential, as follows from equations ((7), and U, V} W,
are functions of t only, it follows at once that

dU\, dV
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is an exact differential, where x, y, z, are the co-ordinates of any

particle referred to the old axes, which are themselves moving in

space with velocities U, V, W. But if x
lt y^z^ be the co-ordinates

of the same particle referred to parallel axes fixed in space, we
have

a^x + fUdt, y^y+fVdt, z^z+fWdt,

whence, supposing the time constant, dx=dx1 , dy = dylt
dz = dz

1 ,

and therefore

dU\ 7 . f .
d

)
&

&amp;gt;

is an exact differential. Hence, equations (A) can be satisfied by
a suitable value of p. Denoting by p the pressure about the par
ticle whose co-ordinates are x, y, z, in the first case, the pressure
about the same particle in the second case will be

{dU dV dW
It

* dt

none of the terms of which will alter abruptly, since by hypothesis

p does not.

Since then the present hypothesis satisfies all the requisite

conditions, it follows from Art. 2 that that hypothesis is correct.

If F be the additional effective force of any particle of the vessel

in consequence of the motion of translation, and we take new axes

of x, y, z
,
of which the first is in the direction of F, the additional

term introduced into the value of the pressure will be pFx,
omitting the arbitrary function of the time. The resultant of the

additional pressures on the sides of the vessel will be equal to F
multiplied by the mass of the fluid, and will pass through the

centre of gravity of the fluid, and act in the directon of x.

8. Motion between two cylindrical surfaces having a common
axis.

Let us conceive a mass of fluid at rest, bounded by two cylin
drical surfaces having a common axis, these surfaces being either

infinite or bounded by two planes perpendicular to their axis. Let

us suppose the several generating lines of these cylindrical surfaces

to be moved parallel to themselves in any given manner consistent

with the condition that the volume of the fluid be not altered :
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it is required to determine the initial motion at any point of the

mass.

Since the motion will take place in two dimensions, let the

fluid be referred to polar co-ordinates r, 0, in a plane perpendicular
to the axis, r being measured from the axis. Let a be the radius

of the inner surface, 6 that of the outer, f(6) the normal velocity
of any point of the inner surface, F(6) the corresponding quantity
for the outer.

Since for any particular radius vector between a and b the

value of
(j&amp;gt;

is a periodic function of 6 which does not become in

finite, (for the motion at each point of each bounding surface

is supposed to be finite), and which does not alter abruptly, it

may be expanded in a converging series of sines and cosines of

6 and its multiples. Let then

= P + 2r (Pn cos nO + Qn sin nff) (1).

Substituting the above value in the equation

d

which
&amp;lt;f)

is to satisfy, and equating to zero the coefficients of

corresponding sines and cosines, which is allowable, since a given

function can be expanded in only one series of the form (1), we

find that P must satisfy the equation

A

of which the general integral is

the base being e, and Pn and Qn
must both satisfy the same

equation, viz.

dr dr

of which the general integral is

Pn
= Cr-*+C r*.

We have then, omitting the arbitrary constant in
&amp;lt;/&amp;gt;,

as will
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be done for the future, since we have occasion to use only the

differential coefficients of (,

= A \og r + Sr {(A n r~
n + A nr

n
]
cos W

+ (J?n r-&quot; + J5&amp;gt;&quot;)sin^}
......... (3),

with the conditions

when r = a ..................... (4),

when r=6 ............ (5).

Let / (&)
= + ( n cos n&amp;lt; + n sn w

j^(6&amp;gt;)

= + SrC^cos n0 +&n sin TI

so that

with similar expressions for ,
&c. Then the condition (4)

gives

cos TZ^

whence,

Similarly, from the condition (5), we get
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It will be observed that aC
Q
= bC

Q , by the condition that the

volume of fluid remains unchanged, which gives

o Jo

From the above equations we easily get

and, changing the sign of n,

with similar expressions for Bn and B M involving D in place of C.

We have then

&amp;lt;/&amp;gt;

= a(7 log r + Sr -
(&

2W - a2

&quot;)

1

{[(b~
n+l C n

- a~
n+1

CJ cos nO
fi

+ (b~
n+l D n

- a-
n+l

DJ sin nff] a?&quot; b^r^

+ [(b
n+1 C n -a

n
&quot;Cn)cosn6

+ (b
n+lD n -a

n+1Dn)siun0]r
n
}
..................... (6),

which completely determines the motion.

It will be necessary however, (Art. 2), to shew that this value

of
(f&amp;gt;

does not alter abruptly for points within the fluid, as may
be easily done. For the quantities Cn&amp;gt;

D
n cannot be greater than

}
where each element of the integral is taken posi-

tively ;
and since by hypothesis / (&) is finite for all values of 9

from to 2?r, it follows that neither Gn nor Dn can be numerically

greater than a constant quantity which is independent of n. The
same will be true of C n and D n . Remembering then that r&amp;gt;a

and &amp;lt; 6, it can be easily shewn that the series which occur in (6)

have their terms numerically less than those of eight geometric
series respectively whose ratios are less than unity; and since

moreover the terms of the former set of series do not alter abruptly,

it follows that &amp;lt; cannot alter abruptly. The same may be proved
in a similar manner of the differential coefficients of

(/&amp;gt;.

The other

infinite series expressing the value of &amp;lt; which occur in this paper

may be treated in the same way : and in Art. 10, where
(/&amp;gt;

is

expressed by a definite integral, the value of
(/&amp;gt;

and its differential

s. 3
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coefficients will alter continuously, since that is the case with each

element of the integral. It will be unnecessary therefore to

refer again to the condition (d),

If the fluid be infinitely extended, we must suppose C n and

D n to vanish in (6), since the velocity vanishes at an infinite

distance
;
we must then make b infinite, which reduces the above

equation to

.....(7).

This value of
(/&amp;gt; may be put under the form of a definite

integral : for, replacing CQ ,
Cn and Dn by their values, it becomes

(0-ff) dff,

which becomes on summing the series

log r*f(ff)W + **loe l - 2
a
- cos (6

-
ff] + / (P) dff;

whence

_^
~irr J

,

dr ~irr 2 r
2 - 2ar cos (0- ff)+

If we suppose r to become equal to a the quantity under the

integral sign vanishes, except for values of 6
,
which are indefinitely

near to 6. The value of the integral itself becomes irf(0)*. Hence

it appears, that to the disturbance of each element of the surface,

there corresponds a normal velocity of the particles in contact

with the surface, which is zero, except just about the disturbed

element. The whole disturbance of the fluid will be the aggregate

of the disturbances due to those of the several elements of the

surface. The case of the initial motion of fluid within a cylinder,

and the analogous cases of motion within and without a sphere,

which will be given in the next article, may be treated in the

same manner.

The velocity in the direction of r given by the equation (7),

= &amp;gt; + 2- {Gn cos ne + Dn sin nO} t

*
Poisson, TMorie de la Chalcur, Chap. vn.
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and that perpendicular to r, and reckoned positive in the same

direction as 0, (= d(f)/rd0),

n+l

{Cn smn0-Dn cosn6}.

Conceive a mass of fluid comprised between two infinite

parallel planes, and suppose that a certain portion of this fluid

contains solid bodies bounded by cylindrical surfaces perpendicular
to these planes. The whole being at first at rest, suppose that

the surfaces of these solids are moved in any manner, the motion

being in two dimensions. Conceive a circular cylindrical surface

described perpendicular to the parallel planes, and with a radius so

large that all the solids are comprised with it. Then, (Art. 4), we

may suppose the motion of the fluid at any time to have been

produced directly by impact. On this supposition the initial

motion of the part of the fluid without the above cylindrical
surface will be determined in terms of the normal motion of the

fluid forming that surface, as has just been done. If (7 be different

from zero, then, at a great distance in the fluid, the velocity will

be ultimately aCJr, and directed to or from the axis of the

cylinder, and alike in all directions. Since the rate of increase

of volume of a length I of the cylinder is equal to

it appears that the velocity at a great distance is proportional
to the expansion or contraction of a unit of length of the solids.

If however there should be no expansion or contraction, or if

the expansion of some of the solids should make up for the con

traction of the rest, then in general the most important part of

the motion at a great distance will consist of a velocity O cos
l

. /r
2

directed to or from the centre, and another C sin
l

. /r
z

perpen
dicular to the radius vector, the value of C and the direction from

which 0j is measured varying from one instant to another. The
resultant of these velocities will vary inversely as the square of

the distance.

Resuming the value of
&amp;lt;f&amp;gt; given by equation (6), let us suppose

that the interior cylindrical surface is rigid, and moved with a

velocity C in the direction from which 6 is measured, the outer

32
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surface being at rest: then / (6)
= G cos 0, F (0)

= Q
; whence

C
l
= C, and the other coefficients are each zero. We have then

Suppose now that the inner cylinder has a small oscillatory

motion about an axis parallel to the axis of the cylinders, the

cylinders having their axes coincident in the position of equi
librium. Let ty be the angle which a plane drawn through the

axis of rotation, and that of the solid cylinder at any time makes

with a vertical plane drawn through the former. The motion

of translation of the axis of the cylinder will differ from a recti

linear motion by quantities depending on iff: the motion of

rotation about its axis will be of the order -^, but will have no

effect on the fluid. Therefore in considering the motion of the

fluid we niay, if we neglect squares of ^, consider the motion

of the cylinder rectilinear. The expression given for
&amp;lt;/&amp;gt; by equa

tion (8) will be accurately true only for the instant when the

axes of the cylinders coincide
;
but since the whole resultant

pressure on the solid cylinder in consequence of the motion is

of the order ty, we may, if we neglect higher powers of
-vjr

than the

first, employ the approximate value of
&amp;lt;/&amp;gt; given by equation (8).

Neglecting the square of the velocity, we have

d$
P~ P dt

In finding the complete value of
d(f&amp;gt;/dt

it would be necessary to

express (f&amp;gt; by co-ordinates referred to axes fixed in space, which

after differentiation we might suppose to coincide with others

fixed in the body. But the additional terms so introduced de

pending on the square of the velocity, which by hypothesis is

neglected, we may differentiate the value of $ given by equation

(8) as if the axes were fixed in space. We have then, to the first

order of approximation,

ci

-n = - ?~ 2 \- + r l cos &
dt b -or (r J

If I be the length of the cylinder, the pressure on the element

ladO, resolved parallel to x and reckoned positive when it acts

in the direction of x,
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Pla*-^

and integrating from = to =
2?r, we have the whole resultant

pressure parallel to x

tf + a? 2 dC=
72 9Vpla -j- .

If or dt

Since dC/dt is the effective force of the axis, parallel to x, and

that parallel to y is of the order
i|r

2

, we see that the effect of

the inertia of the fluid is to increase the mass of the cylinder

by TTT~ 2 A6* where p is the mass of the fluid displaced. This

imaginary additional mass must be supposed to be collected at the

axis of the cylinder.

If the cylinder oscillate in an infinitely extended fluid b = &
,

and the additional mass becomes equal to that of the fluid dis

placed. This appears to be a result capable of being compared
with experiment, though not with very great accuracy. Two

cylinders of the same material, and of the same radius, but whose

lengths differ by several radii, might be made to oscillate in

succession in a fluid, at a depth sufficiently great to allow us

to neglect the motion of the surface of the fluid. The time of

oscillation of each might then be calculated as if the cylinder
oscillated in vacuum, acted on by a moving force equal to its

weight minus that of the fluid displaced, acting downwards

through its centre of gravity, and having its mass increased by an

unknown mass collected in the axis. Equating the time of oscil

lation so calculated to that given by observation, we should

determine the unknown mass. The difference of these masses

would be very nearly equal to the mass which must be added

to that of a cylinder whose length is equal to the difference of

the lengths of the first two, when the motion is in two dimensions.

This evidently comes to supposing that, at a distance from the

middle of the longer cylinder not greater than half the difference

of the lengths of the two, the motion may be taken as in two

dimensions. The ends of the cylinders may be of any form,

provided that they are all of the same. They may be suspended

by fine equal wires, in which case we should have a compound
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pendulum, or attached to a rigid body oscillating above the fluid

by means of thin flat bars of metal, whose plane is in the plane of

motion. Another way of getting rid of the motion in three

dimensions about the ends would be, to make those ends plane,

and to fix two rigid planes parallel to the plane of motion, which

should be almost in contact with the ends of the cylinder.

9. Motion between two concentric spherical surfaces. Motion

of a ball pendulum enclosed in a spherical case.

Let a mass of fluid be at rest, comprised between two con

centric spherical surfaces. Let the several points of these surfaces

be moved in any manner consistent with the condition that the

volume of the fluid be not changed : it is required to determine

the initial motion at any point of the mass.

Let a, b, be the radii of the inner and outer spherical surfaces

respectively ;
then employing the co-ordinates r

} 0, o&amp;gt;,

where r

is the distance from the centre, 6 the angle which r makes with

a fixed line passing through the centre, G&amp;gt; the angle which a plane

passing through these two lines makes with a fixed plane through

the latter, the value of
&amp;lt;/&amp;gt; corresponding to any radius vector

comprised between a and b can be expanded in a converging

series of Laplace s coefficients. Let then

Vn being a Laplace s coefficient of the nth
order.

Substituting in the equation,

dV0 1 d ( . a d$\ ,

1
r TT + -

Q -jh sm JQ + -=-Tdr sin 6 dv \ dvj sin

which
&amp;lt;/&amp;gt;

is to satisfy, employing the equation

and then equating to zero the Laplace s coefficients of the several

orders, we find

The general integral of this equation is
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where C and are functions of 6 and G&amp;gt;. Substituting in the

equation (9), and equating coefficients of the two powers of r

which enter into it separately to zero, we find that both C and G

satisfy it, and therefore are both Laplace s coefficients of the nih

order. We have then

where Yn and Zn are each Laplace s coefficients of the nih
order,

and do not contain r. Let f(0, w) be the normal velocity of the

point of the inner surface corresponding to 6 and co, F(6, o&amp;gt;)

the

corresponding quantity for the outer
;
then the conditions which

&amp;lt;j)

is to satisfy are that

-~ = f(Q} G)) when r = a,dr

^0 T^/a \ T_ 7

-r- = if (u, &)) when r b.

Let /(#, ft)), expanded in a series of Laplace s coefficients, be

P.+P....+P.+...

which expansion may be performed by the usual formula,, if not

by inspection: then the first condition gives

STw Y nn
~l (n -1- 1\ ^ /7-(n + 2U ^P

t 7i \ * / n **
j ^o 71 &amp;gt;

and equating Laplace s coefficients of the same order, we get

V ^n-l Inn i &quot;T \ ^ ^-(n+2) P f~\T\
71 2 n d \n-\- i)Zjnd

v = JL
n \^-^/

Let F(0, ft)), expanded in a series of Laplace s coefficients, be

Ft+Pt ...P,+ ...!

then from the second condition, we get

7iFw^-l_(w+ l)^-(n+2) ==p n (12).

From (11) and (12) we easily get

Pf lkn+2 P s*n+2
T-r -JL u _/: (jj

provided n be greater than 0. If n 0, we have
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But the condition that the volume of the fluid be not altered,

gives

tf I I *f(0, )
sin OdBdto = &*[* f F(0, to)

sin 0d0da,
J OJQ JO ./O

or 47ra
2P =47r&2P

,

which reduces the two equations just given to one.

We have then, omitting the constant Y
QJ

i
(P n 6J;2

- Pw a
+ 2

) r
n

which determines the motion.

When the fluid is infinitely extended, we have P n
= since

the velocity vanishes at an infinite distance, and b = GO
,
whence

It may be proved, precisely as was done, (Art. 8), for motion

in two dimensions, that if any portion of an infinitely extended

fluid be disturbed by the motion of solid bodies, or otherwise,

if all the fluid beyond a certain distance from the part disturbed

were at first at rest, the velocity at a great distance will ultimately

be directed to or from the disturbed part, and will be the same

in all directions, and will vary as r~
2

. The coefficient of r~
2
will

be proportional to the rate of gain or loss of volume of the part

disturbed. If however this rate should be zero, then the most

important part of the velocity at a great distance will in general

be that depending on the term -^a
sP

l
.r~

z
in &amp;lt;, Since the

general form of P
l
is

J.cos 0+ J9sin0cosa&amp;gt; + sin0sin,

we easily find, by making use of rectangular co-ordinates, changing

the direction of the axes, and then again adopting polar co

ordinates, that the above term in
&amp;lt;f&amp;gt;

takes the form D cos 6^ . r~
2

,

0j being measured from some line passing through the origin.

The motion will therefore be the same as that round a ball

pendulum in an incompressible fluid, the centre of the ball being

in the origin; a case of motion which will be considered im

mediately. In order to represent the motion at different times,
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we must suppose the velocity and direction of motion of the

ball to change with the time.

The value of
&amp;lt;/&amp;gt; given by equation (13) is applicable to the

determination of the motion of a ball pendulum enclosed in a

spherical case which is concentric with the ball in its position of

equilibrium. If G be the velocity of the centre of the ball at

the instant when the centres of the ball and case coincide, and

if 6 be measured from the direction in which it is moving, we

shall have

/. P = 0, P^C cos 0, P
2
= 0, &c., P =

0, &c.,

and the value of
(/&amp;gt;

for this instant is accurately

Co3
b*

which, when b = oo
,
becomes

Co? cos

2rz

which is the known expression for the value of
&amp;lt;/&amp;gt;

for a sphere

oscillating in an infinitely extended, incompressible fluid.

It may be shewn, by precisely the same reasoning as was

employed in the case of the cylinder, that in calculating the

small oscillations of the sphere the value of
d(f&amp;gt;/dt

to be employed is

and from the equation p = p d&amp;lt;f&amp;gt;/dt,

we easily find that the whole

resultant pressure on the sphere in the direction of its centre, and

tending to retard it is

4 Trpa
8

t V_\dCL

and that perpendicular to this direction is zero. Since dC/dt is

the effective force of the centre in the direction of the motion, and

that perpendicular to this direction is of the second order, the

effect of the inertia of the fluid will be to increase the mass of the

sphere by a mass
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IJL being the mass of the fluid displaced ;
so that the effect of the

case is, to increase the mass which we must suppose added to

that of the ball in the ratio of b
3 + 2a3

to V - a\

Poisson, in his solution of the problem of the oscillating sphere

given in the Memoires de I Academie, Tome XL arrives at a different

conclusion, viz. that the case does not at all affect the motion of

the sphere. When the elimination which he proposes at p. 563
is made, the last term of equation (/), p. 550, becomes

where a is the velocity of propagation of sound, and 8 the ratio

of the density of air to that of the ball, f and
&quot;

being functions

derived from others which enter into the value of
&amp;lt;f&amp;gt; by putting

r = c, where c is the radius of the ball. He then argues that

this term may be neglected as insensible, since it involves 8 in

the numerator and a2
in the denominator, tacitly assuming that

jy + is not large since is not large. Now for the disturb
ed dt

ances of the air which have the same period as those of the

pendulum d$/dt is not large compared with
&amp;lt;,

as it is for those on

which sound depends. Let then Poisson s solution of equation (a),

p. 547 of the volume already mentioned, be put under the form

/ and F denoting the derived functions, and all the Laplace s

coefficients except those of the first order being omitted, the value

of
&amp;lt;/&amp;gt; just given being supposed to be a Laplace s coefficient of that

order. Then if we expand the above functions in series ascending

according to powers of r/a, we find

and in order that when a = oo this equation may coincide with

(10), when all the Laplace s coefficients except those of the first

order are omitted in that equation, it will be seen that it is
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necessary to suppose f&quot;(t)-F &quot;(t) t
and therefore f(t)-F(),

to be of the order a/
5

,
while f(t) + F (t)

is not large. Putting then

=x (0

l?(*)-X()
we shall have

.

so that -^7-3-^ will contain a term of the order a2

,
and the

Cut

term which Poisson proposes to leave out will be of the same

order of magnitude as those retained.

In making the experiment of determining the resistance of

the air to an oscillating sphere, it would appear to be desirable

to enclose the sphere in a concentric spherical case, which would

at the same time exclude currents of air, and facilitate in some

measure the experiment by increasing the small quantity which is

the subject of observation. The radius of the case however ought
not to be nearly as small as that of the ball, for if it were, in

the first place a small error in the position of the centre of the

ball when at rest might not be insensible, and in the second place

the oscillations would have to be inconveniently small, in order

that the value of
&amp;lt;f&amp;gt;

which has been given might be sufficiently

approximate. The effect of a small slit in the upper part of the

case, sufficient to allow the wire by which the ball is supported
to oscillate, would evidently be insensible, for the condensation

being insensible in a vertical plane passing through the axis of

rotation, since the alteration of pressure in that plane is insensible,

the air would not have a tendency alternately to rush in and out

at the slit.

10. Effect of a distant rigid plane on the motion of a ball

pendulum.

Although this problem may be more easily solved by an arti

fice, it may be well to give the direct solution of it by the method

mentioned in Article 6. In order to calculate the motion re

flected from the plane, it will be necessary to solve the following

problem :
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To find the initial motion at any point of a mass of fluid in

finitely extended, except where it is bounded by an infinite solid but

not rigid plane, the initial motion of each point of the solid plane

being given.

It is evident that motion directed to or from a centre situated

in the plane, the velocity being the same in all directions, and

varying inversely as the square of the distance from that centre,

would satisfy the condition that udx + vdy + wdz is an exact

differential, and would give to the particles in contact with the

plane a velocity directed along the plane, except just about the

centre. Let us see if the required motion can be made up of an

infinite number of such motions directed to or from an infinite

number of such centres.

Let x, y, z, be the co-ordinates of any particle of fluid, the

plane xy coinciding with the solid plane, and the axis of z being

directed into the fluid. Let x, y y
be the co-ordinates of any point

in the solid plane : then the part of &amp;lt; corresponding to the motion

of the element dxdy of the plane will be

ty(x, y )dx dy

and therefore the complete value of
&amp;lt;/&amp;gt;

will be given by the equa

tion

4 = f f _ *fr.yWfr
(H).

* /(/ \a i /. ^. \* i -.2)
V X

The velocity parallel to z at any point
=

dcf&amp;gt;/dz

Now when z vanishes the quantity under the integral signs

vanishes, except for values of x and y indefinitely near to x arid y

respectively, the function ty(x t y ) being supposed to vanish when

x or y is infinite. Let then x = x + f, y = y + 77, then, and
77,

being as small as we please, the value of the above expression

when z = becomes

-the limit off
/-

Now if ^r(x, y }
does not alter abruptly between the limits x-
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and x + %,
of x, and y 77,

and
;y + 77,

of y , the above expression

may be replaced by

- x the limit

which is = 27Ti/r(a?, y}.

If now/(# , y&quot;)
be the given normal velocity of any point (a? , y}

of the solid plane, the expression for &amp;lt; given by equation (14) may
be made to give the required normal velocity of the fluid particles

in contact with the solid plane by assuming

whence

A = IT f f(
2vr J _J .. {(aj- aj

)

a + (y-

This expression will be true for any point at a finite distance from

the plane xy even when/ (x, y }
does alter abruptly; for we may

first suppose it to alter continuously, but rapidly, and may then

suppose the rapidity of alteration indefinitely increased : this will

not cause the value of just given to become illusory for points

situated without the plane xy.

If it be convenient to use polar co-ordinates in the plane xy,

putting x = q cos co, y = q sin co, x =
q cos co

, y q sin &/, and re

placing/^ , y } by/(/, &amp;lt;

), the equation just given becomes

2?r o o {q
2 +

&amp;lt;f- Zqq cos (co
- co

) +

To apply this to the case of a sphere oscillating in a fluid per

pendicularly to a fixed rigid plane, let a be the radius of the sphere,

and let its centre be moving towards the plane with a velocity C
at the time t. Then, (Art. 4), we may calculate the motion as if

it were produced directly by impact. Let h be the distance of the

centre of the sphere from the fixed plane at the time t, and let

the line h be taken for the axis of z, and let r, 0, be the polar co

ordinates of any point of the fluid, r being the distance from the

centre of the sphere, and 6 the angle between the lines r and h.

Then if the fluid were infinitely extended around the sphere we

should have
(7a

s
cos
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The velocity of any particle, resolved in a direction towards the

plane, = d$/dr . cos d$/rd& . sin 6

LsCL r n *

For a particle in the plane xy we have

r cos 6 h, rsm6 =
q&amp;gt;

and the above velocity becomes

We must now, according to the method explained in (Art. 6), sup
pose the several points of the plane xy moved with the a,bove

velocity parallel to z. We have then

whence, for the motion of the sphere reflected from the plane,

*- a*a rf (w-Mw*
47r J o J tf+ &amp;lt; + - 2 cos a, - + z

2
*

&quot;- 2qq cos
(a,
-

We must next find the velocity, corresponding to this value of

(f&amp;gt;,

with which the fluid penetrates the surface of the sphere. We
have in general

z h r cos 0, q r sin 0,

whence

[f + f -
2qq cos

(o&amp;gt;

-
&amp;lt;

)
+ z

2

}^
=

{h
2 + r2 + #

2 - 2hr cos -
2q r sin cos (co

-
a&amp;gt; )}~*.

Now supposing the ratio of a to h to be very small, and retaining
the most important term, the value of

d(f&amp;gt;/dr
when r = a will be

equal to the coefficient of r when is expanded in a series ascend

ing according to powers of r,

_Ca?_
r ^ (2A

2 -
q

z

) {h COS + tf sin 6 cos (a
- a)

)} q dq da)

47rJ J

&quot;

(h* + q *)*

Ca5
cos 9

In order now to determine the motion reflected from the

plane and again from the sphere, we must suppose the several

points of the sphere to be moved with a normal velocity
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Ca3
cos 6 . /8h

3

, or, which is the same, we must suppose the whole

sphere to be moved towards the plane with a velocity Cas

/8h
3
.

Hence the value of
&amp;lt;f&amp;gt; corresponding to this motion will be given

by the equation

Ca6
cos

For points at a great distance from the centre of the sphere,
the motion which is twice reflected will be very small compared
with that which is but once reflected. For points close to the

sphere however, with which alone we are concerned, those motions

will be of the same order of magnitude, and if we take account

of the one we must take account of the other.

Putting 2=rsin#, z = h-rcos0 in (16), expanding, and

retaining the two most important terms, we have

K being a constant, the value of which is not required, and the

second term being evidently found by multiplying the quantity
at the second side of (17) by r. Adding together the parts of $
given by equations (15), (18) and (19), putting r = a

t replacing
G by dC/dt, and taking for h the value which it has in equili

brium, just as in the case of the oscillating cylinder in Article 8,

we have for the small motion of the sphere

cty j-rdC a/- Sa3\dC

The resultant of the part of the pressure due to the first term

is zero : that due to the second term is greater than if the plane
were removed in the ratio of l + Sa3

/8h
3
to 1. Consequently, if

we neglect quantities of the order a4

//*,

4

,
the effect of the inertia

of the fluid is, to add a mass equal to (1 + 3a3

/8h?) . \p to that of

the sphere, without increasing the moment of inertia of the latter

about its diameter. The effect therefore of a large spherical case

is eight times as great as that of a tangent plane to the case,

perpendicular to the direction of the motion of the ball.

The effect of a distant rigid plane parallel to the direction

of motion of an oscillating sphere might be calculated in the

same manner, but as the method is sufficiently explained by the
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first case, it will be well to employ the artifice before alluded to,

an artifice which is frequently employed in this subject. It con

sists in supposing an exactly symmetrical motion to take place

on the opposite side of a rigid plane, by which means we may

evidently conceive the plane removed.

Let the sphere be oscillating in the direction of the axis of oc,

the oscillations in this case, as in the last, being so small that

they may be taken as rectilinear in calculating the motion of the

fluid
;
and instead of a rigid plane conceive an equal sphere to exist

at an equal distance on the opposite side of the plane xy, moving
in the same direction and with the same velocity as the actual

sphere. Let r, 0, ew, be the polar co-ordinates of any particle

measured from the centre of the sphere, 6 being the angle between

r and a line drawn through the centre parallel to the axis of x,

and w the angle which the plane passing through these lines makes

with the plane ocz. Let r
t ,

o&amp;gt;

3
be the corresponding quantities

symmetrically measured from the centre of the imaginary sphere.

If the fluid were infinite we should have for the motion cor

responding to that of the given sphere

The motion reflected from the plane is evidently the same as

that corresponding to the motion of the imaginary sphere in an

infinite mass of fluid, for which we have

Co? cos &

Now r cos = r cos 6, r sin & sin to = r sin 6 sin to,

/ sin & cos o&amp;gt; + r sin 6 cos o&amp;gt;
= 2h

;

whence r
2 = r

2 + 4A2
4&amp;lt;hr sin cos co,

and equation (21) is reduced to

&amp;lt;7aV cos 6

2 {r
2 + 4

2 - 4/tr sin cos
o&amp;gt;}

f

Retaining only the terms of the order a*r/h
a
or r

4

/^
3

,
so as to get

the value of
d&amp;lt;j&amp;gt;/dr

to the order a3

/h
3

,
the above equation is re

duced to

Ca*r cos ,

...................... (22)



ON SOME CASES OF FLUID MOTION. 49

and the value of dfy/dr when r = a is, to the required degree of

approximation,
Ca3

cos 6

For the value of
&amp;lt;/&amp;gt; corresponding to the motion of the imaginary

sphere reflected from the real sphere, we shall therefore have

, Co? cos

Adding together the values of $ given by (20), (22) and (23),

putting r = a, and replacing C by dC/dt, we have, to the requisite

degree of approximation,

3 as
\ dO

Hence in this case the motion of the sphere will be the same as

if an additional mass equal to (l + 3a8

/16&
8

)
. \p were collected

at its centre. The effect therefore of a distant rigid plane which
is parallel to the direction of the motion of a ball pendulum will

be half that of a plane at the same distance, and perpendicular
to that direction. It would seem from Poisson s words at page 562
of the eleventh volume of the Memoires de VAcademie, that he

supposed the effect in the former case to depend on a higher
order of small quantities than that in the latter.

If the ball oscillate in a direction inclined to the plane, the
motion may be easily deduced from that in the two cases just

given, by means of the principle of superposition.

11. The values of
&amp;lt;/&amp;gt;

which have been given for the motion
of translation of a sphere and cylinder do not require us to

suppose that either the velocity, or the distance to which the
centre of the sphere or axis of the cylinder has been moved, is

small, provided the same particles remain in contact with the

surface. The same indeed is true of the values corresponding to

a motion of translation combined with a motion of contraction

or expansion which is the same in all directions, but varies in any
manner with the time. The value of

&amp;lt;/&amp;gt; corresponding to a motion
of translation of the cylinder is - Ca2

cos 9 . r~\ C being the velo

city of the axis, and 6 being measured from a line drawn in the

direction of its motion. The whole resultant of the part of the

pressure due to the square of the velocity is zero, since the velocity
at the point whose co-ordinates are r, 0, is the same as that at

S. 4
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the point whose co-ordinates are r and -rr-6. To find the re

sultant of the part depending on
d(j&amp;gt;/dt,

it will be necessary to

express ^ by means of co-ordinates referred to axes fixed in space.
Let Ox, Oy, be rectangular axes passing through the centre of

any section of the cylinder, OT the angle which the direction of

motion of the axis makes with Ox, & the inclination of any radius

vector to Ox
\
then

Co?
&amp;lt;f&amp;gt;=

--
jj- (r cos 6 cos w + r sin 6 sin -BT)

a*(C x+C&quot;y)

x* + y*

putting Q and C&quot; for the resolved parts of the velocity G along
the axes of x and y respectively. Taking now axes Ax, Ay,
parallel to the former and fixed in space, putting a and /3 for the

co-ordinates of 0, differentiating &amp;lt;j&amp;gt;

with respect to t, and replacing

da/dt by C , and d/3/dt by C&quot;,
and then supposing a and /3 to

vanish, we have

,/ dC?_
dC&quot;\

d = a2 2

_ 2o^( * + (Ty)! _
*

V dt
V

dt

dt
~

The resultant of the part of the pressure due to the first two

terms is zero, since the pressure at the point (x, y) depending on

these terms is the same as that at the point ( x, y). It will

be easily found that the resultant of the whole pressure parallel

to x, and acting in the negative direction, on a length I of the

cylinder, is equal to irpla? . dC /dt, and that parallel to y equal to

Trpla
2

. dC&quot;ldt.
The resultant of these two will be TrplcfF, where

F is the effective force of a point in the axis of the cylinder, and

will act in a direction opposite to that of F. Hence the only

effect of the motion of the fluid will be, to increase the mass of

the cylinder by that of the fluid displaced. In a similar manner

it may be proved that, when a solid sphere moves in any manner

in an infinite fluid, the only effect of the motion of the fluid is to

increase the mass of the sphere by half that of the fluid displaced.

A similar result may be proved to be true for any solid sym
metrical with respect to two planes at right angles to each other,

and moving in the direction of the line of their intersection in

an infinitely extended fluid, the solid and fluid having been at

first at rest. Let the planes of symmetry be taken for the planes

of xy and xz, the origin being fixed in the body : then it is evident
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that the resultant of the pressure on the solid due to the motion

will be in the direction of the axis of x, and that there will be

no resultant couple. Let C be the velocity of the solid at any
time

;
then the value of &amp;lt; at that time will be of the form

Cifr (x, y, 2), where G alone contains t (Art. 4), and the velocity

of the particle whose co-ordinates are #, y, z, being proportional

to (7, the vis viva of the solid and the fluid together will be

proportional to C*. Now if no forces act on the fluid and solid,

except the pressure of the fluid, this vis viva must be constant *
;

therefore G must be constant
;
therefore the resultant of the fluid

pressure on the solid must be zero. If now G be a function of t

we shall have

p= _p^ (a-, #*) +/,

p being the pressure when G is constant. Since therefore the

resultant of the fluid pressure varies for the same solid and fluid

as dC/dt the effective force, and for different fluids varies as p,

the effect of the inertia of the fluid will be, to increase the mass

of the solid by n times that of the fluid displaced, n depending

only on the particular solid considered.

Let us consider two such solids, similar to each other, and

having the co-ordinate planes similarly situated, and moving with

the same velocities. Let the linear dimensions of the second

be greater than those of the first in the ratio of m to 1. Let

* If an incompressible fluid which is homogeneous or heterogeneous, and con

tains in it any number of rigid bodies, be in motion, the rigid bodies being also

in motion, if the rigid bodies are perfectly smooth, and no contacts are formed or

broken among them, and if no forces act except the pressure of the fluid, the

principle of vis viva gives

where v is the whole velocity of the mass m, and the sign 2 extends over the whole

fluid and the rigid bodies spoken of, and where dS is an element of the surface

which bounds the whole, p /
the pressure about the element dS, and v the normal

velocity of the particles in that element, reckoned positive when tending into the

fluid, and where the sign ff extends to all points of the bounding surface. To apply

equation (a) to the case of motion at present considered, let us first confine our

selves to a spherical portion of the fluid, whose radius is r, and whose centre is near

the solid, so that dS refers to the surface of this portion. Let us now suppose r to

become infinite : then the second side of (a) will vanish, provided^ remain finite,

and v decrease in a higher ratio than r~2
. Both of these will be true, (Art. 9) ; for

v will vary ultimately as r~3
,
since there is no alteration of volume. Hence if the

sign S extend to infinity, we shall have 2/mv2 constant.

. 42
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u, v, w, be the velocities, parallel to the axes, of the particle (x, y, z]

in the fluid about the first
;
then shall the corresponding velocities

at the point (mx, my, mz) in the fluid about the second be also

u, v, to. For

udmx + vdmy + wdmz = m (udx + vdy -f wdz) (24),

and is therefore an exact differential, since udx + vdy+wdz is

one : also the normal at the point (x, y, z) in the first surface will

be inclined to the axes at the same angles as the normal at the

point (mx, my, mz) of the second surface is inclined to its axes,
and therefore the normal velocities of the two surfaces at these

points are the same
;
and the velocities of the fluid at these two

points parallel to the axes being also the same, it follows that the

normal velocity of each point of the second surface is equal to

that of the fluid in contact with it. Lastly, the motion about

the first solid being supposed to vanish at an infinite distance

from it, that about the second will vanish alsU Hence the sup

position made with respect to the motion of the fluid about the

second surface is correct. Now putting for $(udx+ vdy+ wda}}
for the fluid in the first case, the corresponding integral for the

fluid in the second case will be
???&amp;lt;,

if the constant be properly

chosen, as follows from equation (24). Consequently the value of

that part of the expression for the pressure, on which the resist

ance depends, will be m times as great for any point in the second

case as it is for the corresponding point in the first. Also, each

element of the surface of the second solid will be m2
times as

great as the corresponding element of the surface of the first.

Hence the whole resistance on the second solid will be m 3
times

as great as that on the first, and therefore the quantity n depends

only on the form, and not on the size of the solid.

When forces act on the fluid, it will only be necessary to add

the corresponding pressure. Hence when a sphere descends from

rest in a fluid by the action of gravity, the motion will be the same

as if a moving force equal to that of the sphere minus that of

the fluid displaced acted on a mass equal to that of the sphere

plus half that of the fluid displaced. For a cylinder which is

so long that we may suppose the length infinite, descending hori

zontally, every thing will be the same, except that the mass to be

moved will be equal to that of the cylinder plus the whole of the

fluid displaced. In these cases, as well as in that of any solid
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which is symmetrical with respect to two vertical planes at right

angles to each other, the motion will be uniformly accelerated,

and similar solids of the same material will descend with equal
velocities. These results are utterly opposed even to the com
monest observation, which shews that large solids descend much
more rapidly than small ones of the same shape and material,

and that the velocity of a body falling in a fluid (such as water),

does not sensibly increase after a little time. It becomes then

of importance in the theory of resistances to enquire what may be

ths cause of this discrepancy between theory and observation.

The following are the only ways of accounting for it which suggest
themselves to me.

First. It has been supposed that the same particles remain in

contact with the solid throughout the motion. It must be re

membered that we suppose the ultimate molecules of fluids (if

such exist), to be so close that their distance is quite insensible, a

supposition of the truth of which there can be hardly any doubt.

Consequently we reason on a fluid as if it were infinitely divisible.

Now if the motion which takes place in the cases of the sphere
and cylinder be examined, supposing for simplicity their motions

to be rectilinear, it will be found that a particle in contact with

the surface of either moves along that surface with a velocity which

at last becomes infinitely small, and that it does not reach the

end of the sphere or cylinder from which the whole is moving
until after an infinite time, while any particle not in contact with

the surface is at last left behind. It seems difficult to conceive of

what other kind the motion can be, without supposing a line

(or rather surface) of particles to make an abrupt turn. If it

should be said that the particles may come off in tangents, it must
be remembered that this sort of motion is included in the con

dition which has been assumed with respect to the surface.

Secondly. The discrepancy alluded to might be supposed to

arise from the friction of the fluid against the surface of the solid.

But, for the reason mentioned in the beginning of this paper, this

explanation does not appear to me satisfactory.

Thirdly. It appears to me very probable that the spreading
out motion of the fluid, which is supposed to take place behind

the middle of the sphere or cylinder, though dynamically possible,

nay, the only motion dynamically possible when the conditions
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which have been supposed are accurately satisfied, is unstable
;

so that the slightest cause produces a disturbance in the fluid,

which accumulates as the solid moves on, till the motion is quite

changed. Common observation seems to shew that, when a solid

moves rapidly through a fluid at some distance below the surface,

it leaves behind it a succession of eddies in the fluid. When the

solid has attained its terminal velocity, the product of the resist

ance, or rather the mean resistance, and any space through which the

solid moves, will be equal to half the via viva of the corresponding

portion of its tail of eddies, so that the resistance will be measured

by the vis viva in the length of two units of that tail. So far

therefore as the resistance which a ship experiences depends

on the disturbance of the water which is independent of its

elevation or depression, that ship which leaves the least wake

ought, according to this view, to be cceteris paribus the best sailer.

The resistance on a ship differs from that on a solid in motion

immersed in a fluid in the circumstance, that part of the resist

ance is employed in producing a wave.

Fourthly. The discrepancy alluded to may be due to the

mutual friction, or imperfect fluidity of the fluid.

12. Motion alout an elliptic cylinder of small eccentricity*.

The value of
&amp;lt;,

which has been deduced (Art. 8), for the

motion of the fluid about a circular cylinder, is found on the

supposition that for each value of r there exists, or may be

[* This particular problem, so far at least as concerns motion of translation,

is of little interest in itself, because Green (see Transactions of, the Eoijal Society

of Edinburgh, Vol. xm. p. 5.4, or p. 315 of his collected works) has determined the

motion of a fluid about an ellipsoid moving in any manner with a motion of trans

lation only; and the ellipsoid includes of course as a particular case an elliptic

cylinder of any eccentricity. The problem in the text will however serve as an

example of the mode of proceeding in the case of a cylinder of any kind differing

little from a circular cylinder.

In the case of such a cylinder, supposed to be free from abrupt changes of form,

it might safely be assumed that the expression for which applies to the fluid

beyond the greatest radius vector of any point of the surface might also be used

for some distance within, as explained in the text. By starting with this assumption,

which would be verified in the end, the process of solution would of course be

shortened. We should simply have to take the expression (31 ),
form the expression

(26 )
for the velocity normal to the surface, putting r= c (1 + e cos 20), and expand

ing as far as the first power of e, and equate the result to the expression (26). We

should thus determine the arbitrary constants in (31 ),
which would complete the

solution of the problem.]
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supposed to exist, a real and finite value of &amp;lt;. This will be true,

in any case of motion in two dimensions where udx + vdy is an

exact differential, for those values of r for which the fluid is not

interrupted, but will be true for values of r for which it is in

terrupted by solids only when it is possible to replace those solids

at any instant by masses of fluid, without affecting the motion

of the fluid exterior to them, those masses moving in such a

manner that the motion of the whole fluid might have been

produced instantaneously by impact. In some cases such a

substitution could be made, while in others it probably could not.

In any case however we may try whether the expansion given

by equation (3) will enable us to get a result, and if it will, we

need be in no fear that it is wrong (Art. 2). The same remarks

will apply to the question of the possibility of the expansion of &amp;lt;

in the series of Laplace s coefficients given in equation (10), for

values of r for which the fluid is interrupted. They will also

apply to such a question as that of finding the permanent tempe
rature of the earth due to the solar heat, the earth being supposed

to be a homogeneous oblate spheroid, and the points of the

surface being supposed to be kept up to constant temperatures,

given by observation, depending on the latitude.

In cases of fluid motion such as those mentioned, the motion

may be determined by conceiving the whole mass of fluid divided

into two or more portions, taking the most general value of
&amp;lt;/&amp;gt;

for

each portion, this value being in general expressed in a different

manner for the different portions, then limiting the general value

of
(f&amp;gt;

for each portion so as to satisfy the conditions with respect to

the surfaces of solids belonging to that portion, and lastly in

troducing the condition that the velocity arid direction of motion

of each pair of contiguous particles in any two of the portions are

the same. The question first proposed will afford an example
of this method of solution.

Let an elliptic cylinder be moving with a velocity (7, in the

direction of the major axis of a section of it made by a plane

perpendicular to its axis. The motion being supposed to be in

two dimensions, it will be sufficient to consider only this section.

Let

r = c (1 + e cos 20)

be the approximate equation to the ellipse so formed, the centre
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being the pole, and powers of e above the first being neglected.

Let a circle be described about the same centre, and having a

radius 7 equal to (1 + k) c, k being ^ e, and being a small quantity
of the order e. Let the portions of fluid within and without the

radius 7 be considered separately, and putting

r = c + z
t

let the value of
(f&amp;gt; -corresponding to the former portion be

P, Q and R being functions of 0, and the term in
2

being retained,

in order to get the value of dfyjdr true to the order e, while the

terms in z
s

,
&c. are omitted. Substituting this value of

&amp;lt;f&amp;gt;

in

equation (2), and equating to zero coefficients of different powers
of z, we have

_

2c 2c
2

d6*

which is the only condition to be satisfied, since the other equations

would only determine the coefficients of z
3

,
&c. in terms of the

preceding ones. We have then

Now if be the angle between the normal at any point of the

ellipse, and the major axis, we have

and the velocity of the ellipse resolved along the normal

= (7 cos f = G (I
-

e) cos + Ce cos 30 ......... (26).

The velocity of the fluid at the same point resolved along the

normal is

Let P and Q be expanded in series of cosines of 6 and its mul

tiples, so that

P = 2
&quot; PH cos n9, Q = ^ Qn cos w0,
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there being no sines in the expansions of P and Q, since the

motion is symmetrical with respect to the major axis
;
then

j - ~ (Q,- J P.)
cos n6 . . ..(28) ;

(29);

For a point in the ellipse, z cecos 20, whence from (27), (29) and

(30), we find that the normal velocity of the fluid

= 2
&quot;

Qn cos 7i0 +
I

n (n
-

2)

* - Q ;i
cos (n

-
2)

which is the same thing as

}[&amp;lt;-
2) *-L

+ n (n + 2) -Q,,+2 cos0....(31),

if we suppose P and Q to be zero when affected with a negative
suffix. This expression will have to be equated to the value of

C cos given by equation (26).

For the part of the fluid without the radius 7 we have

&amp;lt;=.^ logr + 2r cosn0* ............. (31 ),

since there will be no sines in the expression for
&amp;lt;,

because the

motion is symmetrical with respect to the major axis, and no

positive powers of r, because the velocity vanishes at an infinite

distance.

From the above value of
&amp;lt;/&amp;gt;

we have, for the points at a distance

7 from the centre,

* The first term of this expression is accurately equal to zero, since there is

no expansion or contraction of the solid (Art. 8). I have however retained it, in

order to render the solution of the problem in the present article independent of

the proposition referred to.
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d&amp;lt;f&amp;gt;

A
Q ^&amp;lt;*nA n

-y- = ^
Zj -j&i cos rc#,

dr 7
1

7&quot;

e_ S w4, -~~* S

Equating the above expressions to the velocities along and per

pendicular to the radius vector given by equations (29) and (30),

when z is put = kc, and then equating coefficients of corresponding

sines and cosines, we have

(!-&)&+* S=_^ .............. (32),

(33),

when n &amp;gt; 0, and equating constant terms we have

from which equation with (32) and (33) we have, putting

T) A M A A

^ = -t?, &amp;lt;3

=
-^?- when&amp;gt;0, and

,
= =*.

p C v t/

Substituting these values in the expression (31), it becomes

2: (n + !)(- 2)
-- + 1

( + 1) ( + 2) g? cos

p c

In the case of a circular cylinder the quantities A , A,2 ,
A

a ,
&c. are

each zero. In the present case therefore they are small quantities

depending on e. Hence, neglecting quantities of the order e
2

in the above expression, it becomes

which must be equal to
&amp;lt;7{(1 -e) cos ^ + e cos- 3^}. Equating

coefficients of corresponding cosines, we have

and the other quantities A ,
A

a ,
&c. are of an order higher than e.
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Hence, for the part of the fluid which lies without the radius 7,

we have

(34),

and for the part which lies between that radius and the ellipse we

have from (28)

&amp;lt;

= _ Cc {(I
-

e) cos + cos 30} + C {(I
-

e) cos + 3e cos 30} z

- -cos 6z
z

.. ..(35).
c

v

The value of
&amp;lt;f&amp;gt;

given by equation (So) may be deduced from

that given by equation (3 4) by putting r c + z, and expanding as

far as to 2
2

. In the case of the elliptic cylinder then it appears

that the same value of
&amp;lt;f&amp;gt;

serves for the part of the fluid without,

and the part within the radius
jy.

If the cylinder
ibe moving with

a velocity C in the direction of the minor axis of a section, the

value of
(f&amp;gt;

will be found from that given by equation (34) by

changing the sign of e, putting C for C, and supposing 6 to be

measured from the minor axis.

If the cylinder revolve round its axis with an angular velocity

&), the normal velocity of the surface at any point will be 2coec sin 20.

Since e
2

is neglected, we may suppose this normal velocity to

take place on the surface of a circular cylinder whose radius is c
;

whence (Art. 8) the corresponding value of will be

-~ sin 20.

If we suppose all these motions to take place together, we have

only (Art. 5) to add together the values of &amp;lt; corresponding to

each. If we suppose the motion very small, so as to neglect

the square of the velocity, we need only retain the terms depend

ing on dw/dt, dC/dt and dC /dt, in the value of
d(f&amp;gt;/dt,

and we

may calculate the pressure due to each separately. The resultant

of the pressure due to the term dco/dt will evidently be zero, on

account of the symmetry of the corresponding motion, while the

resultant couple will be of the order e
2

,
since the pressure on

any point of the surface, and the perpendicular from the centre on

the normal at that point, are each of the order e. The pressure

due to the term dC/dt will evidently have a resultant in the

direction of the major axis of a section of the cylinder ;
and it will
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be easily proved that the resultant pressure on a length I of the

cylinder is TrpcH (1
-

2e) dC/dt. That due to the term dC /dt will

be 7rpc
z
l (1 -f 2e) dC /dt, acting along the minor axis. If the

cylinder be constrained to oscillate so that its axis oscillates in a

direction making an angle a with the major axis, and if C&quot; be

its velocity, which is supposed to be very small, the resultant

pressures along the major and minor axes will be

a&amp;lt;^

\ cL\j i ,., /- \ a(-j

2e) cos a , and
yu, (1 + 2e) sin V-TT

respectively, where ft is the mass of the fluid displaced. Resolving

these pressures in the direction of the motion, the resolved part

will be p(I-2ecoa2y)dC&quot;/dt 9
or p (1

-
Je* cos 2a) dC&quot;/dt,

e

being the eccentricity ;
so that the effect of the inertia of the fluid

will be, to increase the mass of the solid by a mass equal to

//,(! Je
2
cos 2

a), which must be supposed to be collected at the

axis.

A similar method of calculation would apply to any given solid

differing little either from a circular cylinder or from a sphere.

In the latter case it would be necessary to use expansions in series

of Laplace s coefficients, instead of expansions in series of sines

and cosines.

13. Motion offluid in a closed box whose interior is of the form

of a rectangular parallelepiped.

The motion being supposed to begin from rest, the motion

at any time may be supposed to have been produced by impact

(Art. 4). The motion of the box at any instant fmay be resolved

into a motion of translation and three motions of rotation about

three axes parallel to the edges, and passing through the centre

of gravity of the fluid, and the part of
&amp;lt;/&amp;gt;

due to each of these

motions may be calculated separately. Considering any one

of the motions of rotation, we shall see that the normal velocity

of each face in consequence of it will ultimately be the same

as if that face revolved round an axis passing through its centre,

and that the latter motion would not alter the volume of the

fluid. Consequently, in calculating the part of $ due to any one

of the angular velocities, we may calculate separately the part

due to the motion of each face.

Let the origin be in a corner of the box, the axes coinciding
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with its edges. Let a, b, c, be these edges, U, V, W, the velocities,

parallel to the axes, of the centre of gravity of the interior of the

box, w
, CD&quot;,

&)
&quot;,

the angular velocities of the box about axes

through this point parallel to those of #, y, z. Let us first con

sider the part of &amp;lt; due to the motion of the face xz in conse

quence of the angular velocity ft) &quot;.

The value of $ corresponding to this motion must satisfy the

equation

with the conditions

y
==

0&amp;gt;
when x = Q or a ................. (.37),

CvJC

g=0,
when y = b ........................ (33),

^ =
o&amp;gt; &quot;(a;-ia), wheny=0 ............ (39),

within limits corresponding to those of the box.

Now, for a given value of yt
the value of

(/&amp;gt;

between x = and
x = a can be expanded in a convergent series of cosines of irx/a
and its multiples ; and, since (37) is satisfied, the series by which

d(j&amp;gt;/dx
will be expressed will also hold good for the limiting values

of x, and will be convergent. The general value of
&amp;lt;/&amp;gt;

then will be

of the form 2&quot; Yn cos mrx/a. Substituting in (36), and equating
coefficients of corresponding cosines, which may be done, since any
function of x can be expanded in but one such series of cosines

between the limits and a, we find that the general value of

Yn is Cen*ula + C e- n7r^a
, or, changing the constants,

Yn =A n (e
n* J&amp;gt;-yV* + e -mr(b-y)l

when n &amp;gt; 0, and for n = Q,

From the condition (38) we have

A + TroT
1

2&quot;nBn (e
6/* - e-Va

)
cos mrx/a = :

whence A
Q
=

0, Bn 0, and, omitting B ,
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From the condition (39), we have

TToT
1 ^nA n (e

nirb/a e~ nirb/a
)
cos nirxja

=
&/&quot;(# 2 a)

Determining the coefficients in the usual manner, we have

whence
e -nir(b-y)/a,

COS

putting 2 ,
for shortness, to denote the sum corresponding to odd

integral values of n from 1 to oo .

It is evident that the value of corresponding to the motion of

the opposite face in consequence of the angular velocity a/&quot; will be

found from that just given by putting b y for y, and changing

the sign of
a/&quot;;

whence the value corresponding to the motion

of these two faces in consequence of &&amp;gt;

&quot;

will be

4o/V ^ - -
,

._y i------ =-.
--- cos nirx a.^ 72,

3
emrb/a _ e -#irb/a

Let this expression be denoted by &&amp;gt;&quot; ^(#, a, y, b). It is

evident that the part of $ due to the motion of the two faces

parallel to the plane yz will be got by interchanging x and y,

a and b, and changing the sign of
&quot;

in the last expression, and

will therefore be - w&quot;^r (y, b, x, a). The parts of &amp;lt; corresponding

to the angular velocities a/, a/
,
will be got by interchanging the

requisite quantities. Also the part of
&amp;lt;/&amp;gt;

due to the velocities

U, V, W, will be Ux + Vy + Wz (Art. 7), and therefore we have

for the complete value of
&amp;lt;/&amp;gt;

Ux + Vy +Wz + G)
&quot;{^(aj, a, y, 6) -^(y, b, x, a)} + a/ ty(y, b, z, c)

- ^ (si, c, y, 6)) + a&amp;gt;&quot; {^ (z, c, x,a)-ir (x, a, , c)).

According to Art. 7 we may consider separately the motion of

translation of the box and fluid, and the motion of rotation about

the centre of gravity of the latter
;
and the whole pressure will be

compounded of the pressures due to each. The pressures at the

several points of the box due to the motion of translation will have

a single resultant, which will be the same as if the mass of the

fluid were collected at its centre of gravity. Those due to the



ON SOME CASES OF FLUID MOTION. 63

motion of rotation will have a single resultant couple, to calculate

which we have

= to
&quot;

[^ (x, a, y, b)
- ^ (y, b, x, a)) + &c.

Since for the motion of rotation there is no resultant force,

we may find the resultant couple of the pressures round any

origin, that for instance which has been chosen. If now we

suppose the motion very small, so as to neglect the square of

the velocity, we may find d(f)/dt as if the axes were fixed in space.

We have then for the motion of rotation

j rrt

a
&amp;gt;y&amp;gt; &)-^(y&amp;gt; &amp;gt;

# a)}-&c.

Hence we may calculate separately the couples due to each of

the quantities da&amp;gt;
&quot;/dt,

dco /dt and
dco&quot;/dt.

It is evident from the

symmetry of the motion that that due to dco
&quot;/dt

will act round

the axis of z, and that the pressures on the two faces perpendicular

to that axis will have resultants which are equal and opposite.

Also, since ^ (a, a, y, 6)
= -

ty (0, a, y,. b) and ^ (x, a, 6, &,)
= - ^

(x, a, 0, 5), it will be seen that the couples due to the pressures

on the faces perpendicular to the axes of x and y will be twice

as great respectively as those due to the pressures on the planes

yz and xz. The pressure on the element dydz of the plane yz will

be px==Q dydz, and the moment of this pressure round the axis of z,

reckoned positive when it tends to turn the box from x to y,

will be

-
P

-&quot;

y W&quot; (0, a, V, 6)
- f (y, &, O, a)} dydz.

Substituting the values of the functions, integrating from y to

y = b, and from z = to z c, replacing 2 l/n
5

by its value 7r
4

/96,

and reducing the other terms, it will be found that the couple

due to the pressure on the plane yz is

ptfbcda&quot; _ S/oaWcTg 1 l-
24 dt 7T

5
dt *l +

_
7T

5
dt t l +

We shall get the couple due to the pressure on the plane xz

by interchanging a and b, changing the sign of to
&quot;,

and measuring
the couple in the opposite direction, or, which is the same, by

merely interchanging a and b. Adding together these two couples
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and doubling their sum we shall find that the couple due to

do)
&quot;/dt

is -
Cda&amp;gt;&quot;ldt,

where

~ ~6~ ^? )

^
1 J. f-nvb/a

+
1 _i_ e -mra/l&amp;gt;\

a +j) ............ (40).

Similarly, the couple due to dw -/dt will be J. dco /dt, tending

to turn the box from y to z, and that due to
dco&quot;/dt

will be

Bda)&quot;/dt, tending to turn the box from z to x, where A and B
are derived from C by interchanging the requisite quantities.

Hence, considering the motions both of translation and rotation of

the box, we see that the small motions of the box will take place

as if the fluid were replaced by a solid having the same mass,

centre of gravity, and principal axes, and having A, B and G
for its principal moments. This will be true whether forces act

on the fluid or not, provided that if there are any they are of

the kind mentioned in Art. 1.

Patting A tt
B

f &amp;gt;

C
/t

for the principal moments of inertia of the

solidified fluid, we have

Taking the ratio of C to
(7,, replacing each term such as

2
]

-

its approximate value 1 &quot;260497, and for 384/Tr
5

its approximate

value 1-254821, and employing subsidiary angles, we have

where tan en
=

so that

L tan On
= 10 - k nl/a, L tan 6 .n

= 10 - k na/b,

where ^ = 0821882.

*
[It will be shewn further on, in a supplement to this paper, that either of

these two infinite series may be expressed by means of the other, so that we shall

have only one of the infinite series to calculate in any case, for which we may

choose the more rapidly convergent.]
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The numerical calculation of this ratio is very easy, on account

of the great rapidity with which the series contained in it con

verge, both on account of the coefficients, and on account of the

rapid diminution of the angles 6n and n . The values of A/A,
and B/Bt

will be derived from that of C/C, by putting c for a in

the first case, and c for b in the second. The calculation of the

small motions of the box will thus be reduced to a question of

ordinary rigid dynamics*.

When one of the quantities a, 6, becomes infinitely great com

pared with the other, the ratio C/Ct
becomes 1, as will be seen

from equation (40). This result might have been expected. When
a = 6 the value of C/C, is -156537t-

The experiment of the box appears capable of great variety
as well as accuracy. We may take boxes in which the edges have

*
[Corresponding to the two simple cases of steady motion referred to in the

foot-note to p. 7, are two in which the motion of the fluid within a box of simple
form can be expressed in finite terms, the box and the fluid being initially at rest,

and the box being then moved about its axis.

The first is that in which the box is of the form of a right prism, having for

its base an equilateral triangle. If as before a be the perpendicular from the

centre of the triangle on one side, and 6 be measured from this perpendicular,
we shall have

0=-7^-r
3 sin 30;

btt

and by performing the integrations we shall find that if fc be the radius of gyration
of what we may call the equivalent solid, that is, the solid, of the same mass as

the fluid, by which the fluid may be replaced without affecting the motion of the

box under given forces,
fc
2= fa

2
;

and as a is the radius of gyration for the fluid supposed solidified, the moment of

inertia of the equivalent solid is two-fifths of that of the solidified fluid.

The other is that of a box of the form of a right elliptic prism. In this case &amp;lt;

is of the form cr2 sin 20, 6 being measured from the major axis
;
and determining c

so as to suit an ellipse of which a and 6 are the semiaxes, we find

k having the same meaning as before, it will be found that

so that the ratio of the moment of inertia of the equivalent solid to that of the

solidified fluid is that of (a
2 - b 2

)

2 to (a
2 + b2

)
2
.]

f [A passage containing a proposal to compare this result with experiment is

here omitted, as the experiment is described, in the form in which it was actually

carried out, in the supplement before referred to.]

s. 5
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various ratios to each other, and may make the same box oscillate

in various positions.

14. Initial motion in a rectangular box, the several points of

the surface of which are moved with given velocities, consistent with

the condition that the volume of the fluid is not altered.

Employing the same notation as in the last case, let F (x, y}

be the given normal velocity at any point of the face in the plane

xy. Let
I I F(x, y) dxdy = Wab, and let

Jo Jo

then, since the normal motion of the above face due to the function

f(x,y) does not alter the volume of the fluid, we may consider

separately the part of ^ due to this quantity. For this part we have

, _
-z9 H r~2 n 7~a
dx* d d*r

with the conditions

= 0, when x = or a ............... (42),
dx

^ =0, when y = or I ............... (43),

dy

^=0, whence ...................... (44),
dz

^ =/K 2/)&amp;gt;

when ^ = ., ............ (45),

within limits corresponding to those of the box.

For a given value of z the value of $ from x = to x = a and

from y
= to y = b may be expanded in a series of the form

. cosmry/b,

the sign X referring to m, and S to n : and since the values of

&amp;lt;, d&amp;lt;j&amp;gt;/dx

and d$/dy do not alter abruptly, and equations (42) and

(43) are satisfied, it follows that the series by which
&amp;lt;,

d(j&amp;gt;/d^

and

dfyjdy are expressed are convergent, and hold good for the limiting

values of x and y. Substituting the value of
(/&amp;gt; just given in (41),

equating to zero coefficients of corresponding cosines, and intro-
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ducing the condition (44), we have, omitting the constant, or

supposing A 0,0=0,

(f)
= 2 2 *-4m- ^e

pw(-
c~z^c

-{- e~pir^c
~ z^c

}
cos mirxja . cos niry/b,

9 n Q

i p m n
where % = + y^ .

c a o

Determining the coefficients such as A
m&amp;gt;n

from the condition

(45) in the usual manner we have, m and n being &amp;gt; 0,

P _ Q -PTT^
- 1 I I f^ y^ cosm7rjr/a . cosmry/b . c?^ (Zy ,

Jo Jo

A = -

Trpab

2
_. (atmro/o pmrc/o\

- 1 i

\ /

o Jo

nTc/6_ e-mrc/6)-i
f&quot; f y^ ^) cosniry/b . dxdy*,
Jo Jo

with a similar expression for J.m ,
whence the value of

&amp;lt;f&amp;gt;

corre

sponding to/ (a?, y) is known. In a similar manner we may find

the values corresponding to the similar functions belonging to

each of the other faces. If W be the quantity corresponding to

W for the face opposite to the plane xy, and U, U , correspond to

W
t W, for the faces perpendicular to the axis of x, and if V, V,

be the corresponding quantities for y, there remains only to be

found the part of
&amp;lt;/&amp;gt;

due to these six quantities. Since U, U ,
are

the velocities parallel to the axis of x of the faces perpendicular
to that axis, and so for V, V, &c., the motion corresponding to

these six quantities may be resolved into three motions of trans

lation parallel to the three axes, the velocities being U, V and W,
and that motion which is due to the motions of the faces opposite
to the planes yz, zoo, ocy, moving with velocities U U, V V,W W, parallel to the axes of x, y, z, respectively. The condition

that the volume of the fluid remains the same requires that

It will be found that the velocities

a^ b^ c
v

satisfy all the requisite conditions. Hence the part of &amp;lt; due to

* The function f(x,y) in these integrals may be replaced by F(x,y), since

P cos mry/b . cosmrx/a . dxdy~Q, unless m= ?j = 0.

52
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the six quantities U, U , V, V, W, W, is

-
.

This quantity, added to the six others which have already been

given, gives the value of
&amp;lt;/&amp;gt;

which contains the complete solution

of the problem.

The case of motion which has just been given seems at first

sight to be an imaginary one, capable of no practical application.

It may however be applied to the determination of the small

motion of a ball pendulum oscillating in a case in the form of

a rectangular parallelepiped, the dimensions of the case being

great compared with the radius of the ball. For this purpose it

will be necessary to calculate the motion of the ball reflected from

the case, by means of the formulae just given, and then the motion

again reflected from the sphere, exactly as has been done iu the

case of a rigid plane, Art. 10. In the present instance however

the result contains definite integrals, the numerical calculation of

which would be very troublesome.



[From the Cambridge Mathematical Journal, Vol. iv. p. 28. (Nov. 1843).]

ON THE MOTION OF A PlSTON AND OF THE AlR IN A CYLINDER.

WHEN a piston is in motion in a cylinder which also contains

air, if the motion of the piston be not very rapid, so that its

velocity is inconsiderable compared with the velocity of pro

pagation of sound, the motions of the air may be divided into

two classes, the one consisting of those which depend directly on

the motion of the piston, the other, of those which are propagated
with the velocity of sound, and depend on the initial state of the

air, or on a breach of continuity in the motion of the piston.

If we suppose the initial velocity and condensation of the air in

each section of the cylinder to be given, and also the initial

velocity of the piston, both kinds of motion will in general take

place, and the solution of the problem will be complicated. If,

however, we restrict ourselves to motions of the first class, the

approximate solution, though rather long, will be simple. In this

case we must suppose the inital velocity and condensation of the

air not to be given arbitrarily, but to be connected, according to

a certain law which is yet to be found, with the motion of the

piston. The problem as so simplified may perhaps be of some

interest, as affording an example of the application of the partial

differential equations of fluid motion, without requiring the em
ployment of that kind of analysis which is necessary in most

questions of that sort. It is, moreover, that motion of the air

which it is proposed to consider, which principally affects the

motion of the piston.

Conceive an air-tight piston to move in a cylinder which is

closed at one end, and contains a mass of air between the closed

end and the piston. For more simplicity, suppose the rest of the
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cylinder to contain no air. Let a point in the closed end be

taken for origin, and let x be measured along the cylinder. Let

%
l
be the abscissa of the piston ;

a the initial value of x^ ;
u the

velocity parallel to x of any particle of air whose abscissa is x
;

p the pressure, p the density about that particle; II the initial

mean pressure ; p l
the value of p when x = x^\ X, a function of x,

the accelerating force acting on the air
;
then for the motion of the

air we have

1 dp ^r du du 1- - = X-j7 u-j- t

p dx dt dx

dp dpu _ I (1),
~T7 &quot;I T ^j
dt dx

and p kp, j

neglecting the variation of temperature.

We have also the conditions

u = when x = Q (2);

dx
u=

~dl
when x=x

&amp;lt;

(3)&amp;gt;

for positive values of t, and

ITa when ^ = (4).

ra

pdx =
Joo

Eliminating p from equations (1), we have

1 dp __! (x _du du

p dx~k\* dt
U
dx

t +^ = ........................... (6).
dt dx

Now, k being very large, for a first approximation let y be

neglected ; then, integrating (5),

j-&amp;gt;0).

Substituting in (6), and integrating,
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The conditions (2) and (3) give

C
whence

&amp;lt;f&amp;gt; (t)
=
x

i

Substituting in (4) the value ofp when = 0, we have

dx = C Ha
;

o **

a
whence J

Let now, for a second approximation,

,. a % dec*

p =U-+p U= --37v x
l

^
#! dt

so that y and u are small quantities of the order \jk ; then, sub

stituting these values in (5) and (6), remembering that the quan

tities which are not small must destroy each other, and retaining

only small quantities of the first order, we have

dp-* =
7
-

dx kx

/ v x d*x\
I A -- y,2 I

l \ ^ dr J

dp 1 dx, dp^x
a ^ =0 (8)

~dt
+
x

t
dt dx x, dx

and the conditions (2), (3) and (4) give

w = when aj = 0, or x = x^ t
and t is positive ...(9);

(

a

pdx = when = ......... . ........ (10).
Jo

Integrating (7), we have

2
, . n , v

&quot; .........

Substituting the values of p and of its differential coemcients

in (8), and integrating, we obtain

x3 d dzx\ 1 dx. x
-,

x d,
\

(12).
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The conditions (9) give f (t) ;

1 d ( d*x\ 1 dx^ (** , 1 d
7TT TL #1 ~TT 1

-
vs 7^ 2&W ==: j-r6& cfa V d^ / &i ft J o Ha dt

and integrating, we get

. tfx. Ila r*i f [
Xi

-af-TJ. (Jo

Putting/ for the initial value of tfxjdf we have, from (10) and

(11),

o o

and substituting the value of &&amp;gt; (0) given by this equation in (13),

after having made t = 0, x
l
=

a, dfxJd? =/in the latter, we have

TT Ca Cx

C=-T dx Xdx.
K Jo Jo

Substituting this value of C in that of a (t), and substituting in

(11) and (12), and then substituting the values of p and u in

those of p and u
t
we have

= n^+S?(f~w--
c&j tf^j VJo 2#, dt

d*x
l

O/C ttt KX^Ja \J / ^
x K^JQ \J

(i*);

^t

5? dx
v x_(- __

x?\
d_ f

d*x\

x,~drt~Qk\ xfjdt T1 df)

Let A be the area of a section of the cylinder, and let
TIAa/k=iJL,

so that
fjL

is the mass of the air
;
then we have

[* It is best at once to get rid of the double integrals by integration by parts,

^Yhich simplifies the expression, converting the last two terms into
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If there were no motion, the term
J//, d*xjdt* would disappear.

But in that case the value of p^^ the pressure on the piston,

might be deduced immediately from the equation of equilibrium
of an elastic fluid

1 dp^X
p dx~~ k

Integrating this equation, determining the constant by the con-

r*i

dition that I pdx=Tla, multiplying by -4, and putting x = xv

we have, neglecting 1/&
2

,

A = - 4 r ( r
&i Jo VJo

Comparing this expression with the above, when the second term

of the latter is left out, we have

Xdx,
f^i / f#i \ J 1 ra rx l rx L

rx

( J&teJ =? +=/ dx\ Xdx = \ dx\
J a \JO J i UJO JO ^i^O JO

a formula which may also be proved directly. We have then

.
T-T

. a IJL
d 2

.^ d ( 1 [* , [* v ,

p t

A = UA -- K -srH-Mj I I dx.\ Xdx
x^ 3 dr dx

t \xj^
I
JQ

The first term would be the value of the pressure on the piston

if the air had no inertia and were acted on by no external forces
;

the second term is that due to the inertia of the air; the last

term is that due to the external forces, and in the case of gravity

expresses the effect of the weight of the air. IfM be the mass

of the piston, P the accelerating force parallel to x acting on it,

not including the pressure of the air, its equation of motion is

d f 1 r*1

7 [
Xl v 7 \ /i/&amp;gt;\-- dx. Xdx). ..(16)x

l \ajjJo Jo /dx
l

Hence the effect of the inertia of the air is to increase the mass

of the piston by one third of that of the air, without increasing

the moving force acting on it. If we could integrate equation (16)

twice, we should determine the arbitrary constants by means of

the initial values of ^ and
dxjdt,

and thus get ^ in terms of t :

then, substituting in (14) and (15), we should obtain p and u as

functions of x and t.
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If the cylinder be vertical and smooth and turned upwards,
we have P X = g ;

and if, moreover, the motion be very small,

putting oc
l

a + y, and neglecting ?/

2
,
we have

The term at the second side of this equation is by hypothesis

small, and if we suppose the mean value of x to be taken for a,

it is zero. On this supposition II^l = \M+ ^J g, and the time

/
of a small oscillation will be 2?r y .

-
, which becomes,

If+2

since
yu,

2
is neglected throughout, 2?r f 1 ^ .

J \J
-

.

The reader who wishes to see the complete solution of the

problem, in the case where no forces act on the air, and the air

and piston are at first at rest, may consult a paper of Lagrange s

with additions made by Poisson in the Journal de VEcole Poly-

technique. T. xin. (21
e

Cah.) p. 187.



[From the Transactions of the Cambridge Philosophical Society,

Vol. VIIL p. 287.]

ON THE THEORIES OF THE INTERNAL FRICTION OF FLUIDS

IN MOTION, AND OF THE EQUILIBRIUM AND MOTION OF

ELASTIC SOLIDS.

[Eead April 14, 1845.]

THE equations of Fluid Motion commonly employed depend

upon the fundamental hypothesis that the mutual action of two

adjacent elements of the fluid is normal to the surface which

separates them. From this assumption the equality of pressure

in all directions is easily deduced, and then the equations of

motion are formed according to D Alembert s principle. This

appears to me the most natural light in which to view the sub

ject ;
for the two principles of the absence of tangential action,

and of the equality of pressure in all directions ought not to be

assumed as independent hypotheses, as is sometimes done, inas

much as the latter is a necessary consequence of the former*.

The equations of motion so formed are very complicated, but yet

they admit of solution in some instances, especially in the case

of small oscillations. The results of the theory agree on the

whole with observation, so far as the time of oscillation is con

cerned. But there is a whole class of motions of which the

common theory takes no cognizance whatever, namely, those

which depend on the tangential action called into play by the

sliding of one portion of a fluid along another, or of a fluid along
the surface of a solid, or of a different fluid, that action in fact

which performs the same part with fluids that friction does with

solids.

* This may be easily shewn by the consideration of a tetrahedron of the fluid,

as in Art. 4.
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Thus, when a ball pendulum oscillates in an indefinitely ex

tended fluid, the common theory gives the arc of oscillation

constant. Observation however shews that it diminishes very

rapidly in the case of a liquid, and diminishes, but less rapidly,

in the case of an elastic fluid. It has indeed been attempted to

explain this diminution by supposing a friction to act on the ball,

and this hypothesis may be approximately true, but the imper
fection of the theory is shewn from the circumstance that no

account is taken of the equal and opposite friction of the ball on

the fluid.

Again, suppose that water is flowing down a straight aqueduct
of uniform slope, what will be the discharge corresponding to

a given slope, and a given form of the bed ? Of what magnitude
must an aqueduct be, in order to supply a given place with

a given quantity of water ? Of what form must it be, in order

to ensure a given supply of water with the least expense of

materials in the construction ? These, and similar questions are

wholly out of the reach of the common theory of Fluid Motion,

since they entirely depend on the laws of the transmission of that

tangential action which in it is wholly neglected. In fact, accord

ing to the common theory the water ought to flow on with

uniformly accelerated velocity ;
for even the supposition of a

certain friction against the bed would be of no avail, for such

friction could not be transmitted through the mass. The practical

importance of such questions as those above mentioned has made

them the object of numerous experiments, from which empirical

formulae have been constructed. But such formulas, although

fulfilling well enough the purposes for which they were con

structed, can hardly be considered as affording us any material

insight into the laws of nature; nor will they enable us to pass

from the consideration of the phenomena from which they were

derived to that of others of a different class, although depending

on the same causes.

In reflecting on the principles according to which the motion

of a fluid ought to be calculated when account is taken of the

tangential force, and consequently the pressure not supposed the

same in all directions, I was led to construct the theory explained

in the first section of this paper, or at least the main part of it,

which consists of equations (13), and of the principles on which
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they are formed. I afterwards found that Poisson had written

a memoir on the same subject, and on referring to it I found that

he had arrived at the same equations. The method which he em

ployed was however so different from mine that I feel justified in

laying the latter before this Society*. The leading principles of my
theory will be found in the hypotheses of Art. 1, and in Art. 3.

The second section forms a digression from the main object of

this paper, and at first sight may appear to have little connexion

with it. In this section I have, I think, succeeded in shewing
that Lagrange s proof of an important theorem in the ordinary

theory of Hydrodynamics is untenable. The theorem to which I

refer is the one of which the object is to shew that udx+vdy+wdz,

(using the common notation,) is always an exact differential when

it is so at one instant. I have mentioned the principles of

M. Cauchy s proof, a proof, I think, liable to no sort of objection.

I have also given a new proof of the theorem, which would have

served to establish it had M. Cauchy not been so fortunate as to

obtain three first integrals of the general equations of motion.

As it is, this proof may possibly be not altogether useless.

Poisson, in the memoir to which I have referred, begins with

establishing, according to his theory, the equations of equilibrium

and motion of elastic solids, and makes the equations of motion

of fluids depend on this theory. On reading his memoir, I was

led to apply to the theory of elastic solids principles precisely

analogous to those which I have employed in the case of fluids.

The formation of the equations, according to these principles,

forms the subject of Sect. III.

The equations at which I have thus arrived contain two arbi

trary constants, whereas Poisson s equations contain but one. In

Sect. IV. I have explained the principles of Poisson s theories of

elastic solids, and of the motion of fluids, and pointed out what

appear to me serious objections against the truth of one of the

hypotheses which he employs in the former. This theory seems

to be very generally received, and in consequence it is usual to

deduce the measure of the cubical compressibility of elastic solids

from that of their extensibility, when formed into rods or wires,

* The same equations have also been obtained by Navier in the case of an in

compressible fluid (Mem. de VAcademic, t. vi. p. 389), but his principles differ from

mine still more than do Poisson s.
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or from some quantity of the same nature. If the views which

I have explained in this section be correct, the cubical compres

sibility deduced in this manner is too great, much too great in

the case of the softer substances, and even the softer metals.

The equations of Sect. III. have, I find, been already obtained by

M. Cauchy in his Exercises Mathematiques, except that he has not

considered the effect of the heat developed by sudden compression.

The method which I have employed is different from his, although

in some respects it much resembles it.

The equations of motion of elastic solids given in Sect. in.

are the same as those to which different authors have been led,

as being the equations of motion of the luminiferous ether in

vacuum. It may seem strange that the same equations should

have been arrived at for cases so different
;
and I believe this has

appeared to some a serious objection to the employment of those

equations in the case of light. I think the reflections which

I have made at the end of Sect. IV., where I have examined the

consequences of the law of continuity, a law which seems to per

vade nature, may tend to remove the difficulty.

SECTION I.

Explanation of the Theory of Fluid Motion proposed. Formation

of the Differential Equations, Application of these Equations

to a few simple cases.

1. Before entering on the explanation of this theory, it will

be necessary to define, or fix the precise meaning of a few terms

which I shall have occasion to employ.

In the first place, the expression
&quot; the velocity of a fluid at

any particular point&quot;
will require some notice. If we suppose

a fluid to be made up of ultimate molecules, it is easy to see that

these molecules must, in general, move among one another in an

irregular manner, through spaces comparable with the distances

between them, when the fluid is in motion. But since there is

no doubt that the distance between two adjacent molecules is

quite insensible, we may neglect the irregular part of the velocity,

compared with the common velocity with which all the molecules

in the neighbourhood of the one considered are moving. Or, we

may consider the mean velocity of the molecules in the neigh

bourhood of the one considered, apart from the velocity due to
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the irregular motion. It is this regular velocity which I shall

understand by the velocity of a fluid at any point, and I shall

accordingly regard it as varying continuously with the co-ordinates

of the point.

Let P be any material point in the fluid, and consider the

instantaneous motion of a very small element E of the fluid

about P. This motion is compounded of a motion of translation,

the same as that of P, and of the motion of the several points of

E relatively to P. If we conceive a velocity equal and opposite
to that of P impressed on the whole element, the remaining
velocities form what I shall call the relative velocities of the points
of the fluid about P

;
and the motion expressed by these velocities

is what I shall call the relative motion in the neighbourhood of P.

It is an undoubted result of observation that the molecular

forces, whether in solids, liquids, or gases, are forces of enormous

intensity, but which are sensible at only insensible distances.

Let E be a very small element of the fluid circumscribing E, and

of a thickness greater than the distance to which the molecular

forces are sensible. The forces acting on the element E are the

external forces, and the pressures arising from the molecular

action of E 1

. If the molecules of E were in positions in which

they could remain at rest if E were acted on by no external force

and the molecules of Ef

were held in their actual positions, they
would be in what I shall call a state of relative equilibrium. Of
course they may be far from being in a state of actual equilibrium.

Thus, an element of fluid at the top of a wave may be sensibly
in a state of relative equilibrium, although far removed from its

position of equilibrium. Now, in consequence of the intensity of

the molecular forces, the pressures arising from the molecular

action on E will be very great compared with the external

moving forces acting on E. Consequently the state of relative

equilibrium, or of relative motion, of the molecules of E will not

be sensibly affected by the external forces acting on E. But the

pressures in different directions about the point P depend on that

state of relative equilibrium or motion, and consequently will not

be sensibly affected by the external moving forces acting on E.

For the same reason they will not be sensibly affected by any
motion of rotation common to all the points of E\ and it is

a direct consequence of the second law of motion, that they will
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not be affected by any motion of translation common to the whole

element. If the molecules of E were in a state of relative equi

librium, the pressure would be equal in all directions about P,

as in the case of fluids at rest. Hence I shall assume the follow

ing principle :

That the difference between the pressure on a plane in a given

direction passing through any point P of a fluid in motion and the

pressure which would exist in all directions about P if the fluid in

its neighbourhood were in a state of relative equilibrium depends

only on the relative motion of the fluid immediately about P ; and

that the relative motion due to any motion of rotation may be elimi

nated without affecting the differences of the pressures above men

tioned.

Let us see how far this principle will lead us when it is

carried out.

2. It will be necessary now to examine the nature of the

most general instantaneous motion of an element of a fluid.

The proposition in this article is however purely geometrical, and

may be thus enunciated :

&quot;

Supposing space, or any portion of

space, to be filled with an infinite number of points which move

in any continuous manner, retaining their identity, to examine

the nature of the instantaneous motion of any elementary portion

of these points.&quot;

Let u, v, w be the resolved parts, parallel to the rectangular

axes, Ox, Oy, Oz, of the velocity of the point P, whose co-ordinates

at the instant considered are x, y, z. Then the relative velocities

at the point P ,
whose co-ordinates are x + x, y + y ,

z + z, will be

dw , dw , dw
^ ^

dx dy dz

neglecting squares and products of SB
, y, z. Let these velocities

be compounded of those due to the angular velocities w , o&amp;gt;&quot;,

to&quot;

about the axes of x, y, z, and of the velocities U, F, W parallel
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to x, y, z. The linear velocities due to the angular velocities

being w&quot;z &amp;lt;*&amp;gt;&quot;y ,
G&amp;gt; &quot;X wz, wy

f

a&amp;gt;&quot;x parallel to the axes of

-r, ?/, z, we shall therefore have

du
, fdu , f

\ , fdu

dx \dy J \dz

dv ,,\ .
dv

. fdv .

-

dy )
* dz

Since &&amp;gt;

, &amp;lt;w&quot;,
&&amp;gt;

&quot;

are arbitrary, let them be so assumed that

dU_dV dV_dW dW_dU
dy

~
dx ~dz

~
dy W ~

dz
7

which gives

dw dv\ ,, - du dw\
, fdv du

du ,

=&* +

= fdv u\ , +
v /

...... (2).*
\dx dy) dy

* *
\dz dy )

TT7
. (dw du\ , . fdw dv\

, dw ,W= -, - + --
I a? + - -- +J-) y + j- * ,

The quantities &&amp;gt;

, &&amp;gt;&quot;,
w&quot; are what I shall call the angular

velocities of the fluid at the point considered. This is evidently
an allowable definition, since, in the particular case in which the

element considered moves as a solid might do, these quantities

coincide with the angular velocities considered in rigid dynamics.
A further reason for this definition will appear in Sect. III.

Let us now investigate whether it is possible to determine x,

y ,
z so that, considering only the relative velocities U, V, W, the

line joining the points P, P shall have no angular motion. The

conditions to be satisfied, in order that this may be the case, are

evidently that the increments of the relative co-ordinates a?
, y, z

of the second point shall be ultimately proportional to those co

ordinates. If e be the rate of extension of the line joining the two

points considered, we shall therefore have

Fx + liy 4- gz = ex
,

\

=ey A .............................. (3);

s.
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where

-^ du n dv
jj.

dio - dv dwF=
dx

G =
dTy

H =
Tz V =

dz
+
dj

2g^ +^,2h^ + f.dx dz dy ax

If we eliminate from equations (3) the two ratios which exist

between the three quantities x
, y, z, we get the well known cubic

equation

which occurs in the investigation of the principal axes of a rigid

body, and in various others. As in these investigations, it may be

shewn that there are in general three directions, at right angles

to each other, in which the point P may be situated so as to

satisfy the required conditions. If two of the roots of (4) are

equal, there is one such direction corresponding to the third root,

and an infinite number of others situated in a plane perpendicular

to the former; and if the three roots of (4) are equal, a line

drawn in any direction will satisfy the required conditions.

The three directions which have just been determined I shall

call axes of extension. They will in general vary from one point

to another, and from one instant of time to another. If we denote

the three roots of (4) by e, e&quot;
}
e

&quot;,
and if we take new rectangular

axes Ox
t) Oy t ,

Oz
f) parallel to the axes of extension, and denote

by u
tt
U

lt
&c. the quantities referred to these axes corresponding

to u, U, &c., equations (3) must be satisfied by ?//= 0, z,
= 0, e = e,

by &amp;lt;= 0, &amp;lt;= 0, e= e\ and by &amp;lt;= 0, y/= 0, e = c&quot; ,,which requires

that/7
= 0, g t 0, 7^

/

= 0, and we have

, & _du t _ _ dv, / _rr_^/

The values of U
t , F, W/t

which correspond to the residual

motion after the elimination of the motion of rotation correspond

ing to o&amp;gt;

,
&)&quot; and &&amp;gt;

&quot;,
are

The angular velocity of which &&amp;gt;

, &&amp;gt;&quot;,

a/&quot; are the components

is independent of the arbitrary directions of the co-ordinate axes :

the same is true of the directions of the axes of extension, and of

the values of the roots of equation (4).
This might be proved in
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various ways ; perhaps the following is the simplest. The condi

tions by which co
, &quot;,

ta&amp;gt;&quot; are determined are those which express

that the relative velocities U, V, W, which remain after eliminating

a certain angular velocity, are such that Udx + Vdy + Wdz is

ultimately an exact differential, that is to say when squares and

products of x
, ?/ and z are neglected. It appears moreover from

the solution that there is only one way in which these conditions

can be satisfied for a given system of co-ordinate axes. Let us

take new rectangular axes, OK, Oy, Oz, and let U, V, W be the

resolved parts along these axes of the velocities U, V, W, and

x , y ,
z

,
the relative co-ordinates of P

;
then

U = Ucosicx + V cos xy -\- Wcos xz,

dx = cosxxdx. + cosxydy + cosxzdz, &c.
;

whence, taking account of the well known relations between the

cosines involved in these equations, we easily find

Udx + Vdy + Wdz = Urfx + Vdy +Wdz.
It appears therefore that the relative velocities U, V, W, which

remain after eliminating a certain angular velocity, are such that

Ucx + Vdy + Wdz is ultimately an exact differential. Hence

the values of U, V, W are the same as would have been obtained

from equations (2) applied directly to the new axes, whence the

truth of the proposition enunciated at the head of this paragraph
is manifest.

The motion corresponding to the velocities U
tt
V

t ,
W

t may be

further decomposed into a motion of dilatation, positive or negative,

which is alike in all directions, and two motions which I shall call

motions of shifting, each of the latter being in two dimensions, and

not affecting the density. For let S be the rate of linear extension

corresponding to a uniform dilatation
;
let &amp;lt;rx

t cry/ be the velo

cities parallel to^, y y
, corresponding to a motion of shifting parallel

to the plane x
ty t

, and let afxlt a z
t
be the velocities parallel to

x
iy
z
tt corresponding to a similar motion of shifting parallel to the

plane xz
t

. The velocities parallel to x
lt yt ,

z
t respectively corre

sponding to the quantities 8, a and &amp;lt;r will be (8 + &amp;lt;r + a
) xj, (8 &amp;lt;r)y ,

(8 v)z ,
and equating these to 7, V

,
W

t
we shall get

a = J(e + e&quot; + e&quot;

/

) &amp;gt;

ff = J(V + e
&quot; -

2e&quot;),
&amp;lt;r

= J ( + e&quot;
-

2e&quot;).

Hence the most general instantaneous motion of an elementary

portion of a fluid is compounded of a motion of translation, a

02
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motion of rotation, a motion of uniform dilatation, and two motions

of shifting of the kind just mentioned.

3. Having determined the nature of the most general instan

taneous motion of an element of a fluid, we are now prepared to

consider the normal pressures and tangential forces called into

play by the relative displacements of the particles. Let p be the

pressure which would exist about the point P if the neighbouring

molecules were in a state of relative equilibrium: let p+p, be

the normal pressure, and
t,

the tangential action, both referred to

a unit of surface, on a plane passing through P and having a given

direction. By the hypotheses of Art. 1. the quantities p,, t
t
will

be independent of the angular velocities &&amp;gt;

,
w&quot;

,

&quot;

, depending

only on the residual relative velocities U, V, W, or, which comes

to the same, on e, e&quot; and e&quot;,
or on a, a and 8. Since this re

sidual motion is symmetrical with respect to the axes of extension,

it follows that if the plane considered is perpendicular to any one

of these axes the tangential action on it is zero, since there is no

reason why it should act in one direction rather than in the

opposite ;
for by the hypotheses of Art. 1 the change of density

and temperature about the point P is to be neglected, the consti

tution of the fluid being ultimately uniform about that point.

Denoting then by p+p, p+p&quot;, p+p&quot;
the pressures on planes

perpendicular to the axes of a?
y , ?/ /5 #,,

we must have

p =
&amp;lt;l&amp;gt;(e

f

,e&quot;,e

f

&quot;), p&quot;

=
&amp;lt;j&amp;gt;(e&quot;,

e&quot;,
e \ p&quot;

=
&amp;lt;b(e&quot;,

e, e&quot;),

&amp;lt;/&amp;gt;(&amp;gt;
,

e&quot;
y

e&quot; } denoting a function of e
,
e and e&quot; which is sym

metrical with respect to the two latter quantities. The question

is now to determine, on whatever may seem the most probable

hypothesis, the form of the function (p.

Let t;s first take the simpler case in which there is no dilata

tion, and only one motion of shifting, or in which e = e\ e&quot; 0,

and let us consider what would take place if the fluid consisted of

smooth molecules acting on each other by actual contact. On

this supposition, it is clear, considering the magnitude of the pres

sures acting on the molecules compared with their masses, that

they would be sensibly in a position of relative equilibrium, except

when the equilibrium of any one of them became impossible from

the displacement of the adjoining ones, in which case the molecule

in question would start into a new position of equilibrium. This

start would cause a corresponding displacement in the molecules
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immediately about the one which started, and this disturbance

would be propagated immediately in all directions, the nature of

the displacement however being different in different directions,

and would soon become insensible. During the continuance of

this disturbance, the pressure on a small plane drawn through the

element considered would not be the same in all directions, nor

normal to the plane: or, which comes to the same, we may sup

pose a uniform normal pressure p to act, together with a normal

pressure pti ,
and a tangential force t

ljt pn and t
/t being forces of

great intensity and short duration, that is being of the nature of

impulsive forces. As the number of molecules comprised in the

element considered has been supposed extremely great, we may
take a time r so short that all summations with respect to such

intervals of time may be replaced without sensible error by inte

grations, and yet so long that a very great number of starts shall

take place in it. Consequently we have only to consider the aver

age effect of such starts, and moreover we may without sensible

error replace the impulsive forces such as p n and t
/f ,

which succeed

one another with great rapidity, by continuous forces. For planes

perpendicular to the axes of extension these continuous forces will

be the normal pressures p , p&quot;, p&quot;.

Let us now consider a motion of shifting differing from the

former only in having e increased in the ratio of m to 1. Then, if

we suppose each start completed before the starts which would be

sensibly affected by it are begun, it is clear that the same series of

starts will take place in the second case as in the first, but at

intervals of time which are less in the ratio of 1 to m. Conse

quently the continuous pressures by which the impulsive actions

due to these starts may be replaced must be increased in the ratio

of m to 1. Hence the pressures p t p&quot;t p&quot;
must be proportional

to e, or we must have

p =Ce, p&quot;=C e , p&quot;
=C&quot;e .

It is natural to suppose that these formulae hold good for nega
tive as well as positive values of e. Assuming this to be true, let

the sign of e be changed. This comes to interchanging x and y,

and consequently p&quot;
must remain the same, and p and

p&quot;
must

be interchanged. We must therefore have G&quot; 0, G C. Put

ting then C= 2/j, we have

p = - SIM , p&quot;

= fye, p&quot;

= 0.
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It has hitherto been supposed that the molecules of a fluid are

in. actual contact. We have every reason to suppose that this is

not the case. But precisely the same reasoning will apply if they
are separated by intervals as great as we please compared with

their magnitudes, provided only we suppose the force of restitution

called into play by a small displacement of any one molecule to be

very great.

Let us now take the case of two motions of shifting which co

exist, and let us suppose e = &amp;lt;r + a
,

e&quot;
=

&amp;lt;r,
e&quot; a . Let the

small time r be divided into 2n equal portions, and let us suppose

that in the first interval a shifting motion corresponding to e = 2cr,

e&quot;= 2a takes place parallel to the plane x
ty t ,

and that in the

second interval a shifting motion corresponding to e = 2cr
,
e &quot;= 2o-

takes place parallel to the plane xz^ and so on alternately. On

this supposition it is clear that if we suppose the time r/2?i to be

extremely small, the continuous forces by which the effect of the

starts may be replaced will be p = 2
//, (or + cr

), p&quot;= 2/*o-, p &quot;=

2fia.

By supposing n indefinitely increased, we might make the motion

considered approach as near as we please to that in which the two

motions of shifting coexist
;
but we are not at liberty to do so, for

in order to apply the above reasoning we must suppose the time

r/2n to be so large that the average effect of the starts which

occur in it may be taken. Consequently it must be taken as an

additional assumption, and not a matter of absolute demonstration,

that the effects of the two motions of shifting are superimposed.

Hence if 8 = 0, i.e. if e + e&quot; + e&quot;
=

0, we shall have in general

/ = -2^ , p&quot;=-W, p&quot;

=
-2f*e&quot;! (5).

It was by this hypothesis of starts that I first arrived at these

equations, and the differential equations of motion which result

from them. On reading Poisson s memoir however, to which I

shall have occasion to refer in Section IV., I was led to reflect that

however intense we may suppose the molecular forces to be, and

however near we may suppose the molecules to be to their posi

tions of relative equilibrium, we are not therefore at liberty to

suppose them in those positions, and consequently not at liberty

to suppose the pressure equal in all directions in the intervals of

time between the starts. In fact, by supposing the molecular

forces indefinitely increased, retaining the same ratios to each

other, we may suppose the displacements of the molecules from
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their positions of relative equilibrium indefinitely diminished, but

on the other hand the force of restitution called into action by a

given displacement is indefinitely increased in the same proportion.

But be these displacements what they may, we know that the

forces of restitution make equilibrium with forces equal and oppo
site to the effective forces

;
and in calculating the effective forces

we may neglect the above displacements, or suppose the molecules

to move in the paths in which they would move if the shifting

motion took place with indefinite slowness. Let us first consider

a single motion of shifting, or one for which e&quot;
= e, e&quot; 0, and

let p t
and t

f
denote the same quantities as before. If we now sup

pose e increased in the ratio of m to 1, all the effective forces will

be increased in that ratio, and consequently p t
and t

/
will be in

creased in the same ratio. We may deduce the values of p p&quot;,
and

p&quot; just as before, and then pass by the same reasoning to the case

of two motions of shifting which coexist, only that in this case the

reasoning will be demonstrative, since we may suppose the time

r/2n indefinitely diminished. If we suppose the state of things

considered in this paragraph to exist along with the motions of

starting already considered, it is easy to see that the expressions
for p, p&quot;

and p
&quot;

will still retain the same form.

There remains yet to be considered the effect of the dilatation.

Let us first suppose the dilatation to exist without any shifting :

then it is easily seen that the relative motion of the fluid at the

point considered is the same in all directions. Consequently the

only effect which such a dilatation could have would be to intro

duce a normal pressure p t ,
alike in all directions, in addition to

that due to the action of the molecules supposed to be in a state

of relative equilibrium. Now the pressure p t
could only arise

from the aggregate of the molecular actions called into play by
the displacements of the molecules from their positions of relative

equilibrium ;
but since these displacements take place, on an

average, indifferently in all directions, it follows that the actions

of which p t
is composed neutralize each other, so that p t

= 0. The
same conclusion might be drawn from the hypothesis of starts,

supposing, as it is natural to do, that each start calls into action

as much increase of pressure in some directions as diminution of

pressure in others.

If the motion of uniform dilatation coexists with two motions
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of shifting, I shall suppose, for the same reason as before, that the

effects of these different motions are superimposed. Hence sub

tracting S from each of the three quantities e, e&quot; and
e&quot;,

and

putting the remainders in the place of e, e&quot; and e&quot; in equations

(5), we have

p =
fj&amp;lt;e

+ e~e, p =

p&quot;
= $p(e +e&quot;-2e

&quot;)

............ (G).

If we had started with assuming &amp;lt;/&amp;gt;
(e, e&quot;

, e&quot;}
to be a linear func

tion of e , e&quot; and e&quot;
, avoiding all speculation as to the molecular

constitution ofa fluid, we should have had at onc&p =Ce+(J(e&quot;+e&quot;),

since p is symmetrical with respect to e&quot; and e&quot;
\ or, changing the

constants, p f //, (e&quot;
+ e&quot; 2e) + K (e -f e&quot; + e

&quot;}.
The expressions

for
p&quot;

and
p&quot;

would be obtained by interchanging the requisite

quantities. Of course we may at once put K = if we assume

that in the case of a uniform motion of dilatation the pressure at

any instant depends only on the actual density and temperature at

that instant, and not on the rate at which the former changes
with the time. In most cases to which it would be interesting to

apply the theory of the friction of fluids the density of the fluid is

either constant, or may without sensible error be regarded as con

stant, or else changes slowly with the time. In the first two cases

the results would be the same, and in the third case nearly the

same, whether K were equal to zero or not. Consequently, if

theory and experiment should in such cases agree, the experiments
must not be regarded as confirming that part of the theory which

relates to supposing K to be equal to zero.

4. It will be easy now to determine the oblique pressure, or

resultant of the normal pressure and tangential action, on any

plane. Let us first consider a plane drawn through the point P
parallel to the plane yz. Let Ox, make with the axes of #, y, z

angles whose cosines are I
, m, n

;
let I&quot;

, m&quot;,
n&quot; be the same for

Oy,, and l
&quot;

t
m&quot;

,
n&quot; the same for Ozr Let P

1
be the pressure,

and (xty), (xtz) the resolved parts, parallel to y, z respectively, of

the tangential force on the plane considered, all referred to a unit

of surface, (xty) being reckoned positive when the part of the

fluid towards - x urges that towards + x in the positive direction

of y, and similarly for (xtz). Consider the portion of the fluid

comprised within a tetrahedron having its vertex in the point P,

its base parallel to the plane yz, and its three sides parallel to the
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planes x
tylt yzft

zx
t respectively. Let A be the area of the base,

and therefore IA, I&quot;A, I&quot;A the areas of the faces perpendicular
to the axes of x

t , y t ,
z

t
. By D Alembert s principle, the pressures

and tangential actions on the faces of this tetrahedron, the moving
forces arising from the external attractions, not including the

molecular forces, and forces equal and opposite to the effective

moving forces will be in equilibrium, and therefore the sums of

the resolved parts of these forces in the directions of x, y and z

will each be zero. Suppose now the dimensions of the tetrahedron ,

indefinitely diminished, then the resolved parts of the external,

and of the effective moving forces will vary ultimately as the

cubes, and those of the pressures and tangential forces on the

sides as the squares of homologous lines. Dividing therefore the

three equations arising from equating to zero the resolved parts
of the above forces by A, and taking the limit, we have

the sign 2 denoting the sum obtained by taking the quantities

corresponding to the three axes of extension in succession. Putting
for p ,p&quot;

and
p&quot;

their values given by (6), putting e +e&quot;+e&quot;=8S,

and observing that 2 2 =
1, 2W =

0, 2ZV = 0, the above equa
tions become

1\ =p -
ZfjL^re + 2/xS, (xty)

= - 2^1 m e, (xtz)
= - 2/*2/W.

The method of determining the pressure on any plane from

the pressures on three planes at right angles to each other, which

has just been given, has already been employed by MM. Cauchy
and Poisson.

The most direct way of obtaining the values of 2?V &c. would

be to express I , m and n in terms of e by any two of equations

(3), in which x
, y ,

z are proportional to I
, m, n, together with

the equation I
2 + m 2 + n&quot;

2 = 1, and then to express the resulting

symmetrical function of the roots of the cubic equation (4) in

terms of the coefficients. But this method would be excessively

laborious, and need not be resorted to. For after eliminating the

angular motion of the element of fluid considered the remaining
velocities are ex

,
e y, , e &quot;z

, parallel to the axes of x
lt yt)

z
t

.

The sum of the resolved parts of these parallel to the axis of

x is lex] + 1 e y + 1&quot; e&quot; z . Putting for x
f , y ,

z
t

their values

I x + my + n z &c., the above sum becomes

x %1 V -f y i in e + z ^l n e
;
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but this sum is the same thing as the velocity U in equation (2),

and therefore we have

du du du div\

dxj

It may also be very easily proved directly that the value of 38,

the rate of cubical dilatation, satisfies the equation

dz
(7).

dx dy

Let P
2 , (ytz), (ytr) be the quantities referring to the axis of y,

and P
3 , (ztx), (zty) those referring to the axis of z, which corre

spond to P
l
&c. referring to the axis of x. Then we see that

(ytz)
=

(zty), (ztx)
=

(xtz), (xty)
=

(ytx). Denoting these three

quantities by T
19
T

2 ,
T

3 ,
and making the requisite substitutions

and interchanges, we have

(8).

It may also be useful to know the components, parallel to

x, y, z
t
of the oblique pressure on a plane passing through the

point P, and having a given direction. Let /, m, n be the cosines

of the angles which a normal to the given plane makes with the

axes of x, y, z
;
let P, Q, R be the components, referred to a unit

of surface, of the oblique pressure on this plane, P, Q, R being

reckoned positive when the part of the fluid in which is situated

the normal to which /, m and n refer is urged by the other part

in the positive directions of x
t y, z, when I, m and n are positive.

Then considering as before a tetrahedron of which the base is
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parallel to the given plane, the vertex in the point P, and the

sides parallel to the co-ordinate planes, we shall have

(9).

In the simple case of a sliding motion for which u 0, v =f(x),
w = 0, the ojly forces, besides the pressure &amp;gt;,

which act on planes

parallel to the co-ordinate planes are the two tangential forces T
9 ,

the value of which in this case is ^ dvjdx. In this case it is

easy to shew that the axes of extension are, one of them parallel

to Oz, and the two others in a plane parallel to xy, and inclined

at angles of 45 to Ox. We see also that it is necessary to suppose

JJL
to be positive, since otherwise the tendency of the forces would

be to increase the relative motion of the parts of the fluid, and

the equilibrium of the fluid would be unstable.

5. Having found the pressures about the point F on planes

parallel to the co-ordinate planes, it will be easy to form the

equations of motion. Let X, Y, Z be the resolved parts, parallel

to the axes, of the external force, not including the molecular

force
;

let p be the density, t the time. Consider an elementary

parallelepiped of the fluid, formed by planes parallel to the co

ordinate planes, and drawn through the point (x, y, z) and the

point (x + Aa1

, y + Ay, z + A#). The mass of this- element will be

ultimately pA^AyAz, and the moving force parallel to x arising

from the external forces will be ultimately pJTA^AyAz; the effec

tive moving force parallel too; will be ultimately p Du/Dt. A^AyAz,,
where D is used, as it will be in the rest of this paper, to denote

differentiation in which the independent variables are t and thre&

parameters of the particle considered, (such for instance as its-

initial cordinates,) and not t, x, y, z. It is easy also to shew that

the moving force acting on the element considered arising from*

the oblique pressures on the faces is ultimately

dP dl\ dTn

c dy a

acting in the negative direction. Hence we have by D Alembert
v
s*

principle
ID -X\ +* +

*
+ %*=*, &c (10),.
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in which equations we must put for Du/Dt its value

du du du, du
-j- + U

-j- + V -j- + W -j- ,

dt dx dy dz

and similarly for Dojdt and Dw/dt. In considering the general

equations of motion it will be needless to write down more than

one, since the other two may be at once derived from it by inter

changing the requisite quantities. The equations (10), the ordi

nary equation of continuity, as it is called,

i ,
dpu ^fjv ^^ &quot; ,x /-. -. \

dt
+

~da&amp;gt;

+
~dy+~te

=
&quot;I

&quot;

which expresses the condition that there is no generation or

destruction of mass in the interior of a fluid, the equation con

necting p and p, or in the case of an incompressible fluid the

equivalent equation Dp/Dt = 0, and the equation for the propa

gation of heat, if we choose to take account of that propagation,

are the only equations to be satisfied at every point of the interior

of the fluid mass.

As it is quite useless to consider cases of the utmost degree

of generality, I shall suppose the fluid to be homogeneous, and of

a uniform temperature throughout, except in so far as the

temperature may be raised by sudden compression in the case of

small vibrations. Hence in equations (10) //, may be supposed to

be constant as far as regards the temperature ; for, in the case

of small vibrations, the terms introduced by supposing it to vary

with the temperature would involve the square of the velocity,

which is supposed to be neglected. If we suppose /JL
to be in

dependent of the pressure also, and substitute in (10) the values

of P
l
&c. given by (8), the former equations become

tDu ^\ dp _ fd
2
u d z

u

P
\I)t J dx \dx

2

dif

__
dfdu dv dw\

3 dx \dx dy dz)

Let us now consider in what cases it is allowable to suppose

p to be independent of the pressure. It has been concluded by

Dubuat, from his experiments on the motion of water in pipes

and canals, that the total retardation of the velocity due to

friction is not increased by increasing the pressure. The total
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retardation depends, partly on the friction of the water against
the sides of the pipe or canal, and partly on the mutual friction,

or tangential action, of the different portions of the water. Now
if these two parts of the whole retardation were separately variable

with p, it is very unlikely that they should when combined give
a result independent of p. The amount of the internal friction

of the water depends on the value of
//..

I shall therefore suppose
that for water, and by analogy for other incompressible fluids,

fju
is independent of the pressure. On this supposition, we have

from equations (11) and (12)

dp fd*u d 2u d2u =

du dv dw
~7 1 7~ +

&amp;gt;

= 0.
ax dy dz

These equations are applicable to the determination of the motion
of water in pipes and canals, to the calculation of the effect of

friction on the motions of tides and waves, and such questions.

If the motion is very small, so that we may neglect the square
of the velocity, we may put Du/Dt = du/dt, &c. in equations (13).

The equations thus simplified are applicable to the determination

of the motion of a pendulum oscillating in water, or of that of

a vessel filled with water and made to oscillate. They are also

applicable to the determination of the motion of a pendulum
oscillating in air, for in this case we may, with hardly any error,

neglect the compressibility of the air.

The case of the small vibrations by which sound is propagated
in a fluid, whether a liquid or a gas, is another in which dp/dp
may be neglected. For in the case of a liquid reasons have been

shewn for supposing //,
to be independent of p, and in the case

of a gas we may neglect dp/dp, if we neglect the small change
in the value of /*, arising from the small variation of pressure due

to the forces X, Y, Z.

6. Besides the equations which must hold good at any point
in the interior of the mass, it will be necessary to form also the

equations which must be satisfied at its boundaries. Let M be

a point in the boundary of the fluid. Let a normal to the surface

at M, drawn on the outside of the fluid, make with the axes

angles whose cosines are I, m, n. Let P
, Q ,

R be the components
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of the pressure of the fluid about M on the solid or fluid with

which it is in contact, these quantities being reckoned positive

when the fluid considered presses the solid or fluid outside it in

the positive directions of #, y, 2, supposing 7, m and n positive.

Let S be a very small element of the surface about M, which

will be ultimately plane, S a plane parallel and equal to S, and

directly opposite to it, taken within the fluid. Let the distance

between S and S be supposed to vanish in the limit compared
with the breadth of S, a supposition which may be made if we

neglect the effect of the curvature of the surface at M; and let

us consider the forces acting on the element of fluid comprised
between S and S

,
and the motion of this element. If we suppose

equations (8) to hold good to within an insensible distance from

the surface of the fluid, we shall evidently have forces ultimately

equal to PS, QS, US, (P} Q and It being given by equations (9),)

acting on the inner side of the element in the positive directions

of the axes, and forces ultimately equal to P S, Q S, H S acting

on the outer side in the negative directions. The moving forces

arising from the external forces acting on the element, and the

effective moving forces will vanish in the limit compared with the

forces PS, &c. ; the same will be true of the pressures acting

about the edge of the element, if we neglect capillary attraction,

and all forces of the same nature. Hence, taking the limit, we

shall have

The method of proceeding will be different according as the

bounding surface considered is a free surface, tb,e surface of a

solid, or the surface of separation of two fluids, and it will be

necessary to consider these cases separately. Of course the surface

of a liquid exposed to the air is really the surface of separation

of two fluids, but it may in many cases be regarded as a free

surface if we neglect the inertia of the air : it may always be

so regarded if we neglect the friction of the air as well as its

inertia,

Let us first take the case of a free surface exposed to a pres-

siare II, which is supposed to be the same at all points, but may

vary with the time
;
and let L = be the equation to the surface-

In this case we shall have P = IH, Q = rail, jR = wII; and

putting for P, Q, R their values given by (9), and for P
l
&c. their
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values given by (8), and observing that in this case 8 = 0, we
shall have

dx \ay dx) \dz

in which equations /, m, n will have to be replaced by dL/dx,

dL/dy, dL/dz, to which they are proportional.

If we choose to take account of capillary attraction, we have

only to diminish the pressure n by the quantity Hi I

)
,
where

H is a positive constant depending on the nature of the fluid, and

r
lt

r
2 ,

are the principal radii of curvature at the point considered,

reckoned positive when the fluid is concave outwards. Equations

(14) with the ordinary equation

dl. dL dL^ dL~r + U-r-+V-,-+W-j- = ..................... (15),
dt dx dy dz

are the conditions to be satisfied for points at the free surface.

Equations (14) are for such points what the three equations of

motion are for internal points, and (15) is for the former what (11)

is for the latter, expressing in fact that there is no generation or

destruction of fluid at the free surface.

The equations (14) admit of being differently expressed, in a

way which may sometimes be useful. If we suppose the origin to

be in the point considered, and the axis of z to be the external

normal to the surface, we have I m = 0, n 1, and the equations
become

dw du ~ dw dv dw
-T- +y- = 0, + =

(), n-p+2/A-T- = ......... (16).dx dz dy dz dz

The relative velocity parallel to z of a point (# , y , 0) in the

free surface, indefinitely near the origin, is dw/dx . x -f dwjdy . y :

hence we see that dw/dx, dw/dy are the angular velocities, reckoned

from x to z and from y to z respectively, of an element of the free

surface. Subtracting the linear velocities due to these angular

velocities from the relative velocities of the point (x, ?/, z), and

calling the remaining relative velocities U, V, W, we shall have
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j-r_du , du , /du div\
,

dx dy \dz dx)

dv , dv , .
ido

.
dwT, v , v , oV= -j-x + -j-y + ,

dx c?v \ dz

W = ~z.
dz

Hence we see that the first two of equations (16) express the con

ditions that dU/dz = and dV/dz =
Q, which are evidently the

conditions to be satisfied in order that there may be no sliding

motion in a direction parallel to the free surface. It would be

easy to prove that these are the conditions to be satisfied in order

that the axis of z may be an axis of extension.

The next case to consider is that of a fluid in contact with a

solid. The condition which first occurred to me to assume for

this case was, that the film of fluid immediately in contact with

the solid did not move relatively to the surface of the solid. I

was led to try this condition from the following considerations.

According to the hypotheses adopted, if there was a very large

relative motion of the fluid particles immediately about any imagi

nary surface dividing the fluid, the tangential forces called into

action would be very large, so that the amount of relative motion

would be rapidly diminished. Passing to the limit, we might sup

pose that if at any instant the velocities altered discontinuously

in passing across any imaginary surface, the tangential force called

into action would immediately destroy the finite relative motion

of particles indefinitely close to each other, so as to render the

motion continuous; and from analogy the same might be supposed

to be true for the surface of junction of a fluid and solid. But

having calculated, according to the conditions which I have men

tioned, the discharge of long straight circular pipes and rectangular

canals, and compared the resulting formulae with some of the

experiments of Bossut and Dubuat, I found that the formulae did

not at all agree with experiment. I then tried Poisson s conditions

in the case of a circular pipe, but with no better success. In fact,

it appears from experiment that the tangential force varies nearly

as the square of the velocity with which the fluid flows past the

surface of a solid, at least when the velocity is not very small. It

appears however from experiments on pendulums that the total
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friction varies as the first power of the velocity, and consequently
we may suppose that Poisson s conditions, which include as a

particular case those which I first tried, hold good for very small

velocities. I proceed therefore to deduce these conditions in a

manner conformable with the views explained in this paper.

First, suppose the solid at rest, and let L = be the equation
to its surface. LetMf

be a point within the fluid, at an insensible

distance h from M. Let to- be the pressure which would exist

about M if there were no motion of the particles in its neighbour

hood, and let pf
be the additional normal pressure, and t

t
the tan

gential force, due to the relative velocities of the particles, both

with respect to one another and with respect to the surface of the

solid. If the motion is so slow that the starts take place independ

ently of each other, on the hypothesis of starts, or that the mole

cules are very nearly in their positions of relative equilibrium,
and if we suppose as before that the effects of different relative

velocities are superimposed, it is easy to shew that p t
and t

t
are

linear functions of u, v, w and their differential coefficients with

respect to as, y and z\ u, v, &c. denoting here the velocities of the

fluid about the point M ,
in the expressions for which however the

co-ordinates ofM may be used for those ofM ,
since h is neglected.

Now the relative velocities about the points M and M depending
on du/dx, &c. are comparable with du/dx . h, while those depending
on u, v and w are comparable with these quantities, and therefore

in considering the action of the fluid on the solid it is only neces

sary to consider the quantities u, v and w. Now since, neglecting

h, the velocity at M is tangential to the surface at M, u, v, and w
are the components of a certain velocity V tangential to the sur

face. The pressure pt
must be zero

;
for changing the signs u, v,

and w the circumstances concerned in its production remain the

same, whereas its analytical expression changes sign. The tangen
tial force at M will be in the direction of V, and proportional to it,

and consequently its components along the axes of x, y, z will be

proportional to u, v, w. Reckoning the tangential force positive

when, I, m, and n being positive, the solid is urged in the positive

directions of x, yy z, the resolved parts of the tangential force will

therefore be vu, w, vw, where v must evidently be positive, since

the effect of the forces must be to check the relative motion of the

fluid and solid. The normal pressure of the fluid on the solid

being equal to r, its components will be evidently far, me?, ntr.

s. 7
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Suppose now the solid to be in motion, and let u, v, w be the

resolved parts of the velocity of the point M of the solid, and w
,

to&quot;,
w &quot;

the angular velocities of the solid. By hypothesis, the

forces by which the pressure at any point differs from the normal

pressure due to the action of the molecules supposed to be in a

state of relative equilibrium about that point are independent of

any velocity of translation or rotation. Supposing then linear and

angular velocities equal and opposite to those of the solid impressed

both on the solid and on the fluid, the former will be for an

instant at rest, and we have only to treat the resulting velocities

of the fluid as in the first case. Hence P =l-G&amp;gt;+v(u u), &c.;

and in the equations (8) we may employ the actual velocities u,

v, w, since the pressures P, Q, R are independent of any motion

of translation and rotation common to the whole fluid. Hence

the equations F = P, &c. gives us

l(sr p) + v(u u)

du ^\ fdu dv\ fdu dw
--8

)
+ m (T-+-T- }

+ n(-J- +dx J \dy ctxj \dz

which three equations with (15) are those which must be satisfied

at the surface of a solid, together with the equation L = 0. It

will be observed that in the case of a free surface the pressures

P
, Q ,

R are given, whereas in the case of the surface of a solid

they are known only by the solution of the problem. But on the

other hand the form of the surface of the solid is given, whereas

the form of the free surface is known only by the solution of the

problem.

Dubuat found by experiment that when the mean velocity of

water flowing through a pipe is less than about one inch in a

second, the water near the inner surface of the pipe is at rest.

If these experiments may be trusted, the conditions to be satisfied

in the case of small velocities are those which first occurred to me,

and which are included in those just given by supposing j/= oo .

I have said that when the velocity is not very small the tan

gential force called into action by the sliding of water over the

inner surface of a pipe varies nearly as the square of the velocity.

This fact appears to admit of a natural explanation. When a cur

rent of water flows past an obstacle, it produces a resistance varying

nearly as the square of the velocity. Now even if the inner surface
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of a pipe is polished we may suppose that little irregularities

exist, forming so many obstacles to the current. Each little pro
tuberance will experience a resistance varying nearly as the square
of the velocity, from whence there will result a tangential action

of the fluid on the surface of the pipe, which will vary nearly as

the square of the velocity ;
and the same will be true of the equal

and opposite reaction of the pipe on the fluid. The tangential

force due to this cause will be combined with that by which the

fluid close to the pipe is kept at rest when the velocity is suf

ficiently small*.

[* Except in the case of capillary tubes, or, in case the tube be somewhat wider,

of excessively slow motions, the main part of the resistance depends upon the

formation of eddies. This much appears clear; but the precise way in which the

eddies act is less evident. The explanation in the text gives probably the correct

account of what takes place in the case of a river flowing over a rough stony bed;

but in the case of a pipe of fairly smooth interior surface the minute protuberances

would be too small to produce much resistance of the same kind as that con

templated in the paragraph beginning near the foot of p. 53.

What actually happens appears to be this. The rolling motion of the fluid

belonging to the eddies is continually bringing the more swiftly moving fluid which

is found nearer to the centre of the pipe close to the surface. And in consequence

the gliding or shifting motion of the fluid in the immediate neighbourhood of the

surface in such places is very greatly increased, and with it the tangential pressure.

Thus while in some respects these two classes of resistances are similar, in

others they are materially different. As typical examples of the two classes we

may take, for the first, that of a polished sphere of glass of some size descending

by its weight in deep water
;
for the second, that of a very long circular glass pipe

down which water is flowing. In both cases alike eddies are produced, and the

eddies once produced ultimately die away. In both cases alike the internal friction

of the fluid, and the friction between the fluid and the solid, are intimately
connected with the formation of eddies, and it is by friction that the eddies die

away, and the kinetic energy of the mass is converted into molecular kinetic

energy, that is, heat. But in the first case the resistance depends mainly on the

clilerence of the pressure p in front and rear, the resultant of the other forces of which
the expressions are given in equations (8) being comparatively insignificant, while

in the second case it is these latter pressures that we are concerned with, the

resultant of the pressure p in the direction of the axis of the tube being practically

nil, even though the polish of the surface be not mathematically perfect.

Hence if, the motion being what it actually is, the fluidity of the fluid were

suddenly to become perfect, the immediate effect on the resistance in the first case

would be insignificant, while in the second case the resistance would practically
vanish. Of course if the fluidity were to remain perfect, the motion after some
time would be very different from what it had been before ; but that is not a point
under consideration.

Some questions connected with the effect of friction in altering the motion of

a nearly perfect fluid will be considered further on in discussing the case of motion

given in Art. 55 of a paper On the Critical Values of the Sums of Periodic Series. ]

72
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There remains to be considered the case of two fluids having a

common surface. Let u
y
v

,
w

, /A , 8 denote the quantities belong

ing to the second fluid corresponding to u, &c. belonging to the

first. Together with the two equations .L = and (15) we shall

have in this case the equation derived from (15) by putting u, v
t
w

for u, v, w ; or, which comes to the same, we shall have the two

former equations with

l(u-u )+m(v-v ) + n(w-w )
=0 (18).

If we consider the principles on which equations (17) were formed

to be applicable to the present case, we shall have six more equa

tions to be satisfied, namely (17), and the three equations derived

from (17) by interchanging the quantities referring to the two

fluids, and changing the signs I, m, n. These equations give the

value of CT, and leave five equations of condition. If we must

suppose v oo
,
as appears most probable, the six equations above

mentioned must be replaced by the six u
u&amp;gt;

v = v, w = w, and

lp pf(u, v, w} = lp
f

pf(u t
v

,
w

), &c.,

f(u, v,w) denoting the coefficient of
//-

in the first of equations (17).

We have here six equations of condition instead of five, but then

the equation (18) becomes identical.

7. The most interesting questions connected with this subject

require for their solution a knowledge of the conditions which

must be satisfied at the surface of a solid in contact with the fluid,

which, except perhaps in case of very small motions, are unknown.

It may be well however to give some applications of the preceding

equations which are independent of these conditions. Let us then

in the first place consider in what manner the transmission of sound

in a fluid is affected by the tangential action. To take the simplest

case, suppose that no forces act on the fluid, so that the pressure

and density are constant in the state of equilibrium, and conceive

a series of plane waves to be propagated in the direction of the

axis of x, so that u =/(a?, &amp;lt;),

v = 0, w = 0. Let p/
be the pressure,

and p, the density of the fluid when it is in equilibrium, and put

p=p / +p. Then we have from equations (11) and (12), omitting

the square of the disturbance,

I dp du du dp 4 d*u_+ =0 -+
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Let A&p be the increment of pressure due to a very small incre

ment Ap of density, the temperature being unaltered, and let m
be the ratio of the specific heat of the fluid when the pressure is

constant to its specific heat when the volume is constant; then

the relation between p and p will be

p = mA(p- P/) .............................. (20).

Eliminating &amp;gt; and p from (19) and (20) we get

-~ -0
df da* SP/ dtdx

z
&quot;

To obtain a particular solution of this equation, let

.

x ,,,..u =
&amp;lt;j) (t)

cos - --
1- ^r (f) sin .

A A.

Substituting in the above equation, we see that $ (t) and
i/r (t)

must satisfy the same equation, namely,

&amp;lt;t&amp;gt;&quot; ^ +y
the integral of which is

* fn ^fa nt 27T&A= e
~ ct

(C cos - - + C sm - -

\ A A /A y
where

9XV/
(7 and being arbitrary constants. Taking the same expression
with different arbitrary constants for ty(t), replacing products of

sines and cosines by sums and differences, and combining the

resulting sines and cosines two and two, we see that the resulting
value of u represents two series of waves propagated in opposite
directions. Considering only those waves which are propagated
in the positive direction of x, we have

V&quot; *~J i ^
2 I \^*-)

We see then that the effect of the tangential force is to make
the intensity of the sound diminish as the time increases, and to

render the velocity of propagation less than what it would other

wise be. Both effects are greater for high, than for low notes;
but the former depends on the first power of p, while the latter

depends only on
//,

2
. It appears from the experiments of M. Biot,

made on empty water pipes in Paris, that the velocity of propaga-
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tion of sound is sensibly the same whatever be its pitch. Hence

it is necessary to suppose that for air fjf/\*p* is insensible com

pared with A or pjpr I am not aware of any similar experiments
made on water, but the ratio of (/a/Xp,)

2
to A would probably be

insensible for water also. The diminution of intensity as the time

increases is, in the case of plane waves, due entirely to friction
;

but as we do not possess any means of measuring the intensity of

sound the theory cannot be tested, nor the numerical value of
fju

determined, in this way.

The velocity of sound in air, deduced from the note given by
a known tube, is sensibly less than that determined by direct

observation. Poisson thought that this might be due to the

retardation of the air by friction against the sides of the tube.

But from the above investigation it seems unlikely that the effect

produced by that cause would be sensible.

The equation (21) may be considered as expressing in all

cases the effect of friction; for we may represent an arbitrary

disturbance of the medium as the aggregate of series of plane

waves propagated in all directions.

8. Let us now consider the motion of a mass of uniform

inelastic fluid comprised between two cylinders having a common

axis, the cylinders revolving uniformly about their axis, and the

fluid being supposed to have attained its permanent state of

motion. Let the axis of the cylinders be taken for that of z, and

let q be the actual velocity of any particle, so that u q sin 0,

v = q cos 0, w = 0, r and 6 being polar co-ordinates in a plane

parallel to xy.

Observing that

^&quot; J __ J
I
_ %/ I

daf^dtf dr2 * r dr r* d&

where/ is any function of x and y, and that dp/d& = 0, we have

from equations (13), supposing after differentiation that the axis

of x coincides with the radius vector of the point considered, and

omitting the forces, and the part of the pressure due to them,

dr ^ r

d*q 1 dq q _ /22 &amp;gt;,

-S-H ~7 2 &quot;* \&quot;*if

dr r dr r

and the equation of continuity is satisfied identically.
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The integral of (22) is

q=- + C r.
r

If a is the radius of the inner, and b that of the outer cylinder,

and if ql , q2
are the velocities of points close to these cylinders

respectively, we must have q
= q l

when r = a, and q
=

q2
when

r = b
}
whence

a
,
-

a?,) r} (23).J. A *.&t M

If the fluid is infinitely extended, b oo
,
and

These cases of motion were considered by Newton (Principia,

Lib. II. Prop. 51). The hypothesis which I have made agrees in

this case with his, but he arrives at the result that the velocity

is constant, not, that it varies inversely as the distance. This

arises from his having taken, as the condition of their being no

acceleration or retardation of the motion of an annulus, that the

force tending to turn it in one direction must be equal to that

tending to turn it in the opposite, whereas the true condition is

that the moment of the force tending to turn it one way must

be equal to the moment of the force tending to turn it the other.

Of course, making this alteration, it is easy to arrive at the above

result by Newton s reasoning. The error just mentioned vitiates

the result of Prop. 52. It may be shewn from the general equa
tions that in this case a permanent motion in annuli is impossible,

and that, whatever may be the law of friction between the solid

sphere and the fluid. Hence it appears that it is necessary to

suppose that the particles move in planes passing through the

axis of rotation, while they at the same time move round it. In

fact, it is easy to see that from the excess of centrifugal force in

the neighbourhood of the equator of the revolving sphere the

particles in that part will recede from the sphere, and approach

it again in the neighbourhood of the poles, and this circulating

motion will be combined with a motion about the axis. If how

ever we leave the centrifugal force out of consideration, as Newton

has done, the motion in annuli becomes possible, but the solution

is different from Newton s, as might have been expected.
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The case of motion considered in this article may perhaps
admit of being compared with experiment, without knowing the

conditions which must be satisfied at the surface of a solid. A
hollow, and a solid cylinder might be so mounted as to admit of

being turned with different uniform angular velocities round their

common axis, which is supposed to be vertical. If both cylinders

are turned, they ought to be turned in opposite directions, if only

one, it ought to be the outer one
;
for if the inner were made to

revolve too fast, the fluid near it would have a tendency to fly

outwards in consequence of the centrifugal force, and eddies would

be produced. As long as the angular velocities are not great, so

that the surface of the liquid is very nearly plane, it is not of much

importance that the fluid is there terminated
;
for the conditions

which must be satisfied at a free surface are satisfied for any sec

tion of the fluid made by a horizontal plane, so long as the motion

about that section is supposed to be the same as it would be if the

cylinders were infinite. The principal difficulty would probably be

to measure accurately the time of revolution, and distance from the

axis, of the different annuli. This would probably be best done by

observing motes in the fluid. It might be possible also to discover

in this way the conditions to be satisfied at the surface of the

cylinders ;
or at least a law might be suggested, which could be

afterwards compared more accurately with experiment by means

of the discharge of pipes and canals.

If the rotations of the cylinders are in opposite directions,

there will be a certain distance from the axis at which the fluid

will not revolve at all. Writing -
ql

for qt
in equation (23), we

have for this distance

9. Although the discharge of a liquid through a long straight

pipe or canal, under given circumstances, cannot be calculated

without knowing the conditions to be satisfied at the surface of

contact of the fluid and solid, it may be well to go a certain way
towards the solution.

Let the axis of z be parallel to the generating lines of the

pipe or canal, and inclined at an angle a to the horizon
;
let the

plane yz be vertical, and let y and z be measured downwards.
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The motion being uniform, we shall have u = 0, v = 0, w =f(, y),

and we have from equations (13)

dp _ dp dp fd^w d*w\
7-
=

0, -f-
- gp cos a, -f-

= #0 sin a + p,( -j-^ + .

d dz \dx
2 d* J

7- ,
-

,
,

dx dy dz \dx
2

dy* J

In the case of a canal dp/dz
= Q; and the calculation of the

motion in a pipe may always be reduced to that of the motion

in the same pipe when dpjdz is supposed to be zero, as may be

shewn by reasoning similar to Dubuat s. Moreover the motion

in a canal is a particular case of the motion in a pipe. For

consider a pipe for which dp/dz
=

Q, and which is divided sym
metrically by the plane xz. From the symmetry of the motion,

it is clear that we must have dw/dy = when z =
; but this is

precisely the condition which would have to be satisfied if the

fluid had a free surface coinciding with the plane xz
; hence we

may suppose the upper half of the fluid removed, without affect

ing the motion of the rest, and thus we pass to the case of a canal.

Hence it is the same thing to determine the motion in a canal,

as to determine that in the pipe formed by completing the canal

symmetrically with respect to the surface of the fluid.

We have then, to determine the motion, the equation

d*w dzw gp sin a _w1

&quot;^

4
~T~

In the case of a rectangular pipe, it would not be difficult to

express the value of w at any point in terms of its values at the

several points of the perimeter of a section of the pipe. In the

case of a cylindrical pipe the solution is extremely easy : for if

we take the axis of the pipe for that of z, and take polar co

ordinates r, 6 in a plane parallel to xy, and observe that dw/d6 = 0,

since the motion is supposed to be symmetrical with respect to

the axis, the above equation becomes

d zw 1 dw gp sin a
7 u H ~~7 |

-- = 0.
ar r ar

/JL

Let a be the radius of the pipe, and U the velocity of the fluid

close to the surface
; then, integrating the above equation, and

determining the arbitrary constants by the conditions that w shall

be finite when r = 0, and w = U when r = a, we have

_v
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SECTION II.

Objections to Lagrange s proof of the theorem that if udx+vdy+wdz
is an exact differential at any one instant it is always so, the

pressure being supposed equal in all directions. Principles of
M. Cauchys proof. A new proof of the theorem. A physical

interpretation of the circumstance of the above expression

being an exact differential.

10. The proof of this theorem given by Lagrange depends
on the legitimacy of supposing u, v and w capable of expansion

according to positive integral powers of t, for a sufficiently small

finite value of t. It is clear that the expansion cannot contain

negative powers of t, since u, v and w are supposed to be finite

when t =
;
but it may be objected to Lagrange s proof that there

are functions of t of which the expansion contains fractional

powers of t} and that we do not know but that u, v and w may
be such functions. This objection has been considered by Mr

Power*, who has shewn that the theorem is true if we suppose

u, v and w capable of expansion according to any powers of t.

Still the proof remains unsatisfactory, in fact inconclusive, for

these are functions of t, (for instance, e~ l /t2
,

t log,) which do not

admit of expansion according to powers of t, integral or fractional,

and we do not know but that u, v and w may be functions of this

nature. I do not here mention the proof which Poisson has

given of the theorem in his Traite de Mecanique, because it

appears to me liable to an objection to which I shall presently

have occasion to refer : in fact, Poisson himself did not think the

theorem generally true.

It is remarkable that Mr Power s proof, if it were legitimate,

would establish the theorem even when account is taken of the

variation of pressure in different directions, according to the

theory explained in Section I., if we suppose that d^/dp = 0. To

shew this we have only got to treat equations (12) as Mr Power

has treated the three equations of fluid motion formed on the

ordinary hypothesis. Yet in this case the theorem is evidently

untrue. Thus, conceive a mass of fluid which is bounded by

a solid plane coinciding with the plane yz, and which extends

*
Cambridge Philosophical Transactions, Vol. vn. (Part 3) p. 455.
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infinitely in every direction on the positive side of the axis of x,

and suppose the fluid at first to be at rest. Suppose now the

solid plane to be moved in any manner parallel to the axis of y\

then, unless the solid plane exerts no tangential force on the fluid,

(and we may suppose that it does exert some,) it is clear that at

a given time we shall have u = Q, v=f(x)t
t0 = 0, and therefore

udx + vdy + wdz will not be an exact differential. It will be

interesting then to examine in this case the nature of the function

of t which expresses the value of v.

Supposing X, Y, Z to be zero in equations (12), and observing

that in the case considered we have dp/dy 0, we get

dv _n d^v . ,.

dt~p dx*&quot;
(
*
]

Differentiating this equation n 1 times with respect to t, we

easily get
d*v

dt
n

\pj dxin

but when t 0, v = when x &amp;gt; 0, and therefore for a given value

of x all the differential coefficients of v with respect to t are zero.

Hence for indefinitely small values of t the value of v at a given

point increases more slowly than if it varied ultimately as any

power of t, however great ;
hence v cannot be expanded in a series

according to powers of t. This result is independent of the con

dition to be satisfied at the surface of the solid plane.

I think what has just been proved shews clearly that La-

grange s proof of the theorem considered, even with Mr Power s

improvement of it, is inadmissible.

11. The theorem is however true, and a proof of it has been

given by M. Cauchy*, which appears to me perfectly free from

objection, and which is very simple in principle, although it

depends on rather long equations. M. Cauchy first eliminates p
from the three equations of motion by means of the conditions

that d*p/dxdy = d*p/dydx, &c., he then changes the independent
variables from x, y, z, t to a, b, c, t, where a, b, c are the initial

* Memoire sur la Theorie des Ondcs, in the first volume of the Memoires des

savans Etrangers. M. Cauchy has not had occasion to enunciate the theorem, but

it is contained in his equations (16). This equation may be obtained in the same
manner in the more general case in which p is supposed to be a function of p.
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co-ordinates of the particles. The three transformed equations

admit each of being once integrated with respect to t
;
and deter

mining the arbitrary functions of a, 6, c by the initial values of

u, v and w, the three integrals have the form

G&amp;gt;;

= Fto + Ga&amp;gt;&quot; + Ha&amp;gt;
&quot;, &c.,

a)
,

w&quot; and co&quot;

f

denoting here the same as in Art. 2, and &&amp;gt;

,
&c.

denoting the initial values of to
,
&c. for the same particle. Solving

the above equations with respect to &&amp;gt; ,
w&quot; and o&amp;gt;

&quot;,
the resulting

equations are

, 1 dx
,

dx ,, dx
CO = TV

where S is a function of the differential coefficients of x, y and z

with respect to a, b and c, which by the condition of continuity is

shewn to be equal to pjp, p being the initial density about the

particle whose density at the time considered is p. Since dx/da, &c.

are finite, (for to suppose them infinite would be equivalent to

supposing a discontinuity to exist in the fluid,) it follows at once

from the preceding equations that if &&amp;gt;
= 0, &&amp;gt;

&quot; = 0, &&amp;gt;

&quot; = 0, that

is if u da + V db + wQ
dc be an exact differential, either for the whole

fluid or for any portion of it, then shall &&amp;gt;

= 0, &&amp;gt;&quot;
=

0, &&amp;gt;

&quot; = 0, i.e.

udx+ vdy+ wdz will be an exact differential, at any subsequent

time, either for the whole mass or for the above portion of it.

12. It is not from seeing the smallest flaw in M. Cauchy s

proof that I propose a new one, but because it is well to view the

subject in different lights, and because the proof which I am about

to give does not require such long equations. It will be necessary

in the first place to prove the following lemma.

LEMMA. If o^, ft&amp;gt;

2 ,...a&amp;gt;n are n functions of t, which satisfy the

n differential equations

[ (25),

^=P. t +/,... + F..,J

where P,, Ql
. . . Vn may he functions of

&amp;lt;,&amp;lt;,..
.co,, and if when

&amp;lt;,= 0,

o)
2
= 0...wH

= 0, none of the quantities PI;
... F. is infinite for any
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value of t from to T, and if o^...^ are each zero when = 0,

then shall each of these quantities remain zero for all values of t

from to T.

DEMONSTRATION. Let T be a finite value of t, then by hypo
thesis T may be taken so small that the values of co

l
...a)n are suf

ficiently small to exclude all values which might render any one

of the quantities ^...F^ infinite. Let L be a superior limit to

the numerical values of the several quantities Pl
...Vn for all

values of t from to T; then it is evident that a)
l
...a)n cannot

increase faster than if they satisfied the equations

dw, T , . i

(26),

at J

vanishing in this case also when t = 0. But if co
l

-f- o&amp;gt;

2
. . . + &&amp;gt;

?

we have by adding together the above equations

czn

if now fl be not equal to zero, dividing this equation by H and

integrating, we have

but no value of C different from zero will allow 1 to vanish

when t = 0, whereas by hypothesis it does vanish
;
hence H =

;

but fl is the sum of n quantities which evidently cannot be nega

tive, and therefore each of these must be zero. Since then co
l
...(on

would have to be equal to zero for all values of t from to T even

if they satisfied equations (26), they must d fortiori be equal to

zero in the actual case, since they satisfy equations (25). Hence

there is no value of t from to T at which any one of the

quantities co
l
...con can begin to differ from zero, and therefore

these quantities must remain equal to zero for all values of t

from to T.

This lemma might be extended to the case in which n = oo
,

with certain restrictions as to the convergency of the series. We
may also, instead of the integers 1, 2...W, have a continuous

variable a which varies from to a, so that o&amp;gt; is a function of
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the independent variables a and t, satisfying the differential

equation
day

where ^r(a, 0, t) does not become infinite for any value of a from
to a combined with any value of t from to T. It may be shewn,

just as before, that if &amp;lt;w
= when = for all values of a from

to a, then must a&amp;gt;

= for all values of t from to T. The proposi
tion might be further extended to the case in which a = oo

,
with

a certain restriction as to the convergency of the integral, but

equations (25) are already more general than I shall have occa

sion to employ.

It appears to me to be sometimes assumed as a principle that

two variables, functions of another, t, are proved to be equal for

all values of t when it is shewn that they are equal for a certain

value of t, and that whenever they are equal for the same value

of t their increments for the same increment of t are ultimately

equal. But according to this principle, if two curves could be

shewn always to touch when they meet they must always coincide,

a conclusion manifestly false. I confess I cannot see that Newton
in his Principia, Lib. I., Prop. 40, has proved more than that if

the velocities of the two bodies are equal at equal distances, the in

crements of those velocities for equal increments of the distances

are ultimately equal : at least something additional seems re

quired to put the pjoof quite out of the reach of objection.

Again it is usual to speak of the condition, that the motion of

a particle of fluid in contact with the surface of a solid at rest

is tangential to the surface, as the same thing as the condition

that the particle shall always remain in contact with the surface.

That it is the same thing might be shewn by means of the lemma
in this article, supposing the motion continuous; but independ

ently of proof I do not see why a particle should not move in

a curve not coinciding with the surface, but touching it where

it meets it. The same remark will apply to the condition that

a particle which at one instant lies in a free surface, or is in

contact with a solid, shall ultimately lie in the free surface, or be

in contact with the solid, at the consecutive instant. I refer here

to the more general case in which the solid is at rest or in motion.

For similar reasons Poisson s proof of the Hydrodynamical theorem
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which forms the principal subject of this section has always ap

peared to me unsatisfactory, in fact far less satisfactory than

Lagrange s. I may add that Poisson s proof, as well as Lagrange s,

would apply to the case in which friction is taken into account,

in which case the theorem is not true.

13. Supposing p to be a function of p, I// (p), the ordinary

equations of Hydrodynamics are

df( p) _ Y tftPl V ~ *tf_(P) 7_ Pw /.o7\

&quot;~dx~ 1H dy Dt dz ~Dt

The forces X, Y, Z will here be supposed to be such that

Xdx + Ydy + Zdz is an exact differential, this being the case

for any forces emanating from centres, and varying as any func

tions of the distances. Differentiating the first equations (27)

with respect to y, and the second with respect to x, subtracting,

putting for Du/Dt and Dv/Dt their values, adding and subtracting

du/dz . dv/dz, and employing the notation of Art. 2, we obtain

Dw&quot; _du , dv (du dv\ ,,, , ,

~DT~~dz
K

dz ~(dx
+
dy)

a:
^ &quot;

By treating the first and third, and then the second and third of

equations (27) in the same manner, we should obtain two more

equations, which may be got at once from that which has just

been found by interchanging the requisite quantities. Now for

points in the interior of the mass the differential coefficients

du/dz, &c. will not be infinite, on account of the continuity of the

motion, and therefore the three equations just obtained are a

particular case of equations (25). If then udx + vdy + wdz is an

exact differential for any portion of the fluid when =
0, that is,

if w
,

a)&quot; and CD
&quot;

are each zero when t = 0, it follows from the

lemma of the last article that ft/, co&quot; and co
&quot;

will be zero for any
value of t, and therefore udx + vdy + wdz will always remain an

exact differential. It will be observed that it is for the same

portion of fluid, not for the fluid occupying the same portion of

space, that this is true, since equations (28), &c. contain the

differential coefficients Dco /Dt, &c., and not dw /dt, &c.

14. The circumstance of udx + vdy + wdz being an exact

differential admits of a physical interpretation which may be



112 ON THE FRICTION OF FLUIDS IN MOTION,

noticed, as it is well to view a subject of this nature in different

lights.

Conceive an indefinitely small element of a fluid in motion
to become suddenly solidified, and the fluid about it to be suddenly

destroyed ;
let the form of the element be so taken that the re

sulting solid shall be that which is the simplest with respect to

rotatory motion, namely, that which has its three principal
moments about axes passing through the centre of gravity equal
to each other, and therefore every axis passing through that point
a principal axis, and let us enquire what will be the linear and

angular motion of this element just after solidification.

By the instantaneous solidification, velocities will be suddenly

generated or destroyed in the different portions of the element,

and a set of mutual impulsive forces will be called into action.

Let x, y, z be the co-ordinates of the centre of gravity G of the

element at the instant of solidification, x + x, y + y ,
z + z those

of any other point in it. Let u
t v, w be the velocities of G along

the three axes just before solidification, u, v
,
w the relative velo

cities of the point whose relative co-ordinates are x, y, z . Let

u, v, w be the velocities of G, u
t , v,, w, the relative velocities of the

point above mentioned, and o&amp;gt;

, o&amp;gt;&quot;,

w &quot;

the angular velocities just

after solidification. Since all the impulsive forces are internal, we
have

u = u, v v, w = w.

We have also, by the principle of conservation of areas,

%m {y (w /
w

)
z (vt v)}

=
0, &c.,

m denoting an element of the mass of the element considered.

But u
t

= o/Y (o
&quot;y ,

u is ultimately equal to

du
,

du , du ,

-r~ x + -7- v -f- -=- z ,

dx dy
y dz

and similar expressions hold good for the other quantities. Sub

stituting in the above equations, and observing that

= 0, and ^mx* = %m 2 = 2m/2

,

dw dv
i
dy

We see then that an indefinitely small element of the fluid,

of which the three principal moments about the centre of gravity

.
,

- fdw dv\we nave o&amp;gt;
= i---r &amp;gt;2

\d dzj
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are equal, if suddenly solidified and detached from the rest of the

fluid will begin to move with a motion simply of translation,

which may however vanish, or a motion of translation combined

with one of rotation, according as udx + vdy 4- wdz is, or is not an

exact differential, and in the latter case the angular velocities

will be the same as in Art. 2.

The principle which forms the subject of this section might
be proved, at least in the case of a homogeneous incompressible

fluid, by considering the change in the motion of a spherical
element of the fluid in the indefinitely small time dt. This

method of proving the principle would shew distinctly its inti

mate connexion with the hypothesis of normal pressure, or the

equivalent hypothesis of the equality of pressure in all directions,

since the proof depends on the impossibility of an angular velo

city being generated in the element in the indefinitely small

time dt by the pressure of the surrounding fluid, inasmuch as the

direction of the pressure at any point of the surface ultimately

passes through the centre of the sphere. The proof I speak of

is however less simple than the one already given, and would

lead me too far from my subject.

SECTION III.

Application of a method analogous to that of Sect. I. to the

determination of the equations of equilibrium and motion of
elastic solids.

15. All solid bodies are more or less elastic, as is shewn by
the capability they possess of transmitting sound, and vibratory

motions in general. The solids considered in this section are

supposed to be homogeneous and uncrystallized, so that when in

their natural state the average arrangement of their particles is

the same at one point as at another, and the same in one direction

as in another. The natural state will be taken to be that in which

no forces act on them, from which it may be shewn that the pres

sure in the interior is zero at all points and in all directions,

neglecting the small pressure depending on attractions of the

nature of capillary attraction.

Let x, y, 2 be the co-ordinates of any point P in the solid con

sidered when in its natural state, a, /3, 7 the increments of those

S. 8
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co-ordinates at the time considered, whether the body be in a state

of constrained equilibrium or of motion. It will be supposed that

a, @ and 7 are so small that their squares and products may be

neglected. All the theorems proved in Art. 2 with reference to

linear and angular velocities will be true here with reference to

linear and angular displacements, since these two sets of quantities
are resolved according to the same laws, as long as the angular
displacements are supposed to be very small. Thus, the most

general displacement of a very small element of the solid consists

of a displacement of translation, an angular displacement, and three

displacements of extension in the direction of three rectangular
axes, which may be called in this case, with more propriety than in

the former, axes of extension. The three displacements of extension

may be resolved into two displacements of shifting, each in two

dimensions, and a displacement of uniform dilatation, positive or

negative. The pressures about the element considered will depend
on the displacements of extension only; there may also, in the

case of motion, be a small part depending on the relative velocities,

but this part may be neglected, unless we have occasion to consider

the effect of the internal friction in causing the vibrations of solid

bodies to subside. It has been shewn (Art. 7) that the effect of

this cause is insensible in the case of sound propagated through
air; and there is no reason to suppose it greater in the case of

solids than in the case of fluids, but rather the contrary. The

capability which solids possess of being put into a state of isochro

nous vibration shews that the pressures called into action by small

displacements depend on homogeneous functions of those displace
ments of one dimension. I shall suppose moreover, according to

the general principle of the superposition of small quantities, that

the pressures due to different displacements are superimposed, and

consequently that the pressures are linear functions of the dis

placements. Since squares of
or, (3 and 7 are neglected, these

pressures may be referred to a Unit of surface in the natural state

or after displacement indifferently, and a pressure which is normal
to any surface after displacement may be regarded as normal to

the original position of that surface. Let -AS be the pressure

corresponding to a uniform linear dilatation & when the solid is in

equilibrium, and suppose that it becomes - mAS, in consequence
of the heat developed, when the solid is in a state of rapid vibra

tion. Suppose also that a displacement of shifting parallel to
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the plane xy, for which a. = kx, /3
=

ky, 7 = 0, calls into action a

pressure Bk on a plane perpendicular to the axis of x, and a

pressure Bk on a plane perpendicular to that of y\ the pressures
on these planes being equal and of opposite signs, that on a plane

perpendicular to the axis of z being zero, and the tangential forces

on those planes being zero, for the same reasons as in Sect. I. It

may also be shewn as before that it is necessary to suppose B
positive, in order that the equilibrium of the solid medium may
be stable, and it is easy to see that the same must be the case

with A for the same reason.

It is clear that we shall obtain the expressions for the pressures
from those already found for the case of a fluid by merely putting

a, /3, 7, B for u, v, w, //-,
and AS or mAB for p, according as we

are considering the case of equilibrium or of vibratory motion, the

body being in the latter case supposed to be constrained only in

so far as depends on the motion.

For the case of equilibrium then we have from equations (8)

* -U i i /^a djB dy\ , , ,. .... .

o being here = -k
(
-=- + -, \--r-\l and the equations ot equilibrium3
\dx dy dzj

will be obtained from (12) by putting Du/Dt = 0, p = AS, making
the same substitution as before for u, v, w and p. We have there

fore, for the equations of equilibrium,

Y if A m &amp;lt;L l
drj- ^ d1\P iJ \ * ) ~l~ I 7 ~7 i T~ Iax \ax dy dzj

In the case of a vibratory motion, when the body is in its

natural state except so far as depends on the motion, we have

from equations (8)

and the equations of motion will be derived from (12) as before,

only Du/Dt &c. must be replaced by d*x/d(? &c., and X, Y, Z put

equal to zero. The equations of motion, then, are

82
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d
f
d *

,

d& i
&amp;lt;

- - + +

16. The conditions to be satisfied at the surface of the solid

may be easily deduced from the analogous conditions in the case

of a fluid with a free surface, only it will be necessary to replace

the normal pressure II by an oblique pressure, of which the com

ponents will be denoted by Xlt
Y

I} Z^ We have then, making
the necessary changes in the quantities involved in (14),

X, + IAS + B + + + n + =
0, &c.,

{ dx \dy dx) \dz dxj)

for the case of equilibrium, and for the case of motion such as that

just considered it will only be necessary to replace A by mA in

these equations. If we measure the angles of which I, m, n are

the cosines from the external normal, the forces Jf
1?
Y

lt
Z

1
must be

reckoned positive when, Z, m and n being positive, the surface of

the solid is urged in the negative directions of x, y, z, and in other

cases the signs must be taken conformably.

If the solid considered is in a state of constraint when at rest,

and is moreover put into a state of vibration, the pressures and

displacements due to these two causes must be calculated separately

and added together. If m were equal to 1, they could be calcu

lated together from the same equations.
r f

SECTION IV.

Principles of Poissons theory of elastic solids, and of the oblique

pressures existing in fluids in motion. Objections to one of his

hypotheses. Reflections on the constitution, and equations of

motion of the luminiferous ether in vacuum.

17. In the twentieth Colder of the Journal de I Ecole Polytech-

nique may be found a memoir by Poisson, entitled Memoire sur les

Equations generates de VEquilibre et du Mouvement des Corps

solides tlastiques et des Fluides, which contains the substance of

two memoirs presented by him to the Academy, brought together

with some additions. In this memoir the author treats principally
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of the equations of equilibrium and motion of elastic solids, of the

equations of equilibrium of fluids, with reference especially to

capillary attraction, and of the equations of motion of fluids, sup

posing the pressure not to be equal in all directions,

It is supposed by Poisson that all bodies, whether solid or

fluid, are composed of ultimate molecules, separated from each

other by vacant spaces. In the cases of an uncrystallized solid

in its natural state, and of a fluid in equilibrium, he supposes
that the molecules are arranged irregularly, and that the average

arrangement is the same in all directions. These molecules he

supposes to act on each other with forces, of which the main

part is a force in the direction of the line joining the centres of

gravity, and varying as some function of the distance of these

points, and the remainder a secondary force, or it may be two

secondary forces, depending on the molecules not being mathe

matical points. He supposes that it is on these secondary forces

that the solidity of solid bodies depends. He supposes however

that in calculating the pressures these secondary forces may be

neglected, partly because they become insensible at much smaller

distances than the main part of the forces, and partly because they

act, on the average, alike in all directions. He supposes that the

molecular force decreases very rapidly as the distance increases,

yet not so rapidly but that the sphere in which the molecular

action is sensible contains an immense number of molecules. He
supposes consequently that in estimating the resultant force of a

hemisphere of the medium on a molecule in the centre of its base

the action of the neighbouring molecules, which are situated

irregularly, may be neglected compared with the action of those

more remote, of which the average may be taken. The consequence
of this supposition of course is that the total action is normal to

the base of the hemisphere, and sensibly the same for one molecule

as for an adjacent one.

The rest of the reasoning by which Poisson establishes the

equations of motion and equilibrium of elastic solids is purely

mathematical, sufficient data having been already assumed. It

might appear that the reasoning in Art. 16 of his memoir, by
which the expression for N is simplified, required the fresh hypo
thesis of a symmetrical arrangement of the molecules

;
but it really

does not, being admissible according to the principle of averages.
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Taking for the natural state of the body that in which the pressure
is zero, the equations at which Poisson arrives contain only one

unknown constant k, whereas the equations of Sect. in. of this

paper contain two, A or mA and B. This difference depends on

the assumption made by Poisson that the irregular part of the

force exerted by a hemisphere of the medium on a molecule in the

centre of its base may be neglected in comparison with the whole

force. As a result of this hypothesis, Poisson finds that the change
in direction, and the proportionate change in length, of a line

joining two molecules are continuous functions of the co-ordinates

of one of the molecules and the angles which determine the direc

tion of the line
;
whereas in Sect, ill., if we adopt the hypothesis

of ultimate molecules at all, it is allowable to suppose that these

quantities vary irregularly in passing from one pair of molecules

to an adjacent pair. Of course the equations of Sect. ill. ought to

reduce themselves to Poisson s equations for a particular relation

between A and B. Neglecting the heat developed by compression,

as Poisson has done, and therefore putting m =
1, this relation is

4 = 55.

18. Poisson s theory of fluid motion is as follows. The time

t is supposed to be divided into a number n of equal parts, each

equal to r. In the first of these the fluid is supposed to be dis

placed as an elastic solid would be, according to Poisson s previous

theory, and therefore the pressures are given by the same equa
tions. If the causes producing the displacement were now to

cease, the fluid would re-arrange itself, so that the average arrange

ment about each point should be the same in all directions after

a very short time. During this time, the pressures would have

altered, in an unknown manner, from those corresponding to a

displaced solid to a normal pressure equal to p + Dp/Dt . r, the

pressures during the alteration involving an unknown function of

the time elapsed since the end of the interval r. Another dis

placement and another re-arrangement may now be supposed to

to take place, and so on. But since these very small relative mo
tions will take place independently of each other, we may suppose

each displacement to begin at the expiration of the time during

which the preceding one is supposed to remain, and we may sup

pose each re-arrangement to be going on during the succeeding

displacements. Supposing now n to become infinite, we pass to
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the case in which the fluid is supposed to be continually beginning
to be displaced as a solid would, and continually re-arranging itself

so as to make the average arrangement about each point the same
in all directions.

Poisson s equations (9), page 152, which are applicable to the

motion of a liquid, or of an elastic fluid in which the change of

density is small, agree with equations (12) of this paper. For the

quantity -fyt
is the pressure p which would exist at any instant if

the motion were then to cease, and the increment, j r or -~ r,
Cut JJt

of this quantity in the very small time r will depend only on

the increment, -?? T or -
T, of the density yt or p. Consequently

the value of J r will be the same as if the density of the par-
ctt

tide considered passed from %t to %t + - T in the time T by a

uniform motion of dilatation. I suppose that according to Pois

son s views such a motion would not require a re-arrangement of

the molecules, since the pressure remains equal in all directions.

On this supposition we shall get the value of -J- from that of
ut

R
t

Kin the equations of page 140 by putting

du dv dw 1 dyt
. . A/

doc dy dz 3%t dt

We have therefore

_ _a
~dt ~3 (K blG -

Putting now for ft + ft its value 2a&, and for
J*-

its value given
%

by equation (2), the expression for r, page 152, becomes

j.
a /JFJ. f^ J.-2E j.

dw
\= ^ + o(^- + ^)-r~ + ^ r T~ /&quot;

3 v
\dx dy dz)

Observing that a (K+ Jc)
=

/9, this value of CT reduces Poisson s

equations (9) to the equations (12) of this paper.

Poisson himself has not made this reduction of his equations,
nor any equivalent one, so that his equations, as he has left them,
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involve two arbitrary constants. The reduction of these two to

one depends on the assumption that a uniform expansion of any

particle does not require a re-arrangement of the molecules, as it

leaves the pressure still equal in all directions. If we do not

make this assumption, but retain the two arbitrary constants, the

equations will be the same as those which would be obtained by
the method of this paper, supposing the quantity K of Art. 3 not

to be zero.

19. There is one hypothesis made in the common theory of

elastic solids, the truth of which appears to me very questionable.

That hypothesis is the one to which I have already alluded in

Art. 17, respecting the legitimacy of neglecting the irregular part

of the action of the molecules in the immediate neighbourhood of

the one considered, in comparison with the total action of those

more remote, which is regular. It is from this hypothesis that it

follows as a result that the molecules are not displaced among one

another in an irregular manner, in consequence of the directive

action of neighbouring molecules. Now it is obvious that the

molecules of a fluid admit of being displaced among one another

with great readiness. The molecules of solids, or of most solids

at any rate, must admit of new arrangements, for most solids

admit of being bent, permanently, without being broken. Are we

then to suppose that when a solid is constrained it has no tendency

to relieve itself from the state of constraint, in consequence of its

molecules tending towards new relative positions, provided the

amount of constraint be very small ? It appears to me to be much

more natural to suppose a priori that there should be some such

tendency.

In the case of a uniform dilatation or contraction of a particle,

a re-arrangement of its molecules would be of little or no avail

towards relieving it from constraint, and therefore it is natural to

suppose that in this case there is little or no tendency towards such

a re-arrangement. It is quite otherwise, however, in the case of

what I have called a displacement of shifting. Consequently B
will be less than if there were no tendency to a re-arrangement.

On the hypothesis mentioned in this article, of which the absence

of such tendency is a consequence, I have, said that a relation has

been found between A and B, namely A = oB. It is natural

then to expect to find the ratio of A to B greater than 5, ap-
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preaching more nearly to 5 as the solid considered is more hard

and brittle, but differing materially from 5 for the softer solids,

especially such as India rubber, or, to take an extreme case, jelly.

According to this view the relation A 5B belongs only to an

ideal elastic solid, of which the solidity, or whatever we please to

call the property considered, is absolutely perfect.

To shew how implicitly the common theory of elasticity seems

to be received by some, I may mention that MM. Lame* and

Clapeyron mention Indian rubber among the substances to which

it would seem they consider their theory applicable*. I do not

know whether the coefficient of elasticity, according to that theory,

has been determined experimentally for India rubber, but one

would fancy that the cubical compressibility thence deduced, by a

method which will be seen in the next article, would turn out com

parable with that of a gas.

20. I am not going to enter into the solution of equations (30),

but I wish to make a few remarks on the results in some simple

cases.

If k be the cubical contraction due to a uniform pressure P,

then will

If a wire or rod, of which the boundary is any cylindrical sur

face, be pulled in the direction of its length by a force of which

the value, referred to a unit of surface of a section of the rod, in P,

the rod will extend itself uniformly in the direction of its length,

and contract uniformly in the perpendicular direction
;
and if e

be the extension in the direction of the length, and c the contraction

in any perpendicular direction, both referred to a unit of length,

we shall have

~

SAB GAB

p
also, the cubical dilatation = e 2c = -r .

If a cylindrical wire of radius r be twisted by a couple of which

* Memoires dcs savam Etranyers, Tom. iv. p. 4G9.
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the moment is M
y
and if be the angle of torsion for a length z of

the wire, we shall have
ZM*-

The expressions for k, c, e and 0, and of course all expressions

of the same nature, depend on the reciprocals of A and B. Sup

pose now the value of e, or 0, or any similar quantity not depending
on A alone, be given as the result of observation. It will easily

be conceived that we might find very nearly the same value for B
whether we supposed A = 5B or A = nB, where n may be consider

ably greater than 5, or even infinite. Consequently the observation

of two such quantities, giving very nearly the same value of B,

might be regarded as confirming the common equations.

If we denote by E the coefficient of elasticity when A is

supposed to be equal to 5B we have, neglecting the atmospheric

pressure*,

_2P fl _2M*~ ~

If now we denote by El
the value of E deduced from observation

of the value of e, and by E9
the value of E obtained by observing

the value of 6, or else, which comes to the same, by observing the

time of oscillation of a known body oscillating by torsion, we shall

have

If A be greater than oB, El ought to be a little greater than E
z

.

This appears to agree with observation. Thus the following num

bers are given by M. Lamef E^
= 8000, Et

= 7500 for iron; E^= 2510,

E
z

2250 for brass J. The difference between the values ofE
t
and

E
2

is attributed by M. Lame to the errors to which the obser

vation of the small quantity e is liable. If the above numbers

may be trusted, we shall have
A

A = 60000, B = 7500, -= = 8 for iron;

A = 29724, B = 2250, ^
= 13 21 for brass.

*
Lam6, Cours de Physique, Tom. i.

t Lamd, Cotirs de Physique, Tom. i.

$ These numbers refer to the French units of length and weight.
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The cubical contraction k is almost too small to be made the

subject of direct observation*, it is therefore usually deduced from

the value of e
y
or from the coefficient of elasticity E found in some

other way. On the supposition of a single coefficient E, we have

Jc/e
=

f, but retaining the two, A and B, we have

* U* *(-*
e A + B \ A

which will differ greatly from f if A/B be much greater than 5.

The whole subject therefore requires, I think, a careful examina

tion, before we can set down the values of the coefficients of cubical

contraction of different substances in the list of well ascertained

physical data. The result, which is generally admitted, that the

ratio of the velocity of propagation of normal, to that of tangential

vibrations in a solid is equal to \/3, is another which depends en

tirely on the supposition that A = oB. The value of m, again, as

deduced from observation, will depend upon the ratio of A to B
;

and it would be highly desirable to have an accurate list of the

values of m for different substances, in hopes of thereby discover

ing in what manner the action of heat on those substances is

related to the physical constants belonging to them, such as their

densities, atomic weights, &c.

The observations usually made on elastic solids are made on

slender pieces, such as wires, rods, and thin plates. In such pieces,

all the particles being at no great distance from the surface, it is easy
to see that when any small portion is squeezed in one direction it

has considerable liberty of expanding itself in a direction perpen
dicular to this, and consequently the results must depend mainly
on the value of B, being not very different from what they would

be if A were infinite. This is not so much the case with thick,

stout pieces. If therefore such pieces could be put into a state of

isochronous vibration, so that the musical notes and nodal lines

could be observed, they would probably be better adapted than

slender pieces for determining the value of mA. The value of

* I find however that direct experiments have been made by Prof. Oersted.

According to these experiments the cubical compressibility of solids which would

be obtained from Poisson s theory is in some cases as much as 20 or 30 times too

great. See the Report of the British Association for 1833, p. 353, or Archives des

decouvertes, &c. for 1834, p. 94. [It is to be noted that Oersted s method gives only

differences of compressibility.]
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m might be determined by comparing the value of mA, deduced

from the observation of vibrations, with the value of A, deduced

from observations made in cases of equilibrium, or, perhaps, of very
slow motion.

21. The equations (32) are the same as those which have

been obtained by different authors as the equations of motion of

the luminiferous ether in vacuum. Assuming for the present
that the equations of motion of this medium ought to be deter

mined on the same principles as the equations of motion of an

elastic solid, it will be necessary to consider whether the equations

(32) are altered by introducing the consideration of a uniform

pressure II existing in the medium when in equilibrium; for we
have evidently no right to assume, either that no such pressure

exists, or, supposing it to exist, that the medium would expand
itself but very slightly if it were removed. It will now no longer

be allowable to confound the pressure referred to a unit of surface

as it was, in the position of equilibrium of the medium, with

the pressure referred to a unit of surface as it actually is. The

latter mode of referring the pressure is more natural, and will

be more convenient. Let the pressure, referred to a unit of

surface at it is, be resolved into a normal pressure H+p l
and a

tangential pressure ^. All the reasoning of Sect. in. will apply
to the small forces p^ and t

l ; only it must be remembered that

in estimating the whole oblique pressure a normal pressure II

must be compounded with the pressures given by equations (31).

In forming the equations of motion, the pressure II will not

appear, because the resultant force due to it acting on the element

of the medium which is considered is zero. The equations (32)

will therefore be the equations of motion required.

If we had chosen to refer the pressure to a unit of surface in

the original state of the surface, and had resolved the whole

pressure into a pressure II + p l
normal to the original position

of the surface, and a pressure ^ tangential to that position, the

reasoning of Sec. III. would still have applied, and we should

have obtained the same expressions as in (31) for the pressures

P
lt
T

l) &c., but the numerical value of A would have been

different. According to this method, the pressure II would have

appeared in the equations of motion. It is when the pressures

are measured according to the method which I have adopted that
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it is true that the equilibrium of the medium would be unstable

if either A or B were negative. I must here mention that from

some oversight the right-hand sides of Poisson s equations, at

page 68 of the memoir to which I have referred, are wrong. The

*. A .. . . Tl(d*u d*u
first ot these equations ought to contain I -=-

2 -f -j-^
p \dx

z

dy* dz*.

instead of =-5
,
and similar changes must be made in the other

p dx

two equations.

It is sometimes brought as an objection to the equations of

motion of the luminiferous ether, that they are the same as those

employed for the motion of solid bodies, and that it seems un

natural to employ the same equations for substances which must
be so differently constituted. It was, perhaps, in consequence
of this objection that Poisson proposes, at page 147 of the memoir

which I have cited, to apply to the calculation of the motion of

the lurniferous ether the same principles, with a certain modifica

tion, as those which he employed in arriving at his equations (9)

page 152, i.e. the equations (12) of this paper. That modification

consists in supposing that a certain function of the time &amp;lt;

(t) does

not vary very rapidly compared with the variation of the pressure.

Now the law of the transmission of a motion transversal to the

direction of propagation depending on equations (12) of this paper
is expressed, in the simplest case, by the equation (24) ;

and we
see that this law is the same as that of the transmission of heat,

a law extremely different from that of the transmission of vi

bratory motions. It seems therefore unlikely that these principles

are applicable to the calculation of the motion of light, unless

the modification which I have mentioned be so great as wholly
to alter the character of the motion, that is, unless we suppose the

pressure to vary extremely fast compared with the function
cj&amp;gt; (t),

whereas in ordinary cases of the motion of fluids the function
&amp;lt;f&amp;gt; (t)

is supposed to vary extremely fast compared with the pressure.

Another view of the subject may be taken which I think

deserves notice. Before explaining this view however it will be

necessary to define what I mean in this paragraph by the word

elasticity. There are two distinct kinds of elasticity ; one, that

by which a body which is uniformly compressed tends to

regain its original volume, the other, that by which a body
which is constrained in a manner independent of compres-
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sion tends to assume its original form. The constants A and

B of Sec. Hi. may be taken as measures of these two kinds

of elasticity. In the present paragraph, the word will be used

to denote the second kind. Now many highly elastic substances,

as iron, copper, &c., are yet to a very sensible degree plastic. The

plasticity of lead is greater than that of iron or copper, and, as

appears from experiment, its elasticity less. On the whole it

is probable that the greater the plasticity of a substance the less

its elasticity, and vice versa, although this rule is probably far

from being without exception. When the plasticity of the sub

stance is still further increased, and its elasticity diminished,

it passes into a viscous fluid. There seems no line of demarcation

between a solid and a viscous fluid. In fact, the practical dis

tinction between these two classes of bodies seems to depend on

the intensity of the extraneous force of gravity, compared with

the intensity of the forces by which the parts of the substance

are held together. Thus, what on the Earth is a soft solid might,
if carried to the Sun, and retained at the same temperature, be

a viscous fluid, the force of gravity at the surface of the Sun

being sufficient to make the substance spread out and become

level at the top : while what on the Earth is a viscous fluid might
on the surface of Pallas be a soft solid. The gradation of viscous,

into what are called perfect fluids seems to present as little ab

ruptness as that of solids into viscous fluids; and some experiments
which have been made on the sudden conversion of water and

ether into vapour, when enclosed in strong vessels and exposed
to high temperatures, go towards breaking down the distinction

between liquids and gases.

According to the law of continuity, then, we should expect

the property of elasticity to run through the whole series, only,

it may become insensible, or else may be masked by some other

more conspicuous property. It must be remembered that the

elasticity here spoken of is that which consists in the tangential

force called into action by a displacement of continuous sliding :

the displacements also which will be spoken of in this paragraph
must be understood of such displacements as are independent

of condensation or rarefaction. Now the distinguishing property

of fluids is the extreme mobility of their parts. According to

the views explained in this article, this mobility is merely an

extremely great plasticity, so that a fluid admits of a finite, but
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exceedingly small amount of constraint before it will be relieved

from its state of tension by its molecules assuming new positions

of equilibrium. Consequently the same oblique pressures can

be called into action in a fluid as in a solid, provided the amount
of relative displacement of the parts be exceedingly small. All

we know for certain is that the effect of elasticity in fluids,

(elasticity of the second kind be it remembered,) is quite insensible

in cases of equilibrium, and it is probably insensible in all ordinary
cases of fluid motion. Should it be otherwise, equations (8) and

(12) will not be true, or only approximately true. But a little

consideration will shew that the property of elasticity may be

quite insensible in ordinary cases of fluid motion, and may yet
be that on which the phenomena of light entirely depend. When
we find a vibrating string, the small extent of vibration of which

can be actually seen, filling a whole room with sound, and re

member how rapidly the intensity of the vibrations of the air

must diminish as the distance from the string increases*, we may
easily conceive how small in general must be the amount of the

relative motion of adjacent particles of air in the case of sound.

Now the extent of the vibration of the ether, in the case of light,

may be as small compared with the length of a wave of light

as that of the air is compared with the length of a wave of sound :

we have no reason to suppose it otherwise. When we remember
then that the length of a wave of sound in air varies from some

inches to several feet, while the greatest length of a wave of

light is about 00003 of an inch, it is easy to imagine that the

relative displacement of the particles of ether may be so small

as not to reach, nor even come near to the greatest relative dis

placement which could exist without the molecules of the medium

assuming new positions of equilibrium, or, to keep clear of the

idea of molecules, without the medium assuming a new arrange
ment which might be permanent.

It has been supposed by some that air, like the luminiferous

ether, ought to admit of transversal vibrations. According to

the views of this article such would, mathematically speaking,
be the case

;
but the extent of such vibrations would be necessarily

so very small as to render them utterly insensible, unless we had

*
[In all ordinary cases it is to the vibrations of the sounding-board, or of

the supporting body acting as a sounding-board, and not to those of the string
directly, that the sound is almost wholly due.]
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organs with a delicacy equal to that of the retina adapted to

receive them.

It has been shewn to be highly probable that the ratio of A
to B increases rapidly according as the medium considered is

softer and more plastic. For fluids therefore, and among them
for the luminiferous ether, we should expect the ratio of A to B
to be extremely great. Now if N be the velocity of propagation
of normal vibrations in the medium considered in Sect, in., and

T that of transversal vibrations, it may be shewn from equations

(32) that

AT2 _ mA + 4&amp;gt;B B
\

,

3p p

This is very easily shewn in the simplest case of plane waves : for

if /3
= 7 = 0, a=f(x), the equations (32) give

whence a =
&amp;lt;j&amp;gt; (Nt

-
a) + ty (Nt + a) ;

and if a = 7 = 0, /3 =/(#),

A, .. d*/3 .,&amp;lt;?*
,

the same equations give p
- = o -

,
whence

Consequently we should expect to find the ratio of N to T ex

tremely great. This agrees with a conclusion of the late Mr
Green s*. Since the equilibrium of any medium would be

unstable if either A or B were negative, the leas,t possible value

of the ratio of N2
to T2

is f, a result at which Mr Green also

arrived. As however it has been shewn to be highly probable

that A&amp;gt;5B even for the hardest solids, while for the softer ones A/B
is much greater than 5, it is probable that N/T is greater than ^3
for the hardest solids, and much greater for the softer ones.

If we suppose that in the luminiferous ether A/B may be con

sidered infinite, the equations of motion admit of a simplification.

For if we put mA (

d
,~ +^ + ^] =-p in equations (32), and

\dx dy dzJ

suppose m^4 to become infinite while p remains finite, the equa
tions become

*
Cambridge Philosophical Transactions, Vol. vii. Part I. p. 2.
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d a dp , fi (d*a
&amp;lt;Za d a= - B

, .

* d0 dy
and -j- + -j- + -j-

= 0.
a,c ay as;

When a vibratory motion is propagated in a medium of which

(33) are the equations of motion, it may be shewn that p ^(t)
if the medium be indefinitely extended, or else if there be no

motion at its boundaries. In considering therefore the trans

mission of light in an uninterrupted vacuum the terms involving

p will disappear from equations (33) ;
but these terms are, I

believe, important in explaining Diffraction, which is the principal

phenomenon the laws of which depend only on the equations of

motion of the luminiferous ether in vacuum. It will be observed

that putting A = GO comes to the same thing as regarding the

ether as incompressible with respect to those motions which

constitute Light.



ON THE PROOF OF THE PROPOSITION THAT (Mx + Ny)~
l

is AN
INTEGRATING FACTOR OF THE HOMOGENEOUS DIFFERENTIAL

EQUATION M +N dyjdx = 0.

[From the Cambridge Mathematical Journal, Vol. iv. p. 241. (May, 1845.)]

A FALLACIOUS proof is sometimes given of this proposition,

which ought to be examined. The substance of the proof is as

follows.

Let us see whether it is possible to find a multiplier V, a

homogeneous function of x and y, which shall render Mdx + Ndy
an exact differential. Let M and N be of n, and V of p dimen

sions; let

&U=V(Mdx + Ndy) ..................... (1);

then, on properly choosing the arbitrary constant in U,} ...

7will be a homogeneous function of n +p + 1 dimensions,]
^

whence, by a known theorem,

....... (2);

therefore, dividing (1) by (2),

dU = Mdxj^Ndy .

(n +p + 1) U
&quot;

MX + Ny~

and the first side of this equation being an exact differential, it

follows that the second side is so also, and consequently that

(Mas + Ny}~
1
is an integrating factor.

Now the factor so found is of n l dimensions
;

so that

the first side of (2) is zero. In fact, we shall see that the state

ment (A) is not true as applied to the case in question, unless

MX + Ny = 0.
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The general form of a function of x of n dimensions is Axn
.

The general form of a homogeneous function of x and y of n di-
-

. The integral of the first is in general

Axn
^j(n + 1),. omitting the arbitrary constant; and consequently

the dimensions of the function are increased by unity by inte

gration. But in the particular case in which n = 1, the integral
is A logx, which is not a quantity of dimensions, at least accord

ing to the definition just given, according to which definition only
is the proposition with reference to homogeneous functions as

sumed in (2) true. Let us now examine in what cases U will be
of n

-\-p +1 dimensions.

Putting M=MQ
xn

, N=N^xn
, y = xz, MQ

and N will be func

tions of z alone, and we shall have

Mdx + Ndy = xn
{(MQ + JV dx +N x dz}.

If M
Q + NQ

z = 0, i.e. if MX + Ny = 0, we see that af*&quot;

1
will be

an integrating factor. The integral, being a function of z, will

be of dimensions, and both sides of (2) will be zero.

If MX + Ny is not equal to 0, we may multiply and divide by
(M -fNQz) x, and we have

Hence we see that {x
n+1
(M +NQz)}~* or (Mx + Ny}

integrating factor. For this factor we have

(f&amp;gt; denoting the function arising from the integration with respect

to*.

dU dU
In this case we have x -j \- y =

=
1, not = 0.

dx y
dy

It may be of some interest to enquire in what cases an exact

differential of any number of independent variables, in which

the differential coefficients are homogeneous functions of n dimen

sions, has an integral which is a homogeneous function of n + 1

dimensions.

92
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Let dU=Mdx -\-Ndy + Pdz -f ... be the exact differential. Let

y = yx, z = z x . . .
,
M=M x*, N=N xn

. . .
,
so that M

0)
N

Q
. . . are

functions of y ,
z . . . only ;

then

= xn {(MQ + N,y + P/. .
.)
dx + (NQdy + Pdz . .

.) x}.

First, suppose the coefficient of dx in this equation to be zero,

or Mx + Ny + Pz ... =0; then the expression for dU cannot be

an exact differential unless n 1. In this case U will be a

function of y, z ..., and will therefore be a homogeneous function

of n + 1 or dimensions.

Secondly, suppose the coefficient of dx not to be zero
;
then

Now I say that jf^- &amp;gt; p / is the exact differential of

a function of the independent variables y ,
z ..., or, taking y, z ...

for the independent variables instead of y, z ..., x being supposed

constant, and putting for-
,
N ,... their values, that

Mx + Ny + Pz ...

is an exact differential.

For, putting MX + Ny + Pz ... = D, in order that the quantity

considered should be an exact differential, it is necessary and

sufficient that the system of equations of which the type is

j J Pd D d D
- = - should be satisfied. This equation gives

dz dy

D (^p\ +Pf-Nf-^.\dz dy) dy dz

Now, since dN/dz = dP/dy, by the conditions of Mdx 4- Ndy
\-Pdz .... being an exact differential, the above equation becomes
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Keplacing dM/dy, dP/dy ... by dN/dx, dN/dz... and dM/dz,

dN/dz ... by dP/dx, dP/dy . . ., this equation becomes

dN dN dN \ ^fdP dP dP
l x+^r- y + -T-z...}-N(-j~x

dx dy
9 d* J \dx

dN dN
Now up* +-&*

+

dP dP

and therefore the above equation is satisfied. Hence

z...
orits

..&amp;gt;

is an exact differential dty(y,z ...}. Consequently equation (3)

becomes

which equation being by hypothesis integrable, it follows that

and Mx+Ny... being moreover a homogeneous function of

dimensions, it is clear that we must have
&amp;lt;/&amp;gt; (a)

= Ae^+l)a
. Hence

we have
dU= Axn+l e&amp;lt;+* d (log x + ^r).

If now 7i + 1 is not equal to 0, we have

omitting the constant
;
but if n = 1, we have

We see then that if Mx + Ny + Pz... =0, which can only

happen when w = 1, U will be a homogeneous function of n + 1

or dimensions. If Mx + Ny + Pz ...... is not equal to 0, then,

if n + 1 is not equal to 0, and the constant in V is properly chosen,

U will be a homogeneous function of n + 1 dimensions, but if

n + l =0, 7 will not be a homogeneous function of dimensions,

but will contain log x. Of course it might equally have contained

the logarithm of y or zt &c.; in fact,

z ...



[From the Philosophical Magazine, Vol. xxvii. p. 9. (July, 1845.)]

ON THE ABEKRATION OF LIGHT.

THE general explanation of the phenomenon of aberration is

so simple, and the coincidence of the value of the velocity of

light thence deduced with that derived from the observations of

the eclipses of Jupiter s satellites so remarkable, as to leave no

doubt on the mind as to the truth of the explanation. But when

we examine the cause of the phenomenon more closely, it is far

from being so simple as it appears at first sight. On the theory

of emissions, indeed, there is little difficulty ;
and it would seem

that the more particular explanation of the cause of aberration

usually given, which depends on the consideration of the motion

of a telescope as light passes from its object-glass to its cross

wires, has reference especially to this theory ;
for it does not apply

to the theory of undulations, unless we make the rather startling

hypothesis that the luminiferous ether passes freely through the

sides of the telescope and through the earth itsetf. The undu-

latory theory of light, however, explains so simply and so beauti

fully the most complicated phenomena, that we are naturally led

to regard aberration as a phenomenon unexplained by it, but not

incompatible with it.

The object of the present communication is to attempt an

explanation of the cause of aberration which shall be in accordance

with the theory of undulations. I shall suppose that the earth

and the planets carry a portion of the ether along with them so

that the ether close to their surfaces is at rest relatively to those

surfaces, while, its velocity alters as we recede from the surface,

till, at no great distance, it is at rest in space. According to the

undulatory theory, the direction in which a heavenly body is seen



ON THE ABERRATION OF LIGHT. 135

is normal to the fronts of the waves which have emanated from

it, and have reached the neighbourhood of the observer, the ether

near him being supposed to be at rest relatively to him. If

the ether in space were at rest, the front of a wave of light at any
instant being given, its front at any future time could be found

by the method explained in Airy s tracts. If the ether were in

motion, and the velocity of propagation of light were infinitely

small, the wave s front would be displaced as a surface of parti

cles of the ether. Neither of these suppositions is however true,

for the ether moves while light is propagated through it. In the

following investigation I suppose that the displacements of a

wave s front in an elementary portion of time due to the two

causes just considered take place independently.

Let u, v, w be the resolved parts along the rectangular axes of

x, y, z, of the velocity of the particle of ether whose co-ordinates

are x, y, z, and let V be the velocity of light supposing the ether

at rest. In consequence of the distance of the heavenly bodies, it

will be quite unnecessary to consider any waves except those which

are plane, except in so far as they are distorted by the motion of

the ether. Let the axis of z be taken in, or nearly in the direction

of propagation of the wave considered, so that the equation of

a wave s front at any time will be

z = c+Vt + t;........................... (i),

C being a constant, t the time, and f . a small quantity, a function

of x, y and t. Since u, v, w and f are of the order of the aberra

tion, their squares and products may be neglected.

Denoting by a, 0, 7 the angles which the normal to the wave s

front at the point (x, y, z) makes with the axes, we have, to the

first order of approximation,

~
cosa = ~

, co$p = ~, 0087 = 1 ............... (2);

and if we take a length Vdt along this normal, the co-ordinates

of its extremity will be

i,_KJt yvdt, z+Vdt.
dx dy

If the ether were at rest, the locus of these extremities would be

the wave s front at the time t + dt, but since it is in motion, the
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co-ordinates of those extremities must be further increased by udt,

vdt, wdt. Denoting then by x, y, z the co-ordinates of the point

of the wave s front at the time t + dt which corresponds to the

point (x, y, z] at the time t, we have

z = z -f (w 4- V) dt
;

and eliminating x
t y and z from these equations and (1), and de

noting % by f(x, y, t), we have for the equation to the wave s front

at the time t + dt,

C + Vt

or, expanding, neglecting dt
2 and the square of the aberration, and

suppressing the accents of x, y and z
&amp;gt;

z=C+Vt + Z+(w+V)dt .................. (3).

But from the definition of it follows that the equation to the

wave s front at the time t + dt will be got from (1) by putting

t + dt for t, and we have therefore for this equation

Comparing the identical equations (3) and (4), we have

d_? /i/i

dt&quot;

This equation gives f= [?$; but in the small term f we may

replace I wdt by \wdz+ V\ this comes to taking the approximate

value of z given by the equation z = 0+ Ftf instead of * for the

parameter of the system of surfaces formed by the wave s front in

its successive positions. Hence equation (1) becomes

Combining the value of f just found with equations (2), we

get, to a first approximation,
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equations which might very easily be proved directly in a more

geometrical manner.

If random values are assigned to u, v and w, the law of aber

ration resulting from these equations will be a complicated one;

but if u, v and w are such that udx + vdy + wdz is an exact dif

ferential, we have,

dw _ du dw _dv t

dx dz dy dz

whence, denoting by the suffixes 1, 2 the values of the variables

belonging to the first and second limits respectively, we obtain

If the motion of the ether be such that udx + vdy + wdz is an

exact differential for one system of rectangular axes, it is easy to

prove, by the transformation of co-ordinates, that it is an exact

differential for any other system. Hence the formulae (6) will

hold good, not merely for light propagated in the direction first

considered, but for light propagated in any direction, the direc

tion of propagation being taken in each case for the axis of jg. If

we assume that udx + vdy + wdz is an exact differential for that

part of the motion of the ether which is due to the motion of

translation of the earth and planets, it does not therefore follow

that the same is true for that part which depends on their motions

of rotation. Moreover, the diurnal aberration is too small to be

detected by observation, or at least to be measured with any ac

curacy, and I shall therefore neglect it.

It is not difficult to shew that the formulas (6) lead to the

known law of aberration. In applying them to the case of a star,

if we begin the integrations in equations (5) at a point situated

at such a distance from the earth that the motion of the ether,

and consequently the resulting change in the direction of the

light, is insensible, we shall have u
t
= 0, v

t
=

;
and if, moreover,

we take the plane xz to pass through the direction of the earth s

motion, we shall-have

, u
and ~ a -
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that is, the star will appear displaced towards the direction in

which the earth is moving, through an angle equal to the ratio of

the velocity of the earth to that of light, multiplied by the sine of

the angle between the direction of the earth s motion and the line

joining the earth and the star.

ADDITIONAL NOTE.

[In what precedes waves of light are alone considered, and the

course of a ray is not investigated, the investigation not being

required. There follows in the original paper an investigation

having for object to shew that in the case of a body like the

moon or a planet which is itself in motion, the effect of the dis

tortion of the waves in the neighbourhood of the body in altering

the apparent place of the body as determined by observation is

insensible. For this, the orthogonal trajectory of the wave in its

successive positions from the body to the observer is considered,

a trajectory which in its main part will be a straight line, from

which it will not differ except in the immediate neighbourhood of

the body and of the earth, where the ether is distorted by their

respective motions. The perpendicular distance of the further

extremity of the trajectory from the prolongation of the straight

line which it forms in the intervening quiescent ether is shewn to

subtend at the earth an angle which, though not actually 0, is so

small that it may be disregarded.

The orthogonal trajectory of a wave in its successive positions

does not however represent the course of a ray, as it would do if

the ether were at rest. Some remarks made by Professor Challis

in the course of discussion suggested to me the examination of

the path of a ray, which in the case in which udx + vdy + wdz

is an exact differential proved to be a straight line, a result which

I had not foreseen when I wrote the above paper, which I may

mention was read before the Cambridge Philosophical Society on

the 18th of May, 1845 (see Philosophical Magazine, vol. XXIX.,

p. 62). The rectilinearity of the path of a ray in this case, though

not expressly mentioned by Professor Challis, is virtually con

tained in what he wrote. The problem is rather simplified by

introducing the consideration of rays, and may be treated from

the beginning in the following manner.
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The notation in other respects being as before, let a
, /3 be the

small angles by which the direction of the wave-normal at the

point (xy y, z) deviates from that of Oz towards Ox, Oy, respec

tively, so that a
, ft are the complements of a, /3, and let a,, ft/

be

the inclinations to Oz of the course of a ray at the same point.

By compounding the velocity of propagation through the ether

with the velocity of the ether we easily see that

Let us now trace the changes of a
/t @, during the time dt.

These depend first on the changes of a
, /3 ,

and secondly on those

of u, v.

As regards the change in the direction of the wave-normal, we

notice that the seat of a small element of the wave in its suc

cessive positions is in a succession of planes of particles nearly

parallel to the plane of x, y. Consequently the direction of the

element of the wave will be altered during the time dt by the

motion of the ether as much as a plane of particles of the ether

parallel to the plane of the wave, or, which is the same to the

order of small quantities retained, parallel to the plane xy. Now
if we consider a particle of ether at the time t having for co

ordinates x, y, z, another at a distance dx parallel to the axis

of x
y
and a third at a distance dy parallel to the axis of y, we see

that the displacements of these three particles parallel to the axis

of z during the time dt will be

7
/ dw .. / dw

wdt,

and dividing the relative displacements by the relation distances,

we have dw/dx. dt, dw/dy . dt for the small angles by which the

normal is displaced, in the planes of xz
t yz t

from the axes x
t y, so

that
dw -., 7/v dw 7 ,

dy. =----- dt, dp=--j-dt.dx dy

We have seen already that the changes of u, v are dujdz . Vdt,

dv/dz . Vdt, so that

dv
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Hence, provided the motion of the ether be such that

udx + vdy + wdz

is an exact differential, the change of direction of a ray as it

travels along is nil, and therefore the course of a ray is a straight

line notwithstanding the motion of the ether. The rectilinearity

of propagation of a ray of light, which a priori would seem very

likely to be interfered with by the motion of the ether produced by
the earth or heavenly body moving through it, is the tacit as

sumption made in the explanation of aberration given in treatises

of Astronomy, and provided that be accounted for the rest follows

as usual*. It follows further that the angle subtended at the

earth by the perpendicular distance of the point where a ray leaves

a heavenly body from the straight line prolonged which represents

its course through the intervening quiescent ether, is not merely

too small to be observed, but actually nil.]

* To make this explanation quite complete, we should properly, as Professor

Challis remarks, consider the light coming from the wires of the observing telescope,

in company with the light from the heavenly body.



[From the Philosophical Magazine, Vol. xxvm. p. 76. (Feb. 1846.)]

ON FRESNEL S THEORY OF THE ABERRATION OF LIGHT.

THE theory of the aberration of light, and of the absence of

any influence of the motion of the earth on the laws of refraction,

&c., given by Fresnel in the ninth volume of the Annales de

Chimie, p. 57, is really very remarkable. If we suppose the

diminished velocity of propagation of light within refracting media

to arise solely from the greater density of the ether within them,

the elastic force being the same as without, the density which it

is necessary to suppose the ether within a medium of refractive

index
//,

to have is
yu,

2
,
the density in vacuum being taken for unity.

Fresnel supposes that the earth passes through the ether without

disturbing it, the ether penetrating the earth quite freely. He

supposes that a refracting medium moving with the earth carries

with it a quantity of ether, of density yu,

2

1, which constitutes the

excess of density of the ether within it over the density of the

ether in vacuum. He supposes that light is propagated through
this ether, of which part is moving with the earth, and part is

at rest in space, as it would be if the whole were moving with the

velocity of the centre of gravity of any portion of it, that is, with

a velocity (1 /-T
2

) v, v being the velocity of the earth. It may
be observed however that the result would be the same if we

supposed the whole of the ether within the earth to move to

gether, the ether entering the earth in front, and being im

mediately condensed, and issuing from it behind, where it is

immediately rarefied, undergoing likewise sudden condensation or

rarefaction in passing from one refracting medium to another.

On this supposition, the evident condition that a mass v of the

ether must pass in a unit of time across a plane of area unity,
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drawn anywhere within the earth in a direction perpendicular

to that of the earth s motion, gives (1 /^~
2

)
v for the velocity

of the ether within a refracting medium. As this idea is rather

simpler than Fresnel s, I shall adopt it in considering his theory.

Also, instead of considering the earth as in motion and the ether

outside it as at rest, it will be simpler to conceive a velocity equal

and opposite to that of the earth impressed both on the earth and

on the ether. On this supposition the earth will be at rest
;
the

ether outside it will be moving with a velocity v, and the ether

in a refracting medium with a velocity v//j?, in a direction contrary

to that of the earth s real motion. On account of the smallness of

the coefficient of aberration, we may also neglect the square of

the ratio of the earth s velocity to that of light ;
and if we resolve

the earth s velocity in different directions, we may consider the

effect of each resolved part separately.

In the ninth volume of the Comptes Rendus of the Academy
of Sciences, p. 774, there is a short notice of a memoir by M.

Babinet, giving an account of an experiment which seemed to

present a difficulty in its explanation. M. Babinet found that

when two pieces of glass of equal thickness were placed across

two streams of light which interfered and exhibited fringes, in

such a manner that one piece was traversed by the light in the

direction of the earth s motion, and the other in the contrary

direction, the fringes were not in the least displaced. This result,

as M.. Babinet asserts, is contrary to the theory of aberration

contained in a memoir read by him before the Academy in 1829,

as well as to the other received theories on the subject. I have

not been able to meet with this memoir, but it is easy to shew

that the result of M. Babinet s experiment is in perfect accordance

with Fresnel s theory.

Let T be the thickness of one of the glass plates, V the ve

locity of propagation of light in vacuum, supposing the ether

at rest. Then V/p would be the velocity with which light would

traverse the glass if the ether were at rest; but the ether

moving with a velocity v/fjf,
the light traverses the glass with a

velocity - + -o ,
and therefore in a time

J ~
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But if the glass were away, the light, travelling with a velocity
V v, would pass over the space T in the time

T
Hence the retardation, expressed in time, =(/u, 1) ^, the same

as if the earth were at rest. But in this case no effect would be

produced on the fringes, and therefore none will he produced in

the actual case.

I shall now shew that, according to Fresnel s theory, the laws

of reflexion and refraction in singly refracting media are un
influenced by the motion of the earth. The method which I

employ will, I hope, be found simpler than Fresnel s
;
besides

it applies easily to the most general case. Fresnel has not given
the calculation for reflexion, but has merely stated the result;

and with respect to refraction, he has only considered the case

in which the course of the light within the refracting medium
is in the direction of the earth s motion. This might still leave

some doubt on the mind, as to whether the result would be the

same in the most general case.

If the ether were at rest, the direction of light would be that

of a normal to the surfaces of the waves. When the motion
of the ether is considered, it is most convenient to define the

direction of light to be that of the line along which the same

portion of a wave moves relatively to the earth. For this is in

all cases the direction which is ultimately observed with a tele

scope furnished with cross wires. Hence, if A is any point in

a wave of light, and if we draw AB normal to the wave, and

proportional to V or
V/JJL, according as the light is passing through

vacuum or through a refracting medium, and if we draw EG in

the direction of the motion of the ether, and proportional to

v or v/fjf, and join AC, this line will give the direction of the ray.
Of course, we might equally have drawn AD equal and parallel to

BC and in the opposite direction, when DB would have given the
direction of the ray.

Let a plane P be drawn perpendicular to the reflecting or

refracting surface and to the waves of incident light, which in this

investigation may be supposed plane. Let the velocity v of the
ether in vacuum be resolved into p perpendicular to the plane P,
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and q in that plane ;
then the resolved parts of the velocity v/fj?

of the ether within a refracting medium will be pip?, y/f^- Let

us first consider the effect of the velocity p.

It is easy to see that, as far as regards this resolved part of

the velocity of the ether, the directions of the refracted and

reflected waves will be the same as if the ether were at rest.

Let BAG (fig. 1) be the intersection of the refracting surface

and the plane P\ DAE a normal to the refracting surface; AF,
A Gr, AH normals to the incident, reflected and refracted waves.

Hence AF, AG, AH will be in the plane P, and

^ GAD = FAD, p sin HAE= sin FAD.

Take

AH=-AF.

Draw
Gg&amp;gt;

Hh perpendicular to the plane P, and iri the direction

of the resolved part p of the velocity of the ether, and Ff in the

opposite direction ;
and take

Ff : Hh : FA :: p : 4 : V, and Gg = Ff,

and join A with / g and h. Then fA t Ag, Ah will be the di

rections of the incident, reflected and refracted rays. Draw FD,

HE perpendicular to DE, and join/D, hE. ThenfDF, hEH will

be the inclinations of the planes fADt
hAE to the plane P.

Now

tan

and wa.FAD-ii.wa.HAE; therefore tavFDf=ianHEh, and
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therefore the refracted ray A h lies in the plane of incidence

fAD. It is easy to see that the same is true of the reflected ray

Ag. Also t gAD =/AD; and the angles fAD, hAE are sensibly

equal to FAD, HAE respectively, and we therefore have without

sensible error, sin fAD = /j,smhAE. Hence the laws of reflexion

and refraction are not sensibly affected by the velocity p.

Let us now consider the effect of the velocity q. As far as

depends on this velocity, the incident, reflected and refracted

rays will all be in the plane P. Let AH, AK, AL be the in

tersections of the plane P with the incident, reflected and refracted

waves. Let ty, ^, -&amp;gt;|r

be the inclinations of these waves to the

refracting surface
;

let NA. be the direction of the resolved part

q of the velocity of the ether, and let the angle NAC = a.

The resolved part of q in a direction perpendicular to AH
is

(7
sin

(-\|r -}- a). Hence the wave AH travels with the velocity

F-t- q sin (^r + a) ;
and consequently the line of its intersection

with the refracting surface travels along AB with the velocity

coseCA/r [V+ q sin (^ + a)}. Observing that q/fj? is the velocitv

of the ether within the refracting medium, and V/fju the velocity
of propagation of light, we shall find in a similar manner that

the lines of intersection of the refracting surface with the reflected

and refracted waves travel along AB with velocities

coseci/rj V+ q sin (^ a.)},
cosec sn

But since the incident, reflected and refracted waves intersect

the refracting surface in the same line, we must have

sin^ { V+q sin (^ + a)}
= sin

i/r {F+ q sin (^ a)}

sin ^ { F+ q sin
(\fr + a) }

sn F+ - sin a)
...(A)

10
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Draw HS perpendicular to AH, ST parallel to NA, take

ST : HS : : q : V, and join HT. Then HT is the direction of

the incident ray; and denoting the angles of incidence, reflexion

and refraction by &amp;lt;, &amp;lt;,, &amp;lt;/&amp;gt;

,
we have

(f)-ty
= SIIT = J*? = y x resolved part of q along AH

Similarly,

whence sin -^
= sin

^&amp;gt; -^-cos &amp;lt;^&amp;gt;

cos
(&amp;lt;/&amp;gt;

+ a),

sin 1^= sin
(j&amp;gt;

cos ^ cos
(&amp;lt;, a),

sin ^r
= sin &amp;lt; cos $ cos

(&amp;lt;/&amp;gt;

+ a).

On substituting these values in equations (A), and observing

that in the terms multiplied by q we may put &amp;lt;/=&amp;lt;&amp;gt; p sin?&amp;lt;jb

= sin0,

the small terms destroy each other, and we have sin $,
= sin

&amp;lt;,

yu,sin (j) =siia.(f).
Hence the laws of reflexion and refraction at

the surface of a refracting medium will not be affected by the

motion of the ether.

In the preceding investigation it has been supposed that the

refraction is out of vacuum into a refracting medium. But the

result is the same in the general case of refraction out of one

medium into another, and reflexion at the common surface. For

all the preceding reasoning applies to this case if we merely

substitute p/p
z

, q/p* for p t q, V/p for V, and p/p for M, fi being

the refractive index of the first medium. Of course refraction

out of a medium into vacuum is included as a particular case.

It follows from the theory just explained, that the light coming

from any star will behave in all cases of reflexion and ordinary

refraction precisely as it would if the star were situated in the

place which it appears to occupy in consequence of aberration,

and the earth were at rest. It is, of course, immaterial whether

the star is observed with an ordinary telescope, or with a telescope

having its tube filled with fluid. It follows also that terrestrial
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objects are referred to their true places. All these results would

follow immediately from the theory of aberration which I pro

posed in the July number of this Magazine ;
nor have I been able

to obtain any result, admitting of being compared with experi

ment, which would be different according to which theory we

adopted. This affords a curious instance of two totally different

theories running parallel to each other in the explanation of phe
nomena. I do not suppose that many would be disposed to main

tain Fresnel s theory, when it is shewn that it may be dispensed

with, inasmuch as we would not be disposed to believe, without

good evidence, that the ether moved quite freely through the solid

mass of the earth. Still it would have been satisfactory, if it had

been possible, to have put the two theories to the test of some

decisive experiment.

102



[From the Cambridge and Dublin Mathematical Journal,

Vol. I. p. 183 (May, 1846).]

ON A FOKMULA FOR DETERMINING THE OPTICAL CONSTANTS
OF DOUBLY REFRACTING CRYSTALS.

IN order to explain the object of this formula, it will be neces

sary to allude to the common method of determining the optical
constants. Two plane faces of the crystal are selected, which
are parallel to one of the axes of elasticity; or if such do not

present themselves, they are obtained artificially by grinding.
A pencil of light is transmitted across these faces in a plane per

pendicular to them both, as in the case of an ordinary prism.
This pencil is by refraction separated into two, of which one is

polarized in the plane of incidence, and follows the ordinary law

of refraction, while the other is polarized in a plane perpendicular
to the plane of incidence, and follows a different law. It will

be convenient to call these pencils respectively the ordinary and

the extraordinary, in the case of biaxal, as well as uniaxal crystals.

The minimum deviation of the ordinary pencil is tnen observed,

and one of the optical constants, namely that which relates to

the axis of elasticity parallel to the refracting edge, is thus de

termined by the same formula which applies to ordinary media.

This formula will also give one of the other constants, by means

of the observation of the minimum deviation of the extraordinary

pencil, in the particular case in which one of the principal planes
of the crystal bisects the angle between the refracting planes :

but if this condition be not fulfilled it will be necessary to employ
either two or three prisms, according as the crystal is uniaxal

or biaxal, to determine all the constants. The extraordinary

pencil, however, need not in any case be rejected, provided only a

formula be obtained connecting the minimum deviation observed
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with the optical constants. It will thus be possible to determine

all the constants with a smaller number of prisms ;
the necessity

of using artificial faces may often be obviated
;
or if two faces

are cut as nearly as may be equally inclined to one of the axes of

elasticity lying in the plane of incidence, or one cut face is used

with a natural face, the errors of cutting may be allowed for.

Let AEB be a section of the prism by the plane of refraction,

(the reader will have no difficulty in drawing a figure,) E being
the refracting edge; let i be the refracting angle; OA, OB, OG
the directions of the axes of elasticity, being any point within

the prism, the two former of these lines being in, and the latter

perpendicular to, the plane of refraction
; a, b, c the optical con

stants referring to them, that is, according to Fresnel s theory,
the velocities of propagation of waves in which the vibrations

are parallel to the three axes respectively. Everything being

symmetrical with respect to the plane of incidence, we need only
consider what takes place in that plane. This plane will cut

the wave surface in a circle of radius c, and an ellipse whose

semiaxes are a along OB and b along OA. We have only got to

consider the ellipse, since it is it that determines the direction

of the extraordinary ray. The form of the crystal will very often

make known the directions of the axes of elasticity. Supposing
these directions known, let a, ft denote the inclinations of OA, OB
to the produced parts of EA, EB respectively ; a, /? and i being
of course connected by the equation a. + /3

=
JTT + i.

Let 0, T|T
be the angles of incidence and emergence, the light

being supposed incident on the face EA
; $ the inclination of the

refracted wave to EA, ty its inclination to EB, D the deviation,

v the velocity of the wave within the crystal, u its velocity in

the outer medium, which may be supposed to be either air, or a

liquid of known refractive power. Then we have

D =
&amp;lt;j&amp;gt;

+ ^r-i* (1),

* + * =
(2),

v sin $ = wsin
&amp;lt;/&amp;gt; (3),

vsin ty u sin-^r (4),

v* = a? cos
2

(a -&amp;lt;/&amp;gt; )+ 6
2
sin

2

(a
-

&amp;lt;

) (5).

*
I am indebted to the Rev. P. Frost for the suggestion of employing equations

(1)...(4), rather than making use of the ellipse in which the wave surface is cut by
the plane of incidence.
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From (2), (3), (4),

u sin
ijr

= v sin
\Jr
= u sin (i

(
)
= u sin i cos $ v cos i* sin &amp;lt;&amp;gt;

;

. . cos d&amp;gt;

f =
= . (sin ilr 4 cos i sin

d&amp;gt;)
:

u sin ^
x

, . ,, v . . .
,

and sin cf&amp;gt;

=
: . sin i sin 6 :

w sin i

substituting in (5),

w2
sin

2
i = a2

{cos a (sin ty 4 cos t sin
&amp;lt;/&amp;gt;)

4 sin a sin i sin
&amp;lt;/&amp;gt;)

2

.4 &
2

(sin a (sin i|r 4 cos i sin 0) cos a sin 4 sin
&amp;lt;/&amp;gt;)

2

,

or w* sin
2
* = a2

(cos a sin
i|r 4 sin /? sin (/&amp;gt;)

2

4 &
2

(sin a sin ty 4 cos ^ sin
(/))

2
...................... (6),

the relation between &amp;lt; and ^. Putting ty $ 0, and taking

account of (1), (6) becomes

2w* sin
8
i = [a

2
cos

2
a 4 6

2
sin

2

a} (1
- cos (D + {+0)}

4 {a
2
sin

2

/3 4 6
2
cos

2

] {1
- cos (D 4 * -

6&amp;gt;)}

4 2 (a
2
cos a sin y8 4 6

2
sin a cos /3) {cos ^ cos (D + i)},

or .Fcos04sin04# = .................. (7),

Avhere

F= a? {(cos* a 4 sin
2

/3) cos (D 4 i)
- 2 cos a sin /5}

4 6
2

{(sin
2
a 4 cos

2

j3) cos (D 4 )
- 2 sin a cos /5},

(7 =
(
a _

&) (
Sin2

^ _ Cos
2
a
)
sin (D 4 i),

JI= 2w* sin
2
i a2

{cos
2
a 4 sin

2

ft 2 cos a sin $ cos
(Z&amp;gt;

4 i)}

b
2

{sin
2
a 4 cos

2

/3 2 sin a cos /3 cos (D 4 )}.

Now when D, regarded as a function of 0, is a maximum or mini

mum -^ = 0, whence from (7)do

and eliminating 6 from this equation and (7), we have

Putting for F
t
G and H their values, and reducing, this equation

becomes

bin
2

(D 4 a*V - {cos
2
a 4 sin

2

/3
- 2 cos (D 4 cos a sin /3}

wV
-

{sin
2
a 4 cos

2 - 2 cos (D 4 1) sin a cos /3J
iftf 4 sin

2
. %* = . . . (8).

This equation will be rendered more convenient for numerical

calculation by replacing products and powers of sines and cosines
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by sums and differences. Treated in this manner, the equation
becomes

versin 2 (D + i) cfb
2

-(A+B) uz
c? - (A - B] iftf

+ versin 2i.w4 = 0... (9),

where A= versin D + versin (D + 2i),

B = cos 2a - cos 2/3
- cos (D + 2a) + cos (D + 2/3).

If the principal plane A OC of the crystal bisects the angle

between the refracting faces, we have

i Q 7T i
a =

2 P^Z+Z*
whence from (8), putting D + i = A,

(9

. 9 A 9 oA/79 9 A o 9 \
a2 sm2

-g
tr BUT ~

J
f D cos

2

^
- u2

cos
2

^ )
= 0.

The former of these factors is evidently that which corresponds to

the problem ;
the latter corresponds to refraction through a prism

having its faces parallel to those of the actual prism, and having
its refracting angle supplemental to /. We have therefore

. i
Sm

2

so that the constant a is given by the same formula that applies to

ordinary media, as it should.

If the refracting faces are perpendicular to the axes of elas

ticity which lie in the plane of incidence, the formula (8) or (9)

takes a very simple form. In this case we have a=/3 = i=%7r,
and therefore

cos
2D . ct

2
6
2 - wV- tftf + w4 = 0.

Mathematically speaking, one prism would be sufficient for

determining the three constants a, 6, c. For c would be deter

mined by means of the ordinary pencil; and by observing the

extraordinary pencil with the crystal in air, and again with the

crystal in some liquid, we should have two equations of the form

(8), by combining which we should obtain a2 and 6
2

by the

solution of a quadratic equation. But since a is usually nearly

equal to 6, it is evident that the course of the extraordinary ray

within the crystal would be nearly the same in the two observa-
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tions, being in each case inclined at nearly equal angles to the

refracting faces, and consequently the errors of observation would

be greatly multiplied in the result. Even if a differed greatly
from b, only one of these constants could be accurately determined

in this manner if the refracting angle were nearly bisected by
a principal plane. But two prisms properly chosen appear amply
sufficient for determining accurately the three constants by the

method of minimum deviations, even should neither prism have

its angle exactly bisected by a principal plane of the crystal.

It is not necessary to observe the deviation when it is a

minimum, as Professor Miller has remarked to me, since the angle
of incidence may be measured very accurately by moving the

telescope employed till the luminous slit, seen directly, appears
on the cross wires, and then turning it till the slit, seen by re

flection at the first face of the prism, again appears on the cross

wires, the prism meanwhile remaining fixed*. The angle through
which the telescope has been turned is evidently the supplement
of twice the angle of incidence. If this method of observation be

adopted, &amp;lt;, D, and i will be known by observation, whence ^
will be got immediately from (1). Thus all the coefficients in

(6) will be known quantities, and this equation furnishes a very

simple relation between a and b. The coefficients may easily be

calculated numerically by treating them like those in equation

(8), or else by employing subsidiary angles.

[* A method of measuring the refractive indices of isotropic media depending on

the measurement of the deviation and angle of incidence is described by Professor

Swan in the Edinburgh New Philos( phical Journal , Vol. xxxvi. (1844) p. 102.]



[From the Philosophical Magazine^ Vol. xxix. p. 6 (July, 1846)].

ON THE CONSTITUTION OF LUMINIFEROUS ETHER, VIEWED WITH

REFERENCE TO THE PHENOMENON OF THE ABERRATION OF

LIGHT.

IN a former communication to this Magazine (July, 1845),*

I shewed that the phenomenon of aberration might be explained

on the undulatory theory of light, without making the startling

supposition that the earth in its motion round the sun offers

no resistance to the ether. It appeared that the phenomenon
was fully accounted for, provided we supposed the motion of the

ether such as to make

udx + vdy + wdz (a)

an exact differential, Avhere u, v, w are the resolved parts, along
three rectangular axes, of the velocity of the particle of ether

whose co-ordinates are x, y, z. It appeared moreover that it

was necessary to make this supposition in order to account in

this way for the phenomenon of aberration. I did not in that

paper enter into any speculations as to the physical causes in

consequence of which (a) might be an exact differential. The

object of the present communication is to consider this question.

The enquiry naturally divides itself into two parts : First,

In what manner does one portion of ether act on another be

yond the limits of the earth s atmosphere ? Secondly, What
takes place in consequence of the mutual action of the air and

the ether ?

In order to separate these two questions, let us first conceive

the earth to be destitute of an atmosphere. Before considering

the motion of the earth and the ether, let us take the case of

*
Ante, p. 134.
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a solid moving in an ordinary incompressible fluid, which may
be supposed to be infinitely extended in all directions about the

solid. If we suppose the solid and fluid to be at first at rest,

and the solid to be then moved in any manner, it follows from
the three first integrals of the ordinary equations of fluid motion,
obtained by M. Cauchy, that the motion of the fluid at any
time will be such that (a) is an exact differential. From this

it may be easily proved, that if at any instant the solid be re

duced to rest, the whole of the fluid will be reduced to rest

likewise
;
and that the motion of the fluid is the same as it would

have been if the solid had received by direct impact the motion
which it has at that instant. Practically however the motion
of the fluid after some time would differ widely from what would
be thus obtained, at least if the motion of the solid be progressive
and not oscillatory. This appears to be due to two causes : first,

the motion considered would probably be unstable in the part
of the fluid behind the solid; and secondly, a tangential force

is called into play by the sliding of one portion of fluid along
another

;
and this force is altogether neglected in the common

equations of hydrodynamics, from which equations the motion
considered is deduced. If, instead of supposing the solid to

move continuously, we supposed it first to be in motion for a

very small interval of time, then to be at rest for another equal

interval, then to be in motion for a third interval equal to the

former, and so on alternately, theoretically the fluid ought to

be at rest at the expiration of the first, third, &c. intervals, but

practically a very slight motion would remain at the end of the

first interval, would last through the second and third, and would

be combined with a slight motion of the same kind, which would

have been left at the end of the third interval, even if the fluid

immediately before the commencement of it had been at rest
;

and the accumulation of these small motions would soon become

sensible.

Let us now return to the ether. We know that the trans

versal vibrations constituting light are propagated with a velocity

about 10,000 times as great as the velocity of the earth; and

Mr Green has shewn that the velocity of propagation of normal

vibrations is in all probability incomparably greater than that

of transversal vibrations (Cambridge Philosophical Transactions,

vol. VII. p. 2). Consequently, in considering the motion of the
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ether due to the motion of the earth, we may regard the ether

as perfectly incompressible. To explain dynamically the pheno
mena of light, it seems necessary to suppose the motion of the

ether subject to the same laws as the motion of an elastic solid.

If the views which I have explained at the end of a paper On
the Friction of Fluids, &c. (Cambridge Philosophical Transactions,

vol. viii. part 8)* be correct, it is only for extremely small vi

bratory motions that this is the case, while if the motion be

progressive, or not very small, the ether will behave like an

ordinary fluid. According to these views, therefore, the earth

will set the ether in motion in the same way as a solid would

set an ordinary incompressible fluid in motion.

Instead of supposing the earth to move continuously, let us

first suppose it to move discontinuously, in the same manner

as the solid considered above, the ether being at rest just before

the commencement of the first small interval of time. By what

precedes, the ether will move during the first interval in the

same, or nearly the same, manner as an incompressible fluid

would
;
and when, at the end of this interval, the earth is reduced

to rest, the whole of the ether will be reduced to rest, except
as regards an extremely small motion, of the same nature as

that already considered in the case of an ordinary fluid. But

in the present case this small motion will be propagated into

space with the velocity of light; so that just before the com

mencement of the third interval the ether may be considered

as at rest, and everything will be the same as before. Supposing
now the number of intervals of time to be indefinitely increased,

and their magnitude indefinitely diminished, we pass to the case

in which the earth is supposed to move continuously.

It appears then, from these views of the constitution of the

ether, that (a) must be an exact differential, if it be not pre

vented from being so by the action of the air on the ether. We
know too little about the mutual action of the ether and material

particles to enable us to draw any very probable conclusion

respecting this matter; I would merely hazard the following

conjecture. Conceive a portion of the ether to be filled with a

great number of solid bodies, placed at intervals, and suppose
these bodies to move with a velocity which is very small compared

*
Ante, p. 125.



156 ON THE CONSTITUTION OF LUMINIFEROUS ETHER.

with the velocity of light, then the motion of the ether between

the bodies will still be such that (a) is an exact differential. But

if these bodies are sufficiently close and numerous, they must

impress either the whole, or a considerable portion of their own

velocity on the ether between them. Now the molecules of air

may act the part of these solid bodies. It may thus come to pass

that (a) is an exact differential, and yet the ether close to the

surface of the earth is at rest relatively to the earth. The latter

of these conditions is however not necessary for the explanation of

aberration*.

[* A short demonstration that the path of a ray in the moving ether is a

straight line, which here followed, is omitted, as the proposition has already been

proved in the additional note printed at p. 138.]



[From the Report of the British Association for 1846, Part I. p. 1.]

REPORT ON RECENT RESEARCHES IN HYDRODYNAMICS.

AT the meeting of the British Association held at Cambridge last

year, the Committee of the Mathematical Section expressed a wish

that a Report on Hydrodynamics should be prepared, in continua

tion of the reports which Prof. Challis had already presented to

the Association on that subject. Prof. Challis having declined the

task of preparing this report, in consequence of the pressure of

other engagements, the Committee of the Association did me the

honour to entrust it to me. In accordance with the wishes of the

Committee, the object of the present report will be to notice re

searches in this subject subsequent to the date of the reports of

Prof. Challis. It will sometimes however be convenient, for the

sake of giving a connected view of certain branches of the subject,
to refer briefly to earlier investigations.

The fundamental hypothesis on which the science of hydro
statics is based may be considered to be, that the mutual action

of two adjacent portions of a fluid at rest is normal to the surface

which separates them. The equality of pressure in all directions

is not an independent hypothesis, but a necessary consequence of

the former. This may be easily proved by the method given in

the Exercises of M. Cauchy*, a method which depends on the con

sideration of the forces acting on a tetrahedron of the fluid, the

dimensions of which are in the end supposed to vanish. This

proof applies equally to fluids at rest and fluids in motion
;
and

thus the hypothesis above-mentioned may be considered as the

fundamental hypothesis of the ordinary theory of hydrodynamics,
as well as hydrostatics. This hypothesis is fully confirmed by

* Tom. ii. p. 42.
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experiment in the case of the equilibrium of fluids
;
but the com

parison of theory and experiment is by no means so easy in the

case of their motion, on account of the mathematical difficulty of

treating the equations of motion. Still enough has been done to

shew that the ordinary equations will suffice for the explanation
of a great variety of phenomena; while there are others the

laws of which depend on a tangential force, which is neglected in

the common theory, and in consequence of which the pressure is

different in different directions about the same point. The linear

motion of fluids in uniform pipes and canals is a simple instance*.

In the following report I shall first consider the common theory
of hydrodynamics, and then notice some theories which take ac

count of the inequality of pressure in different directions. It

will be convenient to consider the subject under the following

heads :

I. General theorems connected with the ordinary equations of

fluid motion.

II. Theory of waves, including tides.

III. The discharge of gases through small orifices.

IV. Theory of sound.

V. Simultaneous oscillations of fluids and solids.

VI. Formation of the equations of motion when the pressure
is not supposed equal in all directions.

I. Although the common equations of hydrodynamics have

been so long known, their complexity is so great f
that little has

been done with them except in the case in which the expression

usually denoted by
udx + vdy + wdz (A)

is the exact differential of a function of the independent variables

x, y, (
I* becomes then of the utmost importance to inquire in

what cases this supposition may be made. Now Lagrange enun

ciated two theorems, by virtue of which, supposing them true, the

supposition may be made in a great number of important cases,

in fact, in nearly all those cases which it is most interesting to

[* See the footnote at p. 99.]

t In nearly all the investigations of Mr Airy it will be found that (A) is an

exact differential, although he does not start with assuming it to be so.
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investigate. It must be premised that in these theorems the

accelerating forces X, Y, Z are supposed to be such that

Xdx + Ydy + Zd*

is an exact differential, supposing the time constant, and the

density of the fluid is supposed to be either constant, or a function

of the pressure. The theorems are

First, that (A) is approximately an exact differential when the

motion is so small that squares and products of u, v, w and their

differential coefficients may be neglected. By calling (A) approxi

mately an exact differential, it is meant that there exists an ex

pression ut
dx + v

tdy + w tdz, which is accurately an exact differential,

and which is such that u^ v^ wt
differ from u, v, w respectively by

quantities of the second order only.

Secondly, that (A) is accurately an exact differential at all

times when it is so at one instant, and in particular when the

motion begins from rest.

It has been pointed out by Poisson that the first of these

theorems is not true*. In fact, the initial motion, being arbitrary,

need not be such as to render (A) an exact differential. Thus
those cases coming under the first theorem in which the assertion

is true are merged in those which come under the second, at least

if we except the case of small motions kept up by disturbing

causes, a case in which we have no occasion to consider initial

motion at all. This case it is true is very important.
The validity of Lagrange s proof of the second theorem depends

on the legitimacy of supposing u, v and w capable of expansion

according to positive, integral powers of the time t, for a sufficiently

small value of that variable. This proof lies open to objection ;

for there are functions of t the expansions of which contain frac

tional powers, and there are others which cannot be expanded
according to ascending powers of t, integral or fractional, even

though they may vanish when t = 0. It has been shewn by Mr
Power that Lagrange s proof is still applicable if u, v and w admit
of expansion according to ascending powers of t of any kindf. The
second objection however still remains : nor does the proof which
Poisson has substituted for Lagrange s in his

{ Traite de Mecani-

que appear at all more satisfactory. Besides, it does not appear

* Memoires de VAcadCmie des Sciences, torn. x. p. 554.

t Transactions of the Cambridge Philosophical Society, vol. vii. p. 455.
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from these proofs what becomes of the theorem if it is only for a

certain portion of the fluid that (A) is at one instant an exact

differential.

M. Cauchy has however given a proof of the theorem *, which
is totally different from either of the former, and perfectly satis

factory. M. Cauchy first eliminates the pressure by differentiation

from the three partial differential equations of motion. He then

changes the independent variables in the three resulting equations
from x, y, z, t to a, b, c, t, where a, b, c are the initial co-ordinates

of the particle whose co-ordinates at the time t are x, y, z. The
three transformed equations admit each of being once integrated
with respect to t, and the arbitrary functions of a, b, c introduced

by integration are determined by the initial motion, which is sup

posed to be given. The theorem in question is deduced without

difficulty from the integrals thus obtained. It is easily proved
that if the velocity is suddenly altered by means of impulsive
forces applied at the surface of the fluid, the alteration is such as

to leave (A) an exact differential if it were such before impact.
M. Cauchy s proof shews moreover that if (A) be an exact diffe

rential for one portion of the fluid, although riot for the whole, it

will always remain so for that portion. It should be observed,

that although M. Cauchy has proved the theorem for an incom

pressible fluid only, the same method of proof applies to the more

general case in which the density is a function of the pressure.

In a paper read last year before the Cambridge Philosophical

Society, I have given a new proof of the same theorem f. This

proof is rather simpler than M. Cauchy s, inasmuch as it does not

require any integration.

In a paper published in the Philosophical Magazine J, Prof.

Challis has raised an objection to the application of the theorem

to the case in which the motion of the fluid begins from rest.

According to the views contained in this paper, we are not in

general at liberty to suppose (A) to be an exact differential when

u, v and w vanish : this supposition can only be made when the

limiting value of t~ a
(udx + vdy + wdz) is an exact differential, where

a is so taken as that one at least of the terms in this expression

does not vanish when t vanishes.

* M6moires des Savans Etrangers, torn. i. p. 40.

t Transactions of the Cambridge Philosophical Society, vol. viii. p. 307.

J Vol. xxiv. New Series, p. 94.
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It is maintained by Prof. Challis that the received equations
of hydrodynamics are not complete, as regards the analytical prin

ciples of the science, and he has given a new fundamental equation,
in addition to those received, which he calls the equation of con

tinuity of the motion*. On this equation Prof. Challis rests a result

at which he has arrived, and which all must allow to be most

important, supposing- it correct, namely that whenever (A) is

an exact differential the motion of the fluid is necessarily recti

linear, one peculiar case of circular motion being excepted. As I

have the misfortune to differ from Professor Challis on the points

mentioned in this and the preceding paragraph, for reasons which

cannot be stated here, it may be well to apprise the reader that

many of the results which will be mentioned further on as satis

factory lie open to Professor Challis s objections.

By virtue of the equation of continuity of a homogeneous

incompressible fluid, the expression udy vdx will always be the

exact differential of a function of x and y. In the Cambridge

Philosophical Transactions^ there will be found some applications
of this function, and of an analogous function for the case of

motion which is symmetrical about an axis, and takes place in

planes passing through the axis. The former of these functions

had been previously employed by Mr Earnshaw.

II. In the investigations which come under this head, it is to

be understood that the motion is supposed to be very small, so

that first powers only of small quantities are retained, unless the

contrary is stated.

The researches of MM. Poisson and Cauchy were directed to

the investigation of the waves produced by disturbing causes

acting arbitrarily on a small portion of the fluid, which is then left

to itself. The mathematical treatment of such cases is extremely
difficult

;
and after all, motions of this kind are not those which

it is most interesting to investigate. Consequently it is the

simpler cases of wave motion, and those which are more nearly con

nected with the phenomena which it is most desirable to explain,

that have formed the principal subject of more recent investiga

tions. It is true that there is one memoir by M. Ostrogradsky,

*
Transactions of the Cambridge Philosophical Society, vol. viii. p. 31; and

Philosophical Magazine,, vol. xxvi. New Series, p. 425.

t Vol. vii. p. 439. (Ante, p. 1.)

S. 11



162 REPORT OX RECENT RESEARCHES IN HYDRODYNAMICS.

read before the French Academy in 1826*, to which this character

does not apply. In this memoir the author has determined the

motion of the fluid contained in a cylindrical basin, supposing the

fluid at first at rest, but its surface not horizontal. The interest

of the memoir however depends almost exclusively on the mathe

matical processes employed ;
for the result is very complicated,

and has not been discussed by the author. There is one circum

stance mentioned by M. Plana*)- which increases the importance of

the memoir in a mathematical point of view, which is that Poisson

met with an apparent impossibility in endeavouring to solve the

same problem. I do not know whether Poisson s attempt w is

ever published.

Theory of Long Waves. When the length of the waves whose

motion is considered is very great compared with the depth of the

fluid, we may without sensible error neglect the difference between

the horizontal motions of different particles in the same vertical

line, or in other words suppose the particles once in a vertical

line to remain in a vertical line : we may also neglect the vertical,

compared with the horizontal effective force. These considerations

extremely simplify the problem ;
and the theory of long waves is

very important from its bearing on the theory of the tides. La-

grange s solution of the problem in the case of a fluid of uniform

depth is well known. It is true that Lagrange fell into error in

extending his solution to cases to which it does not apply ;
but

there is no question as to the correctness of his result when

properly restricted, that is when applied to the case of long waves

only. There are however many questions of interest connected

with this theory which have not been considered by Lagrange.

For instance, what will be the velocity of propagation in a uniform

canal whose section is not rectangular ? How will the form of the

wave be altered if the depth of the fluid, or the dimensions of the

canal, gradually alter ?

In a paper read before the Cambridge Philosophical Society in

May 1837 + ,
the late Mr Green has considered the motion of long

waves in a rectangular canal whose depth and breadth alter very

slowly, but in other respects quite arbitrarily. Mr Green arrived

at the following results : If & be the breadth, and 7 the depth of

* Mtmoires des Savans Etrangers, torn. iii. p. 23.

t Turin Memoirs for 1835, p. 253.

J Transactions of the Cambridge Philosophical Society, vol. vi. p. 457.
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the canal, then the height of the wave ccyS ^ i, the horizontal

velocity of the particles in a given phase of their motion oc -4
7&quot;^,

the length of the wave oc 7?, and the velocity of propagation
=

Jg^&amp;gt;

With respect to the height of the wave, Mr Russell was led by his

experiments to the same law of its variation as regards the breadth

of the canal, and with respect to the effect of the depth he observes

that the height of the wave increases as the depth of the fluid

decreases, but that the variation of the height of the wave is very
slow compared with the variation of the depth of the canal.

In another paper read before the Cambridge Philosophical

Society in February 1839*, Mr Green has given the theory of the

motion of long waves in a triangular canal with one side vertical.

Mr Green found the velocity of propagation to be the same as that

in a rectangular canal of half the depth.
In a memoir read before the Royal Society of Edinburgh in

April 1839 f, Prof. Kelland has considered the case of a uni

form canal whose section is of any form. He finds that the velo

city of propagation is given by the very simple formula AjT &amp;gt;

where A is the area of a section of the canal, and I the breadth

of the fluid at the surface. This formula agrees with the experi
ments of Mr Russell, and includes as a particular case the formula

of Mr Green for a triangular canal.

Mr Airy, the Astronomer Royal, in his excellent treatise on

Tides and Waves, has considered the case of a variable canal with

more generality than Mr Green, inasmuch as he has supposed the

section to be of any formj. If A, b denote the same things as in

the last paragraph, only that now they are supposed to vary slowly
in passing along the canal, the coefficient of horizontal displace

ment oc A~%$, and that of the vertical displacement oc A~^b~^9

while the velocity of propagation at any point of the canal is that

given by the formula of the preceding paragraph. Mr Airy has

proved the latter formula in a more simple manner than Prof.

Kelland, and has pointed out the restrictions under which it is

*
Transactions of the Cambridge Philosophical Society, vol. vii. p. 87.

t Transactions of the Royal Society of Edinburgh, vol. xiv. pp. 524, 530.

J Encyclopedia Metropolitan^ article Tides and Waves. Art. 260 of the
treatise.

Art. 218, &c.

112
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true. Other results of Mr Airy s will be more conveniently con

sidered in connection with the tides.

Theory of Oscillatory Waves. When the surface of water is

covered with an irregular series of waves of different sizes, the

longer waves will be continually overtaking the shorter, and the

motion will be very complicated, and will offer no regular laws.

In order to obtain such laws we must take a simpler case: we

may for instance propose to ourselves to investigate the motion of

a series of waves which are propagated with a constant velocity,

and without change of form, in a fluid of uniform depth, the

motion being in two dimensions and periodical. A series of waves

of this sort may be taken as the type of oscillatory waves in

general, or at least of those for which the motion is in two dimen

sions: to whatever extent a series of waves propagated in fluid

of a uniform depth deviates from this standard form, to the same

extent they fail in the characters of uniform propagation and in

variable form.

The theory of these waves has long been known. In fact each

element of the integrals by which MM. Poisson and Cauchy ex

pressed the disturbance of the fluid denotes what is called by Mr

Airy a standing oscillation, and a progressive oscillation of the

kind under consideration will result from the superposition of two

of these standing oscillations properly combined. Or, if we merely

replace products of sines and cosines under the integral signs by
sums and differences, each element of the new integrals will denote

a progressive oscillation of the standard kind. The theory of these

waves however well deserves a more detailed investigation. The

most important formula connected with them is that which gives

the relation between the velocity of propagation, the length of the

waves, and the depth of the fluid. If c be the velocity of propa

gation, X the length of the waves, measured from crest to crest, h
9

the depth of the fluid, and ra = ,
then

m

If the surface of the fluid be cut by a vertical plane perpen

dicular to the ridges of the waves, the section of the surface will

be the curve of sines. Each particle of the fluid moves round and

round in an ellipse, whose major axis is horizontal. The particle
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is in its highest position when the crest of the wave is passing
over it, and is then moving in the direction of propagation of the

wave
;

it is in its lowest position when the hollow of the wave is

passing over it, and is then moving in a direction contrary to the

direction of propagation. At the bottom of the fluid the ellipse is

reduced to a right line, along which the particle oscillates. When
the length of waves is very small compared with the depth of the

fluid, the motion at the bottom is insensible, and all the expres
sions will be sensibly the same as if the depth were infinite. On

this supposition the expression for c reduces itself to A /
&amp;gt;~~

The

ellipses in which the particles move are replaced by circles, and

the motion in each circle is uniform. The motion decreases with

extreme rapidity as the point considered is further removed from

the surface
;

in fact, the coefficients of the horizontal and vertical

velocity contain as a factor the exponential e~
y

,
where y is the

depth of the particle considered below the surface. When the depth
of the fluid is finite, the law (as to time) of the horizontal and

vertical displacements of the particles is the same as when the depth
is infinite. When the length of the waves is very great compared
with the depth of the fluid, the horizontal motion of different

particles in the same vertical line is sensibly the same. The ex

pression for c reduces itself to Jgh, the same as would have been

obtained directly from the theory of long waves. The whole

theory is given very fully in the treatise of Mr Airy*. The nature

of the motion of the individual particles, as deduced from a rigor

ous theory, was taken notice of, I believe for the first time, by
Mr Green f, who has considered the case in which the depth is in

finite.

The oscillatory waves just considered are those which are pro

pagated uniformly in fluid of which the depth is everywhere the

same. When this condition is not satisfied, as for instance when
the waves are propagated in a canal whose section is not rectangu

lar, it is desirable to know how the velocity of propagation and

the form of the waves are modified by this circumstance. There

is one such case in which a solution has been obtained. In a

paper read before the Eoyal Society of Edinburgh in January 1841,

* Tides and Waves, art. 160, &c.

t Transactions of the Cambridge Philosophical Society, vol. vii. p. 95.
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Prof. Kelland has arrived at a solution of the problem in the case

of a triangular canal whose sides are inclined at an angle of 45

to the vertical, or of a canal with one side vertical and one side

inclined at an angle of 45, in which the motion will of course be the

same as in one half of the complete canal*. The velocity of propa

gation is given by the formula (B), which applies to a rectangular

canal, or to waves propagated without lateral limitation, provided
we take for h half the greatest depth in the triangular canal, and

for X, or 27T/m, a quantity less than the length of the waves in the

triangular canal in the ratio of 1 to *J2. As to the form of the

waves, a section of the surface made by a vertical plane parallel

to the edges of the canal is the curve of sines
;

a section made by
a vertical plane perpendicular to the former is the common cate

nary, with its vertex in the plane of the middle of the canal

(supposed complete), and its concavity turned upwards or down

wards according as the section is taken where the fluid is elevated

or where it is depressed. Thus the ridges of the waves do not

bend forwards, but are situated in a vertical plane, and they rise

higher towards the slanting sides of the canal than in the middle.

I shall write down the value of
&amp;lt;,

the integral of (A), and then any
one who is familiar with the subject can easily verify the preceding

results. In the following expression x is measured along the

bottom line of the canal, y is measured horizontally, and z verti

cally upwards :

(f&amp;gt;

= A(ey-}-e-
a
y)(e

aZ +
- aZ

*)smj2z(x-ct) (C).

I have mentioned these results under the head, of oscillatory

waves, because it is to that class only that the investigation strictly

applies. The length of the waves is however perfectly arbitrary,

and when it bears a large ratio to the depth of the fluid, it seems

evident that the circumstances of the motion of any one wave can

not be materially affected by the waves which precede and follow

it, especially as regards the form of the middle portion, or ridge,

of the wave. Now the solitary waves of Mr Russell are long com

pared with the depth of the fluid
;

thus in the case of a rect

angular canal he states that the length of the wave is about six

times the depth. Accordingly Mr Russell finds that the form of

the ridge agrees well with the results of Prof. Kelland.

* Transactions of the Royal Society of Edinburgh, vol. xv. p. 121.
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It appears from Mr Russell s experiments that there is a certain

limit to the slope of the sides of a triangular canal, beyond which

it is impossible to propagate a wave in the manner just considered.

Prof. Kelland has arrived at the same result -from theory, but his

mathematical calculation does not appear to be quite satisfactory.

Nevertheless there can be little doubt that such a limit does

exist, and that if it be passed, the wave will be either continually

breaking at the sides of the canal, or its ridge will become bow-

shaped, in consequence of the portion of the wave in the middle

of the canal being propagated more rapidly than the portions

which lie towards the sides. When once a wave has become suf

ficiently curved it may be propagated without further change, as

Mr Airy has shewn*. Thus the case of motion above considered

is in nowise opposed to the circumstance that the tide wave as

sumes a curved form when it is propagated in a broad channel in

which the water is deepest towards the centre.

It is worthy of remark, that if in equation (C), we transfer the

origin to either of the upper edges of the canal (supposed com

plete), and then suppose h to become infinite, having previously

written Ae~ iah for A, the result will express a series of oscillatory

waves propagated in deep water along the edge of a bank having
a slope of 45, the ridges of the waves being perpendicular to the

edge of the fluid. It is remarkable that the disturbance of the

fluid decreases with extreme rapidity as the perpendicular distance

from the edge increases, and not merely as the distance from the

surface increases. Thus the disturbance is sensible only in the

immediate neighbourhood of the edge, that is at a distance from

it which is a small multiple of X. The formula may be accommo

dated to the case of a bank having any inclination by merely

altering the coefficients of y and z, without altering the sum of the

squares of the coefficients. If i be the inclination of the bank to

the vertical, it will be easily found that the velocity of propagation

is equal to (
|

cos i
)

. When i vanishes these waves pass into those-

already mentioned as the standard case of oscillatory waves
;
and

when i becomes negative, or the bank overhangs the fluid, a motion

of this sort becomes impossible.
I have had occasion to refer to what Mr Airy calls a standing

* Tides and Waves, art. 359.
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oscillation or standing wave. To prevent the possibility of con

fusion, it may be well to observe that Mr Airy uses the term in

a totally different sense from Mr Russell. The standing wave of

Mr Airy is the oscillation which would result from the co-existence

of two series of progressive waves, which are equal in every respect,

but are propagated in opposite directions. With respect to the

standing wave of Mr Russell, it cannot be supposed that the ele

vations observed in mountain streams can well be made the sub

ject of mathematical calculation. Nevertheless in so far as the

motion can be calculated, by taking a simple case, the theory does

not differ from that of waves of other classes. For if we only sup

pose a velocity equal and opposite to that of the stream impressed

both on the fluid and on the stone at the bottom which produces

the disturbance, we pass to the case of a forced wave produced in

still water by a solid dragged through it. There is indeed one

respect in which the theory of these standing waves offers a pecu

liarity, which is, that the velocity of a current is different at

different depths. But the theory of such motions is one of great

complexity and very little interest.

Theory of Solitary Waves. It has been already remarked that

the length of the solitary wave of Mr Russell is considerable com

pared with the depth of the fluid. Consequently we might expect

that the theory of long waves would explain the main phenomena
of solitary waves. Accordingly it is found by experiment that the

velocity of propagation of a solitary wave in a rectangular canal

is that given by the formula of Lagrange, the height of the wave

being very small, or that given by Prof. Kelland s, formula when

the canal is not rectangular. Moreover, the laws of the motion of

a solitary wave, deduced by Mr Green from the theory of long

waves, agree with the observations of Mr Russell. Thus Mr Green

found, supposing the canal rectangular, that the particles in a

vertical plane perpendicular to the length of the canal remain in

a vertical plane ;
that the particles begin to move when the wave

reaches them, remain in motion while the wave is passing over

them, and are finally deposited in new positions ;
that they move

in the direction of propagation of the wave, or in the contrary

direction, according as the wave consists of an elevation or a de

pression*. But when we attempt to introduce into our calculations

* Transactions of the Cambridge Philosophical Society, vol. vii. p. 87.
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the finite length of the wave, the problem becomes of great

difficulty. Attempts have indeed been made to solve it by the

introduction of discontinuous functions. But whenever such func

tions are introduced, there are certain conditions of continuity
to be satisfied at the common surface of two portions of fluid to

which different analytical expressions apply; and should these

conditions be violated, the solution will be as much in fault as it

would be if the fluid were made to penetrate the bottom of the

canal. No doubt, the theory is contained, to a first approximation,
in the formulas of MM. Poisson and Cauchy ;

but as it happens
the obtaining of these formula? is comparatively easy, their discus

sion forms the principal difficulty. When the height of the wave

is not very small, so that it is necessary to proceed to a second

approximation, the theory of long waves no longer gives a velocity

of propagation agreeing with experiment. It follows, in fact, from

the investigations of Mr Airy, that the velocity of propagation of a

long wave is, to a second approximation, *g(h + 3k), where h is

the depth of the fluid when it is in equilibrium, and h + k the

height of the crest of the wave above the bottom of the canal *.

The theory of the two great solitary waves of Mr Russell forms

the subject of a paper read by Mr Earnshaw before the Cambridge

Philosophical Society in December last-f. Mr Russell found by

experiment that the horizontal motion of the fluid particles was

sensibly the same throughout the whole of a vertical plane per

pendicular to the length of the canal. He attributed the observed

degradation of the wave, and consequent diminution of the velocity

of propagation, entirely to the imperfect fluidity of the fluid, and

its adhesion to the sides and bottom of the canal. Mr Earnshaw

accordingly investigates the motion of the fluid on the hypotheses,

first, that the particles once in a vertical plane, perpendicular to

the length of the canal, remain in a vertical plane ; secondly, that

the wave is propagated with a constant velocity and without

* Tides and Waves, art. 208. In applying this formula to a solitary wave, it is

necessary to take for h the depth of the undisturbed portion of the fluid. In the

treatise of Mr Airy the formula is obtained for a particular law of disturbance, but

the same formula would have been arrived at, by the same reasoning, had the law

not been restricted. This formula is given as expressing the velocity of propagation

of the phase of high water, which it is true is not quite the same as the velocity of

propagation of the crest of the wave
;
but the two velocities are the same to the

second order of approximation.

t Transactions of the Cambridge Philosophical Society, vol. viii. p. 326.
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change of form. It is important to observe that these hypotheses
are used not as a foundation for calculation, but as a means of

selecting a particular kind of motion for consideration. The equa
tions of fluid motion admit of integration in this case in finite

terms, without any approximation, and it turns out that the motion

is possible, so far as the wave itself is concerned, and everything is

determined in the result except two constants, which remain arbi

trary. However, in order that the motion in question should

actually take place, it is necessary that there should be an instan

taneous generation or destruction of a finite velocity, and likewise

an abrupt change of pressure, at the junction of the portion of

fluid which constitutes the wave with the portions before and

behind which are at rest, both which are evidently impossible. It

follows of course that one at least of the two hypotheses must be

in fault. Experiment shewing that the first hypothesis is very

nearly true, while the second (from whatever cause) is sensibly

erroneous, the conclusion is that in all probability the degradation
of the wave is not to be attributed wholly to friction, but that it

is an essential characteristic of the motion. Nevertheless the

formula for the velocity of propagation of the positive wave, at

which Mr Earnshaw has arrived, agrees very well with the experi

ments of Mr Russell; the formula for the negative wave also agrees,

but not closely. These two formula can be derived from each

other only by introducing imaginary quantities.

It is the opinion of Mr Russell that the solitary wave is a

phenomenon swi generis, in nowise deriving its character from the

circumstances of the generation of the wave. His experiments

seem to render this conclusion probable. Should it be correct,

the analytical character of the solitary wave remains to be dis

covered. A complete theory of this wave should give, not only

its velocity of propagation, but also the law of its degradation,

at least of that part of the degradation which is independent of

friction, which is probably by far the greater part. With respect

to the importance of this peculiar wave however, it must be re

marked that the term solitary wave, as so defined, must not be

extended to the tide wave, which is nothing more (as far as

regards the laws of its propagation) than a very long wave, of

which the form may be arbitrary. It is hardly necessary to re

mark that the mechanical theories of the solitary wave and of the

aerial sound wave are altogether different.



REPORT ON RECENT RESEARCHES IN HYDRODYNAMICS. 171

Theory of River and Ocean Tides. The treatise of Mr Airy

already referred to is so extensive, and so full of original matter,

that it will be impossible within, the limits of a report like the

present to do more than endeavour to give an idea of the nature

of the calculations and methods of explanation employed, and to

mention some of the principal results.

On account of the great length of the tide wave, the horizontal

motion of the water will be sensibly the same from top to bottom.

This circumstance most materially simplifies the calculation. The

partial differential equation for the motion of long waves, when
the motion is very small, is in the simplest case the same as that

which occurs in the theory of the rectilinear propagation of sound
;

and in Mr Airy s investigations the arbitrary functions which occur

in its integral are determined by the conditions to be satisfied at

the ends of the canal in which the waves are propagated, in a

manner similar to that in which the arbitrary functions are deter

mined in the case of a tube in which sound is propagated. When
the motion is not very small, the partial differential equation of

wave motion may be integrated by successive approximations, the

arbitrary functions being determined at each order of approxima
tion as before.

To proceed to some of the results. The simplest conceivable

case of a tidal river is that in which the river is regarded as a

uniform, indefinite canal, without any current. The height of the

water at the mouth of the canal will be expressed, as in the open

sea, by a periodic function of the time, of the form a sin (nt + a).

The result of a first approximation of course is that the disturb

ance at the mouth of the canal will be propagated uniformly up
it, with the velocity due to half the depth of the water. But on

proceeding to a second approximation*, Mr Airy finds that the

form of the wave will alter as it proceeds up the river. Its front

will become shorter and steeper, and its rear longer and more

gently sloping. When the wave has advanced sufficiently far up
the river, its surface will become horizontal at one point in the

rear, and further on the wave will divide into two. At the mouth

of the river the greatest velocities of the ebb and flow of the tide

are equal, and occur at low and high water respectively; the time

during which the water is rising is also equal to the time during

* Art. 198, &c.
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which it is falling. But at a station up the river the velocity of

the ebb-stream is greater than that of the flow-stream, and the

rise of the water occupies less time than its fall. If the station

considered is sufficiently distant from the mouth of the river, and

the tide sufficiently large, the water after it has fallen some way
will begin to rise again : there will in fact be a double rise and

fall of the water at each tide. This explains the double tides

observed in some tidal rivers. The velocity with which the phase of

high water travels up the river is found to be Jgk(I + ob), k being

the depth of the water when in equilibrium, and bk the greatest

elevation of the water at the mouth of the river above its mean

level. The same formula will apply to the case of low water if we

change the sign of b. This result is very important, since it shews

that the interval between the time of the moon s passage over the

meridian of the river station and the time of high water will be

affected by the height of the tide. Mr Airy also investigates the

effect of the current in a tidal river. He finds that the difference

between the times of the water s rising and falling is increased by

the current.

When the canal is stopped by a barrier the circumstances are

altered. When the motion is supposed small, and the disturbing

force of the sun and moon is neglected, it is found in this case

that the tide-wave is a stationary wave*, so that there is high or

low water at the same instant at every point of the canal; but

if the length of the canal exceeds a certain quantity, it is high

water in certain parts of the canal at the instant when it is low

water in the remainder, and vice versa. The height of high water

is different in different parts of the canal : it increases from the

mouth of the canal to its extremity, provided the canal s length

does not exceed a certain quantity. If four times the length of

the canal be any odd multiple of the length of a free wave whose

period is equal to that of the tide, the denominator of the expres

sion for the tidal elevation vanishes. Of course friction would

prevent the elevation from increasing beyond a certain amount,

but still the tidal oscillation would in such cases be very large.

When the channel up which the tide is propagated decreases

in breadth or depth, or in both, the height of the tide increases in

ascending the channel. This accounts for the great height of the

* Art. 307.
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tides observed at the head of the Bristol Channel, and in such

places. In some of these cases however the great height may
be partly due to the cause mentioned at the end of the last

paragraph.
When the tide-wave is propagated up a broad channel, which

becomes shallow towards the sides, the motion of the water in the

centre will be of the same nature as the motion in a free canal, so

that the water will be flowing up the channel with its greatest

velocity at the time of high water. Towards the coasts however

there will be a considerable flow of water to and from the shore
;

and as far as regards this motion, the shore will have nearly the

same effect as a barrier in a canal, and the oscillation will be of

the nature of a stationary wave, so that the water will be at rest

when it is at its greatest height. If, now, we consider a point at

some distance from the shore, but still not near the middle of the

channel, the velocity of the water up and down the channel will

be connected with its height in the same way as in the case of a

progressive wave, while the velocity to and from the shore will be

connected with the height of the water in the same way as in

a stationary wave. Combining these considerations, Mr Airy is

enabled to explain the apparent rotation of the water in such

localities, which arises from an actual rotation in the direction of

its motion*.

When the motion of the water is in two dimensions the mathe
matical calculation of the tidal oscillations is tolerably simple, at

least when the depth of the water is uniform. But in the case of

nature the motion is in .three dimensions, for the water is distri

buted over the surface of the earth in broad sheets, the boundaries

of which are altogether irregular. On this account a complete

theory of the tides appears hopeless, even in the case in which the

depth is supposed uniform. Laplace s theory, in which the whole

earth is supposed to be covered with water, the depth of which

follows a very peculiar law, gives us no idea of the effect of the

limitation of the ocean by continents. Mr Airy consequently in

vestigates the motion of the water on the supposition of its being
confined to narrow canals of uniform depth, which in the calcula

tion are supposed circular. The case in which the canal forms a

great circle is especially considered. This method enables us in

*
Art. 360, &c.
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some degree to estimate the effect of the boundaries of the sea
;

aad it has the great advantage of leading to calculations which

can be worked out. There can be 110 doubt, too, that the con

clusions arrived at will apply, as to their general nature, to the

actual case of the earth.

With a view to this application of the theory, Mr Airy calcu

lates the motion of the water in a canal when it is under the

action of a disturbing force, which is a periodic function of the

time. The disturbing force at a point whose abscissa, measured

along the canal from a fixed point, is x, is supposed to be expressed

by a function of the form A sin (nt mx -f- a). This supposition is

sufficiently general for the case of the tides, provided the canal on

the earth be supposed circular. In all cases the disturbing force

will give rise to an oscillation in the water having the same period
as the force itself. This oscillation is called by Mr Airy a forced
wave. It will be sufficient here to mention some of the results of

this theory as applied to the case of the earth.

In all cases the expression for the tidal elevation contains as a

denominator the difference of the squares of two velocities, one

the velocity of propagation of a free wave along the canal, the

other the velocity with which a particular phase of the disturbing

force travels along the canal, or, which is the same, the velocity of

propagation of the forced wave. Hence the height of the tides

will not depend simply on the magnitude of the disturbing force,

but also on its period. Thus the mass of the moon cannot be in

ferred directly from the comparison of spring and neap tides, since

the heights of the solar and lunar tides are affected by the different

motions of the sun arid moon in right ascension, and consequently

in hour-angle. When the canal under consideration is equatorial

the diurnal tide vanishes. The height of high water is the same

at all points of the canal, and there is either high or low water at

the point of the canal nearest to the attracting body, according as

the depth of the water is greater or less than that for which a

free wave would be propagated with the same velocity as the

forced wave. In the general case there is both a diurnal and a

semidiurnal tide, and the height of high water, as well as the

interval between the transit of the attracting body over the meri

dian of the place considered and the time of high water, is different

at different points of the canal. When the canal is a great circle

passing through the poles, the tide-wave is a stationary wave.
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When the coefficient of the disturbing force is supposed to vary

slowly, in consequence of the change in declination, &c. of the

disturbing body, it is found that the greatest tide occurs on the

day on which the disturbing force is the greatest.

The preceding results have been obtained on the supposition
of the absence of all friction

;
but Mr Airy also takes friction into

consideration. He supposes it to be represented by a horizontal

force, acting uniformly from top to bottom of the water, and vary

ing as the first power of the horizontal velocity. Of course this

supposition is not exact : still there can be no doubt that it

represents generally the effect of friction. When friction is taken

into account, the denominator of the expressions for the tidal

elevation is essentially positive, so that the motion can never

become infinite. In the case of a uniform tidal river stopped by
a barrier, the high wa,ter is no longer simultaneous at all points,

but the phase of high water always travels up the river. But of

all the results obtained by considering friction, the most important

appears to be, that when the slow variation of the disturbing

force is taken into account, the greatest tide, instead of happening
on the day when the disturbing force is greatest, will happen later

by a certain time pv Moreover, in calculating the tides, we must

use, not the relative positions of the sun and moon for the instant

for which the tide is calculated, but their relative positions for a

time earlier by the same interval p l
as in the preceding case. The

expression for pl depends both on the depth of the canal and on

the period of the tide, and therefore its value for the diurnal tide

cannot be inferred from its value for the semidiurnal. It appears
also that the phase of the tide is accelerated by friction.

The mechanical theory of the tides of course belongs to hydro

dynamics; but I do not conceive that the consideration of the

reduction and discussion of tidal observations falls within the

province of this report.

Before leaving the investigations of Mr Airy, I would call at

tention to a method which he sometimes employs very happily in

giving a general explanation of phenomena depending on motions

which are too complicated to admit of accurate calculation. It is

evident that any arbitrary motion may be assigned to a fluid,

(with certain restrictions as to the absence of abruptness,) provided
we suppose certain forces to act so as to produce them. The
values of these forces are given by the equations of motion. In
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some cases the forces thus obtained will closely resemble some

known forces
;

while in others it will be possible to form a clear

conception of the kind of motion which must take place in the

absence of such forces. For example, supposing that there is pro

pagated a series of oscillatory waves of the standard kind, except

that the height of the waves increases proportionably to their

distance from a fixed line, remaining constant at the same point

as the time varies, Mr Airy finds for the force requisite to maintain

such a motion an expression which may be assimilated to the force

which wind exerts on water. This affords a general explanation

of the increase in the height of the waves in passing from a wind

ward to a lee shore*. Again, by supposing a series of waves, as

near the standard kind as circumstances will admit, to be pro

pagated along a canal whose depth decreases slowly, and examin

ing the force requisite to maintain this motion, he finds that a

force must be applied to hold back the heads of the waves. In

the absence, then, of such a force the heads of the waves will have

a tendency to shoot forwards. This explains the tendency of waves

to break over a sunken shoal or along a sloping beach~f*. The

word tendency is here used, because when a wave comes at all

near breaking, but little reliance can be placed in any investigation

which depends upon the supposition of the motion being small.

To take one more example of the application of this method, by

supposing a wave to travel, unchanged in form, along a canal, with

a velocity different from that of a free wave, and examining the

force requisite to maintain such a motion, Mr Airy is enabled to

give a general explanation of some very curious circumstances

connected with the motion of canal boats J, which have been ob

served by Mr Russell.

III. In the 16th volume of the Journal de 1 Ecole Polytech-

nique ,
will be found a memoir by MM. Barre* de Saint-Venant

and Wantzel, containing the results of some experiments on the

discharge of air through small orifices, produced by considerable

differences of pressure. The formula for the velocity of efflux

derived from the theory of steady motion, and the supposition

that the mean pressure at the orifice is equal to the pressure at a

distance from the orifice in the space into which the discharge

* Art. 265, &e. + Art. 238, &c.

+ Art. 405, &c. Cahier xxvii. p. 85.
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takes place, leads to some strange results of such a nature as to

make us doubt its correctness. If we call the space from which

the discharge takes place i\iQ first space, and that into which it

takes place the second space, and understand by the term reduced

velocity the velocity of efflux diminished in the ratio of the density

in the second space to the density in the first, so that the reduced

velocity measures the rate of discharge, provided the density in

the first space remain constant, it follows from the common for

mula that the reduced velocity vanishes when the density in the

second space vanishes, so that a gas cannot be discharged into a

vacuum. Moreover, if the density of the first space is given, the

reduced velocity is a maximum when the density in the second

space is rather more than half that in the first. The results

remain the same if we take account of the contraction of the

vein, and they are not materially altered if we take into account

the cooling of the air by its rapid dilatation. The experiments
above alluded to were made by allowing the air to enter an ex

hausted receiver through a small orifice, and observing simul

taneously the pressure and temperature of the air in the receiver,

and the time elapsed since the opening of the orifice. It was

found that when the exhaustion was complete the reduced velocity

had a certain value, depending on the orifice employed, and that

the velocity did not sensibly change till the pressure of the air in

the receiver became equal to about Jths of the atmospheric pres

sure. The reduced velocity then began to decrease, and finally

vanished when the pressure of the air in the receiver became

equal to the atmospheric pressure.

These experiments shew that when the difference of pressure

in the first and second spaces is considerable, we can by no means

suppose that the mean pressure at the orifice is equal to the

pressure at a distance in the second space, nor even that there

exists a contracted vein, at which we may suppose the pressure to

be the same as at a distance. The authors have given an empiri

cal formula, which represents very nearly the reduced velocity,

whatever be the pressure of the air in the space into which the

discharge takes place.

The orifices used in these experiments were generally about

one millimetre in diameter. It was found that widening the

mouth of the orifice, so as to make it funnel-shaped, produced a

much greater proportionate increase of velocity when the velocity

S. 12
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of efflux was small than when it was large. The authors have

since repeated their experiments with air coming from a vessel in

which the pressure was four atmospheres: they have also tried

the effect of using larger orifices of four or five millimetres

diameter. The general results were found to be the same as

before*.

IV. In the 6th volume of the Transactions of the Cambridge

Philosophical Society, p. 403, will be found a memoir by Mr Green

on the reflection and refraction of sound, which is well worthy of

attention. This problem had been previously considered by Pois-

son in an elaborate memoir -f\
Poisson treats the subject with

extreme generality, and his analysis is consequently very compli

cated. Mr Green, on the contrary, restricts himself to the case of

plane waves, a case evidently comprising nearly all the phenomena
connected with this subject which are of interest in a physical

point of view, and thus is enabled to obtain his results by a very

simple analysis. Indeed Mr Green s memoirs are very remarkable,

both for the elegance and rigour of the analysis, and for the ease

with which he arrives at most important results. This arises in a

great measure from his divesting the problems he considers of all

unnecessary generality: where generality is really of importance
he does not shrink from it. In the present instance there is one

important respect in which Mr Green s investigation is more general

than Poisson s, which is, that Mr Green has taken the case of any
two fluids, whereas Poisson considered the case of two elastic fluids,

in which equal condensations produce equal increments of pressure.

It is curious, that Poisson, forgetting this restriction, applied his

formulae to the case of air and water. Of course his numerical

result is altogether erroneous. Mr Green easily arrives at the

ordinary laws of reflection and refraction. He obtains also a very

simple expression for the intensity of the reflected sound. If A is

the ratio of the density of the second medium to that of the first,

and B the ratio of the cotangent of the angle of refraction to the

cotangent of the angle of incidence, then the intensity of the

reflected sound is to the intensity of the incident as A B to

A + B. In this statement the intensity is supposed to be mea

sured by the first power of the maximum displacement. When

*
Comptes Rendus, torn. xvii. p. 1140.

t Memoires de VAcadtmie des Sciences, torn. x. p. 317.
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the velocity of propagation in the first medium is less than in the

second, and the angle of incidence exceeds what may be called the

critical angle, Mr Green restricts himself to the case of vibrations

following the cycloidal law. He finds that the sound suffers total

internal reflection. The expression for the disturbance in the

second medium involves an exponential with a negative index,

and consequently the disturbance becomes quite insensible at a

distance from the surface equal to a small multiple of the length
of a wave. The phase of vibration of the reflected sound is also

accelerated by a quantity depending on the angle of incidence.

It is remarkable, that when the fluids considered are ordinary
elastic fluids, or rather when they are such that equal condensa

tions produce equal increments of pressure, the expressions for

the intensity of the reflected sound, and for the acceleration of

phase when the angle of incidence exceeds the critical angle, are

the same as those given by Fresnel for light polarized in a plane

perpendicular to the plane of incidence.

V. Not long after the publication of Poisson s memoir on the

simultaneous motions of a pendulum and of the surrounding air*,

a paper by Mr Green was read before the Royal Society of Edin

burgh, which is entitled Researches on the Vibration of Pendulums
in Fluid Media [. Mr Green does not appear to have been at that

time acquainted with Poisson s memoir. The problem which he

has considered is one of the same class as that treated by Poisson.

Mr Green has supposed the fluid to be incompressible, a suppo

sition, however, which will apply without sensible error to air, in

considering motions of this sort. Poisson regarded the fluid as

elastic, but in the end, in adapting his formula to use, he has

neglected as insensible the terms by which the effect of an elastic

differs from that of an inelastic fluid. The problem considered by
Mr Green is, however, in one respect much more general than

that solved by Poisson, since Mr Green has supposed the oscil

lating body to be an ellipsoid, whereas Poisson considered only a

sphere. Mr Green has obtained a complete solution of the pro

blem in the case in which the ellipsoid has a motion of translation

only, or in which the small motion of the fluid due to its motion

* M&moires de VAcademic des Sciences, torn. xi. p. 521.

t This paper was read in December, 1833, and is printed in the 13th volume of

the Society s Transactions, p. 54, &c.
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of rotation is neglected. The result is that the resistance of the

fluid will be allowed for if we suppose the mass of the ellipsoid

increased by a mass bearing a certain ratio to that of the fluid

displaced. In the general case this ratio depends on three trans

cendental quantities, given by definite integrals. If, however,

the ellipsoid oscillates in the direction of one of its principal axes,

the ratio depends on one only of these transcendents. When the

ellipsoid passes into a spheroid, the transcendents above mentioned

can be expressed by means of circular or logarithmic functions.

When the spheroid becomes a sphere, Mr Green s result agrees

with Poisson s. It is worthy of remark, that Mr Green s formula

will enable us to calculate the motion of an ellipse or circle oscil

lating in a fluid, in a direction perpendicular to its plane, since a

material ellipse or circle may be considered as a limiting form of

an ellipsoid. In this case, however, the motion would probably

have to be extremely small, in order that the formula should apply

with accuracy.

In a paper On the Motion of a small Sphere acted on by the

Vibrations of an Elastic Medium, read before the Cambridge

Philosophical Society in April 1841*, Prof. Challis has considered

the motion of a ball pendulum, retaining in his solution small

quantities to the second order. The principles adopted by Prof.

Challis in the solution of this problem are at variance with those

of Poisson, and have given rise to a controversy between him and

Mr Airy, which will be found in the 17th, 18th, and 19 volumes

of the Philosophical Magazine (New Series). In the paper just

referred to, Prof. Challis finds that when the fluid is incompressible

there is no decrement in the arc of oscillation, except what arises

from friction and capillary attraction. In the case of air there is

a slight theoretical decrement
;
but it is so small that Prof. Challis

considers the observed decrement to be mainly owing to friction.

This result follows also from Poisson s solution. Prof. Challis also

finds that a small sphere moving with a uniform velocity experi

ences no resistance, and that when the velocity is partly uniform

and partly variable, the resistance depends on the variable part

only. The problem, however, referred to in the title of this paper,

is that of calculating the motion of a small sphere situated in an

elastic fluid, and acted on by no forces except the pressure of the

* Transactions of the Cambridge Philosophical Society, vol. vii. p. 333.
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fluid, in which an indefinite series of plane condensing and rarefy

ing waves is supposed to be propagated. This problem is solved

by the author on principles similar to those which he has adopted
in the problem of an oscillating sphere. The views of Prof. Challis

with respect to this problem, which he considers a very important

one, are briefly stated at the end of a paper published in the

Philosophical Magazine*.
In a paper On some Cases of Fluid Motion, published in the

Transactions of the Cambridge Philosophical Society^, I have

considered some modifications of the problem of the ball pendu

lum, adopting in the main the principles of Poisson, of the

correctness of which I feel fully satisfied, but supposing the fluid

incompressible from the first. In this paper the effect of a distant

rigid plane interrupting the fluid in which the sphere is oscillating

is given to the lowest order of approximation with which the

effect is sensible. It is shewn also that when the ball oscillates

in a concentric spherical envelope, the effect of the resistance of

the fluid is to add to the mass of the sphere a mass equal to

b* + 2a* m
~F^ 2

where a is the radius of the ball, b that of the envelope, and m
the mass of the fluid displaced. Poisson, having reasoned on the

very complicated case of an elastic fluid, had come to the con

clusion that the envelope would have no effect.

One other instance of fluid motion contained in this paper will

here be mentioned, because it seems to afford an accurate means

of comparing theory and experiment in a class of motions in

which they have not hitherto been compared, so far as I am
aware. When a box of the form of a rectangular parallelepiped,

filled with fluid and closed on all sides, is made to perform small

oscillations, it appears that the motion of the box will be the.

same as if the fluid were replaced by a solid having the same

mass, centre of gravity, and principal axes as the solidified fluid

but different principal moments of inertia. These moments are

given by infinite series, which converge with extreme rapidity, so

that the numerical calculation is very easy. The oscillations most

convenient to employ would probably be either oscillations by
torsion, or bifilar oscillations.

* Vol. xviii., New Series, p. 481. t Vol. viii. p. 105.
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VI. M. Navier was, I believe, the first to give equations for

the motion of fluids without supposing the pressure equal in all

directions. His theory is contained in a memoir read before

the French Academy in 1822*. He considers the case of a

homogeneous incompressible fluid. He supposes such a fluid

to be made up of ultimate molecules, acting on each other by
forces which, when the molecules are at rest, are functions simply
of the distance, but which, when the molecules recede from, or

approach to each other, are modified by this circumstance, so

that two molecules repel each other less strongly when they are

receding, and more strongly when they are approaching, than

they do when they are at
rest&quot;)*.

The alteration of attraction or

repulsion is supposed to be, for a given distance, proportional to

the velocity with which the molecules recede from, or approach
to each other; so that the mutual repulsion of two molecules

will be represented by f(r) VF(r), where r is the distance of

the molecules, V the velocity with which they recede from each

other, and f(r), F(r) two unknown functions of r depending on

the molecular force, and as such becoming insensible when r

has become sensible. This expression does not suppose the

molecules to be necessarily receding from each other, nor their

mutual action to be necessarily repulsive, since V and F (r) may
be positive or negative. It is not absolutely necessary that f(r)

and F (r) should always have the same sign. In forming the

equations of motion M. Navier adopts the hypothesis of a sym
metrical arrangement of the particles, or at least, which leads

to the same result, neglects the irregular part &amp;lt;of the mutual

action of neighbouring molecules. The equations at which he

arrives are those which would be obtained from the common

dp 4 (d&quot;u d*u d*u\ . , f dp .

equations by wntmg ~A^ +^ + -^ m place of ^ m

the first, and making similar changes in the second and third.

A is here an unknown constant depending on the nature of the

fluid.

The same subject has been treated on by PoissonJ, who has

adopted hypotheses which are very different from those of M.

* Memoires de VAcademic des Sciences, torn. vi. p. 389.

t This idea appears to have been borrowed from Dubuat. See his Principes

d Hydraulique, torn. ii. p. 60.

J Journal de VEcole Poly technique, torn. xiii. cah. 20, p. 139.
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Navier. Poisson s theory is of this nature. He supposes the

time t to be divided into n equal parts, each equal to r. In

the first of these he supposes the fluid to be displaced in the same
manner as an elastic solid, so that the pressures in different

directions are given by the equations which he had previously
obtained for elastic solids. If the causes producing the dis

placement were now to cease to act, the molecules would very

rapidly assume a new arrangement, which would render the

pressure equal in all directions, and while this re-arrangement
was going on, the pressure would alter in an unknown manner
from that belonging to a displaced elastic solid to the pressure

belonging to the fluid in its new state. The causes of dis

placement are however going on during the second interval r;
but since these different small motions will take place inde

pendently, the new displacement which will take place in the

second interval r will be the same as if the molecules were not

undergoing a re-arrangement. Supposing now n to become in

finite, we pass to the case in which the fluid is continually be

ginning to be displaced like an elastic solid, and continually

re-arranging itself so as to make the pressure equal in all direc

tions. The equations at which Poisson arrived are, in the cases

of a homogeneous incompressible fluid, and of an elastic fluid

in which the change of density is small, those which would be

derived from the common equations by replacing dp/dx in the

first by

dp , fd\i
d*u d*u\ p d fdu dv dw\

dx \dx* dy* dz2
J dx \dx dy dzj

and making similar changes in the second and third. In these

equations A and B are two unknown constants. It will be

observed that Poisson s equations reduce themselves to Navier s

in the case of an incompressible fluid.

The same subject has been considered in a quite different

point of view by M. Barre de Saint-Venant, in a communication

to the French Academy in 1843, an abstract of which is contained

in the Comptes Rendus*. The principal difficulty is to connect

the oblique pressures in different directions about the same point
with the differential coefficients dujdx, du/dy, &c., which express
the relative motion of the fluid particles in the immediate neigh-

* Tom. xvii. p. 1240.



184 REPORT ON RECENT RESEARCHES IN HYDRODYNAMICS.

bourhood of that point. This the author accomplishes by as

suming that the tangential force on any plane passing through
the point in question is in the direction of the principal sliding

(glissement] along that plane. The sliding along the plane xy
, , dw du . , ,. , dw dv .

is measured by -j h j- in the direction of x, and -j- + -y- in the
7 ax dz dy dz

direction of y. These two slidings may be compounded into one,

which will form the principal sliding along the plane xy. It

is then shewn, by means of M. Cauchy s theorems connecting
the pressures in different directions in any medium, that the

tangential force on any plane passing through the point considered,

resolved in any direction in that plane, is proportional to the

sliding along that plane resolved in the same direction, so that

if T represents the tangential force, referred to a unit of surface,

and 8 the sliding, T=eS. The pressure on a plane in any direc

tion is then found. This pressure is compounded of a normal

pressure, alike in all directions, and a variable oblique pressure,

the expression for which contains the one unknown quantity e.

If the fluid be supposed incompressible, and e constant, the

equations which would be obtained by the method of M. Barre

de Saint-Venant agree with those of M. Navier. It will be

observed that this method does not require the consideration of

ultimate molecules at all.

When the motion of the fluid is very small, Poisson s equations

agree with those given by M. Cauchy for the motion of a solid

entirely destitute of elasticity*, except that the latter do not

contain the pressure p. These equations have been obtained

by M. Cauchy without the consideration of molecules. His

method would apply, with very little change, to the case of

fluids.

In a paper read last year before the Cambridge Philosophical

Society &quot;f

1

,
I have arrived at the equations of motion in a different

manner. The method employed in this paper does not neces

sarily require the consideration of ultimate molecules. Its prin

cipal feature consists in eliminating from the relative motion

of the fluid about any particular point the relative motion which

corresponds to a certain motion of rotation, and examining the

nature of the relative motion which remains. The equations

* Exercices de Mathematiques, torn. iii. p. 187.

f- Transactions of the Cambridge Philosophical Society, vol. viii. p. 287.
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finally adopted in the cases of a homogeneous incompressible

fluid, and of an elastic fluid in which the change of density is

small, agree with those of Poisson, provided we suppose in the

latter A ^B. It is shewn that this relation between A and B
may be obtained on Poisson s own principles.

The equations hitherto considered are those which must be

satisfied at any point in the interior of the fluid mass
;
but there

is hardly any instance of the practical application of the equations,
in which we do not want to know also the particular conditions

which must be satisfied at the surface of the fluid. With respect
to a free surface there can be little doubt : the condition is simply
that there shall be no tangential force on a plane parallel to the

surface, taken immediately within the fluid. As to the case

of a fluid in contact with a solid, the condition at which Navier

arrived comes to this : that if we conceive a small plane drawn

within the fluid parallel to the surface of the solid, the tangential

force on this plane, referred to a unit of surface, shall be in the

same direction with, and proportional to the velocity with which

the fluid flows past the surface of the solid. The condition ob

tained by Poisson is essentially the same.

Dubuat stated, as a result of his experiments, that when the

velocity of water flowing through a pipe is less than a certain

quantity, the water adjacent to the surface of the pipe is at rest*.

This result agrees very well with an experiment of Coulomb s.

Coulomb found that when a metallic disc was made to oscillate

very slowly in water about an axis passing through its centre

and perpendicular to its plane, the resistance was not altered

when the disc was smeared with grease; and even when the

grease was covered with powdered sandstone the resistance was

hardly increased f. This is just what one would expect on the

supposition that the water close to the disc is carried along with

it, since in that case the resistance must depend on the internal

friction of the fluid
;
but the result appears very extraordinary on

the supposition that the fluid in contact with the disc flows

past it with a finite velocity. It should be observed, however,

that this result is compatible with the supposition that a thin

film of fluid remains adhering to the disc, in consequence of

capillary attraction, and becomes as it were solid, and that the

* See the Table given in torn. i. of his Principes d Hydrantique, p. 93.

t Memoires de VInstitut, 1801, torn. iii. p. 286.
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fluid in contact with this film flows past it with a finite velocity.

If we consider Dubuat s supposition to be correct, the condition

to be assumed in the case of a fluid in contact with a solid is

that the fluid does not move relatively to the solid. This con

dition will be included in M. Navier s, if we suppose the coefficient

of the velocity when M. Navier s condition is expressed analy

tically, which he denotes by E, to become infinite. It seems

probable from the experiments of M. Girard, that the condition to

be satisfied at the surface of fluid in contact with a solid is

different according as the fluid does or does not moisten the

surface of the solid.

M. Navier has applied his theory to the results of some ex

periments of M. Girard s on the discharge of fluids through

capillary tubes. His theory shews that if we suppose E to be

finite, the discharge through extremely small tubes will depend

only on E, and not on A. The law of discharge at which he

arrives agrees with the experiments of M. Girard, at least when

the tubes are extremely small. M. Navier explained the differ

ence observed by M. Girard in the discharge of water through

tubes of glass and tubes of copper of the same size by supposing

the value of E different in the two cases. This difference was

explained by M. Girard himself by supposing that a thin film

of fluid remains adherent to the pipe, in consequence of molecular

action, and that the thickness of this film differs with the sub

stance of which the tube is composed, as well as with the liquid

employed*. If we adopt Navier s explanation, we may reconcile

it with the experiments of Coulomb by supposing that E is very

large, so that unless the fluid is confined in a very narrow pipe,

the results will depend mainly on A, being sensibly the same as

they would be if E were infinite.

There is one circumstance connected with the motion of a

ball-pendulum oscillating in air, which has not yet been ac

counted for, the explanation of which seems to depend on this

theory. It is found by experiment that the correction for the

inertia of the air is greater for small than for large spheres,

that is to say, the mass which we must suppose added to that

of the sphere bears a greater ratio to the mass of the fluid dis

placed in the former, than in the latter case. According to the

common theory of fluid motion, in which everything is supposed

* M6moires de VAcademie des Sciences, torn i. pp. 203 and 234.
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to be perfectly smooth, the ratio ought to be independent of the

magnitude of the sphere. In the imperfect theory of friction in

which the friction of the fluid on the sphere is taken into account,

while the equal and opposite friction of the sphere on the fluid is

neglected, it is shewn that the arc of oscillation is diminished,

while the time of oscillation is sensibly the same as before. But

when the tangential action of the sphere on the fluid, and the

internal friction of the fluid itself are considered, it is clear that

one consequence will be, to speak in a general way, that a portion
of the fluid will be dragged along with the sphere. Thus the

correction for the inertia of the fluid will be increased, since the

same moving force has now to overcome the inertia of the fluid

dragged along with the sphere, and not only, as in the former

case, the inertia of the sphere itself, and of the fluid pushed away
from before it, and drawn in behind it. Moreover the additional

correction for inertia must depend, speaking approximately, on

the surface of the sphere, whereas the first correction depended on

its volume, and thus the effect of friction in altering the time of

oscillation will be more conspicuous in the case of small, than in

the case of large spheres, other circumstances being the same.

The correction for inertia, when friction is taken into account, will

not, however, depend solely on the magnitude of the sphere, but

also on the time of oscillation. With a given sphere it will be

greater for long, than for short oscillations.



[From the Transactions of the Cambridge Philosophical Society, Vol. VIII.

p. 409.]

SUPPLEMENT TO A MEMOIR ON SOME CASES OF FLUID

MOTION.

Eead Nov. 3, 1846.

IN a memoir which the Society did me the honour to publish
in their Transactions*, I shewed that when a box whose interior

is of the form of a rectangular parallelepiped is filled with fluid

and made to perform small oscillations the motion of the box

will be the same as if the fluid were replaced by a solid having
the same mass, centre of gravity, and principal axes as the

solidified fluid, but different moments of inertia about those axes.

The box is supposed to be closed on all sides, and it is also

supposed that the box itself and the fluid within it were both

at rest at the beginning of the motion. The investigation was

founded upon the ordinary equations of Hydrodynamics, which

depend upon the hypothesis of the absence of any tangential

force exerted between two adjacent portions of a fluid in motion,

an hypothesis which entails as a necessary consequence the

equality of pressure in all directions. The particular case of

motion under consideration appears to be of some importance,

because it affords an accurate means of comparing with experiment
the common theory of fluid motion, which depends upon the

hypothesis just mentioned. In my former paper, I gave a series

by means of which the numerical values of the principal moments

of the solid which may be substituted for the fluid might be

calculated with facility. The present supplement contains a

different series for the same purpose, which is more easy of

numerical calculation than the former. The comparison of the

* Vol. YIII. Part i. p. 105. (Ante, p. 17.)
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two series may also be of some interest in an analytical point

of view, since they appear under very different forms. I have

taken the present opportunity of mentioning the results of some

experiments which I have performed on the oscillations of a box,

such as that under consideration. The experiments were not

performed with sufficient accuracy to entitle them to be described

in detail.

The calculation of the motion of fluid in a rectangular box

is given in the 13th article of my former paper. I shall not

however in the first instance restrict myself to a rectangular

parallelepiped, since the simplification which I am about to give

applies more generally. Suppose then the problem to be solved

to be the following. A vessel whose interior surface is composed
of any cylindrical surface and of two planes perpendicular to the

generating lines of the cylinder is filled with a homogeneous,

incompressible fluid
;
the vessel and the fluid within it having

been at first at rest, the former is then moved in any manner
;

required to determine the motion of the fluid at any instant,

supposing that at that instant the vessel has no motion of rotation

about an axis parallel to the generating lines of the cylinder.

I shall adopt the notation of my former paper, u, v, w are

the resolved parts of the velocity at any point along the rect

angular axes of x, y, z. Since the motion begins from rest we
shall have udx + vdy -f wdz an exact differential d$. Let the

rectangular axes to which the fluid is referred be fixed relatively

to the vessel, and let the axis of x be parallel to the generating
lines of the cylindrical surface. The instantaneous motion of

the vessel may be decomposed into a motion of translation, and

two motions of rotation about the axes of y and z respectively ;

for by hypothesis there is no motion of rotation about the axis

of x. According to the principles of my former paper, the in

stantaneous motion of the fluid will be the same as if it had

been produced directly by impact, the impact being such as

to give the vessel the velocity which it has at the instant con

sidered. We may also consider separately the motion of trans

lation of the vessel, and each of the motions of rotation
;
the

actual motion of the fluid will be compounded of those which

correspond to each of the separate motions of the vessel. For

my present purpose it will be sufficient to consider one of the
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motions of rotation, that which takes place round the axis of

z for instance. Let co be the angular velocity about the axis

of z, co being considered positive when the vessel turns from

the axis of x to that of y. It is easy to see that the instantaneous

motion of the cylindrical surface is such as not to alter the volume

of the interior of the vessel, supposing the plane ends fixed,

and that the same is true of the instantaneous motion of the

ends. Consequently we may consider separately the motion of

the fluid due to the motion of the cylindrical surface, and to that

of the ends. Let
cf)c

be the part of &amp;lt; due to the motion of the

cylindrical surface,
&amp;lt;j)

e the part due to the motion of the ends.

Then we shall have

*=*.+*. .......................... a)-

Consider now the motion corresponding to a value of
&amp;lt;, wxy.

It will be observed that wxy satisfies the equation, {(36) of my
former paper,} which

(f&amp;gt;

is to satisfy. Corresponding to this value

of
&amp;lt;/&amp;gt;

we have

u wy, v = cox, w = 0.

Hence the velocity, corresponding to this motion, of a particle

of fluid in contact with the cylindrical surface of the vessel,

resolved in a direction perpendicular to the surface, is the same

as the velocity of the surface itself resolved in the same direction,

and therefore the fluid does not penetrate into, nor separate

from the cylindrical surface. The velocity of a particle in contact

with either of the plane ends, resolved in a direction perpendicular

to the surface, is equal and opposite to the
velocity

of the surface

itself resolved in the same direction. Hence we shall get the

complete value of
&amp;lt;/&amp;gt; by adding the part already found, namely

a&amp;gt;xy,
to twice the part due to the motion of the plane ends. We

have therefore,

&amp;lt;/&amp;gt;

= nay + 2&amp;lt;^

= 2( c
-

vxy, by (1) ........... (2),

and $c $ e
= axy ............................. (3).

Hence whenever either
&amp;lt;j&amp;gt;

c or
&amp;lt;f)

e can be found, the complete

solution of the problem will be given by (2). And even when

both these functions can be obtained independently, (2) will

enable us to dispense with the use of one of them, and (3) will

give a relation between them. In this case (3) will express a

theorem in pure analysis, a theorem which will sometimes be
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very curious, since the analytical expressions for
&amp;lt;f&amp;gt;

c and
&amp;lt;/&amp;gt;&amp;lt;,

will

generally be totally different in form. The problem admits of

solution in the case of a circular cylinder terminated by planes

perpendicular to its axis, and in the case of a rectangular paral

lelepiped. In the former case, the numerical calculation of the

moments of inertia of the solid by which the fluid may be re

placed would probably be troublesome, in the latter it is extremely

easy. I proceed to consider this case in particular.

Let the rectangular axes to which the fluid is referred coincide

with three adjacent edges of the parallelepiped, and let a, 6, c

be the lengths of the edges. The motion which it is proposed
to calculate is that which arises from a motion of rotation of the

box about an axis parallel to that of z and passing through the

centre of the parallelepiped. Consequently in applying (2) we
must for a moment conceive the axis of z to pass through the

centre of the parallelepiped, and then transfer the origin to the

corner, and we must therefore write co (x -Ja) (y J b) for wxy.
In the present case the cylindrical surface consists of the four

faces which are parallel to the axis of x, and the remaining faces

form the plane ends. The motion of the face xy and the opposite
face has evidently no effect on the fluid, so that

&amp;lt;j)
G will be the

part of
cf&amp;gt;

due to the motion of the face xz and the opposite face.

The value of this quantity is given near the middle of page 62 in my
former paper. We have then by the second of the formulae (2)

(e
~
n7rb/a -

~ COS

the sign S denoting the sum corresponding to all odd integral

values of n from 1 to oo . This value of expresses completely
the motion of the fluid due to a motion of rotation of the box

about an axis parallel to that of z, and passing through the centre

of its interior.

Suppose now the motion to be very small, so that the square
of the velocity may be neglected. Then, p denoting the part of

the pressure due to the motion, we shall have p = p d&amp;lt;f&amp;gt;/dt.

Also in finding d$/dt we may suppose the axes to be fixed in
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space, since by taking account of their motion we should only
introduce terms depending on the square of the velocity. In fact,

if for the sake of distinction we denote the co-ordinates of a

fluid particle referred to the moveable axes by x, y, while a?, y
denote its co-ordinates referred to axes fixed in space, which

after differentiation with respect to t we may suppose to coincide

with the moveable axes at the instant considered, and if we
denote the differential coefficient of

&amp;lt;/&amp;gt;

with respect to t by (d(f&amp;gt;/dt)

when x, y, t are the independent variables, and by d(f)/dt when
x

, y, t are the independent variables, we shall have

(d(f)\ dcf&amp;gt; d(f&amp;gt;

dx
d(f&amp;gt; dy d(f&amp;gt;

dx rfy
*

\dtj dt dx dt dy dt
~

dt dt dt

for
d&amp;lt;l&amp;gt;/dx, dcf)/dy mean absolutely the same as

d&amp;lt;f&amp;gt;/dx, dcfr/dy, and

are therefore equal to u, v respectively. Now dx/dt, dy /dt, de

pending on the motion of the axes, are small quantities of the

order co
;

their values are in fact coy, cox
;

so that, omitting

small quantities of the order &&amp;gt;

2

, we have

&quot;dt

We shall therefore find the value of p from that of
&amp;lt;/&amp;gt; by merely

writing pdco/dt for o&amp;gt;. In order to determine the motion of

the box it will be necessary to find the resultant of the fluid

pressures on its several faces. As shewn in my former paper,

these pressures will have no resultant force, but only a resultant

couple, of which the axis will evidently be parallel to that of z.

In calculating this couple, it is immaterial whether we take the

moments about the axis of z, or about a line parallel to it passing

through the centre of the parallelepiped : suppose that we adopt

the latter plan. If we reckon the couple positive when it tends

to turn the box from the axis of x to that of y we shall evidently

have I I py=Q (x -
)
dxdz for the part arising from the

J o Jo \ 2t)

*
It may be very easily proved by means of this equation, combined with the

general equation which determines^, that whether the velocity be great or small

the fluid will have the same effect on the motion of the box as the solid of which the

moment of inertia is determined in this paper on the supposition that the motion

is small.
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rb re / i\

pressure on the face xz, and p9-*[y - 5 J dydz for the part
Jo J o \ &/

arising from the pressure on the face ya. It is easily seen from

(4) that^=a = -^a.=0 , and py=
b = -py= ,

so that the couples due
to the pressures on the faces xz

t yz are equal to the couples due
to the pressures on the opposite faces respectively. In order,

therefore, to find the whole couple we have only got to double
the part already found. As the integrations do not present the

slightest difficulty, it will be sufficient to write down the result.

It will be found that the whole couple is equal to Cdw/dt,
where

This expression has been simplified after integration by putting
for S 1/n* its value 7r

4

/96.

It appears then that the effect of the inertia of the fluid is

to increase the moment of inertia of the box about an axis passing
through its centre and parallel to the edge c by the quantity C.

In equation (40) of my former paper, there is given an expression
for C which is apparently very different from that given by (5),
but the numerical values of the two expressions are necessarily
the same. If we denote the moment of inertia of the fluid sup
posed to be solidified by C,, we shall have C

t

= pabc (a
2 + 6

2

)/12 ;

and if we put

and treat (5) as equation (40) of my former paper was treated we
shall find

f(r) = (1 + r
2

)-
1

{1
- 3r

2 + 2r3

(1.260497 - 1.254821 2 1 versin 26&amp;gt;n)}
fi

.................. (6),

where tab. log tan 6n = 10 - .6821882 - .

The equation (6) is true, (except as regards the decimals

omitted,) whatever be the value of r; but for convenience of

calculation it will be proper to take r less than 1, that is, to

choose for a the smaller of the two a, b. The value of/(r) given
by (6) is apparently very different from that given at the bottom

s - 13
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of page 64 of my former paper, but any one may easily satisfy
himself as to equivalence of the two expressions by assigning
to r a value at random, and calculating the value of f(r) from
the two expressions separately. The expression (6) is however

preferable to the other, especially when we have to calculate the

value of f (r) for small values of r. The infinite series contained

in (6) converges with such rapidity that in the most unfavourable

case, that is, when r = 1 nearly, the omission of all terms after the

first would only introduce an error of about .000003 in the value

of/(r).

For the sake of shewing the manner in which f (r) alters

with r, I have calculated the following values of the function.

The expression (6) shews that / (r)
= 0, when r = 0; and f (r)

is also =0 when r l, since /(-] =f(r).

The experiments to which I have alluded were made with a

wooden box measuring inside 8 inches by 4 square. The box

weighed not quite 1 lb., and contained about 4J Ibs. of water,

so that the inertia of the water which had to be overcome was

by no means small compared with that of the box. The box

was suspended by two parallel threads 3 inches apart and between

4 and 5 feet long : it was twisted a little, and then left to itself,

so that it oscillated about a vertical axis midway between the

threads. The points of attachment of the threads were in a line

drawn through the centre of the upper face parallel to one of its

sides, and were equidistant from the centre. The weight of the

box when empty, the length and distance of the threads, the time
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of oscillation, and the known length of the seconds pendulum
are data sufficient for determining the moment of inertia of the

box about a vertical axis passing through its centre. When the

box is filled with water the same quantities determine the mo
ment of inertia of the box and the water it contains, whence the

moment of inertia of the water alone is obtained by subtraction.

It is supposed here that the centre of gravity of the box coincides

with the centre of gravity of its interior volume. In the following

experiments a different face of the box was uppermost each time.

In Nos. 1 and 2 the long edges of the box were vertical, in Nos. 3

and 4 they were horizontal. In all -cases the inertia determined

by experiment was a little greater than that resulting from

theory : the difference will be given in fractional parts of the

latter. The difference was 1/21 in No. 1, 1/13 in No. 2, 1/17 in

No. 3, and 1/21 in No. 4. On referring to the table at the end

of the last paragraph, it will be seen that the ratio of the moment
of inertia of the fluid to what it would be if the fluid were solid

is about three times as great in the last two experiments as in

the first two.

I had expected beforehand to find the inertia determined by

experiment a little greater than that given by theory, for this

reason. In the theory, it is supposed that both the fluid itself

and the surface of the box are perfectly smooth. This however

is not strictly true. The box by its roughness exerts a tangential
force on the fluid immediately in contact with it, and this force

produces an effect on the fluid at a small distance from the surface

of the box, in consequence of the internal friction of the fluid

itself. We may conceive the effect of this force on the time of

oscillation in a general way by supposing a thin film of fluid

close to the surface of the box to be dragged along with it. Con

sequently, the moment of inertia determined by experiment will

be a little greater than it would have been had the fluid and

the surface of the box been perfectly smooth.

These experiments are sufficient to shew that in the case of

a vessel of about the size and shape of the one I used, filled

with water, and performing small oscillations of the duration of

about one second (as was the case in my experiments), the time

of oscillation is not much increased by friction; at least, if we

suppose, as there is reason for supposing, that the effect of friction

13-2
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does not depend on the nature of the surface of the box. They

are not however sufficiently exact to allow us to place any reliance

on -the accuracy of the small differences between the results of

experiment, and of the common theory of fluid motion, and con

sequently they are useless as tests of any theory of friction.



[From the Transactions of the Cambridge Philosophical Society,

Vol. vni. p. 441.]

ON THE THEORY OF OSCILLATORY WAVES.

[Read March 1, 1847.]

IN the Report of the Fourteenth Meeting of the British

Association for the Advancement of Science it is stated by Mr
Russell, as a result of his experiments, that the velocity of pro

pagation of a series of oscillatory waves does not depend on the

height of the waves*. A series of oscillatory waves, such as that

observed by Mr Russell, does not exactly agree with what it is

most convenient, as regards theory, to take as the type of oscil

latory waves. The extreme waves of such a series partake in

some measure of the character of solitary waves, and their height
decreases as they proceed. In fact it will presently appear that

it is only an indefinite series of waves which possesses the pro

perty of being propagated with a uniform velocity, and without

change of form : at least this is the case when the waves are

such as can be propagated along the surface of a fluid which was

previously at rest. The middle waves, however, of a series such

as that observed by Mr Russell agree very nearly with oscillatory

waves of the standard form. Consequently, the velocity of pro

pagation determined by the observation of a number of waves,

according to Mr Russell s method, must be very nearly the same
as the velocity of propagation of a series of oscillatory waves of

the standard form, and whose length is equal to the mean length
of the waves observed, which are supposed to differ from each

other but slightly in length.
*
Page 369 (note), and page 370.
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On this account I was induced to investigate the motion of

oscillatory waves of the above form to a second approximation,

that is, supposing the height of the waves finite, though small.

I find that the expression for the velocity of propagation is in

dependent of the height of the waves to a second approximation.

With respect to the form of the waves, the elevations are no

longer similar to the depressions, as is the case to a first ap

proximation, but the elevations are narrower than the hollows,

and the height of the former exceeds the depth of the latter.

This is in accordance with Mr Russell s remarks at page 448 of

his first Report*. I have proceeded to a third approximation

in the particular case in which the depth of the fluid is very

great, so as to find in this case the most important term, de

pending on the height of the waves, in the expression for the

velocity of propagation. This term gives an increase in the

velocity of propagation depending on the square of the ratio of

the height of the waves to their length.

There is one result of a second approximation which may

possibly be of practical importance. It appears that the forward

motion of the particles is not altogether compensated by their

backward motion
;
so that, in addition to their motion of oscil

lation, the particles have a progressive motion in the direction

of propagation of the waves. In the case in which the depth of

the fluid is very great, this progressive motion decreases rapidly

as the depth of the particle considered increases. Now when a

ship at sea is overtaken by a storm, and the sky remains overcast,

so as to prevent astronomical observations, there, is nothing to

trust to for finding the ship s place but the dead reckoning. But

the estimated velocity and direction of motion of the ship are

her velocity and direction of motion relatively to the water. If

then the whole of the water near the surface be moving in the

direction of the waves, it is evident that the ship s estimated

place will be erroneous. If, however, the velocity of the water

can be expressed in terms of the length and height of the waves,

both which can be observed approximately from the ship, the

motion of the water can be allowed for in the dead reckoning.

As connected with this subject, I have also considered the

motion of oscillatory waves propagated along the common surface

of two liquids, of which one rests on the other, or along the upper
*

Reports of the British Association, Vol. vi.
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surface of the upper liquid. In this investigation there is no

object in going beyond a first approximation. When the specific

gravities of the two fluids are nearly equal, the waves at their

common surface are propagated so slowly that there is time to

observe the motions of the individual particles. The second case

affords a means of comparing with theory the velocity of pro

pagation of oscillatory waves in extremely shallow water. For by

pouring a little water on the top of the mercury in a trough we
can easily procure a sheet of water of a small, and strictly uniform

depth, a depth, too, which can be measured with great accuracy

by means of the area of the surface and the quantity of water

poured in. Of course, the common formula for the velocity of

propagation will not apply to this case, since the motion of the

mercury must be taken into account.

1. In the investigations which immediately follow, the fluid

is supposed to be homogeneous and incompressible, and its depth

uniform. The inertia of the air, and the pressure due to a column

of air whose height is comparable with that of the waves are also

neglected, so that the pressure at the upper surface of the fluid

may be supposed to be zero, provided we afterwards&quot; add the at

mospheric pressure to the pressure so determined. The waves

which it is proposed to investigate are those for which the motion

is in two dimensions, and which are propagated with a constant

velocity, and without change of form. It will also be supposed
that the waves are such as admit of being excited, independently of

friction, in a fluid which was previously at rest. It is by these

characters of the waves that the problem will be rendered de

terminate, and not by the initial disturbance of the fluid, supposed
to be given. The common theory of fluid motion, in which the

pressure is supposed equal in all directions, will also be em

ployed.

Let the fluid be referred to the rectangular axes of x, y, z,

the plane xz being horizontal, and coinciding with the surface

of the fluid when in equilibrium, the axis of y being directed

downwards, and that of x taken in the direction of propagation
of the waves, so that the expressions for the pressure, &c. do not

contain z. Let p be the pressure, p the density, t the time, u, v

the resolved parts of the velocity in the directions of the axes
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of x, y ; g the force of gravity, h the depth of the fluid when in

equilibrium. From the character of the waves which was men
tioned last, it follows by a known theorem that udx + vdy is an

exact differential d(p. The equations by which the motion is to

be determined are well known. They are

=
0, wheny = A .................... (3);

_ 0)Wl

where (3) expresses the condition that the particles in contact with

the rigid plane on which the fluid rests remain in contact with

it, and (4) expresses the condition that the same surface of par
ticles continues to be the free surface throughout the motion,

or, in other words, that there is no generation or destruction of

fluid at the free surface.

If c be the velocity of propagation, u, v and p will be by

hypothesis functions of x ct and y. It follows then from the

equations u dfy/dx, v = dfyjdy and (1), that the differential

coefficients of
(f&amp;gt;

with respect to x, y and t will be functions of

x ct and y ;
and therefore

&amp;lt;f&amp;gt;

itself must be of the form

f(x-ct, y)+Ct.

The last term will introduce a constant into (1) ;
and if this

constant be expressed, we may suppose &amp;lt;/&amp;gt;

to be a function of

x ct and y. Denoting x ct by x
,
we have

dp _ dp dp _ dp
dx~d^ft

~dt~ da/

and similar equations hold good for
^&amp;gt;.

On making these sub

stitutions in (1) and (4), omitting the accent of x, and writing

gk for (7, we have

. c + = 0, wbenp-O (G).
dx dy dy
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Substituting in (6) the value of p given by (5), we have

d$_ ff -(dff$ ,d d^\
J
dy da?

~*

{dot do?
*
dy dxdyl

_
dxdx* dxdydxdy \dydf~

......... (8).

The equations (7) and (8) are exact; but if we suppose the

motion small, and proceed to the second order only of approxima

tion, we may neglect the last three terms in (7), and we may
easily eliminate y between (7) and (8). For putting &amp;lt;

,
&amp;lt;,,

&c.

for the values of d(f)/dx, dfy/dy, &c. when y = 0, the number of

accents above marking the order of the differential coefficient

with respect to x, and the number below its order with respect
to y, and observing that & is a small quantity of the first order

at least, we have from (8)

g (y + fc) + c (f + &amp;lt;/&amp;gt;

-
i[ (f +

&amp;lt;#&amp;gt;/)

=
0,

whence y = -*-jU +%/(&+ -f\ + _L
y y \ y * y

Substituting the first approximate value of y in the first two

terms of (7), putting # = in the next two, and reducing, we
have

+2c

&amp;lt;f&amp;gt;

will now have to be determined from the general equation (2)

with the particular conditions (3) and (10). When $ is known,
?/, the ordinate of the surface, will be got from (9), and k will

then be determined by the condition that the mean value of y
shall be zero. The value of p, if required, may then be obtained

from (5).

2. In proceeding to a first approximation we have the equa
tions (2), (3) and the equation obtained by omitting the small

terms in (10), namely,

* The reader will observe that the y in this equation is the ordinate of the

surface, whereas the y in (1) and (2) is the ordinate of any point in the fluid. The
context will always shew in which sense y is employed.
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The general integral of (2) is

the sign S extending to all values of A, m and n, real or imagi

nary, for which m2 + n2 =
: the particular values of

&amp;lt;/&amp;gt;,

Cx + G
,

Dy + D , corresponding respectively to n = Q, ra = 0, must also be

included, but the constants C
,
D may be omitted. In the

present case, the expression for &amp;lt; must not contain real ex

ponentials in x, since a term containing such an exponential

would become infinite either for x = GO
,
or for x = + oo

,
as well

as its differential coefficients which would appear in the ex

pressions for u and v; so that m must be wholly imaginary.

Replacing then the exponentials in x by circular functions, we

shall have for the part of &amp;lt; corresponding to any one value

of m,

(Ae
mv +^ e~

wy
)
sin mx + (Bt

mv + B e~
mv

)
cos mx,

and the complete value of &amp;lt; will be found by taking the sum of

all possible particular values of the above form and of the par

ticular value Cx + Dy. When the value so formed is substituted

in (3), which has to hold good for all values of x, the coefficients

of the several sines and cosines, and the constant term must be

separately equated to zero. We have therefore

D = 0, A = e*
mh
A, B = &*B

;

so that if we change the constants we shall have

&amp;lt;p

= Cue + S (e
m(h ~rt + e~m (

h
-rt] (A sin mx + B cos mx)...(12),

the sign S extending to all real values of m, A and B, of which

in may be supposed positive.

3. To the term Cx in (12) corresponds a uniform velocity

parallel to x, which may be supposed to be impressed on the

fluid in addition to its other motions. If the velocity of pro

pagation be defined merely as the velocity with which the wave

form is propagated, it is evident that the velocity of propagation

is perfectly arbitrary. For, for a given state of relative motion

of the parts of the fluid, the velocity of propagation, as so defined,

can be altered by altering the value of C. And in proceeding to

the higher orders of approximation it becomes a question what

we shall define the velocity of propagation to be. Thus, we might

define it to be the velocity with which the wave form is propa-
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gated when the mean horizontal velocity of a particle in the

upper surface is zero, or the velocity of propagation of the wave

form when the mean horizontal velocity of a particle at the

bottom is zero, or in various other ways. The following two

definitions appear chiefly to deserve attention.

First, we may define the velocity of propagation to be the

velocity with which the wave form is propagated in space, when

the mean horizontal velocity at each point of space occupied by the

fluid is zero. The term &quot;mean&quot; here refers to the variation of

the time. This is the definition which it will be most convenient

to employ in the investigation. I shall accordingly suppose (7=0
in (12), and c will represent the velocity of propagation according
to the above definition.

Secondly, we may define the velocity of propagation to be the

velocity of propagation of the wave form in space, when the mean
horizontal velocity of the mass of fluid comprised between two

very distant planes perpendicular to the axis of x is zero. The

mean horizontal velocity of the mass means here the same thing
as the horizontal velocity of its centre of gravity. This appears
to be the most natural definition of the velocity of propagation,

since in the case considered there is 110 current in the mass of

fluid, taken as a whole. I shall denote the velocity of propagation

according to this definition by c. In the most important case

to consider, name]y, that in which the depth is infinite, it is

easy to see that c = c, whatever be the order of approximation.
For when the depth becomes infinite, the velocity of the centre

of gravity of the mass comprised between any two planes parallel

to the plane yz vanishes, provided the expression for u contain

no constant term.

4. We must now substitute in (11) the value of &amp;lt;.

&amp;lt;/&amp;gt;

=2 (

m
tt-0&amp;gt; + e--tf) (A siumx + I? cos m#)... (13);

but since (11) has to hold good for all values of #, the coefficients

of the several sines and cosines must be separately equal to zero :

at least this must be true, provided the series contained in (11)
are convergent. The coefficients will vanish for any one value

of m, provided
fj gm _ ~

t *-!
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Putting for shortness 2mh = p, we have

^logc
a

= _l 2

dp fl e* - -*

which is positive or negative, p being supposed positive, according
as

and is therefore necessarily negative. Hence the value of c given

by (14) decreases as
jj,

or m increases, and therefore (11) cannot

be satisfied, for a given value of c, by more than one positive

value of m. Hence the expression for
&amp;lt;f&amp;gt;

must contain only one

value of m. Either of the terms A cos mcc, B sin mx may be

got rid of by altering the origin of sc. We may therefore take,

for the most general value of
&amp;lt;,

&amp;lt;

= ^(e
w
^-^+e-^-2/&amp;gt;)sinra^ (15).

Substituting in (8), we have for the ordinate of the surface

D? A (*

y =--( h + e- h
)cosmx (16),

u

k being = 0, since the mean value of y must be zero. Thus

everything is known in the result except A and m, which are

arbitrary.

5. It appears from the above, that of all waves for which

the motion is in two dimensions, which are propagated in a fluid

of uniform depth, and which are such as could be propagated
into fluid previously at rest, so that udx + vdy is an exact differ

ential, there is only one particular kind, namely, that just con

sidered, which possesses the property of being propagated with

a constant velocity, and without change of form
;

so that a

solitary wave cannot be propagated in this manner. Thus the

degradation in the height of such waves, which Mr Russell ob

served, is not to be attributed wholly, (nor I believe chiefly,) to

the imperfect fluidity of the fluid, and its adhesion to the sides

and bottom of the canal, but is an essential characteristic of a

solitary wave. It is true that this conclusion depends on an

investigation which applies strictly to indefinitely small motions

only : but if it were true in general that a solitary wave could be

propagated uniformly, without degradation, it would be true in
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the limiting case of indefinitely small motions
;
and to disprove a

general proposition it is sufficient to disprove a particular case.

6. In proceeding to a second approximation we must sub
stitute the first approximate value of

&amp;lt;j&amp;gt;, given by (15), in the

small terms of (10). Observing that k = to a first approximation,
and eliminating g from the small terms by means of (14), we
find

9&amp;lt;t&amp;gt;,-c

2

&amp;lt;j&amp;gt;&quot;

- 6A*m*c sin 2mx= ............ (17).

The general value of &amp;lt; given by (13), which is derived from (2)
and (3), must now be restricted to satisfy (17). It is evident that

no new terms in &amp;lt; involving sin mx or cos mx need be introduced,
since such terms may be included in the first approximate value,
and the only other term which can enter is one of the form

Substituting this term in (17), and simplifying by means of (14),
we find

~
C

(

Moreover since the term in
&amp;lt;p containing sin. ma must disappear

from (17), the equation (14) will give c to a second approxi
mation.

If we denote the coefficient of cosmic in the first approximate
value of y, the ordinate of the surface, by a, we shall have

A _ go* ca

me (e
mh + e

~ mh
) (

6w&-_ e -mh)
&amp;gt;

and substituting this value of A in that of
&amp;lt;j&amp;gt;,

we have

em(h
-
y)

_|_ 6
- m(h -

y) 2m(h - y)
_|_ e

- 2m(h - y)=
-

- sin

...... (18).

The ordinate of the surface is given to a second approximation

by (9). It will be found that

I

e -mh\ (f2mh i f -2mh _i_ /f\

ma

7. The equation to the surface is of the form

mx Ka? cos 2w# (20),
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where K is necessarily positive, and a may be supposed to be

positive, since the case in which it is negative may be reduced to

that in which it is positive by altering the origin of x by the

quantity TT/W or X/2, X being the length of the waves. On re

ferring to (20) we see that the waves are symmetrical with respect

to vertical planes drawn through their ridges, and also with

respect to vertical planes drawn through their lowest lines. The

greatest depression of the fluid occurs when % = or = + X, &c.,

and is equal to aa?K: the greatest elevation occurs when

# = X/2 or = + 3X/2, &c., and is equal to a + a*K. Thus the

greatest elevation exceeds the greatest depression by Za*K. When
the surface cuts the plane of mean level, cos mx aKcos 2mx = 0.

Putting in the small term in this equation the approximate value

mx = 7T/2, we have cos mx - aK= cos (?r/2 + aK], whence

x = + (x/4 + a/a/2&amp;lt;7r),
= (5X/4 + aKX/Zir), &c.

We see then that the breadth of each hollow, measured at the

height of the plane of mean level, is X/2 + aK\/7r, while the

breadth of each elevated portion of the fluid is X/2
-
aK\/7r.

It is easy to prove from the expression for K, which is given

in (19), that for a given value of X or of m, K increases as h

decreases. Hence the difference in form of the elevated and

depressed portions of the fluid is more conspicuous in the case

in which the fluid is moderately shallow than in the case in

which its depth is very great compared with the length of the

waves.

8. When the depth of the fluid is very great Compared with

the length of a wave, we may without sensible error suppose h to

be infinite. This supposition greatly simplifies the expressions

already obtained. WT
e have in this case

sin mx.................................... (21),

y =a cos mx

m TT

(22),

the y in (22) being the ordinate of the surface.

It is hardly necessary to remark that the state of the fluid at

any time will be expressed by merely writing x-ct in place of x

in all the preceding expressions.
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9. To find the nature of the motion of the individual par

ticles, let x + f be written for x, y + 77 for y, and suppose x and y
to be independent of t, so that they alter only in passing from one

particle to another, while f and 77 are small quantities depending
on the motion. Then taking the case in which the depth is in

finite, we have

~sau 7wace~ m^ +1?)cosm(# + f ct) mace~my cosm(# ct)
dt

+ m?ac~ my sin m(x ct).% + m*ace~my cos m (x ct) . 77, nearly,

-^
= v = mace~ m(-y+^ sin m (x + f ctf)

= mace~my sin 7?2(# c)

+ m*ace~ my cos m(x ct).% m2
ace~ my sin m(# c) . 77, nearly.

To a first approximation

% = ae~my sin w (a? ct), rj
= ae~my cos m (x ct),

the arbitrary constants being omitted. Substituting these values

in the small terms of the preceding equations, and integrating

again, we have

= ae~ my sin m(x ct) + m*a?cte~ 2my,

77
= ae~my cos m(x ct).

Hence the motion of the particles is the same as to a first

approximation, with one important difference, which is that in

addition to the motion of oscillation the particles are transferred

forwards, that is, in the direction of propagation, with a constant

velocity depending on the depth, and decreasing rapidly as the

depth increases. If U be this velocity for a particle whose depth
below the surface in equilibrium is y, we have

re-?. (23).

The motion of the individual particles may be determined in

a similar manner when the depth is finite from (18). In this case

the values of f and r
t
contain terms of the second order, involving

respectively sin 2m (x ct) and cos %m(x ct), besides the term in

f which is multiplied by t. The most important thing to consider

is the value of U, which is

-h) \ e -1m(y-li)

_ mh (24).
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Since U is a small quantity of the order a2
,
and in proceeding

to a second approximation the velocity of propagation is given to

the order a only, it is immaterial which of the definitions of velo

city of propagation mentioned in Art. 3 we please to adopt.

10. The waves produced by the action of the wind on the

surface of the sea do not probably differ very widely from those

which have just been considered, and which may be regarded as

the typical form of oscillatory waves. On this supposition the

particles, in addition to their motion of oscillation, will have a

progressive motion in the direction of propagation of the waves,

and consequently in the direction of the wind, supposing it not to

have recently shifted, and this progressive motion will decrease

rapidly as the depth of the particle considered increases. If the

pressure of the air on the posterior parts of the waves is greater

than on the anterior parts, in consequence of the wind, as un

questionably it must be, it is easy to see that some such progres

sive motion must be produced. If then the waves are not break

ing, it is probable that equation (23), which is applicable to deep

water, may give approximately the mean horizontal velocity of

the particles ;
but it is difficult to say how far the result may be

modified by friction. If then we regard the ship as a mere parti

cle, in the first instance, for the sake of simplicity, and put f/ for

the value of U when y = 0, it is easy to see that after sailing for

a time t, the ship must be a distance UQ
t to the lee of her estimated

place. It will not however be sufficient to regard the ship as a

mere particle, on account of the variation of the factor e~ 2w% as y

varies from to the greatest depth of the ship below the surface

of the water. Let 8 be this depth, or rather a depth something

less, in order to allow for the narrowing of the ship towards the

keel, and suppose the effect of the progressive motion of the water

on the motion of the ship to be the same as if the water were

moving with a velocity the same as all depths, and equal to the

mean value of the velocity U from y = to y = 8. If U
l
be this

mean velocity,

ma?c

On this supposition, if a ship be steered so as to sail in a direc

tion making an angle 6 with the direction of the wind, supposing

the water to have no current, and if F be the velocity with which
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the ship moves through the water, her actual velocity will be the

resultant of a velocity V in the direction just mentioned, which,
for shortness, I shall call the direction of steering, and of a velocity
Z7

X
in the direction of the wind. But the ship s velocity as esti

mated by the log-line is her velocity relatively to the water at the

surface, and is therefore the resultant of a velocity V in the direc

tion of steering, and a velocity U U
t
in a direction opposite to

that in which the wind is blowing. If then E be the estimated

velocity, and if we neglect U
2
,

But the ship s velocity is really the resultant of a velocity V+
in the direction of steering, and a velocity Ul

sin 6 in the perpen
dicular direction, while her estimated velocity is E in the direction

of steering. Hence, after a time t, the ship will be a distance

U t cos 6 ahead of her estimated place, and a distance Uj sin 6

aside of it, the latter distance being measured in a direction per

pendicular to the direction of steering, and on the side towards

which the wind is blowing.

I do not suppose that the preceding formula can be employed
in practice ;

but I think it may not be altogether useless to call

attention to the importance of having regard to the magnitude
and direction of propagation of the waves, as well as to the wind,

in making the allowance for lee-way.

11. The formula of Art. 6 are perfectly general as regards the

ratio of the length of the waves to the depth of the fluid, the only
restriction being that the height of the waves must be sufficiently

small to allow the series to be rapidly convergent. Consequently,

they must apply to the limiting case, in which the waves are sup

posed to be extremely long. Hence long waves, of the kind con

sidered, are propagated without change of form, and the velocity
of propagation is independent of the height of the waves to a

second approximation. These conclusions might seem, at first

sight, at variance with the results obtained by Mr Airy for the

case of long waves *. On proceeding to a second approximation,
Mr Airy finds that the form of long waves alters as they proceed,
and that the expression for the velocity of propagation contains a

*
Encyclopedia Metropolitana, Tides and Waves, Articles 198, &c.

S. 14
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term depending on the height of the waves. But a little attention

will remove this apparent discrepancy. If we suppose mh very

small in (19), and expand, retaining only the most important

terms, we shall find for the equation to the surface

3a2

a cos mx -. r cos zmx.

Now, in order that the method of approximation adopted may be

legitimate, it is necessary that the coefficient of cos Zmx in this

equation be small compared with a. Hence a/m
zh3

,
and therefore

X2

a/A
3

,
must be small, and therefore a/h must be small compared

with (h/\y. But the investigation of Mr Airy is applicable to the

case in which \/h is very large ;
so that in that investigation a/h

is large compared with (/t/\)
2

. Thus the difference in the results

obtained corresponds to a difference in the physical circumstances

of the motion.

12. There is no difficulty in proceeding to the higher orders

of approximation, except what arises from the length of the for

mulas. In the particular case in which the depth is considered

infinite, the formulae are very much simpler than in the general

case. I shall proceed to the third order in the case of an infinite

depth, so as to find in that case the most important term, depend

ing on the height of the waves, in the expression for the velocity

of propagation.

For this purpose it will be necessary to retain the terms of

the third order in the expansion of (7). Expanding this equation

according to powers of y, and neglecting terms of the fourth, &c.

orders, we have

t

- c
2

&amp;lt;/&amp;gt;,&quot;) y + (g^r &amp;lt;ty,,&quot;)
+ 2c (ff

(25).

In the small terms of this equation we must put for
&amp;lt;f&amp;gt;

and y

their values given by (21) and (22) respectively. Now since the

value of
&amp;lt;f&amp;gt;

to a second approximation is the same as its value to a

first approximation, the equation g$ C
2
&amp;lt;&quot;=0 is satisfied to terms

of the second order. But the coefficients of y and y
2

/2,
^n tne

first line of (25), are derived from the left-hand member of the
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preceding equation by inserting the factor G~mv, differentiating

either once or twice with respect to y, and then putting y = 0.

Consequently these coefficients contain no terms of the second

order, and therefore the terms involving y in the first line of (25)

are to be neglected. The next two terms are together equal to

But

which does not contain oc, so that these two terms disappear. The

coefficient of y in the second line of (25) may be derived from the

two terms last considered in the manner already indicated, and

therefore the terms containing y will disappear from (25). The

only small terms remaining are the last three, and it will easily

be found that their sum is equal to raVc3
sin mx, so that (25) be

comes

#(/&amp;gt;,-
c
2

&amp;lt;/&amp;gt;

+ raVc3
sin m# = ..................... (26).

The value of &amp;lt; will evidently be of the form Ae~my sin mx. Sub

stituting this value in (26), we have

(mV - mg}A + mVc3 = 0.

Dividing by mA, and putting for A and c
2
their approximate values

ac, g/m respectively in the small term, we have

g + mV&amp;lt;7,

The equation to the surface may be found without difficulty. It

is

y = a cos mx J ma
2
cos 2mx + f mV cos Smx* ......... (27) :

we have also

k = 0, &amp;lt;

= ac (1 fmV)

*
It is remarkable that this equation coincides with that of the prolate cycloid,

if the latter equation be expanded according to ascending powers of the distance of

the tracing point from the centre of the rolling circle, and the terms of the fourth

order be omitted. The prolate cycloid is the form assigned by Mr Russell to waves
of the kind here considered. Reports of the British Association, Vol. vi. p. 448.

When the depth of the fluid is not great compared with the length of a wave, the

form of the surface does not agree with the prolate cycloid even to a second

approximation.

142
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The following figure represents a vertical section of the waves

propagated along the surface of deep water. The figure is drawn

for the case in which a = . The term of the third order in (27)

is retained, but it is almost insensible. The straight line represents
a section of the plane of mean level.

13. If we consider the manner in which the terms introduced

by each successive approximation enter into equations (7) and (8),

we shall see that, whatever be the order of approximation, the

series expressing the ordinate of the surface will contain only
cosines of mx and its multiples, while the expression for

&amp;lt;f&amp;gt;

will

contain only sines. The manner in which y enters into the

coefficient of cos rmx in the expression for
&amp;lt;f&amp;gt;

is determined in the

case of a finite depth by equations (2) and (3). Moreover, the

principal part of the coefficient of cos rmx or sin rmx will be of

the order ar
at least. We may therefore assume

&amp;lt;

=
T&amp;gt;,&quot;a

rA
r (&quot;&amp;lt;*-&amp;gt;

+ e-rmUi-vY) sm rmXt

y = a cos mx + 22
ar

.Z?
r
cos rmx,

and determine the arbitrary coefficients by means of equations

(7) and (8), having previously expanded these equations according

to ascending powers of y. The value of c
2
will be determined by

equating to zero the coefficient of sin mx in (7).

Since changing the sign of a comes to the same thing as

altering the origin of x by \ X, it is plain that the expressions

for A r ,
Br and c

2
will contain only even powers of a. Thus

the values of each of these quantities will be of the form

oo+ cx + cx + ---

It appears also that, whatever be the order of approximation,

the waves will be symmetrical with respect to vertical planes

passing through their ridges, as also with respect to vertical planes

passing through their lowest lines.

14 Let us consider now the case of waves propagated at

the common surface of two liquids, of which one rests on the
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other. Suppose as before that the motion is in two dimensions,

that the fluids extend indefinitely in all horizontal directions,

or else that they are bounded by two vertical planes parallel to

the direction of propagation of the waves, that the waves are

propagated with a constant velocity, and without change of form,
and that they are such as can be propagated into, or excited

in, the fluids supposed to have been previously at rest. Suppose
first that the fluids are bounded by two horizontal rigid planes.
Then taking the common surface of the fluids when at rest for

the plane xz, and employing the same notation as before, we
have for the under fluid

= wheny=a ................ (29),

neglecting the squares of small quantities. Let h
/
be the depth

of the upper fluid when in equilibrium, and let p t , p,, &amp;lt;f&amp;gt;,, C, be
the quantities referring to the upper fluid which correspond to

P, p&amp;gt; & referring to the under : then we have for the upper
fluid

d* df
-

(
3

)&amp;gt;

^P
= when y = -h, (31),

We have also, for the condition that the two fluids shall not

penetrate into, nor separate from each other,

Lastly, the condition answering to (11) is

-he
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Since C C is evidently a small quantity of the first order at

least, the condition is that (33) shall be satisfied when # = 0.

Equation (34) will then give the ordinate of the common surface

of the two liquids when y is put = in the last two terms.

The general value of
&amp;lt;j&amp;gt;

suitable to the present case, which

is derived from (28) subject to the condition (29), is given by (13)

if we suppose that the fluid is free from a uniform horizontal

motion compounded with the oscillatory motion expressed by (18).

Since the equations of the present investigation are linear, in

consequence of the omission of the squares of small quantities,

it will be sufficient to consider one of the terms in (13). Let

then
m(h-^smmx......... (35).

The general value of
&amp;lt;f&amp;gt; t

will be derived from (13) by merely

writing h
l
for h. But in order that (32) may be satisfied, the

value of
&amp;lt;/&amp;gt; y

must reduce itself to a single term of the same form

as the second side of (35). We may take then for the value

offc

y
= A,(et(h +rt + e-mVt +v }

)&in.mx............ (36).

Putting for shortness

and taking $,, D, to denote the quantities derived from 8, D by

writing A, for h, we have from (32)

DA + D
4
A

t

= ...................... (37),

and from (33)

P (gD-mc*S)Ai-p l (gD, + mc*S)A, = ........ (38).

Eliminating A and A
t
from (37) and (38), we have

The equation to the common surface of the liquids will be

obtained from (34). Since the mean value of y is zero, we have

in the first place

C = C.................................. (40).

We have then, for the value of y,

mx ............................. (41),
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where

_-
g p-p,

Substituting in (35) and (36) the values of A and A
f
derived from

(37) and (42), we have

=-^ (*- &amp;gt;

+--*&amp;gt;) sin wa?....... .,...(43),

rt *

(44).

Equations (39), (40), (41), (43) and (44) contain the solution

of the problem. It is evident that C remains arbitrary. The

values ofp and p t may be easily found if required.

If we differentiate the logarithm of c
2 with respect to m, and

multiply the result by the product of the denominators, which

are necessarily positive, we shall find a quantity of the form

Pp+Pt p,, where P and P
t
do not contain p or pr It may be

proved in nearly the same manner as in Art. 4, that each of the

quantities P, Pt
is necessarily negative. Consequently c will

decrease as m increases, or will increase with X. It follows from

this that the value of
&amp;lt;/&amp;gt;

cannot contain more than two terms,

one of the form (35), and the other derived from (35) by replacing

sin mx by cos mx, and changing the constant A : but the latter

term may be got rid of by altering the origin of x.

The simplest case to consider is that in which both h and ti

are regarded as infinite compared with X. In this case we have

&amp;lt;j&amp;gt;

= - ace
~ y sin mx, &amp;lt;,

= acemy sin mx,

P P Q
c
2 = r \LL &amp;lt;L. y a cos mx,

p + p,m

the latter being the equation to the surface.

15. The preceding investigation applies to two incompressible

fluids, but the results are applicable to the case of the waves

propagated along the surface of a liquid exposed to the air, pro

vided that in considering the effect of the air we neglect terms

which, in comparison with those retained, are of the order of

the ratio of the length of the waves considered to the length of
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a wave of sound of the same period in air. Taking then p for

the density of the liquid, p t
for that of the air at the time, and

supposing h
t
= oo

,
we have

If we had considered the buoyancy only of the air, we should

have had to replace g in the formula (14) by -
g* We should

have obtained in this manner

t_s_(?-PJV-m pS mS\
/A
p)

Hence, in order to allow for the inertia of the air, the correction

for buoyancy must be increased in the ratio of 1 to 1 + D/S.

The whole correction therefore increases as the ratio of the length

of a wave to the depth of the fluid decreases. For very long

waves the correction is that due to buoyancy alone, while in

the case of very short waves the correction for buoyancy is

doubled. Even in this case the velocity of propagation is altered

by only the fractional part pjp of the whole
;
and as this quantity

is much less than the unavoidable errors of observation, the effect

of the air in altering the velocity of propagation may be neglected.

16. There is a discontinuity in the density of the fluid mass

considered in Art. 14, in passing from one fluid into the other;

and it is easy to shew that there is a corresponding discontinuity

in the velocity. If we consider two fluid particles in contact

with each other, and situated on opposite sides of the surface

of junction of the two fluids, we see that the velocities of these

particles resolved in a direction normal to that surface are the

same
;
but their velocities resolved in a direction tangential to

the surface are different. These velocities are, to the order of

approximation employed in the investigation, the values of
d&amp;lt;j&amp;gt;/dx

and dfyjdcc when y = 0. We have then from (43) and (44),

for the velocity with which the upper fluid slides along the

under,

8 S\
mac I -W- -f -=: cos moc.
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17. When the upper surface of the upper fluid is free, the

equations by which the problem is to be solved are the same

as those of Art. 14, except that the condition (31) is replaced by

= - h
&amp;gt;

.......... (45);

and to determine the ordinate of the upper surface, we have

where y is to be replaced by h
t
in the last term. Let us con

sider the motion corresponding to the value of $ given by (35).

We must evidently have

&amp;lt;,

= (A f
e
mv -f B

t
e-my) sin ma?,

where A
t
and B

t
have to be determined. The conditions (32),

(33) and (45) give

p (gD - mc*S) A+p,(g + mcz

) A, -p,(g- me2

) Bt

= 0,

(g + me2

)
e~ mh A

t -(g- me2

)
e&quot;*&amp;gt;B

t

= 0.

Eliminating A, A f
and B

t
from these equations, and putting

m
we find

The equilibrium of the fluid being supposed to be stable, we

must have p,
&amp;lt;

p. This being the case, it is easy to prove that

the two roots of (46) are real and positive. These two roots

correspond to two systems of waves of the same length, which

are propagated with the same velocity.

In the limiting case in which p/pt

= oo
, (46) becomes

SSf - (8Dt
+ SD) +DD

t

=
0,

the roots of which are D/8 and D]St ,
as they evidently ought

to be, since in this case the motion of the under fluid will not

be affected by that of the upper, and the upper fluid can be in

motion by itself.

When p,
=
p one root of (46) vanishes, and the other becomes

_ f-m(h+ht )_ !
. The former of these roots cor-

88
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responds to the waves propagated at the common surface of the

fluids, while the latter gives the velocity of propagation belonging
to a single fluid having a depth equal to the sum of the depths
of the two considered.

When the depth of the upper fluid is considered infinite,

we must put DJS, = \ in (46). The two roots of the equation
f f\ 7~)

so transformed are 1 and
^ITTJ-J) &amp;gt;

the former corresponding to

waves propagated at the upper surface of the upper fluid, and the

latter agreeing with Art. 15.

When the depth of the under fluid is considered infinite, and
that of the upper finite, we must put D/S=l in (46). The two

roots will then become 1 and ^~^ . The value of the

former root shews that whatever be the depth of the upper fluid,

one of the two systems of waves will always be propagated with

the same velocity as waves of the same length at the surface of a

single fluid of infinite depth. This result is true even when the

motion is in three dimensions, and the form of the waves changes
with the time, the waves being still supposed to be such as could

be excited in the fluids, supposed to have been previously at rest,

by means of forces applied at the upper surface. For the most

general small motion of the fluids in this case may be regarded
as the resultant of an infinite number of systems of waves of the

kind considered in this paper. It is remarkable that when the

depth of the upper fluid is very great, the root f= 1 is that which

corresponds to the waves for which the upper fluid is disturbed,

while the under is sensibly at rest; whereas, when the depth of

the upper fluid is very small, it is the other root which corresponds
to those waves which are analogous to the waves which would

be propagated in the upper fluid if it rested on a rigid plane.

When the depth of the upper fluid is very small compared
with the length of a wave, one of the roots of (46) will be very

small
;
and if we neglect squares and products of mh

i
and f, the

equation becomes %pD 2 (p /&amp;gt;,) mhfl = 0, whence

(47).

These formulae will not hold good if mh be very small as well as

inh
/t
and comparable with it, since in that case all the terms of
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(46) will be small quantities of the second order, mh, being re

garded as a small quantity of the first order. In this case, if we

neglect small quantities of the third order in (46), it becomes

4pf
2 - 4mp (h + \) f+ 4 (p

-
Pt) ra

2

M, = 0,

whence

(48).

Of these values of c
2
,
that in which the radical has the negative

sign belongs to that system of waves to which the formula (47)

apply when Ji
t
is very small compared with h.

If the two fluids are water and mercury, p/p, is equal to about

13*57. If the depth of the water be very small compared both

with the length of the waves and with the depth of the mercury,

it appears from (47) that the velocity of propagation will be less

than it would have been, if the water had rested on a rigid plane,

in the ratio of 9624 to 1, or 26 to 27 nearly.

APPENDIX.

[A. On the relation of the preceding investigation to a case of wave

motion of the oscillatory kind in which the disturbance can be

expressed in finite terms.

In the Philosophical Transactions for 1863, p. 127, is a paper

by the late Professor Rankine in which he has shewn that it is

possible to express in finite terms, without any approximation,

the motion of a particular class of waves of the oscillatory kind.

It is remarkable that the results for waves of this kind were

given as long ago as in 1802, by Gerstner*, whose investigation

however seems to have been but little noticed for a long time.

This case of motion has latterly attracted a good deal of atten*

tion, partly no doubt from the facility of dealing with it, but

partly, it would seem, from misconceptions as to its intrinsic

importance.

* See Weber s Wcllenlehrc auf Experimente gcgriindet, p. 338,
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The investigation may be presented in very short compass in

the following manner.

Let us confine our attention to the case of a mass of liquid, re

garded as a perfect fluid of a depth practically infinite, in which
an indefinite series of regular periodic waves is propagated along
the surface, the motion being in two dimensions, and vanishing at

an infinite depth. Taking the plane of motion for the plane of xy,

y being measured vertically downwards, let us seek to express the

actual co-ordinates x, y of any particle in terms of two parameters
h, k particularising that particle, and of the time t. Let us assume
for trial

x = h +Ksm m(h- ct), y = k + Kcos m(h ct) (49),

where m, c are two constants, and K a function of k only. It

will be easily seen that these equations, regarded merely as

expressing the geometrical motion of points, and apart from the

physical possibility of the motion, represent a wave disturbance

of periodic character travelling in the direction of OX with a

velocity of propagation c.

As the disturbance is in two dimensions, we may speak of areas

as representing volumes. Let us consider first the condition of

constancy of the mass. The four loci corresponding to constant

values h, h + dh, k, k + dk, of the two parameters respectively en

close a quadrangular figure which is ultimately a parallelogram,
the area of which must be independent of the time. Now the

area is Sdhdk where
*

~ _ dx dy dx dy
dh dk dk dh

On performing the differentiations we find

S=l + (mk +K )cQ$m(h-ct) +mKK (51),

where K stands for dKfdk. In order that this may be indepen
dent of the time it is necessary and sufficient that

mK +K =
(52),

whence

K= ae-mk (52 ^

and
S= 1 -m2#2 = 1 -mVe- 2^

(53).
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The dynamical equations give

dp , (d*x d

gdy + m*c*K (sin in (h ct) dx -f cos m (h ct) dy}

= gdy + wV {(x-h)d(a)-h) + (y-k)d(y- k)}

+ m*c
2

{(x -h)dh+(y- k) dk}.

The last line becomes by (49) and (52),

mc2

{mKsm m(h ct) dh K cos m(h ct) dk},

or mc*d . K cos m (h ct).

The dynamical equations are therefore satisfied, the expression for

dp being a perfect differential, and we have

V
{(as

-
h)* + (y

-
k)

2

}
- mc*K cos m(h-ct) + C

- mcz

)
K cos m(h- ct) + G.

It remains to consider the equations of condition at the boun

daries of the fluid. The expression for K satisfies the condition of

giving a disturbance which decreases indefinitely as the depth in

creases, and we have only to see if it be possible to satisfy the

condition at the free surface. Now the particles at the free sur

face differ only by the value of the parameter h, as follows from

the fundamental conception of wave motion, and therefore for some

one value of k we must have p = independently of the time.

This requires that

*=_=&.
m 2-7T

and if we please to take k = at the surface, and determine C

accordingly, we have

(I --**) ......... (54).

Since p is independent of the time, not merely for k = 0, but

for any constant value of k, it follows that when the wave motion

is converted into steady motion by superposing a velocity equal

and opposite to that of propagation, it is not merely the line of

motion or stream-line which forms the surface but all the stream

lines that are lines of constant pressure. This is undoubtedly no

necessary property of wave-motion converted into steady motion,

which only requires that the particular stream-line at the surface
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shall be one for which the pressure is constant, though Gerstner

has expressed himself as if he supposed it necessarily true
;

it is

merely a character of the special case investigated by Gerstner

and Kankine. Nevertheless in the case of deep water it must be

very approximately true. For in the first place it is strictly true

at the surface, and in the second place, it must be sensibly true

at a very moderate depth and for all greater depths, since the

disturbance very rapidly diminishes on passing from the surface

downwards; so that unless the amount of disturbance be excessive

the supposition that all the stream-lines are lines of constant

pressure will not be much in error.

In the case investigated by the mathematicians just mentioned,

each particle returns periodically to the position it had at a given

instant
;

there is no progressive motion combined with a periodic

disturbance, such as was found in the case investigated in the pre

sent paper : and for deep water the absence of progressive motion

is doubtless peculiar to the former case, as will presently more

clearly appear.

If we suppose a regular periodic wave motion to be going on,

and then suppose small suitable pressures applied to the surface in

such a manner as to check the motion, we may evidently produce

a secular subsidence of the wave disturbance while still leaving it

at any moment regular and periodic, save as to secular change,

provided the opposing pressures are suitably chosen. The wave

length will be left unchanged, but not so, in general, the periodic

time. If the amount of disturbance in one wave period be insen

sible, the particles which at one time have a common mean depth
must at any future time have a common mean depth, and must

ultimately lie in a horizontal plane when the wave motion has

wholly subsided. In this condition therefore there can be no

mption except a horizontal flow with a velocity which is some

function of the depth. By a converse process we may imagine a

regular periodic wave motion of given wave-length excited in a

fluid in which there previously was none; and according to the

nature of the arbitrary flow with which we start, we shall obtain

as the result a wave motion of such or such a kind*.

In any given case of wave motion, the flow which remains

* To prevent possible misconception I may observe that I am not here con

templating the actual mode of excitement of waves by wind, which in some respects

is essentially different.
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when the waves have been caused to subside in the manner above

explained is easily determined, since we know that in the motion

of a liquid in two dimensions the angular velocity is not affected

by forces applied to thd surface. If a) be the angular velocity

dv du _ 1 (dy dv dy dv dx du dx du}~
dx dy~ S (dk dh dh dk dk dh dh dk)

S being denned by (50). In Gerstner and Rankine s solution

u = mace~mk cos m(h ct), v = mace~mk sin m(h ct),

and on effecting the differentiations and substituting for S from

(53) we find

Let y be the depth and u the horizontal velocity, after the

wave-motion has been destroyed as above explained, of the line of

particles which had k for a parameter ;
then we must have

,.
(oC) -

Since in a horizontal length which may be deemed infinite com

pared with X the area between the ordinates y , y + dy must

be the same as between the lines of particles which have k} k + dk

for their ^-parameter

dy = Sdk,

S being defined by (50). Putting for S its value given by (53)

we have

dy =(l-m*a?-*mk)dk..................... (57),

y
f = k-lma?(l-e-*mk}

.................. (58).

We have then from (56) by (55) and (57),

u = 2wVcJe-
2m*cta = - wiVce&quot;

21 &quot;*

............ (59),

since u vanishes when k oo .

It appears then that in order that it should be possible to

excite these waves in deep water previously free from wave dis

turbance, by means of pressures applied to the surface, a prepara
tion must be laid in the shape of a horizontal velocity decreasing
from the surface downwards according to the value of e~ 2mk, where

k is a function of the depth y determined by the transcendental

equation in k (58), and moreover a velocity decreasing downwards

according to this law will serve for waves of the present kind of
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only one particular height depending on the coefficient of the ex

ponential in the expression for the flow. Under these conditions

the horizontal velocity depending (when we adopt approximations)
on the square and higher powers of the elevation, which belongs to

the wave-motion, is exactly neutralized by the pre-existing hori

zontal velocity in a contrary direction, pre-existing, that is, when
we think of the waves as having been excited in a fluid previously

destitute of wave-motion, not as having gone on as they are from

a time indefinitely remote. The absence of any forward horizontal

motion of the individual particles in waves of this kind, though
attractive at first sight, is not of any real physical import,

because we are not concerned with the biographies so to speak of

the individual particles.

The oscillatory waves which most naturally present themselves

to our attention are those which are excited in the ocean or on

a lake by the action of the wind, or those which having been so

excited are propagated into (practically, though not in a rigorous

mathematical sense) still water. Of the latter kind are the surf

which breaks upon our western coasts as a result of storms out in

the Atlantic, or the grand rollers which are occasionally observed

at St Helena and Ascension Island. The motion in these cases

having been produced from rest, by forces applied to the surface,

there is no molecular rotation, and therefore the investigation of

the present paper strictly applies. Moreover, if we conceive the

waves gradually produced by suitable forces applied to the surface,

in the manner explained at p. 222, the investigation applies to the

waves (secular change apart) at any period of their growth, and

not merely when they have attained one particular height.

There can be no question, it seems to me, that this is the class

of oscillatory waves which on merely physical grounds we should

naturally select for investigation. The interest of the solution first

given by Gerstner, and it is of great interest, arises not from any

physical pre-eminence of the class of waves to which it relates, but

from the imperfection of our analysis, which renders it important

to discuss a case in which all the circumstances of the motion can

be simply expressed in mathematical terms without any approxima
tion. And though this motion is not exactly that which on purely

physical grounds we should prefer to investigate, namely, that in

which the molecular rotation is nil, yet unless the height of the
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waves be extravagant, it agrees so nearly with it that for many
purposes the simpler expressions of Rankine may be used without

material error, even when we are investigating wave motion of

the irrotational kind.

B. Considerations relative to the greatest height of oscillatory

irrotational waves which can be propagated without change

of form.

In a paper published in the Philosophical Magazine, Vol. xxix.

(1865), p. 25, Rankine gave an investigation which led him to

the conclusion that in the steepest possible oscillatory waves of

the irrotational kind, the crests become at the vertex infinitely

curved in such a manner that a section of the crest by the plane
of motion presents two branches of a curve which meet at a right

angle*.

In this investigati6n it is assumed in the first place that the

steepness may be pushed to the limit of an infinite curvature

at a particular point, and in the second place that the variations

*
It is not quite clear whether Rankine supposed his proposition, that &quot;all

waves in which molecular rotation is null, begin to break when the two slopes of

the crest meet at right angles,&quot; to apply only to free waves, or to forced waves as

well. One would have supposed the former, were it not that a figure is referred to

representing forced waves of one particular kind. It is readily shewn that the

contour of a forced wave is arbitrary, even though the motion be restricted to be

irrotational. Let U=C (p. 4) be the general equation of the stream lines when the

wave motion is converted into steady motion. Then in the general case of a finite

depth, which includes as a limiting and therefore particular case that of an infinite

depth, the parameter C has one constant value at the upper surface, and another at

the bottom, and it satisfies the partial differential equation (5) of p. 4. Hence the

problem of finding U is the same as that of determining the permanent tem

perature, varying in two dimensions only, of a homogeneous isotropic solid the

section of which is bounded below by a horizontal line at a finite or infinite depth,

and above by a given arbitrary contour, the bounding surfaces being at two given

constant temperatures. The latter problem is evidently determinate, and therefore

also the former, so that forced waves may present in their contour sharp angles,

not merely of 90, but of any value we please to take.

s. 15
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of the components of the velocity, in passing from the crest to

a point infinitely close to it, may be obtained by differentiation,

or in other words from the second terms of the expansion by

Taylor s Theorem applied to infinitely small increments of the

variables.

The first assumption might perhaps be called in question,
but it would appear likely to give at any rate a superior limit

to the steepest form possible, if not the steepest form itself.

But as regards the second it would seem a priori very likely

that the crest might just be one of those singular points where

Taylor s Theorem fails; and that such must actually be the case

may be shewn by simple considerations.

Let us suppose that a fluid of either finite or infinite depth
is disturbed by a wave motion which is propagated uniformly
without change, the motion of the fluid being either rotational

or not, and let us suppose further that the crests are perfectly

sharp, so that a crest is formed by two branches of a curve which

either meet at a finite angle (their prolongations belonging to the

region of space where the fluid is not), or else touch, forming
a cusp.

Reduce the wave motion to steady motion by superposing
a velocity equal and opposite to that of propagation. Then

a particle at the surface may be thought of as gliding along a

fixed smooth curve: this follows directly from physical considera

tions, or from the ordinary equation of steady motion. On

arriving at a crest the particle must be momentarily at rest, and

on passing it must be ultimately in the condition of a particle

starting from rest down an inclined or vertical plane. Hence the

velocity must vary ultimately as the square root of the distance

from the crest.

Hitherto the motion has been rotational or not, Jet us now

confine ourselves to the case of irrotational motion. Place the

origin at the crest, refer the function $ to polar co-ordinates r, 6
;

6 being measured from the vertical, and consider the value of
&amp;lt;/&amp;gt;

very near the origin, where
&amp;lt;/&amp;gt;
may be supposed to vanish, as the

arbitrary constant may be omitted. In general &amp;lt;j&amp;gt;

will be of the

form ^Anr
n s\unO + ^Bn

cosn0. In the present case &amp;lt; must con

tain sines only on account of the symmetry of the motion, as
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already shewn (p. 212), so that retaining only the most important
term we may take

(j&amp;gt;

= Arn
sin n6. Now for a point in the section

of the profile we must have dfy/dO = 0, and dfyjdr varying

ultimately as ?A This requires that n = %, and for the profile

that \Q ^TT, so that the two branches are inclined at angles of

60 to the vertical, and at an angle of 120 to each other, not

of 90 as supposed by Rankine.

This however leaves untouched the question whether the

disturbance can actually be pushed to the extent of yielding crests

with sharp edges, or whether on the other hand there exists

a limit, for which the outline is still a smooth curve, beyond which

no waves of the oscillatory irrotational kind can be propagated
without change of form.

After careful consideration I feel satisfied that there is no

such earlier limit, but that we may actually approach as near

as we please to the form in which the curvature at the vertex

becomes infinite, and the vertex becomes a multiple point where

the two branches with which alone we are concerned enclose an

angle of 120. But whether in the limiting form the inclination

of the wave to the horizon continually increases from the trough
to the summit, and is consequently limited to 30, or whether on

the other hand the points of inflexion which the profile presents
in the general case remain at a finite distance from the summit

when the limiting form is reached, so that 011 passing from the

trough to the summit the inclination attains a maximum from

which it begins to decrease before the summit is reached, is a

question which I cannot certainly decide, though I feel little doubt

that the former alternative represents the truth.

In Rankine s case of wave motion the limiting form presents

crests which are cusped. For the maximum wave ma = 1 or

a = A/27T. We see from (55) that in this case the angular velo

city becomes infinite at the surface, where 7c vanishes; and if

we suppose such waves excited in the manner already explained
in a fluid initially destitute of wave motion, the horizontal velocity

u
r

which must exist in preparation for the waves must be such that

dujdy becomes infinite at the surface. It appears to be this cir

cumstance which renders it possible for even rotational waves to

attain in the limit to an infinite thinness of crest without losing

the property of uniform propagation.

152
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When swells are propagated towards a smooth, very gently

shelving shore, the height increases when the finiteness of depth

begins to take effect. Presently the limiting height for uniformly

propagated irrotational waves is passed, and then the form of the

wave changes independently of the mere secular change due to

diminishing depth. The tendency is now for the high parts to

overtake the less high in front of them, and thereby to become

higher still, until at last the crest topples over and the wave

finally breaks. The breaking is no doubt influenced by friction

against the bottom (denoting by
&quot;

friction&quot; the effect of the eddies

produced), but I do not believe that it is wholly or even mainly
due to this cause. Before the wave breaks altogether the top

gets very thin, but the maximum height for uniform propaga
tion is probably already passed by a good deal, so that we must

guard against being misled by this observation as to the character

of the limiting form.

In watching many years ago a grand surf which came rolling

in on a sandy beach near the Giant s Causeway, without any storm

at the place itself, I recollect being struck with the blunt wedge-
like form of the waves where they first lost their flowing outline,

and began to show a little broken water at the very summit. It is

only I imagine on an oceanic coast, and even there on somewhat

rare occasions, that the form of waves of this kind, of nearly the

maximum height, can be studied to full advantage. The observer

must be stationed nearly in a line with the ridges of the waves

where they begin to break.

C. Remark on the method of Art. I.

There appears to be a slight advantage in employing the

function U or ^ (= j(udy
- vdx) )

instead of
&amp;lt;,

the wave motion

having been reduced to steady motion as is virtually done in

Art. 1. The general equation for
i/r

is the same as for
&amp;lt;/&amp;gt;, (2), and

the general expression for ty answering to that given for &amp;lt; on

p. 212 is

C erm h-ri - -(k-ti cos rmx.

The expression for p in terms of ty is almost identical with that in

terms of
c/&amp;gt;.

So far there is nothing to choose between the two. But
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for the two equations which have to be satisfied simultaneously at

the surface, instead of p = and the somewhat complicated equa
tion (7), we have ^ = and ^r

= const., which constant we may
take =0 if we leave open the origin of y. The substitution of

this equation of simpler form for (7) is a gain in proceeding to

higher orders of approximation. I remember however thinking
as I was working at the paper that as far as the approximation
there went the gain was not such as to render it worth while to

make the change.
But while these sheets were going through the press I devised

a totally different method of conducting the approximation, which

I find possesses very substantial advantages in proceeding to

higher orders of approximation. The reader will find this new

method after the paper &quot;on the critical values of the sums of

periodic series.&quot;]



[From the Report of the British Association for 1847, Part n. p. 6.]

ON THE RESISTANCE OF A FLUID TO Two OSCILLATING

SPHERES.

THE object of this communication was to shew the application
of Professor Thomson s method of images to the solution of certain

problems in hydrodynamics. Suppose that there exists in an in

finite mass of incompressible fluid a point from which, or to which
the fluid is flowing with a velocity alike in all directions. Con
ceive now two such points, of intensities equal in magnitude and

opposite in sign, to coexist in the fluid
;
and then suppose these

points to approach, and ultimately coalesce, their intensities varying

inversely as the distance between them. Let the resulting point be

called a singular point of the second order. The motion of a fluid

about a solid, oscillating sphere is the same as if the solid sphere
were replaced by fluid, in the centre of which existed such a point.

It is easy to shew that the motion of the fluid due to a point of

this kind, when the fluid is interrupted by a sphere having its

centre in the axis of the singular point, is the same as if the

sphere s place were occupied by fluid containing one singular point
of the second order. By the application of this principle may be

found the resistance experienced by a sphere oscillating in presence

of a fixed sphere or plane, or within a spherical envelope, the

oscillation taking place in the line joining the centres, or perpen
dicular to the plane. In a similar manner may be found the resist

ance to two spheres which touch, or are connected by a rod, or to

the solid made up of two spheres which cut, provided the exterior

angle of the surfaces be a submultiple of two right angles, the

oscillation in these cases also taking place in the line joining the

centres. The numerical calculation is very simple, and may be

carried to any degree of accuracy.
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The investigation mentioned in the preceding paper arose out

of the communication to me by Sir William Thomson of his

beautiful method of electrical images before he had published it.

Having myself paid more attention to the motion of fluids than

to electricity, I endeavoured to find if it would in any manner

apply to the solution of problems in the motion of fluids. I found

that what is called above a singular point of the second order had

a perfect image in a sphere when its axis was in the direction of

a radius, which led to a complete solution of the problem men
tioned in the paper when one sphere lay wholly outside or inside

the other. I shewed this to Professor Thomson, who pointed out

to me that a solution was also attainable, and that in finite

terms, when the spheres intersected, provided the angle of inter

section was a submultiple of two right angles. He saw that the

property of a singular point of the second order of giving a perfect

image in the case mentioned, admitted of an application to the

theory of magnetism, which he has published in a short paper in

the second volume of the Cambridge and Dublin Mathematical

Journal, (1847) p. 240.

Although the mathematical result is contained in the paper

just mentioned, I subjoin the process by which I found it out.

The expression (see p. 41) for the function &amp;lt; around a sphere

which moves in a perfect fluid previously at rest may be thought
of as applying to the whole of an infinite mass of fluid, provided
we conceive what has here been called a singular point of the

second order to exist at the origin. Let us conceive a spherical

surface S with its centre at and having a radius a to exist in

the fluid
;

let P be the singular point, lying either within or with

out the sphere S, and having its axis in the line OP. Let /, & be

polar co-ordinates originating at P, & being measured from OP
produced, and let r, 6 be polar co-ordinates originating at

;
let

m be a constant, and OP c, then
&amp;lt;/&amp;gt;

being the function due to the

singular point we have

mcos# m.r cos0 rcos# c

Now if e be less than 1,

m-j- (r
2

2cr cos 6 + c
2

/
etc
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where P , Px ,
P

2
... are Laplace s, or in this case more properly

Legendre s, coefficients*. Hence by expanding and differentiating

with respect to c, we have

(1),

We are not of course concerned with the constant term in the

latter of these two expressions. For the normal velocity (v) at

the surface of the sphere we get by differentiating with respect

to r, and then putting r a

/1 . 2P
t

2 . 3cP
2

3 . 4c
2P

8 ,

\ . , ,Q ,

v = m( ^ L
-] 1 H 5 -+ ... ), if a&amp;gt; c (3),

\ a a CL /

First suppose the point P outside the sphere, let the sphere be

thought of as a solid sphere, and consider the motion &quot;reflected
&quot;

(p. 28) from it. The reflected motion being symmetrical about

the axis, we must have for it

where Q , Qlf Qt
... are Laplace s functions involving 6 only. This

gives for the normal velocity (v) in the reflected motion at the

surface of the sphere

and since we must have v = v we get from (4) and (6)

la P. 2a5P
2

3a7P
3

Q = 0, Q^wjH, Q2
=
m-^-

2
, Q9

=
n*gp

which reduces (5) to

a3 /!P 2a2P 3a4P

* The functions which in Art. 9 of the paper
&quot; On some Cases of Fluid Motion&quot;

(p. 38) I called &quot;Laplace s coefficients,&quot; following the nomenclature of Pratt s

Mechanical Philosophy, are more properly called &quot;

Laplace s functions
;&quot;

the term

&quot;Laplace s coefficients&quot; being used to mean the coefficients in the expansion of

[1
- 2e

{ cos 6 cos & + sin sin ff cos (w
- w ) } + c

2
]&quot;^,

to be understood according to the usual notation and not as in the text.
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This is identical with what (1) becomes on writing w ,
c for m, C

provided that
a3

, a2

m =- m -
3) c=-.

Hence the reflected motion is perfectly represented by sup

posing the sphere s place occupied by fluid within which, at the

point P in the line OP determined by OP = c, there exists a

singular point of the same character as P, but of opposite sign,

and of intensity less in the ratio of a
3
to c

3
.

The case of a spherical mass of fluid within a rigid enclosure

and containing a singular point of the second order with its axis

in a radial direction might be treated in a manner precisely similar,

by supposing the space exterior to the sphere filled with fluid,

taking to represent the reflected motion in this case, instead of (5),

the corresponding expression according to ascending powers of r,

and comparing the resulting normal velocity at the surface of the

sphere with (3) instead of (4). This is however unnecessary, since

we see that the relation between the two singular points P, P is

reciprocal, so that either may be regarded as the image of the

other.

Suppose now that we have two solid spheres, S, S ,
exterior to

each other, immersed in a fluid. Suppose that S is at rest, and

that S moves in the direction of the line joining the centres, the

fluid being at rest except as depends on the motion of S. The

motion of the fluid may be determined by the method of successive

reflections (p. 28), which in this case becomes greatly simplified

in consequence of the existence of a perfect image representing

each reflected motion, so that the process is identical with that of

Thomson s method of images, except that the decrease of intensity

of the successive images takes place according to the cubes of the

ratios of the successive quantities such as a, c, instead of the first

powers.

If a sphere move inside a spherical envelope, in the direction

of the line joining the centres, the space between being filled with

fluid which is otherwise at rest, the motion may be determined in

a precisely similar manner.

If two spheres outside each other, or just touching, be con

nected by an infinitely thin rod, and move in a fluid in the direction

of the line joining their centres, we have only to find the motion
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due to the motion of each sphere supposing the other at rest, and

to superpose the results.

I should probably not have thought of applying the method
to the solid bounded by the outer portions of two intersect

ing spheres, had not Professor Thomson shewn me that it was

not limited to the cases in which each sphere is complete ;
and

that although it fails from non-convergence when the spheres

intersect, yet when the exterior angle of intersection is a sub-

multiple of two right angles the places of the successive images
recur in a cycle, and a solution of the problem may be obtained

in finite terms by placing singular points of the second order at

the places of the images in a complete cycle.

The simplest case is that in which the spheres are generated

by the revolution round their common axis of two circles which

intersect at right angles. In this case if $, S f

are the spheres,

0, their centres, Ol
the middle point of the common chord of

the circles, the image of in $ will be at O
lt

and the image
of O in S will be at .

Let a, b be the radii of the spheres ;
c the distance V(

2

of their centres
; e, f the distances a?/c, tf/c of O

l
from 0, ;

C the velocity of the spheres ; r, 6 the polar co-ordinates of any

point measured from 0; r\, t
the co-ordinates measured from

4 ;

r, & the co-ordinates measured from
; 0, 6

lt
& being all

measured from the line 00 . If S were away, we should have

for the fluid exterior to 8

n 3
cos 6

+ -&amp;lt;&-&-

For the image of this in S we have a singular point at 6)
x

for

which
,

Ca*b* cosfl,
* =

~&amp;lt;T ^&amp;gt;

and for the image of this again in 8 we have a singular point at

for which

3COS0
7

9 = - oo
-gpr

&amp;gt;

which is precisely what is required to give the right normal

velocity at the surface of S . Moreover all the singular points

lie inside the space bounded by the exterior portions of the inter-
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secting spheres. Hence the three motions together satisfy all the

conditions of the problem, so that for the complete solution we
have

. , (a* cos d as
b
3
cos O

l
cos ff\

0= -*V\?r- -ff*- -?r-}

Just as in the case of a sphere, if a force act on the solid in

the direction of its axis, causing a change in the velocity C, the

only part of the expression for the resistance of the fluid which

will have a resultant will be that depending upon dC/dt. This

follows at once, as at pp. 50, 51, from the consideration that when
there is no change of C the vis viva is constant, and therefore the

resultant pressure is nil. If we denote by M dC/dt the resultant

pressure acting backwards, we get for the part of M due to the

pressure of the fluid on the exposed portion of the surface of S
t

72 ffa
3 cos0 cWcosfl, , ,,/!

.

vrpb I

j

--
2
---

3-72 + # cos
f
cos # sin

taken between proper limits. Putting b cos & x
t
we have

r cos 6 = c + x, ?\ cos
A =/+ x,

Expressing cos 0, cos0
t ,

cos & in terms of x and r, x and r
lt x,

and changing the independent variable, first to x
y
and then in the

first term to r and in the second to r
lt
we have for the indefinite

integral with sign changed

which is to be taken between the limits r = a to r = c + b, r^ ab/c

to f+b, x f to 6. The part of M due to the integral over

the exposed part of the surface of 8 will be got from the above

by interchanging; and on adding the two expressions together,

and putting/= b
2

/c, c = V(
2 + &

2

)&amp;gt;

we get for the final result

- 26
6

}.

When one of the radii, as b, vanishes, we get M =
fTrpa

3
as

it ought to be.



[From the Transaction* of the Cambridge Philosophical Society,

Vol. vin. p. 533.]

ON THE CRITICAL VALUES OF THE SUMS OF PERIODIC SERIES.

[Read December 6, 1847.]

THERE are a great many problems in Heat, Electricity, Fluid

Motion, &c., the solution of which is effected by developing an

arbitrary function, either in a series or in an integral, by means of

functions of known form. The first example of the systematic

employment of this method is to be found in Fourier s Theory

of Heat. The theory of such developements has since become an

important branch of pure mathematics.

Among the various series by which an arbitrary function f(x)
can be expressed within certain limits, as and a, of the variable

#, may particularly be mentioned the series which proceeds accord

ing to sines of TTX/O, and its multiples, and that which proceeds

according to cosines of the same angles. It has been rigorously

demonstrated that an arbitrary, but finite function of #, /(#), may
be expanded in either of these series. The function is not

restricted to be continuous in the interval, that is to say, it may

pass abruptly from one finite value to another
;
nor is either the

function or its derivative restricted to vanish at the limits and a.

Although however the possibility of the expansion of an arbitrary

function in a series of sines, for instance, when the function does

not vanish at the limits and a, cannot but have been contem

plated, the utility of this form of expansion has hitherto, so far as

I am aware, been considered to depend on the actual evanescence

of the function at those limits. In fact, if the conditions of the

problem require that /(O) and f(a) be equal to zero, it has been
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considered that these conditions were satisfied by selecting the

form of expansion referred to. The chief object of the following

paper is to develope the principles according to which the expan
sion of an arbitrary function is to be treated when the conditions

at the limits which determine the particular form of the expansion
are apparently violated

;
and to shew, by examples, the advantage

that frequently results from the employment of the series in such

cases.

In Section I. I have begun by proving the possibility of the

expansion of an arbitrary function in a series of sines. Two
methods have been principally employed, at least in the simpler

cases, in demonstrating the possibility of such expansions. One,

which is that employed by Poisson, consists in considering the

series as the limit of another formed from it by multiplying its

terms by the ascending powers of a quantity infinitely little less

than 1
;
the other consists in summing the series to n terms, that

is, expressing the sum by a definite integral, and then considering

the limit to which the sum tends when n becomes infinite. The

latter method certainly appears the more direct, whenever the

summation to n terms can be effected, which however is not always
the case; but the former has this in its favour, that it is thus

that the series present themselves in physical problems. The

former is the method which I have followed, as being that which

I employed when I first began the following investigations, and

accordingly that which best harmonizes with the rest of the paper.

I should hardly have ventured to bring a somewhat modified

proof of a well-known theorem before the notice of this Society,

were it not for the doubts which some mathematicians seem to

feel on this subject, and because there are some points which

Poisson does not seem to have treated with sufficient detail.

I have next shewn how the existence and nature of the dis

continuity of /(&)
and its derivatives may be ascertained merely

from the series, whether of sines or cosines, in which f(x) is

developed, even though the summation of the series cannot be

effected. I have also given formulae for obtaining the develope -

ments of the derivatives of f(x) from that of f(x) itself. These

developements cannot in general be obtained by the immediate

differentiation of the several terms of the developement of f(x),
or in other words by differentiating under the sign of summa
tion.
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It is usual to restrict the expanded function to be finite. This

restriction however is not necessary, as is shewn towards the end

of the section. It is sufficient that the integral of the function be

finite.

Section II. contains formulae applicable to the integrals which

replace the series considered in Section I. when the extent a of

the variable throughout which the function is considered is sup

posed to become infinite.

Section III. contains some general considerations respecting
series and integrals, with reference especially to the discontinuity
of the functions which they express. Some of the results obtained

in this section are referred to by anticipation in Sections I. and II.

They could not well be introduced in their place without too much

interrupting the continuity of the subject.

Section IV. consists of examples of the application of the pre

ceding results. These examples are all taken from physical

problems, which in fact afford the best illustrations of the applica

tion of periodic series and integrals. Some of the problems
considered are interesting on their own account, others, only as

applications of mathematical processes. It would be unnecessary
here to enumerate these problems, which will be found in their

proper place. It will be sufficient to make one or two remarks.

The problem considered in Art. 52, which is that of determin

ing the potential due to an electrical point in the interior of a

hollow conducting rectangular parallelepiped, and to the electricity

induced on the surface, is given more for the sake of the artifice

by which it is solved than as illustrating the methods of this paper.

The more obvious mode of solving this problem would lead to a

very complicated result.

The problem solved in Art. 54 affords perhaps the best example
of the utility of the methods given in this paper. The problem
consists in determining the motion of a fluid within the sector of a

cylinder, which is made to oscillate about its axis, or a line parallel

to its axis. The expression for the moment of inertia of the

fluid which would be obtained by the methods generally employed
in the solution of such problems is a definite integral, the numeri

cal calculation of which would be very laborious; whereas the

expression obtained by the method of this paper is an infinite series

which may be summed, to a sufficient degree of approximation,

without much trouble.
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The series for the developement of an arbitrary function con

sidered in this paper are two, a series of sines and a series of

cosines, together with the corresponding integrals ;
but similar

methods may be applied in other cases. I believe that the follow

ing statement will be found to embrace the cases to which the

method will apply.

Let u be a continuous function of any number of independent

variables, which is considered for values of the variables lying

within certain limits. For facility of explanation, suppose u a

function of the rectangular co-ordinates x, y, z, or of x, y, z and t,

where t is the time, and suppose that u is considered for values of

x, y, z, t lying between and a, and b, and c, and T, respec

tively. For such values suppose that u satisfies a linear partial

differential equation, and suppose it to satisfy certain linear equa
tions of condition for the limiting values of the variables. Let

Z7=0, U = Q be two of the equations of condition, corresponding

to the two limiting values of one of the variables, as x. Then

the expansion of u to which these equations lead may be applied

to the more general problem which leads to the corresponding

equations of condition U F, U = F
t
where F and F are any

functions of all the variables except x, or of any number of

them.

SECTION I.

Mode of ascertaining the nature of the discontinuity of a function
which is expanded in a series of sines or cosines, and of obtain

ing the developements of the derived functions.

1. By the term, function I understand in this paper a quantity
whose value depends in any manner on the value of the variable,

or on the values of the several variables of which it is composed.
Thus the functions considered need not be such as admit of being

expressed by any combination of algebraical symbols, even between

limits of the variables ever so close. I shall assume the ordinary
rules of the differential and integral calculus as applicable to such

functions, supposing those rules to have been established by the

method of limits, which does not in the least require the

possibility of the algebraical expression of the functions con

sidered.
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The term discontinuous, as applied to a function of a single

variable, has been used in two totally different senses. Sometimes

a function is called discontinuous when its algebraical expression
for values of the variable lying between certain limits is different

from its algebraical expression for values of the variable lying
between other limits. Sometimes a function of x, f(x), is called

continuous when, for all values of #, the difference between f (x)

and f(xh) can be made smaller than any assignable quantity by

sufficiently diminishing h, and in the contrary case discontinuous.

If / (x) can become infinite for a finite value of x, it will be con

venient to consider it as discontinuous according to the second

definition. It is easy to see that a function may be discontinuous

in the first sense and continuous in the second, and vice versa.

The second is the sense in which the term discontinuous is I

believe generally employed in treatises on the differential calculus

which proceed according to the method of limits, and is the sense

in which I shall use the term in this paper. The terms continuous

and discontinuous might be applied in either of the above senses

to functions of two or more independent variables. If I have

occasion to employ them as applied to such a function, I shall

employ them in the second sense; but for the present I shall

consider only functions of one independent variable.

In the case of the functions considered in this paper, the value

of the variable is usually supposed to be restricted to lie within

certain limits, as will presently appear. I exclude from considera

tion all functions which either become infinite themselves, or have

any of their differential coefficients of the orders considered

becoming infinite, within the limits of the variable within which

the function is considered, or at the limits themselves, except

when the contrary is expressly stated. Thus in an investigation

into which / (x) and its first n differential coefficients enter, and

in which f(x) is considered between the limits x=0 and a? = a,

those functions are excluded, at least at first, which are such that

any one of the quantities /(#), / (x) ...f
n
(x) is infinite for a

value of x lying between and a, or for x = or x = a
;
but the

differential coefficients of the higher orders may become infinite.

The quantities /(#), / (#) ..-/
n
(x) may however alter discon-

tinuously between the limits x = and x = a, but I exclude

from consideration all functions which are such that any one of

the above quantities alters discontinuously an infinite number
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of times between the limits within which x is supposed to

lie.

The terms convergent and divergent, as applied to infinite series,

will be used in this paper in their usual sense
;
that is to say, a

series will be called convergent when the sum to n terms

approaches a finite and unique limit as n increases beyond all

limit, and divergent in the contrary case. Series such as

1 1 + 1 . . .
,
sin x + sin Zx + sin 3 ic + . . .

,

(where x is supposed not to be or a multiple of TT,) will come
under the class divergent ; for, although the sum to n terms does

not increase beyond all limit, it does not approach a unique limit

as n increases beyond all limit. Of course the first n terms of a

divergent series may be the limits of those of a convergent series :

nor does it appear possible to invent a series so rapidly divergent
that it shall not be possible to find a convergent series which shall

have for the limits of its first n terms the first n terms respectively
of the divergent series. Of course we may employ a divergent
series merely as an abbreviated mode of expressing the limit of

the sum of a convergent series. Whenever a divergent series is

employed in this way in the present paper, it will be expressly
stated that the series is so regarded.

Convergent series may be divided into two classes, according
as the series resulting from taking all the terms of the given
series positively is convergent or divergent. It will be convenient

for the purposes of the present paper to have names for these two
classes. I shall accordingly call series belonging to the first class

essentially convergent, and series belonging to the second acci

dentally convergent, while the term convergent, simply, will be used

to include both classes. Thus, according to the definitions which
will be employed in this paper, the series

x + J z* 4- J x
9 + ...

is essentially convergent so long as x2
&amp;lt; 1

;
it is divergent when

as* &amp;gt; 1, and when x = 1
;
and it is accidentally convergent when

x = -l.

The same definitions may be applied to integrals, when one at
/oo

least of the limits of integration is oo . Thus, if a &amp;gt; 0, / of
2
djc

J a

s. 16



242 ON THE CRITICAL VALUES OF

t* 00

is essentially convergent at the limit oo
,
while I

^-^ dx is only
J a &

accidentally convergent, andjsina;^, not being convergent,
J a

comes under the class of divergent integrals. These definitions

may be applied also to integrals taken between finite limits,when the

quantity under the integral sign becomes infinite within the limits

f
a

of integration, or at one of the limits. Thus I log # dx is conver-
J o

[
a dx

gent, but I
-

divergent, at the limit 0.
J o ^

2. Let f (x) be a function of x which is only considered

between the limits x = and x = a, and which can be expanded
between those limits in a convergent series of sines of irx/a and

its multiples, so that

To determine A n , multiply both sides of (1) by smmrx/a.dx and

integrate from x = to x a. Since the series in (1) is conver

gent, and sin mrx/a does not become infinite for any real value

of x, we may first multiply each term by sin mrx/a . dx and

integrate, and then sum, instead of first summing and then inte

grating*. But each term of the series in (1) except the nth
will

produce in the new series a term equal to zero, and the nth
will

produce J aAn . Hence

A 2 [
a

, . . nirx 7A - fix) sin- dx,n aJ

and therefore

*f \
% \? f

a
^/ \

n7rx
7

7?7r&amp;lt;̂ /o\fW = -% /Wsin-- doe. am-- ............ (2).
Uj J o tl U

3. Hence, whenever f(x) can be expanded in the convergent
series which forms the right-hand side of (1), the value of A n can

be very readily found, and the expansion performed. But this

leaves us quite in the dark as to the degree of generality that a

function which can be so expanded admits of. In considering this

*
Moigno, Lecons de Cdlcul DifferenUel, &c. Tom. n. p. 70.
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question it will be convenient, instead of endeavouring to develope

f(x), to seek the value of the infinite series

2&amp;lt;C f // \
n7rx j i n7r% /o\- 2, /() sm ax . sm -

(3),a J a a

provided the series be convergent ;
for it is only in that case that

we can, without further definition, speak of the sum of the series

at all. Now if we had only a finite number n of terms in the

series (3) we might of course replace the series by

-
I f(x ) |sin sin + sin - sin . . ,

aJo [a a a a

. njrx . nirx] -, , , . N

4- sin sin \ dx (4).
a a

j

As it is however this transformation cannot be made, because, the

series within brackets in the expression which would replace (4)

not being convergent, the expression would be a mere symbol
without any meaning. If however the series (3) is essentially con

vergent, its sum is equal to the limit of the sum of the following

essentially convergent series

-
2&amp;lt;7

n
/ f (V) sin dx .sin (5),a y
Jo a a

when g from having been less than 1 becomes in the limit 1. It

will be observed that if (3) were only accidentally convergent, we
could not with certainty affirm the sum of (3) to be the limit of

the sum of (5). For it is conceivable, or at least not at present

proved to be impossible, that the mode of the mutual destruction

of the terms of (3) in the infinitely remote part of the series

should be altered by the introduction of the factor g
n

,
however

little^ might differ from 1. Let us now, instead of seeking the

sum of (3) in those cases in which the series is convergent, seek

the limit to which the sum of (5) approaches as g approaches to 1

as its limit.

4. The transformation already referred to, which could not be

effected on the series (3), may be effected on (5), that is to say,

instead of first integrating the several terms and then summing,
we may first sum and then integrate. We have thus, for the value

of the series,

9 Ca ( -v/ ^\

(6).

162
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The convergent series within brackets can easily be summed. The

expression (6) thus becomes

(7).
1 2# cos TT

(se -f a?)/a + #

Now since the quantity under the integral sign vanishes when

g = 1, provided cos TT (a?
+

a?)/a be not =
1, the limit of (7) when

g 1 will not be altered if we replace the limits and a of x by

any other limits or groups of limits as close as we please, provided

they contain the values of x which render x x equal to zero or

any multiple of 2a. Let us first suppose that we are considering

a value of x lying between and a, and in the neighbourhood of

which /(#) alters continuously. Then, since x + x never becomes

equal to zero or any multiple of 2a within the limits of integra

tion, we may omit the second term within brackets in (7) ;
and

since x x never becomes equal to any multiple of 2a, and

vanishes only when x = x
}
we may take for the limits of x two

quantities lying as close as we please to x, and therefore so close

as to exclude all values of x for which f(x) alters discontinuously.

Let g=~Lh, x = x + f, expand cos irf/a by the ordinary formula,

and put f(x) =/ (x) + R. Then the limit of (7) will be the same

as that of

the limits of f being as small as we please, the first negative and

the second positive. Let now

so that d/dj; is ultimately equal to a/ir, that is to say when g is

first made equal to 1, and then the limits of f, and therefore those

of f, are made to coalesce. Let now G, L be respectively the

greatest and least values of (1
-

|A) a~
l

dg/di; {/(#) + R] within

the limits of integration. Then if we observe that

W + *

were tan&quot;
1
denotes an angle lying between ?r/2 and ?r/2, putting



THE SUMS OF PERIODIC SERIES. (SECT. I. SERIES.) 245

-
fp 2

for the limits of
,
we shall see that the value of the inte

gral (8) lies between

G (tan
1

fjh + tan-
2//t)

and L (tan
1

gjh + tan&quot;

1

gjh) :

but in the limit, that is to say, when we first suppose h to vanish

and then and fg ,
6r and Z become equal to each other and to

ir~
l

f(x) t
and tan&quot;

1

fx/& + tan&quot;
1

f2//i
becomes equal to TT. Hence,

/(#) is the limit of (7).

Next, suppose that the value of x which we are considering

lies between and a, and that as x passes through it /(# )
alters

suddenly from M to N. Then the reasoning will be exactly as

before, except that we must integrate separately for positive and

negative values of f , replacing f(x) + R by M + R in the latter

case, and by N+R in the former. Hence, the limit of (7) will be

Lastly, if we are considering the extreme values as = and

sc = a, it follows at once from the form of (7) that its limiting value

is zero.

Hence the limit to which the sum of the convergent series (5)

tends as g tends to 1 as its limit is f(x) for values of x lying

between and a, for which f(x) alters continuously, it is J (M+N)
for values of as for which f (x) alters suddenly from M to N, and it

is zero for the extreme values and a.

5. Of course the limiting value of the series (5) is f(fty and

not zero, if we suppose that g first becomes 1 and then x passes

from a positive value to zero. In the same way, if/(#) alters

abruptly from M to N as x increases through x
lt
the limiting value

of (5) will be M if we suppose that g first becomes 1 and then x

increases to x^ and it will be N if we suppose that g first becomes

1 and then x decreases to x
lt

It would be futile to argue that the

limiting value of (5) for # = is zero rather than /(O), or /(O)
rather than zero, since that entirely depends on the sense in which

we employ the expression limiting value. Whichever sense we

please to adopt, no error can possibly result, provided we are only

consistent, and do not in the course of the same investigation

change the meaning of our words.

It is a principle of great importance in these investigations,

that a function of two independent variables which becomes
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indeterminate for particular values of the variables may have

different limiting values according to the order in which we

suppose the variables to assume their particular values, or ac

cording to the nature of the arbitrary relation which we conceive

imposed on them as they approach those values together.

I would here make one remark on the subject of consistency.

We may speak of the sum of an infinite series which is not con

vergent, if we define it to mean the limit of the sum of a con

vergent series of which the first n terms become in the limit

the same as those of the divergent series. According to this

definition, it appears quite conceivable that the same divergent

series should have a different sum according as it is regarded

as the limit of one convergent series or of another. If however

we are careful in the same investigation always to regard the

same divergent series, and the series derived from it, as the

limits of the same convergent series and the series derived from

it, it does not appear possible to fall into error, assuming of course

that we always reason correctly. For example, we may employ
the series (3), and the series derived from it by differentiation, &c.,

without fear, provided we always regard these series when di

vergent, or only accidentally convergent, as the limits of the

particular convergent series formed by multiplying their nth terms

6. We may now consider the convergency of the series (3), in

order to find whether we may employ it directly, or whether we

must regard it as the limit of (5).

By integrating by parts in the ri
b term of (3), we have

mrx 7 ,
2 -, ,N

nirx
sin dx = -f (x )

cos
a WIT a

Suppose that / (x) does not necessarily vanish at the limits

x = and x = a, and that it alters discontinuously any finite

number of times between those limits, passing abruptly from

M^ to N
t
when x increases through a

lt
from M

2
to JV

2
when x

increases through 2 ,
and so on. Then,. if we put 8 for the sign of

summation referring to the discontinuous values of /(a? ),
on

taking the integrals in (9) from # = to x = a, we shall get for
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the part of the integral corresponding to the first term at the

right-hand side of the equation

^ {/(O)
-(-)&quot;/() + S(N-M) cos - ........... (10).

It is easily seen that the last two terms in (9) will give a

part of the integral taken from to a, which is numerically
inferior to L/n*, where L is a constant properly chosen. As far

as regards these terms therefore the series (3) will be essentially

convergent, and its sum will therefore be the limit of the sum
of (5).

Hence, in examining the convergency or divergency of the

series (3), we have only got to consider the part of the coefficient

of sin mrx/a of which (10) is the expression. The terms /(O),

/(a) in this expression may be included under the sign 8 if we

put for the first a = 0, M 0, -ZV=/(0), and for the second a = a,

M=f(a), N=Q. We have thus got a set of series to consider

of which the type is

2 .,r ,,, ^ 1 mrx . niroc ..,,.- (N M)2, - cos- sm- ............ (11).
TT n a a

If we replace the product of the sine and cosine in this ex

pression by the sum of two sines, by means of the ordinary

formula, and omit unnecessary constants, we shall have for the

series to consider

Let now

2-sinw* (12).n ^ }

u sin^ + Jsin 2z ... -f
- sin nz (13),
Tl

then

du sin (n 4- ] z
-T- = cos z -f cos 2z . . . + cos nz = ,\ Vdz 2 sm z

and since u vanishes with z, in which case
m

\
l ^ z

Js finite,sm \z
we shall have, supposing z to lie between 2?r and + 2?r, so

that the quantity under the integral sign does not become infinite

within the limits of integration,

*H;=EH^*-i W&amp;gt;
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and we have to find whether the integral contained in this

equation approaches a finite limit as n increases beyond all limit,

and if so what that limit is. Since u changes sign with z, we
need not consider the negative values of z.

First suppose the superior limit z to lie between and 2?r
;

and to simplify the integral write 2z for z, n for 2n + 1, so that

the superior limit of the new integral lies between and TT
;

then the integral

[
z sinnz , f sOnnz z 7 f^sinnz,., ^ . 7=

. dz = -
. dz

\ (1 + Ez\ dz,
J o sin z Jo z sin z J o z

where R =
; ,

a quantity which does not become infinite
z sin z

within the limits of integration. Hence, as is known, the limit of

sin nz . Rdz when n increases beyond all limit is zero. Hence,
o

if / be the limit of the integral,

,.,..-- [*smnz 7 r ., f C
I = limit of -dz- limit of

JQ Z JO b

Now, z being given, the limit of nz is oo
,
and therefore

7T

2

Secondly, suppose z in (14) to be equal to 0. Then it follows

directly from this equation, or in fact at once from (13), that

u = 0, and consequently the limit of u = 0.

The value of u in all other cases, if required, may be at once

obtained from the consideration that the values of u recur when z

is increased or diminished by 2?r,

Hence, the series (12) is in all cases convergent, and has for

its sum when z = 0, and \ (TT
-

z} when z lies between

and 27T.

Now, if in the theorem of Article 4, we write z for x, and

put a = TT, f (z)
= | (TT

-
z), we find, for values of z lying between

and TT, and for z = TT,

limit of 2,
-
g
n
sin nz = J (TT z) ;

and evidently

limit of 2 -
#
M
sin n^ = 0, when a = 0,
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that is of course supposing z first to vanish and then gio become 1.

Also the limit of ^n~
l

g
n
sin nz changes sign with z, and recurs

when z is increased or diminished by 2?r. Hence, the series (12),

which has been proved to be convergent, is in all cases the limit

to which the sum of the convergent series %n~ l

g
n
sin nz tends

as g tends to 1 as its limit. Now the series (11) may be de

composed into two series of the form just discussed, whence it

follows that the series (3) is always convergent, and its sum for

all values of x, critical as well as general, is the limit of the

sum of the series (5), when g becomes equal to 1.

The examination of the convergency of the series (3) in the

only doubtful case, that is to say, the case in which / (x) is dis

continuous, or does not vanish for x = and for x = a, is more

curious than important. For in the analytical applications of

the series (3) it would be sufficient to regard it as the limit of

the series (5) ;
and in the case in which (3) is only accidentally

convergent, we should hardly think of employing it in the

numerical computation of f(x) if we could possibly help it, and

it will immediately appear that in all the cases which are most

important to consider we can get rid of the troublesome terms

without knowing the sum of the series.

The proof of the convergency of the series (3) which has just

been given, though in some respects I believe new, is certainly

rather circuitous, and it has the disadvantage of not applying
to the case in which f (x) is infinite*, an objection which does

not apply to the proof given by M. Dirichletf. It has been

supposed moreover that
f&quot;(x)

is not infinite. The latter re

striction however may easily be removed, as in the end of the

next article.

7. Let f(x) be a function of x which is expanded between

the limits x = and x a in the series (3). Let the series be

A . TTOC A . 7rx . . mrx , .

^sin --h^4
2
sm --- ... + A H sin ---K.., ..,.(15),

CL a a

and suppose that we have given the coefficients A
} ,
A

2
... , but

do not know the sum of the series f(x). We may for all that

find the values of /(O) and /(a), and likewise the values of x

* This restriction may however be dispensed with by what is proved in Art. 20.

t Crelle s Journal, Tom. iv. p. 157.
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for which f(x) is discontinuous, and the quantity by which f(x) is

increased as x increases through each of these critical values.

For from (9) and (10)

E being a quantity which does not become infinite with n. If

then we use the term limit in an extended sense, so as to include

quantities of the form (7 cos ny, [of course C
( l)

n
is a particular

case,] or the sum of any finite number of such quantities, we
shall have for n = oo

,

limit of^=
Let then the limit of nA n be found. It will appear under the

form

y ...... . ........... (17).

Comparing this expression with (16), we shall have

and for each term of the series denoted by 8 we shall have

In particular, if f(x) is continuous, and if the limit of nA n is

L
Q
or Le according as n is odd or even, we shall have

+/()}, A = =
!/(0) -/());

whence

If f(x) were discontinuous for an infinite number of values

of x lying between and a, it is conceivable that the infinite

series coming under the sign 8 might be divergent, or if con

vergent might have a sum from which n might wholly or partially

disappear, in which case the limit of nA n might not come out

under the form (17). It was for this reason among others, that

in Art. 1, I excluded such functions from consideration.

If f(x) be expressible algebraically between the limits x = Q

and x = a, or if it admit of different algebraical expressions within
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different portions into which that interval may be divided, A n

will be an algebraical function of n, and the limit of nA n may
be found by the ordinary methods. Under the term algebraical

function, I here include transcendental functions, using the term

algebraical function in opposition to what has been sometimes

called an empiricalfunction, or a generalfunction, that is, a function

in the sense in which the ordinate of a curve traced liberd manu
is a function of the abscissa. Of course, in applying the theorem

in this article to general functions, it must be taken as a postulate
that the limit of nA n can be found, and put under the form (17).

The theorem in question has been proved by means of equation

(9), in which it is supposed that
f&quot;(sc]

does not become infinite

within the limits of integration. The theorem is however true

independently of this restriction. To prove it we have only got to

integrate by parts once instead of twice, and we thus get for
T&amp;gt;

the quantity which replaces the integraln

9 /*

I/.

nirx , ,

cos - - ax
,

which by the principle of fluctuation* vanishes when n becomes

infinite. There is however this difference between the two cases.

When the series (15) has been cleared of the part for which the

limit of nA n is finite, by the method which will be explained in

the next article, the part which remains will be at least as con

vergent in the former case as the series
^2 + -^... + -^+...,
-L .Z n

whereas we cannot affirm this to be true, and in fact it may
be proved that it is not true, in the case in which

f&quot;(x)
becomes

infinite. Observing that the same remark will apply when we
come to consider the critical values of the differential coefficients

* I borrow this term from a paper by Sir William E. Hamilton On Fluctuating
Functions, (Transactions of the Royal Irish Academy, Vol. xix. p. 264.) Had I

been earlier acquainted with this paper, and that of M. Dirichlet already referred

to, I would probably have adopted the second of the methods mentioned in the
introduction for establishing equation (2) for any function, or rather, would have

begun with Art. 7, taking that equation as established. I have retained Arts (2)

(6), first, because I thought the reader would enter more readily into the spirit of

the paper if these articles wrere retained, and secondly, because I thought that

Section in, which is adapted to this mode of viewing the subject, might be found

useful.
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of f(x\ I shall suppose the functions and derived functions

employed in each investigation not to become infinite, according
to what has already been stated in Art. 1.

8. After having found the several values of a, and the cor

responding values of N M, we may subtract the expression (10)

from A n , provided we subtract from the sum of the series (15) the

sums of the several series such as (11). Now if X be the sum of

the series (11),

X= (N-M) s Sin +2 gm-... (19).
JT

\
n a n a

)

But it has been already shewn that 2 - sin nz = \ (TT z) when z
n

lies between and 2?r,
= when z = 0, and =

J (IT + z) when z

lies between and 2?r. Now when x lies between and a,

TT (x + a)/a lies between and 2?r, and TT (x a)/a lies between

2?r and
;
and when x lies between a. and a, TT (x + a) /a still lies

between and 2?r, and TT
(a? a)/a now lies between the same

limits. Hence

xX = (N- M) -
,
when x lies between and a

...(20).
/- _ /

(N M) -
, when x lies between a and a

a

We need not trouble ourselves with the singular values of the

sum of the series (15), since we have seen that a singular value is

always the arithmetic mean of the values of the sum for values

of x immediately above and below the critical Value. This rule

will apply to the extreme cases in which x = and x = a, if we

consider the sum of the series for values of x lying beyond those

limits. The rule applies to the series in (19), which is only a

particular case of (15), and consequently will apply to any combi

nation of series having this property, formed by way of addition

or subtraction; since, when we increase or diminish any two.

quantities MQ)
N by any other two M, N respectively, we increase

or diminish the arithmetic mean of the two former by the arith

metic mean of the two latter.

It has been already stated that we may, with a certain conven

tion, include quantities referring to the limits x = and x = a

under the sign of summation S. If we do so, and put H for the
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sum of the series (15), and Bn for the remainder arising from sub

tracting the expression (10) from An , we shall have

i n TT ^ r, .

s, SX = zBn sm-
CL

and the sum of the series forming the right-hand side of this equa
tion will be a continuous function of x. As to SX, the value of

each series contained in it is given by equation (20).

To illustrate this, suppose H the ordinate of a curve of which

x is the abscissa. Let OGr be the axis of x\ OA, MB, ND, Ob

right lines perpendicular to it, and let OG = a. Let the curve of

Q

which % is the ordinate be the discontinuous curve AB, CD,
EFG. Take Gb equal to BC, and on the positive or negative
side of the axis of x according as the ordinate decreases or increases

as x increases through OM, and from measure an equal length
Oc on the opposite side of the axis. Take Gd, Oe, each equal to

DE, and draw the right lines AG, Ob b, cc G, Od d, ee G. Then
it will be easily seen that if Xv Xlt

X
z
be the values of X cor

responding to the critical values of x, x = 0, x OM, x = ON,
respectively, X will be represented by the right line AG

;
X

l by
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the discontinuous right line 06
,
c G\ and X^ by the discontinuous

right line Od
,
e G. Take MP equal to the sum of the ordinates

of the points in which the right lines lying between OA and c B
cut the latter line; MQ equal to the sum of the ordinates of the

points in which the right lines lying between c B and d E cut the

former, and so on, the ordinates being taken with their proper

signs. Let P, Q, R, S be the points thus found, and join AP,
QR, SO. Then SX will be represented by the discontinuous right

line AP, QR, 8G. Let the ordinates of the discontinuous curve

be diminished by those of the discontinuous right line last men

tioned, and let the dotted curve be the result. Then H SX will

be represented by the continuous, dotted curve. It will be

observed that the two portions of the dotted curve which meet in

each of the ordinates MB, NE may meet at a finite angle. If

there should be a point in one of the continuous portions, such as

AB, of the discontinuous curve where two tangents meet at a

finite angle, there will of course be a corresponding point in the

dotted curve.

If we choose to take account of the conjugate points of

the curve of which SX is the ordinate, it will be observed that

they are situated at 0, and midway between P and Q, and between

R and S.

9. There are a great many series, similar to (3), in which f (x)

may be expanded within certain limits of x. I shall consider one

other, which as well as (3) is of great use, observing that almost

exactly the same methods and the same reasoning will apply in

other cases.

The limit of the sum of the series

1 f%/ N J 2 V n f%/ N
nrjTX J U7rX /-M \- f (x) dx + -

2.g
H

I /(a?) cos dx .cos -
...(21),d J o & J M &

when g from having been less than 1 becomes 1, is f (#), x being

supposed not to lie beyond the limits and a. For values, how

ever, of x for which f (x) alters discontinuously, the limit of the

sum is the arithmetic mean of the values of f (x) for values of x

immediately above and below the critical value. I assume this as

being well known, observing that it may be demonstrated jusfc as a

similar theorem has been demonstrated in Art. 4.
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10. Let us now consider the series

1
[
a

/./ ,x 7 , 2 -, [
a

, .
,N

n-irx ,
, mrx /c.&amp;lt;*\-

f(x) dx +- 2, /UP) cos das . cos .... (22).
Q&amp;gt;JO a Jo a a

We have by integration by parts

mrx 7 ,

cos dx

and now, taking the limits properly, and employing the letters

M, N, a. and S in the same sense as before, we have

2 [
a

-jj-(x)a mr a n2
&quot;

E being a quantity which does not become infinite with n. It

follows from (23), that the series (22) is in all cases convergent, and
its sum for all values of x

}
critical as well as general, is the limit of

the sum of (21).

It will be observed that if f (x) is a continuous function the

series (22) is at least as convergent as the series 2 l/n*. This is

not the case with the series (3), unless /(O) =/() = 0.

If the constant term and the coefficient of cos mrxfa in the

general term of (22) are given, f (x) itself not being known,

except by its developement, we may as before find the values of x
for which /(a?) is discontinuous, and the quantity by which f (x)

is suddenly increased as x increases through each critical value.

We may also, if we please, clear the series (22) of the slowly con

vergent part corresponding to the discontinuous values of f (x}.

11. Since the series (3) is convergent, if we have occasion to

integrate /(a?) we may, instead of first summing the series and
then integrating, first integrate the general term and then sum.
More generally, if &amp;lt; (x) be any function of x which does not

become infinite between the limits x = and x = a, we shall

have

f
*
^ / N i / \ 7 2 _^ [

a
. .

,.
. UTTX , ,

f*
, . U7TX -,

f(x] &amp;lt;l&amp;gt;(x)dx

= -2 f(x )
am - - dot.

&amp;lt;#&amp;gt; (x) sm - - dx,
Jo ft J o &Jo a

the superior limit x of the integrals being supposed not to lie

beyond the limits and a
;
and the series at the second side of the
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above equation will be convergent. In fact, even in the case in

which f (x) is discontinuous the series will be as convergent as the

series 2 l//i
2

. A second integration would give a series still

more rapidly convergent, and so on. Hence, the resulting series

may be employed directly, and not merely when regarded as limits

of converging series. The same remarks apply in all respects to

the series (22) as to the series (3).

12. But the series resulting from differentiating (3) or (22)

once, twice, or any number of times would not in general be conver

gent, and could not be employed directly, but only as limits of the

convergent series which would be formed by inserting the factor y
n

in the general term. This mode of treating the subject however

appears very inconvenient, except in the case in which the series

are only temporarily divergent, being rendered convergent again

by new integrations ;
and even then it requires great caution.

The series in question may however be rendered convergent by
means of transformations to which I now proceed, and which,

with their applications, form the principal object of this paper.

The most important case to consider is that in which / (a?)
and

its derivatives are continuous, so that the divergency arises from

what takes place at the limits and a. I shall suppose then, for

the present, that f (x) and its derivatives of the orders considered

are continuous, except the last, which will only appear under the

sign of integration, and which may be discontinuous.

Consider first the series of sines. Suppose that / (x) is not

given in finite terms, but only by its developement

where A n is supposed to be given, and where the developement of

f(x) is supposed to be that which would result from the formula

(3). I shall call the expansions of / (.*)
which are obtained, or

which are to be looked on as obtained from the formulae (3) and

(22) direct expansions, as distinguished from other expansions

which may be obtained by differentiation, and which, being diver

gent, cannot be directly employed. Let us consider first the even

differential coefficients of/(0), and let A\ A* ... be the coeffi

cients of smmrx/a in the direct expansions of
/&quot; (x), f

4

(x) ...

The coefficient of sin mrx/a in the series which would be obtained
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by differentiating twice the several terms in the series in (24)

would be - nV/a* . An . Now

2 ra mrx ,

and we have by integrating by parts

mrx , 2w7r ,, , x
mrx 2 ,,, ,.

. mrx

d*=^f(*)&amp;lt;--f(*)* a

Taking now the limits, remembering the expression for A^ ,
and

transposing, we get

.

Any even differential coefficient may be treated in the same

way. We thus get, /ut, being even,

13. In the applications of these equations which I have

principally in view, /(O), f(a), /&quot;(O)...
are given, and A

lt
A

2 ,

A
3

... are indeterminate coefficients. If however A
lt
A

z
... A n ...

are given, and /(O), f (a) ... unknown, we must first find /(O),

f(a)..., and then we shall be able to substitute in (25) and (26).

This may be effected in the following manner.

We get by integrating by parts

r
,. , . mrx ,

&quot;&amp;gt;/ * n7rsc&amp;gt;

/ sm dx =--f(x) cos -

a m
. O /mrx

+ f(cc } sm + if (x cos

Multiplying now both sides by 2/a, and taking the limits of the

integrals, we get

s. 17
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Hence, if n be always odd or always even, A n can be expanded,
at least to a certain number of terms, in a series according to

descending powers of n, the powers being odd, and the first of

them 1. The number of terms to which the expansion in this

form is possible will depend on the number of differential coef

ficients of f(x) which remain finite and continuous between the

limits # = and x = a. Let the expansion be performed, and

let the result be

A
n
= -+ al+04 l,+ ... when n is odd, 1

; I i [-.(28).
A n E - + E

2 -3 4- E4 5 4- . . . when n is even
W Yl 111 J

Comparing (27) and (28), we shall have

\.(0.+E& /(a) = I (0fl

7T
3

,

..(29),

and so on. The first two of these equations agree with (18).

If we conceive the value of A n given by (27) substituted

in (26), we shall arrive at a very simple rule for finding the direct

expansion off*(x). It will only be necessary to expand A n as

far as l/w
4 &quot; 1

, admitting ( l)
n

into the expansion as if it were

a constant coefficient, and then, subtracting from An the sum

of the terms thus found, employ the series which would be ob

tained by differentiating the equation (24) /z,
times. It will be

necessary to assure ourselves that the term in I/nf- vanishes in

the expansion of A n ,
since otherwise f*(x) might be infinite,

or/**&quot;
1
^) discontinuous without our being aware of it. It will

be seen however presently (Art. 20) that the former circumstance

would not vitiate the result, nor introduce a term involving 1/n*.
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Should A n already appear under such a form as

l +cr; (-lyJ + nV, &c.,
/ It

where c
2

&amp;lt; 1, it will be sufficient to differentiate equation (24)

//, times, and leave out the part of the series which becomes

divergent. For it will be observed that the terms c
n
, nV, in

the examples chosen, decrease with I/n faster than any inverse

power of n.

14. Let us now consider the odd differential coefficients

of /(#), supposing f(x) to be expanded in a series of cosines, so

that

/(*) =1*0 + 21?. cos .................. (30).
\AJ

Let A f

n , A &quot;

n ... be the coefficients of smnirx/a in the direct

expansions of f (x\ / &quot;(#)...
in series of sines. If we were to

differentiate (30) once we should have mr/a . Bn for the coef

ficient of sin n7rx/a. Now

nir 2 f - , ,. mrx , .--
.
- f(x) cos - dx

a aj j ^ a

2 ., ,. . UTTX 2
/&quot;,,,. ,. . H7TX , ,= fix )

sm ---
f-
- / (x )

sm- dx
;u j a a]

J a

and taking the limits of the integrals, and introducing Bn and

A n ,
we get

An=-*n ....................... (31).

Hence, the series arising from differentiating (30) once gives
the direct expansion of/ (x) in a series of sines.

The coefficient of sin n7rx/a in the series which would be

obtained by differentiating (30) p times, /u. being odd, would

be (- 1)0*
+1)/2 (nw/aYBn . By proceeding just as in the last article

we obtain

~!/&quot;-
2

W-(-i)&quot;/&quot;-
2
()!.

172
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When/ (O),f (a), &c., are known, this series enables us to develope

f*(x) in a direct series of sines, the direct developement of f(x)
in a series of cosines being given.

15. If we treat the expression for Bn by integration by

parts, just as the expression for An was treated, going on till

we arrive at the integral which gives Af, and observe that the

very same process is used in deducing the value of Af from

that of Bn as in expanding the latter according to inverse powers
of n, and that the index of n in the coefficient of Af is

yu-,

and that A n vanishes when n becomes infinite, we shall see that

in order to obtain the direct expansion of f^(x) we have only

got to expand Bn as far as l/n
M

, (the coefficient of 1/n* will

vanish,) and subtract from Bn these terms of the expansion, and

then differentiate (30) //&amp;lt;

times.

The expansion of Bn , at least to a certain number of terms,

will proceed according to even powers of 1/w, beginning with 1/Vi
2
.

If we suppose that

B. = ^ + 8

i + U . . . when n is odd,

I \ \B E. -2 + E3
-

4 + E. -3 + . . . when n is even I

1
ri*

3 n*
5

n&quot; J

and compare these expansions with that given by integration by

parts, we shall have

...(34),

and so on, the signs of the coefficients being alternately + and
,

and the index of vr/a increasing by 2 each time.

16. The values of / (O) and /**(a) when /M
(#) is expanded

in a series of sines and p is odd, or when f(x) is expanded in a

series of cosines and
JJL

is even, will be expressed by infinite series.

To find these values we should first have to obtain the direct ex

pansion of /^(.T), which would be got by differentiating the equa
tion (24) or (30) p times, expanding A n or Bn according to powers

of 1/w, and rejecting the terms which would render the series

contained in the /A
th derived equation divergent. The reason of

this is the same as before.
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17. The direct expansions of the derivatives of f(x) may
be obtained in a similar manner in the cases in which f(x} itself,

or any one of its derivatives is discontinuous. In what follows,

cc will be taken to denote a value of x for which f(x) or any one

of its derivatives of the orders considered is discontinuous; Q,

Qi&amp;gt; -Qi*. will denote the quantities by which f(x], f (x), ...f*(x)

are suddenly increased as x increases through a; S will be used

for the sign of summation relative to the different values of a,

and will be supposed to include the extreme values and a, under

the convention already mentioned in Art. 6. Of course f(x) may
be discontinuous for a particular value of x while f*(x) is con

tinuous, and vice versa. In this case one of the two Q, Q^ will

be zero while the other is finite.

The method of proceeding is precisely the same as before,

except that each term such as f(x) cos mrx/a in the indefinite

integral arising from the integration by parts will give rise to a

series such as SQ cos mra/a in the integral taken between limits.

We thus get in the case of the even derivatives of f(x), when f(x)
is expanded in a series of sines,

*\~
l

SQco8
*

/ a

nira.2 f^Y~ 2

SQ sin!^ +
2

(^Y~
2

SQ :

a \a J a a \ a J

In the case of the odd derivatives of f(x), when f(x) is ex

panded in a series of cosines, we get

UTTOL

a

When the several values of a, Q, Q^... are given, these equa
tions enable us to find the direct expansion of f* (x). The series

corresponding to the odd derivatives in the first case and the even
in the second might easily be found.

If we wish to find the direct expansion of f^(x) in the case

in which An or Bn is given, we have only to expand A n or Bn in a

series according to descending powers of n, regarding cos ny or
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sin ny, as well as
( 1)&quot;,

as constant coefficients, and then reject from
the series obtained by the immediate differentiation of (24) or (30)
those terms which would render it divergent. This readily follows

as in Art. 15, from the consideration of the mode in which A n
*

is obtained from A n or Bn .

The equations (85) and (36) contain as particular cases (26)
and (32) respectively. It was convenient however to have the

latter equations, on account of their utility, expressed in a form

which requires no transformation.

18. If we transform A n and Bn by integration by parts, we

get

A 2A= -

n7r&quot; a (37),

n 2 ~ . mra 2a ar.Bn
= --- SQ sin ------

a--g SQ. cos
mr a nV a

2a? ,-y^ . UTTO. /oox+
n,^SQtSm +..., ............. (38),

where the law of the series is evident, if we only observe that

two signs of the same kind are always followed by two of the

opposite kind. The equations (37), (38) may be at once obtained

from (35), (36). The former equations give the true expansions

of A n and Bn according to powers of 1/n; because when we stop

after any number of integrations by parts the last integral with

its proper coefficient always vanishes compared with the coefficient

of the preceding term.

Hence A n and Bn admit of expansion according to powers
of 1/n, if we regard 003717 or sin ny as a constant coefficient in

the expansion. Moreover quantities such as cos ny, smny will

occur alternately in each expansion, the one kind going along

with odd powers of 1/n and the other along with even. If we

suppose the value of An or Bn ,
as the case may be, given, and

the expansion performed, so that

y. + SFt sin ny., + SF, cos W7 .-
8 + ..., ...(39),

BH
= SG sin ny .

- + 0, cos ny . \ +#. sin ny .

-
3 + . , .

,
... (40),
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and compare these expansions with (37) or (38), we shall get the

several values of a, and the corresponding values of Q, Qv Q2
...

We may thus, without being able to sum the series in equation

(24) or (30), find the values of x for which f(x) itself or any one

of its derivatives is discontinuous, and likewise the quantity by
which the function or derivative is suddenly increased. This

remark will apply to the extreme values and a of x if we con

tinue to denote the sum of the series by f(x) when x is outside

of the limits and a.

19. Having found the values of a, Q, Q^..., we may if we

please clear the series in (24) or (30) of the terms which render

f(ss) itself, or any one of its derivatives, discontinuous. If we
wish the function which remains expressed by an infinite series

and its first
//,

derivatives to be continuous, we have only to sub

tract from A n or Bn the terms at the commencement of its ex

pansion, ending with the term containing I/nf
+1

, and from f(x)
itself the sums of the series corresponding to the terms subtracted

from An or Bn . These sums will be obtained by transforming

products of sines and cosines into sums or differences, and then

employing known formulae such as

COS Z COS 3.3 7T
2

7T ~ _
,

. _ .

-Br + T-+ =
^---jT&amp;gt;

from 2; = to z = TT (41),
_L O o &quot;r

which are obtained by integrating several times the equation

sin z -f- J sin 2z -f l sin 3.Z + . . .
=

| (IT z\ from z = to z ZTT,

or the equation deduced from it by writing TT z for z, and taking

the semi-sum of the results. It will be observed that in the

several series to be summed we shall always have sines coming
with odd powers of n and cosines with even. Of course, by clear

ing the series in (24) or (30) in the way just mentioned we shall

increase the convergency of the infinite series in which a part of

f(x) still remains developed.

When A n or Bn decreases faster than any inverse power of n

as n increases, (as is the case for instance when it is the wth term of

a geometric series with a ratio less than 1,) all the terms of its

expansion in a series according to inverse powers of n vanish. In

this case, then, f(x) and its derivatives of all orders are con

tinuous.
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20. In establishing the several theorems contained in this

Section, it has been supposed that none of the derivatives of / (x)

which enter into the investigation are infinite. It should be

observed, however, that if/
4

(x) is the last derivative employed,
which only appears under the sign of integration, it is allowable to

suppose that
/&amp;gt; (so) becomes infinite any finite number of times

within the limits of integration. To shew this, we have only got
to prove that

ra ra

/&amp;gt; (x) sin vx dx or /&amp;gt; (#) cos vx dx
Jo Jo

approaches zero as its limit as v increases beyond all limit. Let us

consider the former of these integrals, and suppose that /** (x)

becomes infinite only once, namely, when x = a, within the limits of

integration. Let the interval from to a be divided into these

four intervals to a f, a - f to a, a to a + f ,
a + f to a, where

f and f are supposed to be taken sufficiently small to exclude all

values of x lying between the limits a f and a + f for which

/ /x
~ 1

(#) alters discontinuously, or for which f*(x) changes sign,

unless it be the value a. For the first and fourth intervals /** (x)

is not infinite, and therefore, as it is known, the corresponding parts

of the integral vanish for v = oo . Since sin vx cannot lie beyond
the limits + 1 and 1, and is only equal to either limit for parti

cular values of x, it is evident that the second and third portions

of the integral are together numerically inferior to /, where

the symbol A ~B denoting the arithmetical difference of A and B,

and e being an infinitely small quantity, so that /(a e), f(a + e)

denote the limits to which f(x) tends as x tends to the limit a by

increasing and decreasing respectively. Hence the limit of the

integral first considered, for v = oo
,
must be less than I. But /may

be made as small as we please by diminishing f and f ,
and there

fore the limit required is zero.

The same proof applies to the integral containing cos vx, and

there is no difficulty in extending it to the case in which f* (x) is

infinite more than once within the limits of integration, or at one

of the limits.

21. It has hitherto been supposed that the function expanded
in the series (3) or (22) does not become infinite

;
but the expan

sions will still be correct even if / (x} becomes infinite any finite



THE SUMS OF PERIODIC SERIES. (SECT. I. SERIES.) 265

number of times, provided that jf(x)dx be essentially convergent.

Suppose that f (x) becomes infinite only when x = a. Then it is

evident that we may find a function of x, F (x), which shall be

equal to f(x) except when x lies between the limits a ? and

a + f, which shall remain finite from x a. % to a? = a + f ,
and

/+? /+
which shall be such that F(x)dx=\ f(x}dx. Suppose

J a- J a-f

that we are considering the series (3). Then, if Gn be the coeffi

cient of sin mrx/a in the expansion of F (x) in a series of the

form (3), it is evident that Cn will approach the finite limit An

2 C
a mrx

when t and ? vanish, where A -- I /(a?) sin - cZar. But so
n

long as f and f differ from zero the series 2) (7n sin mrxIa is conver

gent, and has jP
T

(a?)
for its sum, and F (x) becomes equal to / (as)

when f and f vanish, for any value of # except a. We might
therefore be disposed to conclude at once that the series (3) is

convergent, and has f(x) for its sum, unless it be for the particular

value x = a. but this point will require examination, since we

might conceive that the series (3) became divergent, or if it

remained convergent that it had a sum different from f (x), when

f and f were made to vanish before the summation was performed.
If we agree not to consider the series (3) directly, but only the limit

of the series (5) when g becomes 1, it follows at once from (7) that

for values of x different from a that limit is the same as in Art. 4.

For x = a the limit required is that of \ {/(a e) +/ (a + e)} when
evanishes. IS. f(x) does not change sign as x passes through a

the limit required is therefore positive or negative infinity, accord

ing as f(x) is positive or negative; but if f (x) changes sign in

passing through oo the limit required may be zero, a finite quantity,

or infinity. The expression just given for the limit may be

proved without difficulty. In fact, according to the method of

Art. 4, we are led to examine an integral of the form

where f is a constant quantity which may be taken as small as we

please, and supposed to vanish after h. Now by a known property

of integrals the above integral is equal to

\.
{/(-) +/( + &} ,

where f, lies between and
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But JTT% &amp;gt;

which is equal to tan&quot;
1

-

t }
becomes equal to ^ when

J o M ~r 5 ft 2t

h vanishes, and the limit of
,
when h vanishes must be zero, since

it cannot be greater than f, and may be made to vanish

after h.

22. The same thing may be proved by the method which con

sists in summing the series S sin nirx/a . sin mrx /a to n terms.

If we adopt this method, then so long as we are considering a value

of x different from a it will be found that the only peculiarity in

the investigation is, that the quantity under the integral sign in

the integrals we have to consider becomes infinite for one value of

the variable
;
and it may be proved just as in Art. 20, that this

circumstance has no effect on the result. If we are considering the

value x = a, it will be found that the integral we shall have to con

sider will be

where v is first to be made infinite, and then f may be supposed to

vanish. If /(a + e) +/(a e) approaches a finite limit, or zero,

when e vanishes, as may be the case if f(x) changes sign in passing

through oo, it may be proved, just as in the case in which f (x)

does not become infinite, that the above integral approaches the

same limit as \ {/( + e) + /( e)]. In all cases however in

which / (x) does not change sign in passing through oo
,
and in

some cases in which it does change sign, f(a + e) +/(% e) becomes

infinite when e vanishes.
f

In such cases put for shortness

and let the numerical values of the integral I

&quot;*&quot;&quot;*

dj: taken from

to TT/V, from ir/v to ZTT/V ... or which is the same those of

1

S1

di; taken from to TT, from TT to 2?r . . . be denoted by /t ,
/
2

. ..

Then evidently J
1

&amp;gt;/
2 &amp;gt;/3... Also, if f be sufficiently small,

.F (f) will decrease from = to f = f, if we suppose, as we may,

F(%) to be positive. Hence the integral (42), which is equal to

...} (43),
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where
, 2

... are quantities lying between and TT/V, TT/V and

27T/z/ ... is greater than

if we neglect the incomplete pair of terms which may occur at the

end of the series (43), and which need not be considered, since they
vanish when v = oo . Hence, the integral (42) is a fortiori
&amp;gt;T~

1

(/1 -/8)^(?1 ).
But vanishes and F(%^ becomes infinite

when v becomes infinite
;
and therefore for the particular value

x = a the sum of the first n terms of the series (3) increases

indefinitely with n.

If a coincides with one of the extreme values and a of x, the

sum of the series (3) vanishes for x = a. This comes under the

formula given above if we consider the sum of the series for values

of x lying beyond the limits and a. The same proof as that

given in the present and last article will evidently apply if / (x)

become infinite for several values of x, or if the series considered

be (22) instead of (3). In this case, the sum of the series becomes
infinite for x = a when a = or = a.

23. Hence it appears that f(x] may be expanded in a series

of the form (3) or (22), provided only If (as)
dx be continuous. It

should be observed however that functions like (sin c/x)~% , which
become infinite or discontinuous an infinite number of times within

the limits of the variable within which they are considered, have
been excluded from the previous reasoning.

Hence, we may employ the formulae such as (26), (35), &c., to

obtain the direct developement of/** (x), without enquiring whether

it becomes infinite or not within the limits of the variable for

which it is considered. All that is necessary is that f(x) and its

derivatives up to the
(/-t l)

th
inclusive should not be infinite within

those limits, although they may be discontinuous.

24. In obtaining the formulae of Arts. 7 and 13, and generally
the formulae which apply to the case in which An or Bn is given,

and f(x) is unknown, it has hitherto been supposed that we knew
a priori thatf (x) was a function of the class proposed in Art. 1 for

consideration, or at least of that class with the extension mentioned
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in the preceding article. Suppose now that we have simply pre
sented to us the series (3) or (22), namely

-, . . UTTX ^ mrxzA n sm- ,
or B

Q + 2&amp;lt;Bn cos
--

,

Oj d

where An or Bn is supposed given and want to know, first, whether

the series is convergent, secondly, whether if it be convergent it is

the direct developement of its sum f(x), and thirdly, whether we

may directly employ the formulae already obtained, trusting to the

formulae themselves to give notice of the cases to which they do

not apply by leading to processes which cannot be effected.

25. If the series 2-4 n or ^Bn is essentially convergent, it is

evident a fortiori that the series (3) or (22) is convergent.

If An
= S - cos ny + Gn ,

or if Bn
= 8 - sin ny + Cn ,

where 2(7
11 n

is essentially convergent, the given series will be convergent, as is

proved in Art. 6.

In either of these cases let / (as) be the sum of the given series.

Suppose that it is the series of sines which we are considering.

Let En be the coefficient of sin mrx/a in the direct developement of

f(x). Then we have

* / x ~ A . niTX ^ -r, . H7TX
f(x)

= 2An sm = ^En sm - -
U/ (Jj

and since both series are convergent, if we multiply by any finite

function of vc,
&amp;lt;f&amp;gt; (x), and integrate, we may first integrate each

term, and then sum, instead of first summing and then integrating.

Taking &amp;lt; (x)
= sin nirx/a, and integrating from,, a = to x = a, we

get En =.A n ,
so that the given series is the direct developement

of its sum f(x). The proof is the same for the series of cosines.

26. Consider now the more general case in which the series

2 I/n . A n is essentially convergent. The reasoning which is about

to be offered can hardly be regarded as absolutely rigorous ;
never-*

theless the proposition which it is endeavoured to establish seems

worthy of attention. Let un be the sum of the first n terms of the

given series, and F (n, x) the sum of the first n terms of the series

2 a/mr . An cos mrxIa. Then we have

5(un+m
~ un) dx = F (n + ra, x)

- F (n, x} = ^r (n, x), suppose. . .(44).

Now by hypothesis the series S I/n . A H is essentially convergent,

and therefore a fortiori the series 2 a/HTr . A n cos mrx/a is con-
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vergent, and therefore ^ (co , x) = 0, whatever be the value of m.

Let the limits of x in (44) be x and x + A#, and divide by A#, and

we get

and as we have seen the limit of the second side of this equation

when we suppose n first to become infinite and then Ace to vanish

is zero. But for general values of x the limit will remain the same

if we first suppose A# to vanish and then n to become infinite
;
and

on this supposition we have

limit of (wn+m un)
= 0, for n = oo

;

so that for general values of x the series considered is convergent.

To illustrate the assumption here made that for general values

of x the order in which n and A# assume their limiting values is

immaterial, let ty (y, x) be a continuous function of x which

becomes equal to ^r (n, x) when y is a positive integer ;
and con

sider the surface whose equation is z = ty (y, x). Since

^ (x , x)
=

for integral values of y, the surface approaches indefinitely to the

plane xy when y becomes infinite
;
or rather, among the infinite

number of admissible forms of ^r (y, x) we may evidently choose

an infinite number for which that is the case. Now the assertion

made comes to this
;
that if we cut the surface by a plane parallel

to the plane xz, and at a distance n from it, the tangent at the

point of the section corresponding to any given value of x will

ultimately lie in the plane xy when n becomes infinite, except in

the case of singular, isolated values of x, whose number is finite

between x = and x = a. For such values the sum / (x) of the

infinite series may become infinite, while $f(x)dx remains finite.

The assumption just made appears evident unless An be a function

of n whose complexity increases indefinitely with its rank, i. e. with

the value of n.

Since the integral of /(a?) is continuous, f(x] may be expanded

by the formula in a series of sines. Let En be the coefficient

of smn7rx/a in its direct expansion ;
so that,

*i \ ^ A
-/= S^sm -

(45),

i
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where both series are convergent, except it be for isolated values

of x. Consequently, we have, in a series which is convergent,
at least for general values of x,

(46).

The series (45) may become divergent for isolated values of x
y

and are in fact divergent for values of x which renderf (x] infinite.

But the first side of (46) being constantly zero, and the series

at the second side being convergent for general values of x, it

does not seem that it can become divergent for isolated values.

Hence according to the preceding article the second side of the

equation is the direct developement of the first side, i.e. of zero;

and therefore En
A

n ,
or the given series is the direct develope

ment of its sum, which is what it was required to prove. The

same reasoning applies to the series of cosines.

It may be observed that the well known series,

J + cos x + cos 2x + cos 3# ........ , ........ (47),

forms no exception to the preceding observation. This series

is in fact divergent for general values of x, that is to say not

convergent, and in that respect it totally differs from the series

in (46). When it is asserted that the sum of the series (47)

is zero except for x = or any multiple of 2?r, when it is infinite,

all that is meant is that the limit to which the sum of the

convergent series \ + %g
n
cos nx approaches when g becomes 1

is zero, except for x or any multiple of 2?r, in which case it is

infinity.

27. It follows from the preceding article that even without

knowing a priori the nature of the function f(x) we may employ
the formulae such as (35), provided that if n~* be the highest

power of I/n required by the formula, and n~&amp;gt;* Cn the remainder in

the expansion of A n) the series ^n~
l Cn be essentially convergent.

For let Gn be the sum of the terms as far as that containing n~* in

the expansion of An ,
those terms having the form assigned by (35),

that is to say cosines like cos ny coming along with odd powers
of 1/n, and sines along with even powers. Then

Let 2 sin
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then f(x)-F(x) = 2w* Cn sin - ............ (48).

Now if
&amp;lt;(#)

= Swn ,
where the series 2wn , %dun/dx are both

convergent, we may find &amp;lt;

(a?) by differentiating under the sign of

summation. This is evident, since by the theorem referred to

in Art. 2 (note), we may find \t-~ dx by integrating under the

sign of summation. Consequently we have from (48)

.....(49);

and since the series 2 ri~
l Cn is essentially convergent, the con-

vergency of the series forming the right-hand side of (49) cannot

become infinitely slow (see Sect. III.), and therefore, the nih term

being a continuous function of x, the sum is also a continuous

function of x, and therefore /**(#) Fti

-(x} is a function which

by Art. 23 can be expanded in a series of sines or cosines. But

Fp (x) is also such a function, being in fact a constant, and

therefore /**(#) is a function of the kind considered in Art. 23,

which is what is assumed in obtaining the formula (35).

It may be observed that these results do not require the

assumptions of Art. 26 in the case in which the series 2&amp;lt;7n is

essentially convergent, or composed of an essentially convergent
series and of a series of the form S/Stan&quot;

1

sin wy or &quot;ZScrT
1

cosny,

according as Cn is the coefficient of a cosine or of a sine.

SECTION II.

Mode of ascertaining the nature of the discontinuity of the

integrals which are analogous to the series considered in Section I.,

and of obtaining the developements of the derivatives of the expanded

functions.

28. Let us consider the following integral, which is analogous
to the series in (1),

I 00S)sin#eZ (50),
J o

where
&amp;lt;f&amp;gt;(j3)

= -
f&quot;

f(x) sinfa dx (51).
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Although the integral (50) may be written as a double in

tegral,

2 f
00

[
a

I f(x)$mjBxsmBxdBc!x (52),
7T J Jo

the integration with respect to x must be performed first, because,

the integral of sin fix sin fix df3 not being convergent at the
,00

limit oo
,

I sin /3x sin fBx d/3 would have no meaning. Suppose,
Jo

however, that instead of (52) we consider the integral,

2 f C a

7TJO Jo

where h is a positive constant, and e is the base of the Napierian

logarithms. It is easy to see that at least in the case in which the

integral (50) is essentially convergent its value is also the limit to

which the integral (53) tends when h tends to zero as its limit.

It is well known that the limit of (53) when h vanishes is in

general / (x) ;
but when x = the limit is zero

;
when x a the

limit is J/(a); and when f(x) is discontinuous it is the arith

metic mean of the values of f (x) for two values of x infinitely

little greater and less respectively than the critical value. When
x &amp;gt; a it is zero, and in all cases it is the same, except as to sign, for

negative as for positive values of x.

We may always speak of (53), but we cannot speak of the

integral (50) till we assure ourselves that it is convergent. Now we

get by integration by parts, ,

/(# )
sin fix dx - ~~ o/ (

x
}
cos fa

~T
ry&amp;gt;j

(x )
sin px ~

a
I j (x j

sin px dx \^^V*

When this integral is taken between limits, the first term will

furnish a set of terms of the form G/@ . cos fix, where a may be

zero, and the last two terms will give a result numerically less than

Z//3
2

,
where L is a constant properly chosen. Now whether a. be

zero or not, /cos /3a sin /3x .
/3&quot;

1

d/3 is convergent at the limit oo
,
and

moreover its value taken from any finite value of /3 to /3
= oo is

the limit to which the integral deduced from it by inserting the

factor e~ 7̂ tends when h vanishes. The remaining part of the

integral (50) is essentially convergent at the limit oo . Hence the
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integral (50) is convergent, and its value for all values of x, both

critical and general, is the limit to which the value of the integral

(53) tends when h vanishes.

29. Suppose that we want to find
f&quot; (x), knowing nothing

about f(x), at least for general values of x, except that it is the

value of the integral (50), and that it is not a function of the class

excluded from consideration in Art. 1. We cannot differentiate

under the integral sign, because the resulting integral would,

usually at least, be divergent at the limit oo , We may however
find

/&quot; (x) provided we know the values of x for which f(x) and

/ (x) are discontinuous, and the quantities by which f(x) and/ (a;)

are suddenly increased as x increases through each critical value,

supposing the extreme values included among those for which

f(x) or f (x) is discontinuous, under the same convention as in

Art. 6. Let a be any one of the critical values of x
; Q, Qt

the

quantities by which f(x), f (x) are suddenly increased as x
increases through a

;
$ the sign of summation referring to the

critical values of #; fa(ft) the coefficient of sin fix in the direct

developement of
/&quot; (x) in a definite integral of the form (50). Then

taking the integrals in (54) between limits, and applying the

formula (51) to/&quot; (x), we get

2 9

(j) (fi)
= -

/3* 6(P) + -
/3SQ cos fa - - SO sin 82.

7T 7T

We may find fa(/3) in a similar manner. We get thus when

yu,
is even

- 2 2
(- I)

2

fa () - 0ty(/9)
- - 0*~18Q cos fiy. + - 0*-*8Q. sin fa + ...

7T 7T

where sines and cosines occur alternately, and two signs of the

same kind are always followed by two of the opposite. The expres
sion for fr (@). when //,

is odd might be found in a similar manner.
These formulae enable us to express f^ (x) when

&amp;lt;f&amp;gt; (/3) is an

arbitrary function which has to be determined, and /(O), &c. are

given.

30. If however
&amp;lt;p ((3) should be given, and /(O), &c. be

unknown,
&amp;lt;f&amp;gt; (fi)

will admit of expansion according to powers of pi
1

,

beginning with the first, provided we treat sin/3a or cos fa as if it

s. 18
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were a constant coefficient
;
and sin fix, cos /3a will occur with even

and odd powers of ft respectively. The possibility of the expan
sion of

&amp;lt;/&amp;gt;
(ft) in this form depends of course on the circumstance

that
(f&amp;gt; (x) is a function of the class which it is proposed in Art. 1

to consider, or at least with the extension mentioned in Art. 23.

It appears from (55) that in order to express /** (x) as a definite

integral of the form (50) we have only got to expand c/&amp;gt; (ft),
to

differentiate (50) p times with respect to x, differentiating under

the integral sign, and to reject those terms which appear under the

integral sign with positive powers of ft or with the power 0. The

same rule applies whether
//,
be odd or even.

31. If we have given &amp;lt; (a), but are not able to evaluate the

integral (50), we may notwithstanding that find the values of x

which render f(x) or any of its derivatives discontinuous, and the

quantities by which the function considered is suddenly increased.

For this purpose it is only necessary to compare the expansion of

&amp;lt;/&amp;gt; (ft) with the expansion

jftBQmfr-p8Ql mnl*- ......... (5G),

given by (55), just as in the case of series.

We may easily if we please clear the function
&amp;lt;f&amp;gt; (ft) of the part

for which f(x) or any one of its derivatives is discontinuous, or

does not vanish for x = and x = a. For this purpose it will be

sufficient to take any function F (x) at pleasure, which as well as

its derivatives of the orders considered has got the same discon

tinuity as f(x) and its derivatives, to develope F (x) in a definite

f

integral of the form &amp;lt;J&amp;gt; (ft) sin fix dft by the formula (51), and to
Jo

subtract F (x) from f(x) and 4&amp;gt; (ft) from $ (ft). It will be

convenient to choose such simple functions as I + mx -f nx
2

;

I sin x + m cos x
;

le~
x + we **, &c. for the algebraical expressions of

F(x) for the several intervals throughout which it is continuous,

the functions chosen being such as admit of easy integration

when multiplied by sin fixdx, and which furnish a sufficient number

of indeterminate coefficients to allow of the requisite conditions

as to discontinuity being satisfied. These conditions are that

the several values of Q, Qlt
&c. shall be the same for F(x) as for

/&amp;lt;*)
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32. Whenever / f(x) dx is essentially convergent, we may at

once put a = oo in the preceding formulae. For, first, it may be

easily proved that in this case, (though not in this case only,) the

limit of (53) when h vanishes is f(x) ; secondly, the limit of (53)
is also the value of (52); and, lastly, all the derivatives of f(x)
have their integrals, (which are the preceding derivatives,) essentially

convergent, and therefore oo may be put for a in the developements
of the derivatives in definite integrals.

When f(x} tends to zero as its limit as x becomes infinite, arid

moreover after a finite value of x does not change from decreasing
to increasing nor from increasing to decreasing,

f e-** f (x) sin flat dx
J o

/.oo

will be more convergent than I f(x)sm$x dx
t
and the latter

Jo

integral will be convergent, and its convergency will remain finite*

when j3 vanishes. In this case also we may put a = oo .

Thus if/(a?)
= sin Ix (b* + a2

)

1

,
we may put a = oo because f(x)

has its integral essentially convergent : if / (x)
=

(b 4- x)~*, we may
put o- = co because f(x) is always decreasing to zero as its limit.

But if f(x)
= smlx (b + x)~*, the preceding rules will not apply,

because f(x), though it has zero for its limit, is sometimes increas

ing and sometimes decreasing. And in fact in this case the

integral in equation (51) will be divergent when/3 = /, and $(J3)
will become infinite for that value of @. It is true that/(#) is still

the limit to which the integral (53) tends when h vanishes
;
but I

do not intend to enter into the consideration of such cases in

this paper.

33. When oo may be put for a, and/(#) is continuous, we get
from (55)

+ (-l)/3/&amp;gt;-
2

(0) ............ (57).

In this case $ (fi) will admit of expansion, at least to a certain

* See next Section.

182
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number of terms, according to odd negative powers of (3. If

we suppose &amp;lt;

(/3) known, and the expansion performed, so that

and compare the result (49), we shall get

/(0)=|//o; /&quot;(0)=-|tf2 ; /
4

(0)
= |#4 ;

&c ......... (58).

34. The integral

[ t(/3)cos/3^/3 ......................... (59),
Jo

where

(^&amp;gt;os/3^ ............ (60),

which is analogous to the series (22), is another in which it is some

times useful to develope a function or conceive it developed. For

positive values of x the value of (59) is the same as that of (50).

When x = the value is /(O); and for negative values of x it is

the same as for positive. It is supposed here that the integral (59)
is convergent, which it may be proved to be in the same manner
as the integral (50) was proved to be convergent.

Suppose that we wish to find, in terms of ^r (/3), the develope-
ment of

/&amp;gt; (x) in a definite integral of the form (50) or (59),

according as
//,

is odd or even. We cannot differentiate under the

integral sign, because the resulting integral would be divergent.

We may however obtain the required developemepit by transform

ing the expression ^ (@) by integration by parts, just as before. We
thus get for the case in which

//,
is odd

Mi 9 9

(-1) fa(&)

*
* ............ (61),

7T

where
&amp;lt;/y (/3) is the value of

&amp;lt;/&amp;gt;

(/3) in the direct developement of

/* (x) in the integral (50). In the same way we may get the value

of.^(/3) when
//,

is even, ^(/3) being the value of
i|r (/3)

in the

direct developement of/
1

(a?) by the formulae (59), (60).

The equation (61) is applicable to the case in which -^(/3) is an

arbitrary function, and a, Q, &c., are given. If however
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should be given, we may find ^(/5) or ^(/3) by the same rule as

before.

In the case in which ^ (/3) is given, we may find the values of

a, Q, &c., without being able to evaluate the integral (59). For
this purpose it is sufficient to expand ty (/3) according to negative

powers of /3, and compare the expansion with that furnished by
equation (61).

35. The same remarks as to the cases in which we are at

liberty to put oo for a apply to (60) as to (51), with one exception.
In the case in which f(x) approaches zero as its limit, and is at

last always decreasing numerically, or at least never increasing, as

x increases, while $f(x) dx is divergent at the limit oo
,
it has been

observed that
&amp;lt;/&amp;gt;(#)

remains finite when /5 vanishes. This however
is not the case with ^(/8), at least in general. I say in general,

rx

because, although I f(x] dx increases indefinitely with its superior

limit, we are not entitled at once to conclude from thence that

I cos @xf(x) dx becomes infinite when /3 vanishes, as will appear

in Section III. It may be shewn from the known value of
)

x~
n
cos jSxdx, where 1 &amp;gt; n &amp;gt; 0, that if f(x) = F(x) + Cx~n

, where

F(x) is such that fF(x) dx is convergent at the limit oo
, ty (ft) be

comes infinite when /3 vanishes; and the same would be true if

there were any finite number of terms of the form Cx~n
. There is

no occasion however to enquire whether ^(/3) always becomes in

finite : the point to consider is whether the integral (59) is always

convergent at the limit zero.

In considering this question, we may evidently begin the inte

gration relative to x at any value X
Q
that we please. Suppose first

\ve integrate from x =x to x = X, and let r($) be the result

so that

2 t
x

*r(/9)
= -

fix ) cos fix dx.
TJ- J

*

Let ix
i (/3) be the indefinite integral of -or (/3) dp : then, c being a

positive quantity, we get from the above equation

w
/ (8) C7

/ (c)
= -

I f(x } {sin fix sin cx \ -^- .T
. jre
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Now put JT=oo. Then since I /(a/)
Sm

,
dx is a convergent

J Xo &

integral, and its convergency remains finite (Art. 39) when @
vanishes, as may be proved without much difficulty, its value can

not become infinite, and therefore vr,(/3) does not become infinite

when @ vanishes. Now

/() cos fad/3 = w,(/8) cos fa + xfa, (0) sin pxdfi ......... (62),

when x is positive ;
and when x = 0,

hence in either case JW (/3) cos fa d/3 is convergent at the limit

zero. Now the quantity by which vr({3) differs from ty(@) evi

dently cannot render (59) divergent, and therefore in the case con

sidered the integral (59) is convergent at the limit zero.

-00

By treating I
-sy(/3) e~*0cos (3%d{3 in the manner in which

J o

JW (/S) cos /3x d/3 is treated in (62), it may be shewn that the con

vergency of the former integral remains finite when h vanishes.

Hence, not only is the integral (59) convergent, but its value is

the limit to which the integral similar to (53) tends when h

vanishes.

When f(x) is continuous, and oo may be put for a, we have

from (61), /// being odd,

9 9

/&quot;(O)7T &quot;
*

*T
^ V

...... (63).

If
-v/r(yS)

be given we can find the values of/ (0), / &quot;(O)
... just

as before.

36. The integral

cos/3(x -x)f(x )d/3dx .............. (64),

in which the integration with respect to x is supposed to be per

formed before that with respect to fi, so that the integral has the

form
*eo ,.

X(P)co*fad/3+l tr(P)&afad0 ......... (65),
Jo Jo
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may be treated just as the integral (59); and it may be shewn that

in the same circumstances we may replace the limits a
t
and a by

oo
, + oo respectively. If we suppose %(/3) and cr(/3) known, we

may find as before the values of x for which f(x), f (x) ... are

discontinuous, and the quantities by which those functions are sud

denly increased. We may also find the direct developement of

f (x),f&quot;(x)
... in two integrals of the form (65); and we may if we

please clear the integrals (65) of the part which renders f(x),f (x)...

discontinuous.

37. In the developement off(x) in an integral of the form (50)

or (59), or in two integrals of the form (65), it has hitherto been

supposed that f(x) is not infinite. It may be observed however

that it is allowable to suppose f(x) to become infinite any finite

number of times, provided ff(x) dx be essentially convergent about

the values of x which render f(x) infinite. This may be shewn

just as in the case of series. Hence, the formulae such as (55) which

give the developement off
t

(x) are true even when/** (a?)
is infinite,

f*~
l
(x) being finite.

SECTION III.

On the discontinuity of the sums of infinite series, and of the

values of integrals taken between infinite limits.

38. LET

u
l
+ u

a
... + un + (66),

be a convergent infinite series having U for its sum. Let

Wj+v,... +vn + (67),

be another infinite series of which the general term vn is a function

of the positive variable h, and becomes equal to un when h vanishes.

Suppose that for a sufficiently small value of h and all inferior

values the series (67) is convergent, and has V for its sum. It

might at first sight be supposed that the limit of V for h = was

necessarily equal to U. This however is not true. For let the sum
to n terms of the series (67) be denoted by f(n, h) : then the limit

of V is the limit of f(n, h) when n first becomes infinite and then

h vanishes, whereas Uis the limit of f(n, h) when h first vanishes
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and then n becomes infinite, and these limits may be different.

Whenever a discontinuous function is developed in a periodic series

like (15) or (30) we have an instance of this
; but it is easy to form

two series, having nothing to to with periodic series, in which

the same happens. For this purpose it is only requisite to take for

f(n, h) Un , (Un being the sum of the first n terms of (66),) a

quantity which has different limiting values according to the order

in which n and h are supposed to assume their limiting values, and

which has for its finite difference a quantity which vanishes when n

becomes infinite, whether h be a positive quantity sufficiently small

or be actually zero.

For example, let

(68),

which vanishes when n = 0. Then

A {/(, h)
-

U.}
= VM -

u,M =^ny|*L__I5
.

Assume

U =1 --1-
r ,

sothatw =Af/H =- r ,

n + 1
&quot;- 1 n (n + 1)

and we get the series

5&

2 (1 + h)

&quot;

n (n + 1) {(w
-

1; h + Ij (nh + 1)

which are both convergent, and of which the general terms become

the same when h vanishes. Yet the sum of the first is 1, whereas

the sum of the second is 3.

If the numerator of the fraction on the right-hand side of (68)

had been pnh instead of 2nh, the sum of the series (70) would have

been p + 1, and therefore the limit to which the sum approaches
when h vanishes would have beenp + 1. Hence we can form as

many series as we please like (67) having different quantities for

the limits of their sums when h vanishes, and yet all having their

nth terms becoming equal to un when h vanishes. This is equally

true whether the series (66) be convergent or divergent, the series

like (67) of course being always supposed to be convergent for all

positive values of h however small.
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39. It is important for the purposes of the present paper to

have a ready mode of ascertaining in what cases we may replace

the limit of (67) by (66). Now it follows from the following

theorem that this substitution may at once be made in an extensive

class of cases.

THEOREM. The limit of Fcan never differ from U unless the

convergency of the series (67) becomes infinitely slow when h

vanishes.

The convergency of the series is here said to become infinitely

slow when, if n be the number of terms which must be taken in

order to render the sum of the neglected terms numerically less

than a given quantity e which may be as small as we please, n

increases beyond all limit as h decreases beyond all limit.

DEMONSTRATION. If the convergency do not become infinitely

slow, it will be possible to find a number n^ so great that for the

value of h we begin with and for all inferior values greater than

zero the sum of the neglected terms shall be numerically less than

e. Now the limit of the sum of the first n^ terms of (67), when h

vanishes is the sum of the first n^ terms of (66). Hence if e be the

numerical value of the sum of the terms after the n^ of the series

(66), Z7and the limit of V cannot differ by a quantity so great as

e + e. But e and e may be made smaller than any assignable

quantities, and therefore U is equal to the limit of V.

COR. 1. If the series (66) is essentially convergent, and if,

either from the very beginning, or after a certain term whose rank

does not depend upon h, the terms of (67) are numerically less than

the corresponding terms of (66), the limit of Fis equal to U.

For in this case the series (67) is more rapidly convergent than

(66), and therefore its convergency remains finite.

COR. 2. If the series (66) is essentially convergent, and if the

terms of (67) are derived from those of (66) by multiplying them

by the ascending powers of a quantity g which is less than 1, and

which becomes 1 in the limit, the limit of V is equal to U.

It may be observed that when the convergency of (67) does

not become infinitely slow when h vanishes there is no occasion to

prove the convergency of (66), since it follows from that of (67).

In fact, let VH be the sum of the first n terms of (67), Un the

same for (66), F the value of V for h = 0. Then by hypothesis
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we may find a finite value of n such that V Vn shall be numeri

cally less than e, however small h may be
;
so that

V Vn + a quantity always numerically less than e.

Now let h vanish : then V becomes F and Vn becomes Un . Also

e may be made as small as we please by taking n sufficiently great.

Hence Un approaches a finite limit when n becomes infinite, and

that limit is F .

Conversely, if (66) is convergent, and if 7=F
,
the convergency

of the series (67) cannot become infinitely slow when h vanishes.

For if Un ,
Vn represent the sums of the terms after the nth in

the series (66), (67) respectively, we have

F=Fn +Fn ,
U Un+Uu i

whence FJ = F - U-
(
Vn - Un ) + tT.

Now F U, Vn Un vanish with h, and Un
r

vanishes when n

becomes infinite. Hence for a sufficiently small value of h and all

inferior values, together with a value of n sufficiently large, and

independent of h, the value of Fn may be made numerically less

than any given quantity e however small; and therefore, by defini

tion, the convergency of the series (67) does not become infinitely

slow when h vanishes.

On the whole, then, when the convergency of the series (67)

does not become infinitely slow when h vanishes, the series (66) is

necessarily convergent, and has F for its sum : but in the contrary

case there must necessarily be a discontinuity of some kind. Either

F must become infinite when h vanishes, or the, series (66) must

be divergent, or, if (66) is convergent as well as (67), U must be

different from F .

When a finite function of x, f (#), which passes suddenly from

M to N as x increases through a, where a &amp;gt; a &amp;gt; 0, is expanded in

the series (15) or (30), we have seen that the series is always con

vergent, and its sum for all values of x except critical values is

f(x), and for x a its sum is J (M+ N). Hence the convergency

of the series necessarily becomes infinitely slow when a x

vanishes. In applying the preceding reasoning to this case it will

be observed that h is a - x, F is M, and U is \ (M + N), if we

are considering values of a? a little less than a
;

but h is x a.

and F is N, if we are considering values of x a little greater

than a.
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When the series (66) is convergent as well as (67), it may be

easily proved that in all cases

where L is the limit of V
lt
when h is first made to vanish and then

n to become infinite.

40. Reasoning exactly similar to that contained in the preced

ing article may be applied to integrals, and the same definitions
,00

may be used. Thus if F (x, h) dx is a convergent integral, we
J a

may say that the convergency becomes infinitely slow when h

vanishes, when, if X be the superior limit to which we must inte

grate in order that the neglected part of the integral, or

F(x} h)dx,

may be numerically less than a given constant e which may be as

small as we please, X increases beyond all limit when h vanishes.

The reasoning of the preceding article leads to the following

theorems.

If F=
[
F (x, h) dx, if F be the limit of F when h = 0, and if

J a

F (x, 0) =/ (x) ; then, if the convergency of the integral F do not

become infinitely slow when h vanishes, / (x) dx must be con-
J a

vergent, and its value must be F . But in the contrary case either

F must become infinite when h vanishes, or the integral

J

must be divergent, or if it be convergent its value must differ

from F .

When the integral I f(x)dx is convergent, if we denote its

J a

value by U, we shall have in all cases

when L is the limit to which
\
F (x, h) dx approaches when h is

J x
first made to vanish and then X to become infinite.
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The same remarks which have been made with reference to the

convergency of series such as (15) or (30) for values of x near

critical values will apply to the convergency of integrals such as

(50), (59) or (65).

The question of the convergency or divergency of an integral

might arise, not from one of the limits of integration being oo
,
but

from the circumstance that the quantity under the integral sign

becomes infinite within the limits of integration. The reasoning
of the preceding article will apply, with no material alteration, to

this case also.

41. It may not be uninteresting to consider the bearing of the

-reasoning contained in this Section on a method frequently given

of determining the values of two definite integrals, more especially

as the values assigned to the integrals have recently been called

into question, on account of their discontinuity.

Consider first the integral

[
x
sin ax ,u= -dx 71),

JQ x

where a is supposed positive. Consider also the integral

f
30

, sina# 7v= ~ hx - - dx.
Jo

It is easy to prove that the integral v is convergent, and that its

convergency does not become infinitely slow when h vanishes.

Consequently the integral u is also convergent, (as might also be

proved directly in the same way as in the case of v,) and its value

is the limit of u for h = 0. But we have
,,&amp;lt;

dv^_r
dh Jo

e -hx sm axdx = 9

+ h

whence v = G tan
J -

;

a

and since v evidently vanishes when h = oo
,
we have

(7=7r/2&amp;gt;

whence
7T _i h 7T=
^- tan -, tt =

2-

Also u = when a = 0, and u Tr/2 when a is negative, since u

changes sign with a. By the value of u for a = 0, which is

C si o air
asserted to be 0, is of course meant the limit of - dx when

Jo x

a is first made to vanish and then X made infinite.
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It is easily proved that the convergency of the integral u

becomes infinitely slow when a vanishes. In fact if

,
f sin ax ,

u = dx,
Jx %

we get by changing the independent variable

, [ sinx
7u = ax :

JaX ^

but for any given value of X, however great, the value of u

becomes when a vanishes I dx, an integral which might have
Jo &

been very easily proved to be greater than zero even had we been

unable to find its value. It readily follows from the above that if

u has to be less than e the value of X increases indefinitely as a

approaches to zero.

42. Consider next the integrals

00
cos ax dx [ ,

cos ax dx
y I ^-flX

It is easily proved that the convergency of the integral v does not

become infinitely slow when h vanishes, whatever be the value of a.

Consequently u is in all cases the limit of v for h = 0. Now v

satisfies the equation

tfv

da*

f ii

v = e -hx cos a&dx= -rj*
-

z (73).
Jo ti + a

It is not however necessary to find the general value of v
;

for if

we put h = we see that u satisfies the equation

so long as a is kept always positive or always negative : but we

cannot pass from the value of u found for positive values of a to

the value which belongs to negative values of a by merely writing

a for a in the algebraical expression obtained. For although u

is a continuous function of a, it readily follows from (73) that

-r- is discontinuous. In fact, we have from this equation
da

(dv\ (dv\ f
x ^ o+_-i x

h
fdv\ fdv\ f

x
,

I -p- 1
~&quot;

( j~ J
vaa ~ * ^an
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Now let h first vanish and then X. Then v becomes u, and

vda vanishes, since v does not become infinite for a = 0, whether

h be finite or be zero. Therefore du/da is suddenly decreased by
TT as a increases through zero, as might have been easily proved
from the expression for u by means of the known integral (71),

even had we been unable to find the value of u in (72), The equa
tion (74) gives, a being supposed positive,

But u evidently does not increase indefinitely with a, and

[ dx TT ,

u = I
-g
= when a

;

J Q JL -f-tG L

whence C =
0, G

Tr/2,^
u = Tr/2 . e~

a
. Also, since the numerical

value u is unaltered when the sign of a is changed, we have

u = 7T/2 . e
a when a is negative.

It may be observed that if the form of the integral u had been

such that we could not have inferred its value for a negative from

its value for a positive, nor even known that u is not infinite

for a = oc
,
we might yet have found its value for a negative by

means of the known continuity of u and discontinuity of du/da
when a vanishes. For it follows from (74) that u = C7

X
e
a + C

g
e~

a

for a negative ;
and knowing already that u = Tr/2 . t~ for a positive,

we have
177 _ n n 7r

_r&amp;lt; rt

whence G
l
=

Tr/2, &amp;lt;7

2
=

0, u = Tr/2 . e
a

,
for a negative.

Of course the easiest way of verifying the result u = TT/% . e~
a
for

a positive is to develope e~
x
for x positive in a definite integral of

the form (59), by means of the formula (60).

SECTION IV.

Examples of the application of the formulce proved in the preceding

Sections.

43. Before proceeding with the consideration of particular

examples, it will be convenient to write down the formulae which
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will have to be employed. Some of these formulae have been proved,
and others only alluded to, in the preceding Sections.

In the following formulae, when series are considered, f(x) is

supposed to be a function of x which, as well as each of its deriva

tives up to the
(fj, l)

th order inclusive, is continuous between
the limits x = and x = a, and which is expanded between those

limits in a series either of sines or of cosines of irx/a and its multi

ples. An denotes the coefficient of smmrx/a when the series is

one of sines, Bn the coefficient of cos mrx/a when the series is one
of cosines, Af or B* the coefficient of sin mrx/a or cos mrx/a in

the expansion of the /t
th derivative. When integrals are considered

f (x) and its first
//,

1 derivatives are supposed to be functions of

the same nature as before, which are considered between the limits

x = and # = oo
;
and it is moreover supposed that / (x) decreases

as x increases to oo
, sufficiently fast to allow ff(x)dx to be

essentially convergent at the limit oo
,
or else that f(x) vanishes

when x oo
,
and after a finite value of x never changes from

increasing to decreasing nor from decreasing to increasing. &amp;lt; (fi)

or
-\/r(/3) denotes the coefficient of sin fix or cos fix in the develope-

/oo

ment of f(x) in a definite integral of the form
(f&amp;gt;(fi) siufixdxor

J o

cosfixdx, $ (fi) or ^ (J3) denotes the coefficient of sin 8x

,

J o

or cos fix in the developement of the
/Lt

th derivative of /(#). The
formulas are

^7r--) ( /() -(-DV(&amp;lt;)} + -0* even) .....(5),
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+ ~ f^TV (O)
-

(-D&quot;/) -..-0* even).....

except when n = 0, in which case we have always

JB being the constant term in the expansion of /M
(V) in a series of

cosines. In the formulae (-4), (B), (C), (D) we must stop when

we have written the term containing the power 1 or 0, (as the

case may be,) of n7r/a.

The formulae for integrals are

(- I/** f, 08) -0* * (0)
- 0- 1/ (0)

+ V-s/&quot;(0) -...(/, odd) ............. (a),

08)
=

- *- 8
/&quot;(0)

- - fa even) .............. (&)

o

-/^- 2/ (0)

- /^-
4/ &quot;(0)

+ ... (P odd) ........... (c),
7T t

--
/&amp;gt;-*/

&quot;

(0) + ... (/t even)
7T

where we must stop with the last term involving a positive power
of ft or the power zero.

44. As a first example of the application of the principles

contained in Sections I. and II. suppose that we have to determine

the value of &amp;lt; for values of x lying between and a, and b

respectively, from the equation
79 I

(75),
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with the particular conditions

T? = a&amp;gt;(x %a), when y = or =b .......... (76),

^ = -co(y-%b), when x = or =a ......... (77).

This is the problem in pure analysis to which we are led in

seeking to determine the motion of a liquid within a closed

rectangular box which is made to oscillate.

For a given value of y, the value of
&amp;lt;f&amp;gt;

can be expanded in

a convergent series of cosines of irx/a and its multiples; for

another value of y, &amp;lt; can be expanded in a similar series with

different coefficients, and so on. Hence, in general, &amp;lt;f&amp;gt;

can be

expanded in a convergent series of the form

...... (78),

where Yn is a certain function of y, which has to be determined.

In the first place the value of &amp;lt; given by (78) must satisfy (75).

Now the direct developement of dty/dy* in a series of cosines will

be obtained from (78) by differentiating under the sign of sum
mation

;
the direct developement of cPfydar will be given by the

formula (D). We thus get

~d*Y nV 2o&amp;gt;

and the left-hand member of this equation being the result of

directly developing the right-hand member in a series of cosines,

we have
*

17 ,

^b) or =0,2o-
dy* a* a v&amp;lt;y

according as n is odd or even. This equation is easily integrated,

and the integral contains two arbitrary constants, Cn ,
Dn , suppose.

It only remains to satisfy (76). Now the direct developement
of dYJdy will be obtained by differentiating under the sign of

summation, and the direct developement of &&amp;gt; (x J a) is easily

found to be 2 4&)a/7rV . cos mrxja, the sign S denoting that

odd values only of n are to be taken. We have then, both for

s. 19
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y = and for y = &,

dYn
-7- = --j-, or =0,
dy irn

according as n is odd or even, which determines Gn and Dn .

It is unnecessary to write down the result, because I have

already given it in a former paper*, where it is obtained by
considerations applicable to this particular problem. The result

is contained in equation (4) of that paper. The only step of the

process which I have just indicated which requires notice is,

that the term containing (x J a) (y J 6) at first appears as an

infinite series, which may be summed by the formula (41). The

present example is a good one for shewing the utility of the

methods contained in the present paper, inasmuch as in the

Supplement referred to I have pointed out the advantage of the

formula contained in equation (6), with respect to facility of nu

merical calculation, over one which I had previously arrived at

by using developements, in series of cosines, of functions whose

derivatives vanish for the limiting values of the variable.

45. Let it be required to determine the permanent state of

temperature in a rectangle which has two of its opposite edges

kept up to given temperatures, varying from point to point, while

the other edges radiate into a space at a temperature zero. The

rectangle is understood to be a section of a rectangular bar of

infinite length, which has all the points situated in the same line

parallel to the axis at the same temperature, so that the pro

pagation of heat takes place in two dimensions.
,

Let the rectangle be referred to the rectangular axes of x, y,

the axis of y coinciding with one of the edges whose temperature

is given, and the origin being in the middle point of the edge.

Let the unit of length be so chosen that the length of either

edge parallel to the axis of x shall be TT, and let 2/3 be the length

of each of the other edges. Let u be the temperature at the

point (as, y), h the ratio of the exterior, to the interior conductivity.

Then we have

-hu = 0, when
2/
= -/3 ............... (80),

u
*
Supplement to a Memoir On some Cases of Fluid Motion, p. 409 of the

present Volume [Ante, p. 188].
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^ + tt = 0, when y= .................. (81),

u=f(y) )
when # = ................... (82),

u =F(y} )
when x = a ..................... (83),

/(?/), JP(y) being the given temperatures of two of the edges.

According to the method by which Fourier has solved a similar

problem, we should first take a particular function Fe^, where Y
is a function of y, and restrict it to satisfy (79). This gives

Y= A cos \y + B sin \y, A and B being arbitrary constants. We
may of course take, still satisfying (79), the sum of any number

of such functions. It will be convenient to take together the

functions belonging to two values of X which differ only in sign.

We may therefore take, by altering the arbitrary constants,

u = 2 [A (^(*-$
-

-*(*-tf) + B (&amp;lt;**

-
e-**)} cos Xy,

+ 2{C(^-^-e-^-^)+D(e^- e
-*x

)}sm\y..... (84),

in which expression it will be sufficient to take only one of two

values of X which differ only by sign, so that X, if real, may be

taken positive. Substituting now in (80) and (81) the value of

u given by (84), we get either (7=0, D = 0, and

X/3.tanX/3 = A/3 ......................... (85),

or else A = 0, B = 0, and

X/3.cotX/3 = -fy3..................... (86).

It is easy to prove that the equation (85), in which X/3 is

regarded as the unknown quantity, has an infinite number of

real positive roots lying between each even multiple of ?r/2, in

cluding zero, and the next odd multiple. The equation (86)

has also an infinite number of real positive roots lying between

each odd multiple of Tr/2 and the next even multiple. The

negative roots of (85) and (86) need not be considered, since the

several negative roots have their numerical values equal to those

of the positive roots; and it may be proved that the equations
do not admit of imaginary roots. The values of X in (84) must

now be restricted to be those given by (85) for the first line, and

those given by (86) for the second. It remains to satisfy (82)
and (83). Now let

-
y}
=

2^(3,), F(y) -F(-y} =
192
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then we must have for all values of y from to @, and therefore

for all values from /3 to 0,

F
1 (y) .......... (87),

F
% (y) .......... (88),

where L = e
Xv - e~ A7r

,
M= e*n - e~^n

}

JJL denoting one of the roots of the equation

(89),

and the two signs S extending to all the positive roots of the

equations (85), (89), respectively. To determine A and B, multiply

both sides of each of the equations (87) by cos\ ydy, X being

any root of (85), and integrate from y = to y = /3. The integral

at the first side will vanish, by virtue of (85), except when X = X,

in which case it will become l/4\ . (2X/3 + sin 2X/3), whence A
and B will be known. G and D may be determined in a similar

manner by multiplying both sides of each of the equations (88)

by smpydy, fi being any root of (89), integrating from
2/
=

to y /3, and employing (89). We shall thus have finally

u = 42X (2X + sin 2X/3)

cos \ydy + (e
Xa5

&quot;**)) F^ (y) cos X^ dy] cos \y,
J o

- sin 2/*)-
1

(d&quot;

-
e-^)&quot;

1

{(e^~^ -^ (

sin^^ + (e^
-
e-^) ( F

t (y) sin pydy} bin My. . .(90).
JO

46. Such is the solution obtained by a method similar to that

employed by Fourier. A solution very different in appearance

may be obtained by expanding u in a series 2 I^sin nx, and em

ploying the formula (B). We thus get from the equation (79)

which gives

r= Ae&quot; + Bf~ -
\f(y )

- (- l)&quot;F(,j)} (e^ -
.&quot;(&quot;I) dy ;
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whence, dujdy 2 Y sin nx, where

The values of A and B are to be determined by (80) and (81),

which require that

dy
We thus get

(n + h)
*

A-(-h)&quot;#B-^ l\f (y
1

)
- (- 1)&quot;

F (y)}

{(n + h) &amp;lt;*&-& +(n-h) e~ n
^-^} dy

= 0,

and the equation derived from this by changing the signs of h and

/3 ;
whence the values of A and B may be found. We get

finally

u = 2Ysmnx ........................ (91),

where

Y= -
{(n + h) e

n? -
(n
-

h) e ^}-
1

(&amp;lt;*
+ e ^) I {(n + h) e(0-&amp;gt;

7T J

+ (n
-

h) e-W-1} {/, (y}
-

(- 1)&quot; F, (y )} dy

+ -
{(n + A) e

1^ + (w
-

A) e-*J -^e&quot;&quot;

- e
&quot;&quot;) [ {( + h)

&quot;&quot; Jo

+ (n
-

A) 6-tf- V&amp;gt;} {/2 (y
f

)
-
(- 1)&quot;

47. The two expressions for w given, one by (90), and the

other by (91) and (92), are necessarily equal for values of x and y
lying between the limits and TT, /3 and /3 respectively. They
are also equal for the limiting values y = [B and y = ft, but not

for the limiting values x = and x = TT, since for these values (91)

fails
;
that is to say, in order to find from this series the value of u

for x = or x = TT, we should have first to sum the series, and then

put x = or x = TT.

The comparison of these expressions leads to two remarkable

formulae. In the first place it will be observed that the first and
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second portions of the right-hand side of (92) are unchanged when y
changes sign, while the third and fourth portions change sign with y.

This is obvious with respect to the first and third portions, and may
be easily proved with respect to the second and fourth by taking y
instead of y for the variable with respect to which the integration
is performed, and remembering thatj^ (y), F^ (y) are unchanged, and

/2 (y)t Fz (y) change sign, when y changes sign. Consequently the

part of u corresponding to the first two portions of (92) is equal to the

part expressed by the first two lines in (90), and the part correspond

ing to the last two portions of (92) equal to the part expressed by the

last two lines in (90). Hence the equation obtained by equating the

two expressions for u splits into two
;
and each of the new equa

tions will again split into two in consequence of the independence
of the functions f, F, which are arbitrary from y = to y = /3.

As far however as anything peculiar in the transformations is con

cerned, it is evident that we may suppress one of the functions

f, F, suppose F, and consider only an element of the integral by
whichf is developed, or, which is the same, suppose ft (y

f

)
orf2 (y)

to be zero except for values of the variable infinitely close

to a particular value y, and divide both sides of the equa
tion by

//,(/) dy or J/2 (/)&amp;lt;%
.

We get thus from the first two lines of (90) and the first two

portions of (92), supposing y and y positive, and y the greater

of the two,

-e
e-^

where the first 2 refers to the positive roots of (85), and the second

to positive integral values of n from 1 to GO .

Of course, if y become greater than y, y and y will have to

change places in the second side of (93). This is in accordance

with the formula (92), since now the second line does not vanish;

and it will easily be found that the first and second lines together

give the same result as if we had at once made y and y change

places. Although y has been supposed positive in (93), it is easily

seen that it may be supposed negative, provided it be numerically

less than y.
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The other formula above alluded to is obtained in a manner

exactly similar by comparing the last two portions of (92) with

the last two lines in (90). It is

-sn

(n+fceP-^ + (w + A)e-P-^
- ~

where the first 2) refers to the positive roots of (89), the second to

positive integral values of n, and where x is supposed to lie

between and TT, y between and /3, y between and y, or, it

may be, between y and y. Although x has been supposed less

than TT, it may be observed that the formulae (93), (94) hold good
so long as x

t being positive, is less than 2?r.

48. Let it be required to determine the permanent state of

temperature in a homogeneous rectangular parallelepiped, suppos

ing the surface kept up to a given temperature, which varies from

point to point.

Let the origin be in one corner of the parallelepiped, and let

the adjacent edges be taken for the axes of x, y, z. Let a, b, c be

the lengths of the edges ; /j (y, z), Fl (y, z), the given temperatures
of the faces for which x and x = a respectively ; f2 (z, x),

F
9 (z, x) the same for the faces perpendicular to the axis of y ;

fs (
x

&amp;gt;

2/)&amp;gt; ^3 (
x

&amp;gt; y) *ne same f r those perpendicular to the axis of z.

Then if we put for shortness v to denote the operation otherwise

denoted by

as will be done in the rest of this paper, and write only the charac

teristics of the functions, we shall have,, to determine the tempera
ture u, the general equation ^u = with the particular condi

tions

u=
fi&amp;gt;

wnen # = 0; u =F
l ,
when x a ...... (95);

u=
fz&amp;gt;

when # = 0; u = F
2 ,
when y = b ...... (96);

u=f9 , when = 0; u~F
3 ,
when zc ...... (97);

It is evident that u is the sum of three temperatures u
lt
u

2 ,
u

3 ,

where u
:

satisfies the conditions (95), and vanishes at the four

remaining faces, and w
2 ,
u

s
are related to the axes of y, z as w

t
is
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related to that of x
y
each of the quantities u

lt u.2 ,
u

3 representing
a possible permanent temperature. Now u

3 may be expanded in

a double series 2SZmn sin mTrx/a . sin njry/b, where Zmn is a function

of z which has to be determined. Let for shortness

rmr nir PTT

then the substitution of the above value of u
3
in the equation

V^3
= leads to the equation

tf-a^-o.
where (f $ + z&amp;gt;

2

,
which gives Zmn = Amn e

qz + Bmn e~
9 &quot;

;
and the con

stants Amn , B^ are easily determined by the condition (97). We
may find u

t
and w

2
in a similar manner, and the sum of the results

gives u. It is thus that such problems are usually solved.

We may, however, expand u in a series of the form

on px sn vy,

even though it does not vanish for x and x = a, and for y =
and y = b

}
and the formula proved in Section I. enable us to

make use of this expansion.

Let then u = SS^sin fix sin vy,

the suffixes of Z being omitted for the sake of simplicity. We
have by the formula (B)

vy +
*

[/,_(- 1J-J-J
j.

sin ^. .

/i (2/j *0
~~

(&quot;&quot; l)
m
-^i(3/j

s
)
^e expanded in the series

2Qsini&amp;gt;y

by the formula (3), so that will be a known function of z, m,
and w. Then

Q h sin
/Lta?

sin i/?

The value of d*u/dy* may be expressed in a similar manner, and

that of d?u/dz
2

is found by direct differentiation. We have thus,

for the direct developement of yw, the double series

SS
j^jf

-
(^

2 + ^
!

)^+yP +J Q
}

sm^ sin vy,
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where P is for x what Q is for y. The above series being the

direct developement of yw, and v^ being equal to zero, each co

efficient must be equal to zero, which gives

d*Z 2v 2a
-j-T q

i

Z-t--rP+-i-Q = Q m .. (98)dz b a -\J)&amp;gt;

where q means the same as before. The integral of the equation
(98) is

Q &amp;gt; o f[ J o

2T denoting the sum of the last two terms of (98). It only re

mains to satisfy (97). If the known functions fB (x, y\ F3 (x, y) be

developed in the double series 22(7 sin px sin.z/y, 22//sin (JLX sin vyy

we shall have from (97)

- - e
cF&amp;lt;T*Tdz + - e^c

l\*Tdz = H.
2 Jo q. Jo

A and B may be easily found from these equations, and we shall

have finally

~ e~ (c
-

z)

) l\e
qz -

-&quot;)
T dz

Jo

T being the value of T when z = - z. It will be observed that the
letters Z, P, Q, T, A, B, G, H ought properly to be affected with
the double suffix inn. It would be useless to write down the

expression for u in terms of the known quantities /j (y, z), &o.
It will be observed that u might equally have been expressed by

means of the double series SSZ^sin vysm &amp;gt;&z,
or 22 F^sm^sin-nr^,

where p is any integer. We should thus have threeTdifferent ex

pressions for the same quantity u within the limits x = and x = a,

y = and y = &, * = and z = c. The comparison of these three

expressions when particular values are assigned to the known
functions /x (y, s) &c . would lead to remarkable transformations.
The expressions differ however in one respect which deserves
notice. Their numerical values are the same for values of the
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variables lying within the limits and a, and b, and c. The
first expression holds good for the extreme values of z, but fails for

those of x and y : in other words, in order to find from the series

the value of u for the face considered, instead of first giving x or y
its extreme value and then summing, which would lead to a result

zero, we should first have to sum with respect to m or n, or con

ceive the summation performed, and then give x or y its extreme

value. The same remarks apply, mutatis mutandis, to the second

and third expressions ;
so that the three expressions are not equi

valent if we take in the extreme values of the variables.

49. Many other remarkable transformations might be obtained

from those already referred to by differentiation and integration.

We might for instance compare the three expressions which would
ra rb re

be obtained for I udxdydz. and we should thus have three
JoJoJo

different expressions for the same function of the three independent
variables a, b, c, which are supposed to be positive, but may be of

any magnitudes. Some examples of the results of transformations

of this kind may be seen by comparing the formulae obtained in

the Supplement alluded to in Art. 44 with the corresponding for

mulae contained in the Memoir itself to which the Supplement has

been added. Such transformations, however, when separated from

physical problems, are more curious than useful. Nevertheless, it

may be worth while to exhibit in its simplest shape the formula

from which they all flow, so long as we restrict ourselves to a func

tion u satisfying the equation VM = 0, and expanded between the

limits x = and x a, &c. in a double series of sines.

The functions /^y, z] &c., which are supposed known, are arbi

trary, and enter into the expression for u under the sign of double

integration. Consequently we shall not lose generality, so far as

anything peculiar in the transformations is concerned, by consider

ing only one element of the integrals by which one of the functions

is developed. Let then all the functions be zero except /3 ;
and

since in the process/3
has to be developed in the double series

4r52 If fa(, y }
sin P sm vy dx dy . sin JJLX sin vy,

cio Jo Jo

consider only the element/8 (# , y )
sin pat sin vy dx dy of the double

integral, omit the dx dy, and put/8 (# , y )
= 1 for the sake of sim-
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plicity. If we adopt the first expansion of u, and put &amp;lt;f

for fi + z/
2

,

we shall have

Z= A (e
9(c

-
0) - e-9(c

&quot;

2)

), (e
9C -

&amp;lt;T

qc

)
A=~

b
sin i*x sin vy ;

whence
4 ?(C~3) _ 6

-?(c-2)

u = r SS --- sin fjix sin i/y
sin /z# sin vy. . . (99).

O/U ~~

By expanding u in the double series 2S Fsin //,# sin nrz we should

get
2

__&amp;gt;
cr (*

- e-w) (e*(
6-^ - e-^-tf) .

w = 2,2, --
;
-

^
-- sm LLX sin ua; sin txz

ac s esb
~ s

...... (100),

where s
2 = ^ + &*, and y is the greater of the two y, y. The

third expansion would be derived from the second by inter

changing the requisite quantities. In these formulsB z may have

any positive value less than 2c.

We should get in a similar manner in the case of two variables

x,y

2 ^ ev(a-x] _ e -v(a-x) ^ f m

^ sm v sm

aoi)f

where x is supposed to lie between and a, y between and 6,

and y between and y . This formula is however true so long

as x lies between and 2a, and y between y and y .

rb rb ra

If we compare the two expressions for I I udy dy dx
Jo Jo Jo

obtained from (101), taking 2 for the sign of summation corre

sponding to odd values of n from 1 to oo, putting a = rb, and

replacing S 1/n
2

by its value 7r
2

/8, we shall get the formula

which is true for all positive values of r, and likewise for all

negative values, since the left-hand side of (102) is not changed

when - r is put for r. In integrating the second side of (101),

supposing that we integrate for y before integrating for y ,
we

must integrate separately from # = to y = y, and from y = y
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to y = b, since the algebraical expression of the quantity to be

integrated changes when y passes the value y.

It would be useless to go on with these transformations, which

may be multiplied to any extent, and which cease to be useful

when they are separated from physical problems to which they
relate, and of which we wish to obtain solutions.

It may be observed that instead of supposing, in the case of

the parallelepiped, the value of u known for all points of the

surface, we might have supposed the value of the flux known,

subject of course to the condition that the total flux shall be

zero. This would correspond to the following problem in fluid

motion, u taking the place of the quantity usually denoted by &amp;lt;/&amp;gt;,

&quot;To determine the initial motion at any point of a homogeneous

incompressible fluid contained in a closed vessel of the form of

a rectangular parallelepiped, which it completely fills, supposing
the several points of the surface of the vessel suddenly moved
in any manner consistent with the condition that the volume be

not changed.&quot;
In this case we should expand u in a series of

cosines instead of sines, and employ the formula (D) instead of (B).

We might, again, suppose the value of u known for the faces

perpendicular to one or two of the axes, and the value of the

flux known for the remaining faces. In this case we should

employ sines involving the co-ordinates perpendicular to the first

set of faces, and cosines involving the others.

The formulae would also be modified by supposing some one or

more of the faces to move otf to an infinite distance. In this

case some of the series would be replaced by integrals. Thus, in

the case in which the value of u at the surface is known, if we

supposed a to become infinite we should employ the integral (50)

instead of the series (3), as far as relates to the variable x, and

the formula (b)
instead of (B). If we were considering a rect

angular bar infinitely extended both ways we should employ the

integral (65). Of course, if we had already obtained the result for

the case of the parallelepiped, the shortest way would be thence

to deduce the result for the case of the bar infinite in one or in

both directions, but if we began with considering the bar it would

be best to start with the integrals (50) or (65).

50. To give one example of transformations of this kind,

let us suppose b to become infinite in (101). Ol serving that
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v = n7r/b, Av =
7T/6, we get on passing to the limit

2

= -2 (e^-e-^e-^ sin/^ ..... (103).

Multiply both sides of this equation by dx dy, and integrate from

x = to # = a, and from y = to y = oo . With respect to the

integration of the second side, it is only necessary to remark that

when y becomes greater than y
r

, y and y must be made to change

places in the expression written^ down in (103). As to the in

tegration of the first side, if we first integrate from y = to y = Y,

we get, putting f(v t x) for the fraction involving x,

I f(v, x) sin vy (1 cos v Y) .

J o v

Now let Y become infinite; then the term involving cos^Fmay
be omitted, not because cosz^F vanishes when F becomes infinite,

which is not true, but because, as may be rigorously proved, the

integral in which it occurs vanishes when F becomes infinite.

If we write 1 for a, as we may without loss of generality, we

get finally

&quot;?=;![2,4(1-6*) (104).

51. Hitherto in satisfying the general equation v^ = 0, to

gether with the particular conditions at the surface, the value

of u has been expanded in a double series involving two of the

variables, and the functions of the third variable which enter as

coefficients into the double series have been determined by an

ordinary differential equation such as (98). We might however

expand u in a triple series, and thus satisfy at the same time

the equation v^ = and the conditions at the surface, without

using an ordinary differential equation at all, but simply by means
of the terms introduced into the series by differentiation, which

are given by the formulae at the beginning of this Section
;
and

then by summing the triple series once, which may be done in

any one of three ways, we should arrive at the same results as

if we had employed in succession three double series, involving
circular functions of x and y, y and z, z and x respectively, and

the corresponding ordinary differential equations. I am indebted
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for this method to my friend Prof. William Thomson, to whom
I shewed the method given in Art. 48.

Let us take the case of the permanent state of temperature
in a rectangular parallelepiped, supposing the temperature at the

several points of the surface known. For more simplicity suppose
the temperature zero at the surface, except infinitely close to

the point (x, y )
in the face for which =

0, so that all the

functions f, &c. are zero, except fa (x, y), and /3 (x, y) itself zero

except for values of x, y infinitely close to x
t y respectively ;

and

let fffa (x, y) docdy
=

1, provided the limits of integration include

the values x = x, y = y . Let u be expanded in the triple series

sin ixz .............. (105),

where
yu,, v, is mean the same as in Art. 48. Then

a?
= ^p

\

sn^ sn

/3 0, y) sin

Now the expansion offs (x, y) in a double series is

4/a6 . 22 sin fix sin vy sin px sin vy,

that is to say with this understanding, that the result is to be

substituted in (106); for it would be absurd to speak, except

by way of abbreviation, of a quantity which is zero except for

particular values of x and yy
for which it is infinite. The values

of tfuldx* and d^u/dy* will be obtained by direct differentiation.

We have therefore for the direct developement of TJU in a triple

series

O2 + i? + *r
2

)
Amnp

SOT , ,}+
j-

sin IJLX sin vy \ sin px sin vy sin isz.

But \7w being equal to zero, each coefficient will be equal to

zero, from whence we get Amnp ,
and then

u
j
222 -3
--

i
sin fj,x

f

sin vy sin px sin vy sin ixz..... (107).

One of the three summations, whichever we please, may be

performed by means of the known formulae
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c e
k^-^ -e k^~^

.

t ^v t
c

M + S 1P1V
=2~-6- &amp;gt;^^&amp;gt;^&amp;gt;Q

...... (109),

which may be obtained by developing the second members be

tween the limits z and z = c, y /

= and y t
b by the formulae

(2), (22), and observing that the expansions hold good within

the limits written after the formulae, since 6* (c ~*} e~* (c ~*&amp;gt; has

the same magnitude and opposite signs for values of z equidistant
from c, and e*^-J +e-*(&-tU has the same magnitude and sign
for values of yt equidistant from 6. If in equation (107) we

perform the summation with respect to p, by means of the formula

(108), we get the equation (99) : if we perform the summation
with respect to n, by means of the formula (109), we get the

equation (100).

52. The following problem will illustrate some of the ideas

contained in this paper, although, in the mode of solution which

will be adopted, the formulas given at the beginning of this Section

will not be required.

A hollow conducting rectangular parallelepiped is in com
munication with the ground : required to express the potential,

at any point in the interior, due to a given interior electrical

point and to the electricity induced on the surface.

Let the axes be taken as in Art. 48. Let of, y, z be the

co-ordinates of the electrical point, m the electrical mass, v the

required potential. Then v is determined Jirst by satisfying the

equation yv = 0, secondly by being equal to zero at the surface,

thirdly by being equal to m/r infinitely close to the electrical

point, r being the distance of the points (x, y, z}, (x, y ,
z \ and

&quot;by being finite and continuous at all other points within the

parallelepiped.

Let v = m/r + v
l ,

so that v^ is the potential due to the elec

tricity induced on the surface. Then v^ is finite and continuous

within the parallelepiped, and is determined by satisfying the

general equation yt^ = 0, and by being equal to m/r at the

surface. Consequently v
l
can be determined precisely as u in

Art. 48 or 51. This separation however of v into two parts

seems to introduce a degree of complexity not inherent in the
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problem ;
for v itself vanishes at the surface

;
and it is when

the function expanded vanishes at the limits that the application
of the series (2) involves least complexity. On the other hand

we cannot immediately expand v in a triple series of the form

(105), on account of its becoming infinite at the point (x , y\ z
}.

Suppose, therefore, for the present that the electricity is

diffused over a finite space ; then it is evident that we may
suppose the electrical density, p, to change so gradually, and pass

so gradually into zero, that the derivatives of v, of as many orders

as we please, shall be continuous functions. We may now suppose

v expanded in a triple series, so that

v = -nMy, sn fuff sn vy sn vrz :

and we shall have

yy = SSS
(yu,

2 + v* + or
2

)
A mnp sin fix sin vy sin iaz.

But we have also, by a well-known theorem, yv = 4firp ;
and

p
= S2S-Knnp sin fix sin vy sin wz,

where

g ra rb re

~r~ P sm I*31? sin vy sin **% dx dy dz,
abcJo Jo Jo

p being the same function of #
, y\ z that p is of x, y, z. W

get therefore by comparing the two expansions of yv

whence the value of v is known. We may now,,if we like, suppose

the electricity condensed into a point, which gives

8m
Rp = -7- sm px sm vy sin TSZ

,

sin fix sin vy sin vrz sin fix sin vy sin r^. . . (110).

One of the summations may be performed just as before. We
thus get, by summing with respect to p,

8-Trm

ab q e*c
-6-&amp;lt;i

c

sin/Aic sin i/y sin fix sin z/y ....... (HI);
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where #
2 =

//,

2 + v
z

,
and z is supposed to be the smaller of the

two z
t
z. If z be greater than z, we have only to make z and z

change places in (111).

53. The equation (110) shows that the potential at the

point (x, y, z) due to a unit of electricity at the point (sc t y\ z)
and to the electricity induced on the surface of the parallelepiped
is equal to the potential at the point (x t y, z) due to a unit of

electricity at the point (x, y, z) and to the electricity induced
on the surface. This however is only a particular case of a general
theorem proved by Green*.

Of course the parallelepiped includes as particular cases two

parallel infinite planes, two parallel infinite planes cut at right

angles by a third infinite plane, &c. The value of v being known
the density of the induced electricity at any point of the surface

is at once obtained, by means of a known theorem.

If we suppose a ball-pendulum to oscillate within a rectangular
case, the value of &amp;lt; belonging to the motion of the fluid which
is due to the direct motion of the ball and to the motion reflected

from the case can be found in nearly the same manner. The

expression reflected motion is here used in the sense explained
in Art. 6 of my paper, &quot;On some Cases of Fluid

Motionf.&quot; In
the present instance we should expand in a triple series of

cosines.

54. Let a hollow cylinder, containing one or more plane

partitions reaching from the axis to the curved surface, be filled

with homogeneous incompressible fluid, and made to oscillate

about its axis, both ends being closed : required to determine

the effect of the inertia of the fluid on the motion of the cylinder.
If there be more than one partition, it will evidently be suffi

cient to consider one of the sectors into which the cylinder is

divided, since the solution obtained may be applied to the others.

In the present case the motion is such that udx + vdy + wdz (ac

cording to the usual notation) is an exact differential
d(f&amp;gt;.

The
motion considered is in two dimensions, taking place in planes

perpendicular to the axis of the cylinder. Let the fluid be referred

to polar co-ordinates ry 6 in a plane perpendicular to the axis, r

being measured from the axis, and 6 from one of the boundin^
*
Essay on Electricity, p. 19.

t See p. Ill of the present Volume. [Ante, p. 28.]

20
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partitions of the sector considered, being reckoned positive when

measured inwards. Let the radius of the cylinder be taken for the

unit of length, and let a. be the angle of the sector, and o&amp;gt; the

angular velocity of the cylinder at the instant considered. It will

be observed that a = 2?r corresponds to the case of a single partition.

Then to determine
&amp;lt;/&amp;gt;

we have the general equation

dr* r dr r
2 d62

with the conditions

i g= cor, when = or = a (113),

. T^=0, whenr = l (114),

and, that &amp;lt;&amp;gt; shall not become infinite when r vanishes.

Let r = e~A
,
and take 0, X for the independent variables

;
then

(112), (113), (114) become

(115),

= -, when^0 or a ....... ..... (116),du

^ = 0, whenX=0 ........................ (117).
aA-

Let $ be expanded between the limits 6 = and 9 = a in a series

of cosines, so that

(118),

A
,
A

rt being functions of X. Then we have by the formula

(D) and the condition (116) applied to the general equation (115)

dK*

whence

A. = 4.6
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Since &amp;lt;&amp;gt; is not to be infinite when r vanishes, that is when X

becomes infinite, we have in the first place A Q
= 0, An 0. We

have then by the condition (117)

H7T

when n is odd, and Bn
= Q when n is even. If then we omit

which is useless, and put for X its value, we get

C S nv

The series multiplied by r
2

may be summed. For if we

expand sin 2(6 Ja) between the limits 6 = 0, 6 a in a series of

cosines, we get
. . Q ^ 82 cos a

sin (20
-

a)
= - S cos

whence
W7r/a cos mr#a co

2mr (nV 4a
2

) 2 cos a

. /C. A . ,-t^\
r
2

sm(20-a)...(120).

In determining the motion of the cylinder, the only quantity
we care to know is the moment of the fluid pressures about the

axis. Now if the motion be so small that we may omit the square
of the velocity we shall have, putting (f&amp;gt;

=
u&amp;gt;f(rt 6),

where p is the pressure, &amp;gt;|r () a function of the time t, whose
value is not required, and where the density is supposed to be 1,

and the pressure due to gravity is omitted, since it may be taken

account of separately. The moment of the pressure on the curved

surface is zero, since the direction of the pressure at any point

passes through the axis. The expression (119) or (120) shows

that the moments on the plane faces of the sector are equal, and
act in the same direction

;
so that it will be sufficient to find the

moment on one of these faces and double the result. If we con

sider a portion of the face for which 6 = whose length in the

direction of the axis is unity, we shall have for the pressure on an

element dr of the surface dw/dt .f (r, 0) dr ;
and if we denote the

whole moment of the pressures by G dco/dt, reckoned positive

202
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when it tends to make the cylinder move in the direction of

positive, we shall have

(7 = 2 P/(n 0)r&amp;lt;Zr.

.0

Taking now the value of /(/ , 0) from (120), and performing the

integration, we shall have

(7=jtana-16a
3 20/
-

N

1

,

-^~2 ......... (121).4 (mr 2y) mr (mr + 2a/

The mass of the portion of fluid considered is Ja; and if we

put
C =

i*fc&quot;,

and write S7T/2 for a, so that s may have any value from to 4, we

shall have

k 9 - tan - 2K&amp;gt;

- Uclll o ^Wo Q
. ,

STT 2 TT (n s)n(n + s)

When s is an odd integer, the expression for 7/
2
takes the

form oo oo
,
and we shall easily find

2

where all odd values of n except s are to be taken.

The quantity k may be called the radius of gyration of the

fluid about the axis. It would be easy to prove from general

dynamical principles, without calculation, that if k be the corre

sponding quantity for a parallel axis passing through the centre of

gravity of the fluid, h the distance of the axes,

k&quot;

2 = k*+h*....................... (124),

in fact, in considering the motion of the cylinder, which is sup

posed to take place in two dimensions, the fluid may be replaced

by a solid having the same mass and centre of gravity as the

fluid, but a moment of inertia about an axis passing through the

centre of gravity and parallel to the axis of the cylinder different

from the moment of inertia of the fluid supposed to be solidified.

If K
,
K be the radii of gyration of the solidified fluid about the

axis of the cylinder and a parallel axis passing through the centre

of gravity respectively, we shall have

.__, T^ 4 sin -J a 8 . STT /-,-K\
JfiT

2 = i = A 2 + A
2

,
h = - ^- = sm-r- .... (125).

3 a 3.97T 4 N
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If we had restricted the application of the series and the

integrals involving cosines to those cases in which the derivative

of the expanded function vanishes at the limits, we should have
.00

expanded &amp;lt;f&amp;gt;

in the definite integral I (0, 0) cos ft\d/3, and
Jo

the equation (115) would have given

f, ^ denoting arbitrary functions, which must be determined by the

conditions (116). We should have obtained in this manner

* _ 6
cos B log d/3... (126),

= s2 r i - 6-p*

Try. Jo l + e-0* (127).

It will be seen at once that & 2
is expressed in a much better form

for numerical computation by the series in (122) than by the

integral in (127). Although the nature of the problem restricts

a. to be at most equal to 2?r, it will be observed that there is no

such restriction in the analytical proof of the equivalence of the

two expressions for $, or for k 2
.

In the following table the first column gives the angle of the

cylindrical sector, the second the square of the radius of gyration
of the fluid about the axis of the cylinder, the radius of the

cylinder being taken for the unit of length, the third the square of

the radius of gyration of the fluid about a parallel axis passing

through the centre of gravity, the fourth and fifth the ratios of

the quantities in the second and third to the corresponding quanti
ties for the solidified fluid.
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55. When a. is greater than TT, it will be observed that the

expression for the velocity which is obtained from (119) becomes

infinite when r vanishes. Of course the velocity cannot really

become infinite, but the expression (119) fails for points very near

the axis. In fact, in obtaining this expression it has been assumed

that the motion of the fluid is continuous, and that a fluid particle

at the axis may be considered to belong to either of the plane
faces indifferently, so that its velocity in a direction normal to

either of the faces is zero. The velocity obtained from (119)

satisfies this latter condition so long as a is not greater than TT.

For when a &amp;lt; TT the velocity vanishes with r, and when a. = TT the

velocity is finite when r vanishes, and is directed along the single

plane face which is made up of the two plane faces before con

sidered.

But when a is greater than TT the motion which takes place

appears to be as follows. Let OABC be a section of the cylindrical

sector made by a plane perpendicular to the axis, and cutting it in

0. Suppose the cylinder to be turning round in the direction

indicated by the arrow at B. Then the fluid in contact with OA
and near will be flowing, relatively to OA, towards 0, as indi

cated by the arrow a. When it gets to it will shoot past the

face OC
;
so that there will be formed a surface of discontinuity

Oe extending some way into the fluid, the fluid to the left of Oe

and near flowing in the direction AO, while the fluid to the
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right is nearly at rest. Of course, in the case of fluids such as

they exist in nature, friction would prevent the velocity in a direc

tion tangential to Oe from altering abruptly as we pass from a

particle on one side of Oe to a particle on the other
;
but I have

all along been going on the supposition that the fluid is perfectly

smooth, as is usually supposed in Hydrodynamics*. The extent of

[* It may be said that the motion of a perfect fluid which is at first at rest,

and is then set in motion by the action of solid bodies of finite curvature in contact

with it, is unique and continuous, so that no surface of discontinuity can be

formed
;
and that that being always true will be true in the limit, when we suppose

the curvature at a certain point or along a certain line to become infinite, in such

a manner as to pass in the limit to a salient conical point or edge intruding into

the fluid, and therefore even in this case no surface of discontinuity can be formed.

This may be perfectly true in one sense and yet not in another. A perfect fluid

is an ideal abstraction, representing something which does not exist in nature. All

actual fluids are more or less viscous, and we arrive at the conception of a perfect

fluid by starting with fluids such as we find them, and then in imagination making

abstraction of the viscosity. Similarly any edge that we can mechanically form is

more or less rounded off
;
but we have no difficulty in conceiving of an edge

perfectly sharp. The motion that belongs to a perfect fluid and perfectly sharp

edge may be regarded as the limit, if unique limit there be, of the motion which

belongs to a slightly viscous fluid interrupted by a solid presenting a salient,

slightly rounded edge, when both the viscosity of the fluid and the radius of cur

vature of the edge are supposed to vanish. For the sake of clear ideas we may
suppose that the mass of fluid we are dealing with is contained in a vessel differing

from that mentioned in the text in being bounded on the side towards the centre by

^cylindrical surface of very small radius a, coaxial with the outer cylinder. Then

we may represent the motion, in a sense which the reader will readily apprehend,

by f(fj,, a), where fj,
denotes the coefficient or index of internal friction. We pro

posed to contemplate the limit of /(,u, a) when /* and a vanish. But for anything

that appears to the contrary there may be no such unique limit, but the limit

lim.a-o lim.p=o/(Ai, a) may be one thing, and the limit lim.^o lim.a=o /(/*, a) a

totally different thing ;
and I am strongly disposed to believe that such is actually

the case. When a is finite and yu
= 0, we pass to a case of motion of a perfect fluid

similar to that in the text, and capable of being attacked by a similar analysis, but

in which the motion nowhere becomes infinite
;
and the limit to which this tends as

a vanishes does not present a surface of discontinuity, but the velocity near the

centre increases indefinitely as a decreases indefinitely. But when on the other

hand
fjt. though small remains finite, and a diminishes without limit, the motion

which would be investigated by an analysis resembling that in the text would be

such that near the centre there would be an enormous gliding, which would call

into play a great tangential force, in which work would be consumed, that is,

converted into heat. This I believe would be an unstable condition, and what

would actually take place would be that so large a local consumption of work would

be avoided by the fluid rushing past the corner, somewhat as represented in the

figure, carrying with it by adhesion a narrow stratum in which there would be very

great molecular rotation, inasmuch as the fluid of which the stratum consists had

previously been pent up between the radial wall of the vessel on one side of it,
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the surface of discontinuity Oe will be the less the smaller be the

motion of the cylinder; and although the expression (119) fails

for points very near 0, that does not prevent it from being sensibly
correct for the remainder of the fluid, so that we may calculate k *

from (122) without committing a sensible error. In fact, if 7 be
the angle through which the cylinder oscillates, since the extent of

the surface of discontinuity depends upon the first power of 7, the

error we should commit would depend upon 7*. I expect, there

fore, that the moment of inertia of the fluid which would be

determined by experiment would agree with theory nearly, if not

quite, as well when a &amp;gt; TT as when a &amp;lt; TT, care being taken that

the oscillations of the cylinder be very small.

As an instance of the employment of analytical expressions
which give infinite values for physical quantities, I may allude to

the distribution of electricity on the surfaces of conducting bodies

which have sharp edges.

56. The preceding examples will be sufficient to show the

utility of the methods contained in this paper. It may be observed

that in all cases in which an arbitrary function is expanded
between certain limits in a series of quantities whose form is

determined by certain conditions to be satisfied at the limits, the

expansion can be performed whether the conditions at the limits

be satisfied or not, since the expanded function is supposed per

fectly arbitrary. Analogy would lead us to conclude that the

derivatives of the expanded functions could not be found by direct

differentiation, but would have to be obtained from formulae

answering to those at the beginning of this Section. If such

expansions should be found useful, the requisite formula? would

probably be obtained without difficulty by integration by parts.

This is in fact the case with the only expansion of the kind which

I have tried, which is that employed in Art. 45. By means of

this expansion and the corresponding formulae we might determine

in a double series the permanent temperature in a homogeneous

rectangular parallelepiped which radiates into a medium whose

which had no radial motion and but little in a perpendicular direction, and the

rapidly rushing fluid on the other side. The smaller /* is made, the narrower will

this stratum be, but not, so far as I can see, the shorter; and a very narrow

stratum in which there is intense molecular rotation passes, or may pass, in the

limit to a surface of discontinuity.

The above is what was referred to by anticipation in the footnote at p. 99.]
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temperature varies in any given manner from point to point ;
or

we might determine in a triple series the variable temperature in

such a solid, supposing the temperature of the medium to vary in

a given manner with the time as well as with the co-ordinates,

and supposing the initial temperature of the parallelepiped given

as a function of the co-ordinates. This problem, made a little

more general by supposing the exterior conductivity different for

the six faces, has been solved in another manner by M. Duhamel

in the Fourteenth Volume of the Journal de lEcole Polytechnique.

Of course such a problem is interesting only as an exercise of

analysis.

ADDITIONAL NOTE.

If the series by which r
2
is multiplied in (119) had been left

without summation, the series which would have been obtained for

A/
2 would have been rather simpler in form than the series in (122),

although more slowly convergent. One of these series may of

course be obtained from the other by means of the development
of tan x in a harmonic series. When s is an integer, k 2 can be

expressed in finite terms. The result is

& 2 = 8s-
1 7T2

loge 2 + 8s
1

7T-
2

{2-
1 + 4&quot;

1
. . .

+ (s
-

I)
1

}
+ 47T-

2

{2-
2 + 4-

2
. . . + (s

-
I)&quot;

2

)

-
J, (s odd,)

F = 8s-
1

7T-
2

{r
1 + 3-

1

. . . + (s
-

1)
1

}
+ 47T-

2

{r
2 + 3~

2
. . .

+ (s
-

1)&quot;

2

)
-

J. (s even.)

Moreover when 2s is an odd integer, or when a = 45, or = 135, &c.,

k * can be expressed in finite terms if the sum of the series

1
2 + 5~* -f 9~

2 + ... be calculated, and then be regarded as a known

transcendental quantity.



[Not before published. (See page 229.)]

SUPPLEMENT TO A PAPER ON THE THEORY or OSCILLATORY

WAVES.

THE labour of the approximation in proceeding to a high order,

when conducted according to the method of the former paper
whether we employ the function

&amp;lt;/&amp;gt;

or ty, depends in great measure

upon the circumstance that the two equations which have to be

satisfied simultaneously at the free surface are both composed in a

rather complicated manner of the independent variables, and in the

elimination of y the length of the process is still further increased

by the necessity of expanding the exponentials in y according to

series of powers, giving for each exponential a whole set of terms.

This depends upon the circumstance that of the limits of y belong

ing to the boundaries of the fluid, one instead of being a constant

is a function of x, and that too a function which is only known
from the solution of the problem.

If we convert the wave motion into steady motion, and refer

the fluid to two independent variables of which one is the para
meter of the stream lines or a function of the parameter, and the

other is x or a quantity which extends with x from -co to + oo
,

we shall ensure constancy of each independent variable at both its

limits, but in general the equations obtained will be of great com

plexity. It occurred to me however that if from among the infinite

number of systems of independent variables possessing the above

character we were to take the functions
&amp;lt;/&amp;gt;, i/r,

where

&amp;lt;f&amp;gt; =f(ud% -f vdy), ty
= $(udy vdx),

simplicity might be gained in consequence of the immediate rela

tion of these functions to the problem.
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We know that
&amp;lt;, ^ are conjugate solutions of the equation

satisfying the equations

dcf&amp;gt; d^r d(f&amp;gt; _ dty , .

dx dy dy dx
&quot;

so that if the form of either be assigned, satisfying of course the

equation (1), the other may be deemed known, since it can be

obtained by the integration of a perfect differential. If now we

take
(/&amp;gt;, -fy

for the independent variables, of which x and y are re

garded as functions, we get by changing the independent variables

in differentiation

d&amp;lt;}&amp;gt; _ 1 dy d&amp;lt;/&amp;gt; _ 1 dx d^r _ 1 dy d^r _ldx , ,

dx^Sd^ d^
=
~Sd$ ~dx~~Sd^ ~dj~&quot;

a dx dy dx dy
where ^ TT TT ~~ TT j &amp;gt;

d^jr d(f&amp;gt;

whence from (2)

dx _ dy dx _ _ dy ...

~d$~d^ ~d^~~d$&quot;

so that x, y are conjugate solutions of the equation

tfx d*x .

We have also from (4)

We get from (3), (4) and (6)

\
2

(dty\* 1 (fda;\* f dx
+(-/) =^\ ,, +

j \dxj 8
[\d&amp;lt;t&amp;gt;J

\

whence

(8),
-

where C is an arbitrary constant.

The mode of proceeding is the same in principle whether the

depth of the fluid be finite or infinite
;
but as the formulae are

simpler in the latter case, it may be well to consider it separately

in the first instance.
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If be the velocity of propagation, c will be the horizontal

velocity at a great depth when the wave motion is converted into

steady motion. The difference between
&amp;lt;/&amp;gt;

and ex will be a

periodic function of x or of
(/&amp;gt;.

We may therefore assume in ac

cordance with equation (5)

x = -^ + ^(ApWI* + Bie-Wl*)*\nim&amp;lt;l&amp;gt;lc
......... (9).

c

No cosines are inserted in this equation because if we take, as we

may, the origins of x and of
&amp;lt;f&amp;gt;

at a trough or a crest (suppose a

trough), x will be an odd function of
&amp;lt;/&amp;gt;,

in accordance with what

has already been shown at page 212. Corresponding to the above

value of x we have

y = - + (A.e
im^ c - Re- im^c

)
cos im^/c ..... (10),

c

the arbitrary constant being omitted, as may be done provided we
leave open the origin of y.

The origin of ty being arbitrary, we may take, as it will be

convenient to do, ^ = at the free surface. We see from (10) that

ty increases negatively downwards
;
and therefore of the two ex

ponentials that with im-jr/c for index is the one which must be

omitted, as expressing a disturbance that increases indefinitely in

descending.

We may without loss of generality shorten the formulas during
a rather long approximation by writing 1 for any two of the con

stants which depend differently on the units of space and time.

These constants can easily be reintroduced in the end by rendering

the equations homogeneous. We may accordingly put m = 1 and

c = 1. The expressions for x and y as thus shortened become, on

retaining only the exponential which decreases downwards,

l&amp;gt;

.................. (11),

l&amp;gt;

.................. (12).

At the free surface
i/r
= 0, and we must therefore have for ty

which gives

(C+ 2A. cos fy) (1
- 22t4

4
cos ty + 2*%

f+ VtijAA&amp;gt;
cos [(t

-
;
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where in the last term within parentheses each different combina

tion of unequal integers i, j is to be taken once.

On account of the complicated form of this equation, we can

proceed further only by adopting some system of approximation.
The most obvious is that adopted in the former paper, namely to

proceed according to powers of the coefficient of the term of the

first order. If we multiply out in equation (13), and replace pro
ducts of cosines by cosines of sums and differences, we may arrange

the equation in the form

jB + S
l
cos $ + 2

cos 2&amp;lt; + . . .
=

0,

where the several It s are series of terms involving the coefficients

A. And as the equation has to be satisfied independently of
&amp;lt;,

we must have separately

=
0, ^=0, 2

=
0, &c.

A slight examination of the process will show that A. is of the

order
&quot;,

and that consequently the product of any number of the

A s is of the order marked by the sum of the suffixes, and that B.

is of the order i. In proceeding therefore to any desired order we

can see at once what terms need not be written down, as being of

a superior order.

Thus in proceeding to the fifth order we must take the six

equations BQ
=

0, Bl
=

0, . . . B
6
=

0, which when written at length

are

C (1 + A* + 4^1
2

2

)
- A* + 2A*A

2
- 2A* - Jg* = 0,

+ 3^4,- 544, = 0,

C (- 4J 2 + 644) + A
2
- A? + 34

2J
2
- 444 =

0,

(-64+ 844) + J
3
- 344 + 44M a+ 2A

lA?- 5^J 4
=

0,

c (-

These equations may be looked on as giving, the first, the

arbitrary constant C, the second, the velocity of propagation, and

the succeeding ones taken in order the values of the constants

A
2 ,
A

3 ,
A

4 ,
A

5 , respectively. I say
&quot;

may be looked on as
giving&quot;,

for it is only when we restrict ourselves to the terms of the lowest

order in each equation that those quantities are actually given in

succession
;
the equations contain also terms of higher orders

;
and
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to get the complete values of the quantities true to the order to

which we are working, we must use the method of successive sub

stitutions. As to the second equation, if we take the terms of

lowest order in the first two we get C = J^&quot;

1

,
and then by substi

tution in the second equation 1 = g, the constant A^ dividing out.

The equation 1 =g becomes on generalizing the units of space and

time c
2 = g/m, and accordingly gives the velocity of propagation to

the lowest order of approximation.

On eliminating the arbitrary constant in the above equations,
and writing b for A

i9
the results become

(14),

x = - + 6e*sin -
(b

2 +PV / sin 20 + (f b
5 + if 6

5

)^sin 30

............ (15),

-f6V* cos 40 + 1^ 6V* cos 50 ............ (16).

The equation (14) gives to the fifth order the square of the

velocity of propagation in the wave motion; and (15), (16) give
the point where the parameters 0, &amp;gt;|r

have given values, and also,

by the aid of the formulae previously given, the components of the

velocity, and the pressure, in the steady motion. These same

equations (15), (16), if we suppose ^jr
constant give implicitly the

equation of the corresponding stream line, or if we suppose
constant the equation of one of the orthogonal trajectories.

To find implicitly the equation of the surface, we have only to

put i|r= in (15), (16), which gives

as = - + b sin -
(V + |-

6
4

)
sin 20 - (f tf + if b

5

) sin 30

-f &
4
sin 40+ ^&B

sin5 ............... (17),

y = b cos -
(6

2 + i 6
4

)
cos 20 - (f b* + if I

5

} cos 30

-|6
4

cos40-}- %5 6
5

cos50 ............... (18).

It is not necessary to form the explicit equation, but we can do so

if we please, most conveniently by the aid of Lagrange s theorem.

The result, carried to the fourth order only, which will suffice for

the object more immediately in view, is

6
3

)
cos x- (i&

2 + V &
4

) cos 2#

+ f b
3
cos 3a? - J6

4
cos 4^... (19).
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If we put b + b
3 =

a, we have to the fourth order

b = a - | a
3

,

and substituting in (19) we get

2/4-1 a
2 i a4 = a cos x (J a

2 + -|J a
4

)
cos 2% + f a3

cos 3#

-
J a4 cos4# (20).

The expression (14) for the square of the velocity of propagation,
and the equation of the surface (20), agree with the results pre

viously obtained by the former method (see p. 221) to the degree
of approximation to which the latter were carried, as will be seen

when we remember that the origins of y are not the same in the

two cases
;
but it would have been much more laborious to obtain

the approximation true to the fifth order by the old method.

It has already been remarked (p. 211) that the equation of the

profile in deep water agrees with a trochoid to the third order,

whichjs-as.far as the approximation there proceeded. This is no

longer, true when we proceed to the fourth order. On shifting

the origin of y so as to get rid of the constant term, the equation

(20) of the profile becomes

y a cos x
(J a2 + JJ a

4

)
cos Zx + f a3

cos 3# J a
4
cos 4#. . . (21).

On the other hand, the equation of a trochoid is given impli

citly by the pair of equations

x = a6 + j3 sin 0, y = j3cos0 + y.

In order that x may have the same period in the trochoid as in

the profile of the wave, we must have a = 1. We get then by

development to the fourth order, choosing 7 so as to make the

constant term vanish,

y = (p- f
3

) cos x - (4 /3- J
4

)
cos 2^ + /3

3
cos 3x - J/3

4
cos 4a?,

and putting

/3-t/3
! =

,

we get to the fourth order

y = aco$x- (i a
2 + V a*) cos Zx + f a

3
cos 3# - J a

4
cos 4^.. .(22).

Hence if yw , yt
denote the ordinates for the wave and trochoid

respectively, we have to the fourth order

Hence the wave lies a little above the trochoid at the trough and I/

crest, and a little bejow it in the shoulders.
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This result agrees well witli what might have been expected.
It has been shown (p. 227) that the limiting form for a series of

uniformly propagated irrotational waves is one presenting edges of

120, and that the inclination in this limiting form is in all proba

bility restricted to 30, whereas in the trochoidal waves investigated

by Gerstner and Kankine the limiting form is the cycloid, presenting

accordingly cusps, and an inclination increasing to 90. Hence the

limiting form must be reached with a much smaller value of the

parameter a in the former case than in the latter. Hence when
a is just large enough to make the difference of form of the irrota

tional and trochoidal waves begin to tell, since the limiting form

is more nearly approached in the former case than in the latter, we

should expect the curvature at the summit to be greater, while at

the same time as the general inclination is probably rather less,

and the inclination begins by increasing more rapidly as we recede

from the summit, the troughs must be shallower and flatter for an

equal mean height of wave.

Let us proceed now to the case of a finite depth. As before

we may choose the units of space and time so that c and m
shall each be 1, and we may choose for the value of the para

meter ^/r
at the surface. Let & be its value at the bottom.

Then since dfyjdy
= at the bottom we have from (3) and (4)

dy/d&amp;lt;p

= when ty + k = 0, and consequently

whence writing A.e
ik

for A. we haveo * i

iDMty ........... (23),

Putting for shortness

e
* + e-* = S

t ,
e
ik -e- ik=D

it

we have by the condition at the free surface

(C + ^,A
t
D

t
cos ty) {1

- 2&A
t
iS

t
cos

i&amp;lt;/&amp;gt;

+ $iAj3t
cos

/&amp;lt;/&amp;gt;/

As the expressions are longer than in the case of an infinite

depth, and the problem itself of rather less interest, I shall content
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myself with proceeding to the third order. We have to this

order from (25), on taking account of the relations

(C + AJ)^ cos + A 2
D

2
cos

2&amp;lt;/&amp;gt;

+ A 3
D

3
cos 30)

x |
1 - 2A& cos

cf)

- 4A& cos 20 - 6A
3
S

3
cos 30 1

{+ A*SZ + 4AtAj89
cos -f 2^ 2

cos 20 + ^^cos 30j

-**
]\Iultiplying out, retaining terms up to the third order only,

arranging the terms according to cosines of multiples of 0, and

equating to zero the coefficients of the cosines of the same

multiple, we get the four equations

j

3

C (- 4,A& + 2A*) -ASt
D

t
+ A,D, = 0,

C (- QA S

A slight examination of the process of approximation will

show that, whatever be the order to which we proceed, C, and
the coefficients A

z , A^ ... with even suffixes, will contain only
even powers, and the coefficients A

3 ,
A5) ... with odd suffixes

only odd powers, of the first coefficient A
lt Writing b for A

lt
we

may therefore assume, in proceeding to the third order only,

Substituting in the last three equations of the preceding group,
which after the substitution may be divided by b, b

2

,
b* respect

ively, arranging, and equating coefficients of like powers of 6,

we get
- 2^a -f D, = 0,

) 7 - 2^/3 +S& 4- A =
0,

(D,
- 66 8=0.

21
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The substitution for C and the coefficients A
2 ,
A

a ,
... of series

according to even or odd powers of b with indeterminate coeffi

cients was hardly worth making in proceeding to the third order

only, but seems advantageous when we want to proceed to a

rather high order. In proceeding to the nih
order it is to be noted

that the coefficients of C in the group of n + 1 equations got by

equating to zero the coefficients of cosines of multiples of
&amp;lt;/&amp;gt;

(including the zero multiple, or constant term), are of the orders

0, 1, 2, ... n in b, so that C being determined only to b
n~l

in the

equations after the first, the terms of the order n in the first

equation (which could only occur when n is even) are not required,

but this first equation need only be carried as far as to n 1.

In fact, in proceeding to the orders 1, 2, 3, 4, 5, 6, ..., the velocity

of propagation is given to an order not higher than 0, 1, 2, 3,

4, 5, ... in b, and therefore actually to 0, 0, 2, 2, 4, 4, ... since

it involves only even powers of b.

The last equations give in succession

(26),

(28),

(29),

and then by substituting in the first equation of the group on

the middle of p. 321, we get

We get now from (23), (24), after rendering the equations ho

mogeneous,

x = -
c

...... (31),

cos m$/c + &c ...... (32),
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the expression for y after the first term differing from that for x

only in having a minus sign before the second exponential in each

term, and cosines in place of sines. We have also from (30)

= +A (St +aS, + 12) V ............. (33),
9 t ^1-^1

which gives the velocity of propagation according to one of its

possible definitions (see Art. 3, p. 202). In these expressions

it is to be observed that

imk/c J) eimk/c _ e
-

We might of course in the numerators of the coefficients have

used expressions proceeding according to powers of 8
t
instead of

according to the functions 8l) S2 , S3
...

Let h be the value of y at the bottom, which is a stream line

for which ty= k, then we have from (24) generalized as to

units

k = ch ............................... (34),

so that it remains only to specify the origin of y and the meaning
of c. To the first order of small quantities we have

C

and at the surface

/c ......... (35),

&amp;lt;

) cos m^/c ......... (36),

lc ................................. (37),
c

y = bD
t
cos

ra&amp;lt;/&amp;gt;/c

......................................... (38).

Since y in (38) is a small quantity of the first order, we may
replace &amp;lt;f&amp;gt;/c

in its expression by #, in accordance with (37), which

gives for the equation of the surface

y = bD
t
cos mx,

so that to this order of approximation the origin is in the plane

of mean level, and therefore h denotes the mean depth of the fluid.

Also since u = dfy/dx we have to the first order from (3), (4), (6)

u =
Fjjj]

=
j-

i +^ (
e (*+A:)/c + e -m(*+*)/c) cos m^

= -c-c.mb (e
h ~ri + e

- m(h
-^) cos mx,
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and consists therefore of two parts, one representing a uniform

flow in the negative direction with a velocity c, and the other

a motion of periodic oscillation. To this order therefore there

can be no question that c should be the horizontal velocity in

a positive direction which we must superpose on the whole mass

of fluid in order to pass to pure wave motion without current.

In passing to the higher orders it will be convenient still to regard
this constant as the velocity of propagation, and accordingly as

representing the velocity which we must superpose, in the positive

direction, on the steady motion in order to arrive at the wave

motion
;
but what, in accordance with this definition, may be

the mean horizontal velocity of the whole mass of fluid in the

residual wave motion, or what may be the mean horizontal velocity

at the bottom, &c., or again what is the distance of the origin from

the plane of mean level, are questions which we could only answer

by working out the approximation, and which it would be of

very little interest to answer, as we may just as well suppose
the constant h defined by (34) given as suppose the mean depth

given, and similarly as regards the flow.

Putting \/r
= in (31) and (32), we have implicitly for the

equation of the surface the pair of equations

x - - + SJ) sin m^/c
---^ ($2 + 1) Sz

mb* sin
2m&amp;lt;j)/c

c U

4) SX&&quot;
sin

y = Dp cos infyjc
- -

($8 + l) D2
mb2

cos
2mc/&amp;gt;/c

+ Q n 4 (3$4 + 4$
2 + 4) D3

m2
&
3
cos

The ratios of the coefficients of the successive cosines in y or

sines in x to what they would have been for an infinite depth,

supposing that of cos
md&amp;gt;/c

the same in the two cases, are

i i

multiplied respectively by

#
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for the cosines in y, and by

8. 8, 8,
n&amp;gt; n , . n a

1 &quot;!

for the sines in #. Expressed in terms of D
t ,

the first three ratios

become

1, l + W~\ I

and increase therefore as the depth diminishes, and consequently
D

1
diminishes. The same is the case with the multipliers

D
2/A

2

&amp;gt; DJD?, SJD1} &c, and on both accounts therefore the

series converge more slowly as the depth diminishes. Thus for

1)^
= 3 the first three ratios are 1, 2, 3$. 1^ = 3 corresponds to

A/X = 125, nearly, so that the average depth is about the one-

eighth of the length of a wave.

The disadvantage of the approximation for the case of a finite

as compared with that of an infinite depth is not however quite so

great as might at first sight appear. There can be little doubt

that in both cases alike the series cease to be convergent when
the limiting wave, presenting an edge of 120, is reached. In the

case of an infinite depth, the limit is reached for some determinate

ratio of the height of a wave to the length, but clearly the same

proportion could not be preserved when the depth is much
diminished. In fact, high oscillatory waves in shallow water tend
to assume the character of a series of disconnected solitary waves,
and the greatest possible height depends mainly on the depth of

the fluid, being but little influenced by the length of the waves,
that is, the distance from crest to crest. To make the comparison
fair therefore between the convergency of the series in the cases of

a finite and of an infinite depth, we must not suppose the co

efficient of cos
m&amp;lt;p/c

the same in the two cases for the same length
of wave, but take it decidedly smaller in the case of the finite

depth, such for example as to bear the same proportion to the

greatest possible value in the two cases.

But with all due allowance to this consideration, it must be
confessed that the approximation is slower in the case of a finite

depth. That it must be so is seen by considering the character of

the developments, in the two cases, of the ordinate of the profile
in a harmonic series in terms of the abscissa, or of a quantity

having the same period and the same mean value as the abscissa.

The flowing outline of the profile in deep water lends itself readily
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to expansion in such a series. But the approximately isolated

and widely separated elevations that represent the profile in very
shallow water would require a comparatively large number of

terms in their expression in harmonic series in order that the

form should be represented with sufficient accuracy. In extreme

cases the fact of the waves being in series at all has little to

do with the character of the motion in the neighbourhood of the

elevations, where alone the motion is considerable, and it is not

therefore to be wondered at if an analysis essentially involving the

length of a wave should prove inconvenient.
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Aberration of light, 134, 153; Fresnel s

theory respecting, 141

Airy, Sir G. B., on tides and waves, 163,

165, 169, 171

Angular velocities of a fluid, 81, 112

Axes of extension, 82

Babinet s result as to non-influence of

earth s motion on interference ex

plained, 142

Ball pendulum, resistance to, 180, 186;

resistance to a, within a concentric

spherical case, 41, 181; in presence of

a distant plane, 43 ; within rectangu

lar box, 111, 305

Box, motion of fluid within a closed, of

the form of a parallelepiped, 60, 66,

194, 288
; equilateral triangular prism,

65 ; elliptic cylinder, 65 ; sector of

cylinder, 305

Cauchy s proof of a fundamental pro

position in hydrodynamics, 107, 160

Challis, Prof., aberration, 138; hydro-

dynamical theorem, 160; ball pendu

lum, 180

Convergency, essential and accidental,

241
; infinitely slow, 281

Current, superficial, in water an accom

paniment of waves, 208

Cylinder, motion of a piston and of the

air within a, 69

Cylindrical surfaces, (circular) motion

of perfect fluid between, 30
; (elliptic)

approximate motion within or outside,

54
; (circular) motion of viscous fluid

between, 102

Determinateness of problems in fluid

motion, 21

Discharge of air through small orifices,

paradox relating to, 176

Discontinuity, determination of, in a

function expressed by series or inte

grals of periodic functions, 239, 271 ;

propositions respecting, in the sums of

infinite series, &c., 279 ;
of motion in

a fluid, 310

Doubly refracting crystals, formula for

determining the principal indices of,

148

Earnshaw, S., on solitary waves, 169

Eddies, production of resistance by, 53,

99 ; production of, 311

Elastic solids, isotropic, equations of

equilibrium &c. of, 113; necessity of

two arbitrary constants in the equa

tions, 120

Fresnel s theory of non-influence of

earth s motion on the reflection and

refraction of light, 141

Friction, internal, of fluids, theory of, 75,

182; production of eddies by, 99, 311

Gerstner s investigation of a special case

of possible waves, 219

Green, notice of his papers on waves,

162 ;
on sound, 178 ; on the motion of

fluid about an ellipsoid, 54, 179

Hydrodynamics, report on, 157

Impulsive motion of fluids, 23
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Instability of motion, 53, 311

Integrating factor of homogeneous dif

ferential equations, 130

Kelland, Prof., long waves in canal of

any form, 163
; oscillatory waves in tri

angular canal, 165

Lee-way of a ship, effect of waves on,

208

Lines of motion (see Stream lines)

Luminiferous ether, equations of mo
tion of, 124; constitution of, 153

Motion of fluids, some cases of, 17; sup

plement, 188

Newton s solution of velocity in a vortex,

correction in, 103

Parallelepiped, rectangular, motion of

fluid within, 60, 66, 288; experiments
as to the motion, 194; different ex

pressions for permanent temperature

in, 295, 302; expression for the poten
tial in a hollow conducting, due to an

interior electric point, 303

Periodic series, critical values of the

sums of, 236

Pipe, linear motion of fluid in a, 105;

production of eddies in a, 99

Poisson s theory of elastic solids, 116;

of viscous fluids, 118, 182; reduction

of his two arbitrary constants in the

latter case to one, 119, 184

Poisson s solution of the problem of a

ball pendulum, correction in, 42, 49

Eankine s investigation of a special case

of possible rotational waves, 219; of

the limiting form of irrotational waves,

225

Eectangle, different expressions for the

permanent temperature in, 290

Eeflection, principle of, as applied to

the motion of liquids, 28

Eesistance referable to instability of

motion and eddies, 52, 99

Saint-Venant and Wantzel, discharge of

air through small orifices, 176

Saint-Venant, equations of motion of a

viscous fluid, 183

Sound, intensity and velocity of, theo

retical effect of viscosity of air on, 100

Spheres, motion of fluid between two

concentric, 38; non-concentric, 230

Steady motion of incompressible fluids, 1

Stream lines, determination whether a

given family of curves can be a set of,

in two dimensions, 5, 9; for motion

symmetrical about an axis, 15

Thomson, F. D. , demonstration of a the

orem due to him, 7

Thomson, Sir W., hydrodynamical ap

plication of his method of images, 230;

expression suggested by, for perma
nent temperature in rectangular pa

rallelepiped, 301

Tides (see Waves)

Triangular prism, (equilateral) motion of

fluid within, 8, 65

udx + vdy+wdz an exact differential,

proposition relating to, 1, 20, 106,

158

Uniqueness of xpfession for p, q, or 0,

23

Waves and tides, report respecting, 161

Waves, theory of oscillatory, of finite

height, 197, 314
;
of small, at the com

mon surface of two liquids, 212;

greatest height of, at the surface of a

liquid, 225
;
Gerstner and Eankine s

investigation of a special possible case

of, 219; solitary, 168, 325
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THE HOLY SCRIPTURES, &c.

THE CAMBRIDGE PARAGRAPH BIBLE
of the Authorized English Version, with the Text Revised by a Colla
tion of its Early and other Principal Editions, the Use of the Italic

Type made uniform, the Marginal References remodelled, and a Criti
cal Introduction prefixed, by the Rev. F. H. SCRIVENER, M.A.,LL.D.,
Editor of the Greek Testament, Codex Augiensis, &c., and one of
the Revisers of the Authorized Version. Crown Quarto, cloth, gilt, 2is.

From the Times.

&quot;Students of the Bible should be particu
larly grateful to (the Cambridge University
Press) for having produced, with the able as
sistance of Dr Scrivener, a complete critical

edition of the Authorized Version of the Eng
lish Bible, an edition such as, to use the words
of the Editor, would have been executed

long ago had this version been nothing more
than the greatest and best known of English
classics. Falling at a time when the formal

revision of this version has been undertaken

by a distinguished company of scholars and

divines, the publication of this edition must
be considered most opportune.&quot;

From the Athenceum.

&quot;Apart from its religious importance, the

English Bible has the glory, which but few
sister versions indeed can claim, of being the

chief classic of the language, of having, in

conjunction with Shakspeare, and in an im
measurable degree more than he, fixed the

language beyond any possibility of important
change. Thus the recent contributions to the

literature of the subject, by such workers as

Mr Francis Fry and Canon Westcott, appeal to

a wide ran ge of sympathies ;
and to these may

now be added Dr Scrivener, well known for

his labours in the cause of the Greek Testa

ment criticism, who has brought out, for the

Syndics of the Cambridge University Press,
an edition of the English Bible, according to

the text of 1611, revised by a comparison with

later issues on principles stated by him in his

Introduction. Here he enters at length into

the history of the chief editions of the version,

and of such features as the marginal notes,
the use of italic type, and the changes of or

thography, as well as into the most interesting
question as to the original texts from which
our translation is produced.&quot;

From the Methodist Recorder.
&quot; This noble quarto of over 1300 pages is

in every respect worthy of editor and pub
lishers alike. The name of the Cambridge
University Press is guarantee enough for its

perfection in outward form, the name of the
editor is equal guarantee for the worth and
accuracy of its contents. Without question,
it is the best Paragraph Bible ever published,
and its reduced price of a guinea brings it

within reach of a large number of students. .

But the volume is much more than a Para
graph Bible. It is an attempt, and a success
ful attempt, to give a critical edition of the
Authorised English Version, not (let it be
marked) a revision, but an exact reproduc
tion of the original Authorised Version, as

published in 1611, minus patent mistakes.
This is doubly necessary at a time when the
version is about to undergo revision. . . To
all who at this season seek a suitable volume
for presentation to ministers or teachers we
earnestly commend this work.&quot;

From the London Quarterly Review.

&quot;The work is worthy in every respect of
the editor s fame, and of the Cambridge
University Press. The noble English Ver
sion, to which our country and religion owe
so much, was probably never presented be
fore in so perfect a form.&quot;

THE CAMBRIDGE PARAGRAPH BIBLE.
STUDENT S EDITION, on good writing paper, with one column of

print and wide margin to each page for MS. notes. This edition will

be found of great use to those who are engaged in the task of

Biblical criticism. Two Vols. Crown Quarto, cloth, gilt, $is. 6d.

London: Cambridge Warehouse, 11 Paternoster Row.



CAMBRIDGE UNIVERSITY PRESS BOOKS. 3

THE LECTIONARY BIBLE, WITH APOCRYPHA,
divided into Sections adapted to the Calendar and Tables of Lessons
of 1871. Crown Octavo, cloth, $s. 6d.

BREVIARIUM
AD USUM INSIGNIS ECCLESIAE SARUM.

Fasciculus II. In quo continentur PSALTERIUM, cum ordinario Officii

totius hebdomadae juxta Horas Canonicas, et proprio Completorii,
LATINIA, COMMUNE SANCTORUM, ORDINARIUM MISSAE CUM
CANONE ET XIII MISSIS, &c. &c. juxta Editionem maximam pro
CLAUDIO CHEVALLON ET FRANCISCO REGNAULT A.D. MDXXXI. in

Alma Parisiorum Academia impressam : labore ac studio FRANCISCI
PROCTER, A.M., ET CHRISTOPHORI WORDSWORTH, A.M. Demy
Octavo, cloth. I2s.

&quot; Not only experts in liturgiology, but all labours of Mr G. H. Forbes, to everyone
persons interested in the history of the interested in the subject-matter with which it

Anglican Book of Common Prayer, will be is connected.&quot; Notes and Queries.
grateful to the Syndicate of the Cambridge &quot;We have here the first instalment of the

University Press for forwarding the publica- celebrated Sarum Breviary, of which no en-
tion of the volume which bears the above tire edition has hitherto been printed since

title, and which has recently appeared under the year 1557. . . Of the valuable explanatory
their auspices. . . When the present work is notes, as well as the learned introduction to

complete in three volumes, of which we have this volume, we can oniy speak in terms of the
here the first instalment, it will be accessible, very highest commendation.&quot; The Ex-
as the Sarum Missal is now, thanks to the aminer.

GREEK AND ENGLISH TESTAMENT,
in parallel Columns on the same page. Edited by ]. SCHOLEFIELD,
M.A. late Regius Professor of Greek in the University. Small
Oc~lavo. New Edition, with the Marginal References as arranged
and revised by Dr SCRIVENER. Cloth, red edges. 7s. 6d.

GREEK AND ENGLISH TESTAMENT,
THE STUDENT S EDITION of the above, on large writingpaper. 4to
Cloth. I2J.

GREEK TESTAMENT,
ex editione Stephani tertia, 1550. Small Oclavo. $s. 6d.

THE GOSPEL ACCORDING TO ST MATTHEW
in Anglo-Saxon and Northumbrian Versions, synoptically arranged:
with Collations of the best Manuscripts. By ]. M. KEMBLE, M.A.
and Archdeacon HARDWICK. Demy Quarto. IDS.

THE GOSPEL ACCORDING TO ST MARK
in Anglo-Saxon and Northumbrian Versions synoptically arranged:
with Collations exhibiting all the Readings of all the MSS. Edited
by the Rev. Professor SKEAT, M.A. late Fellow of Christ s College,
and author of a McESO-GOTHic Dictionary. Demy Quarto, los.

London: Cambridge Warehouse, 17 Paternoster Row.
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THE GOSPEL ACCORDING TO ST LUKE,
uniform with the preceding, edited by the Rev. Professor SKEAT.

Demy Quarto. IDS.

THE GOSPEL ACCORDING TO ST JOHN,
uniform with the .preceding, by the same Editor. Demy Quarto. los.

&quot; The -Gospel according to St John, in have had the good fortune to be edited by
Anglo-Saxon and Northumbrian Versions Professor Skeat, whose competency and zeal

Edited for the Syndics of the University have left nothing undone to prove himself

Press, by the Rev. Walter W. Skeat, M.A., equal to his reputation, ami to produce a

Elrington and Bosworth Professor of Anglo- work of the highest value to the student
Saxon in the University of Cambridge, of Anglo-Saxon. The design was indeed

completes an undertaking designed and worthy of its author. It is difficult to ex-

commenced by that distinguished scholar, aggerate the value of such a set of parallel

J. M. Kemble, some forty years ago. He texts. ... Of the particular volume now
was not himself permitted to execute his before us, we can only say it is worthy of its

scheme ; he died before it was completed two predecessors. We repeat that the ser-

for St Matthew. The edition of that Gospel vice rendered to the study of AngJo-Saxon
was finished by Mr., subsequently Arch- by this Synoptic collection cannot easily be

deacon, Hardwick. The remaining Gospels overstated.&quot; Contemporary Review.

THE POINTED PRAYER BOOK,
being the Book of Common Prayer with the Psalter or Psalms of

David, pointed as they are to be sung or said in Churches. Royal

241110. Cloth, is. 6d.

The same in square 32mo, cloth, 6d.

&quot;The Pointed Prayer Book deserves and still more for the terseness and clear-

mention for the new and ingenious system ness of the directions given for using it.&quot;

on which the pointing has been marked, Times.

THE CAMBRIDGE PSALTER,
for the use of Choirs and Organists. Specially adapted for Congre

gations in which the &quot;

Cambridge Pointed Prayer Book&quot; is used.

Demy 8vo. cloth extra, 3^. 6d. Cloth limp, cut flush, 2s. 6d.

THE PARAGRAPH PSALTER,
arranged for the use of Choirs by BROOKE Foss WESTCOTT, D.D.,
Canon of Peterborough, and Regius Professor of Divinity in the

University of Cambridge. Fcap. 4to,, 5^.

THE MISSING FRAGMENT OF THfe LATIN
TRANSLATION OF THE FOURTH BOOK OF EZRA,
discovered, and edited with an Introduction and Notes, and a

facsimile of the MS., by ROBERT L. BENSLY, M.A., Sub-Librarian

of the University Library, and Reader in Hebrew, Gonville and CaiuS

College, Cambridge. Demy Quarto. Cloth, IQS.

&quot;Edited with true scholarly complete- added a new chapter to the Bible, and, start-

ness. &quot;Westminster Review. ling as the statement may at first sight ap-

&quot;Wer sich je mit dem 4 Buche Es-ra pear,
it is no exaggeration of the actual fact,

einsehender beschiiftigt hat, wird durch die if by the Bible we understand that of the

obige, in jeder Rcziehung musterhafte Pub- larger size which contains the Apocrypha,
lication in freudiges Erstaunen versetzt wer- and if the Second Book of Esdras

can^bc
ten.&quot;Tkeol0gitch Literatnrzeitung. fairly called a part of the Apocrypha.&quot;

&quot;It has been said of this book that it has Saturday Review.

London; Cambridge Warehouse, 17 Paternoster Row.
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THEOLOGY-(ANCIENT).
SAYINGS OF THE JEWISH FATHERS,

comprising Pirqe Aboth and Pereq R. Meir in Hebrew and English,
with Critical and Illustrative Notes. By CHARLES TAYLOR, M.A.
Fellow and Divinity Lecturer of St John s College, Cambridge, and

Honorary Fellow of King s College, London. Demy Svo. cloth. los.

&quot;

It is peculiarly incumbent on those who
look to Jerome or Origen for their theology or

exegesis to learn something of their Jewish
predecessors. The New Testament abounds
with sayings which remarkably coincide with,
or closely resemble, those of the Jewish
Fathers; and these latter probably woald
furnish more satisfactory and frequent illus

trations of its text than the Old Testament.&quot;

Saturday Review.

&quot;The Masseketh Aboth stands at the

head of Hebrew non-canonical writings. It

is of ancient date, claiming to contain the

dicta of teachers who flourished from B.C. 200

to the same year of our era. The precise
time of its compilation in its present form is,

of course, in doubt. Mr Taylor s explana
tory and illustrative commentary is very full

and satisfactory.&quot; Spectator.

&quot;If we mistake not, this is the first pre
cise translation into the English language
accompanied by scholarly notes, of any por

tion of the Talmud. In other words, it is

the first instance of that most valuable and
neglected portion of Jewish literature being
treated in the same way as a Greek classic

in an ordinary critical edition. . . The Tal-
mudic books, which have been so strangely

neglected, we foresee will be the most im

portant aids of the future for the proper un
derstanding of the Bible. . . The Sayings oj
the Jewish Fathers may claim to be scholar

ly, and, moreover, of a scholarship unusually
thorough and finished. It is greatly to be

hoped that this instalment is an earnest of
future work in the same direction ; the Tal
mud is a mine that will take years to work
out.&quot; Dublin University Magazine.

&quot;A careful and thorough edition which
does credit to English scholarship, of a short
treatise from the Mishna, containing a series

of sentences or maxims ascribed mostly to

Jewish teachers immediately preceding, or

immediately following the Christian era. . .

&quot;

Contemporary Review.

THEODORE OF MOPSUESTIA S COMMENTARY
ON THE MINOR EPISTLES OF S. PAUL.

The Latin Version with the Greek Fragments, edited from the MSS.
with Notes and an Introduction, by H. B. SWETE, B.D., Rector of

Ashdon, Essex, and late Fellow of Gonville and Cains College,

Cambridge. In Two Volumes. Vol. I., containing the Introduction,
with Facsimiles of the MSS., and the Commentary upon Galatians

Colossians. Demy Oclavo. 12s.

&quot;One result of this disappearance of the

works of Diodorus, which his Arian oppo
nents did their utmost to destroy, is to render

more conspicuous the figure of Theodore.
From the point of view of scientific exegesis
there is no figure in all antiquity more in

teresting.&quot; The Expositor.
&quot;In dem oben verzeichneten Buche lieg.t

uns dHe erste Halfte einer vollstandigen,
ebenso sorgfaltig gearbeiteten wie schon

ausgestatteten Ausgabe des Commentars mit

VOLUME II.

ausfiihrlichen Prolegomena und reichhaltigen
kritischen und erlauternden Anmerkungen
vor.

&quot; Litcrarisches Centralblatt.
&quot; Eine sehr sorgfaltige Arbeit. Nichts

ist dem Verfasser entgangen, auch nicht
die in deutscher Sprache geschriebeneu
Specialschriften iiber die Antiochener. DrucS:
und Ausstattung sind, wie man das bei der

englischen Literatur gewohnt ist, Elegant
undi musCerhaft.&quot; Literarische Rundschau.

In the Press.

SANCTI IREN^I EPISCOPI LUGDUNENSIS
libros quinque adversus Haereses, versione Latina cum Codicibus

Claromontano ac Arundeliano denuo collata, praemissa de placitis

Gnosticorum prolusione, fragmenta necnon Graece, Syriace, Armeniace,
commentatione perpetua et indicibus variis edidit W. WIGAN HARVEY,
S.T.B. Collegii Regalis olim Socius. 2 Vols. Demy Oclavo. i8s.

London: Cambridge Warehouse. 17 Paternoster Row.
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M. MINUCII FELICIS OCTAVIUS.
The text newly revised from the original MS., with an English Com-
mentary, Analysis, Introduction, and Copious Indices. Edited by
H. A. HOLDEN, LL.D. Head Master of Ipswich School, late Fellow
of Trinity College, Cambridge. Crown Odtavo. 7^. 6d.

THEOPHILI EPISCOPI ANTIOCHENSIS
LIBRI TRES AD AUTOLYCUM

edidit, Prolegomenis Versione Notulis Indicibus instruxit GULIELMUS
GlLSON HUMPHRY, S.T.B. Collegii Sandiss. Trin. apud Cantabri-
gienses quondam Socius. Post Octavo. 5.?.

THEOPHYLACTI IN EVANGELIUM
S. MATTH^I COMMENTARIUS,

edited by W. G. HUMPHRY, B.D. Prebendary of St Paul s, late
Fellow of Trinity College. Demy Oclavo. 7^. 6d.

TERTULLIANUS DE CORONA MILITIS, DE
SPECTACULIS, DE IDOLOLATRIA,

with Analysis and English Notes, by GEORGE CURREY, D.D. Preacher
at the Charter House, late Fellow and Tutor of St John s College.
Crown Octavo. s.

THEOLOGY (ENGLISH).

WORKS OF ISAAC BARROW,
compared with the Original MSS., enlarged with Materials hitherto

unpublished. A new Edition, by A. NAPIER, M.A. of Trinity College,
Vicar of Holkham, Norfolk. 9 Vols. Demy Ocflavo. $. y.

TREATISE OF THE POPE S SUPREMACY,
and a Discourse concerning the Unity of the Church, by ISAAC
BARROW. Demy Octavo, js. 6d.

PEARSON S EXPOSITION OF THE CREED,
edited by TEMPLE CHEVALLIER, B.D. late Fellow and Tutor of
St Catharine s College, Cambridge. New Edition. \In the Press.

AN ANALYSIS OF THE EXPOSITION OF
THE CREED

written by the Right Rev. JOHN PEARSON, D.D. late Lord Bishop
of Chester, by W. H. MILL, D.D. late Regius Professor of Hebrew
in the University of Cambridge. Demy Oclavo, cloth.

5.$-.

WHEATLY ON THE COMMON PRAYER,
edited by G. E. CORRIE, D.D. Master of Jesus College, Examining
Chaplain to the late Lord Bishop of Ely. Demy Octavo, js. 6d.

London: Cambridge Warehouse, 17 Paternoster Row.
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CESAR MORGAN S INVESTIGATION OF THE
TRINITY OF PLATO,

and of Philo Judasus, and of the effects which an attachment to their

writings had upon the principles and reasonings of the Fathers of the

Christian Church. Revised by H. A. HOLDEN, LL.D. Head Master
of Ipswich School, late Fellow of Trinity College, Cambridge. Crown
Octavo. 4s.

TWO FORMS OF PRAYER OF THE TIME OF
QUEEN ELIZABETH. Now First Reprinted. Demy Oftavo. 6d.

&quot; From Collections and Notes 1867 of Occasional Forms of Prayer, but it had
1876, by W. Carew Hazlitt (p. 340), we learn been lost sight of for 200 years. By the

that A very remarkable volume, in the kindness of the present possessor of this

original vellum cover, and containing 25 valuable volume, containing in all 25 distinct

Forms of Prayer of the reign of Elizabeth, publications, I am enabled to reprint in the
each with the autograph of Humphrey Dyson, following pages the two Forms of Prayer
has lately fallen into the hands of my friend supposed to have been lost.&quot; Extractfrom
Mr H. Pyne. It is mentioned specially in the PREFACE.
the Preface to the Parker Society s volume

SELECT DISCOURSES,
by JOHN SMITH, late Fellow of Queens College, Cambridge. Edited by
H. G. WILLIAMS, B.D. late Professor of Arabic. Royal Octavo. *]$. 6d.

&quot;The Select Discourses of John Smith, with the richest lights of meditative genius...
collected and published from his papers after He was one of those rare thinkers in whom
his death, are, in my opinion, much the most largeness of view, and depth, and wealth of

considerable work left to us by this Cambridge poetic and speculative insight, only served to

School [the Cambridge Platonists]. They evoke more fully the religious spirit, and
have a right to a place in English literary while he drew the mould of his thought from

history.&quot; Mr MATTHEW ARNOLD, in the Plotinus, he vivified the substance of it from

Contemporary Review. St Paul.&quot; Principal TULLOCH, Rational
&quot;Of all the products of the Cambridge Theology in England in the ijt/t Century.

School, the Select Discourses are perhaps &quot;We may instance Mr Henry Griffin

the highest, as they are the most accessible Williams ^ revised edition of Mr John Smith s

and the most widely appreciated. ..and indeed Select Discourses, which have won Mr
no spiritually thoughtful mind can read them Matthew Arnold s admiration, as an example
unmoved. They carry us so directly into an of worthy work for an University Press to

atmosphere of divine philosophy, luminous undertake.&quot; Times.

THE HOMILIES,
with Various Readings, and the Quotations from the Fathers given
at length in the Original Languages. Edited by G. E. CORRIE, D.D.
Master of Jesus College. Demy Octavo, js. 6d.

DE OBLIGATIONS CONSCIENTI^E PR^LEC-
TIONES decem Oxonii in Schola Theologica habitas a ROBERTO
SANDERSON, SS. Theologias ibidem Professore Regio. With English

Notes, including an abridged Translation, by W. WHEWELL, U.D.
late Master of Trinity College. Demy Octavo. 7-y. 6d.

ARCHBISHOP USHER S ANSWER TO A JESUIT,
with other Tracts on Popery. Edited by J. SCHOLEFIELD, M.A. late

Regius Professor of Greek in the University. Demy Octavo, js. 6d.

London: Cambridge Warehouse, 17 Paternoster Row.
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WILSON S ILLUSTRATION OF THE METHOD
of explaining the New Testament, by the early opinions of Jews and
Christians concerning Christ. Edited by T. TuRTON, D.D. late Lord

Bishop of Ely. Demy Oclavo. 5^.

LECTURES ON DIVINITY
delivered in the University of Cambridge, by JOHN HEY, D.D.
Third Edition, revised by T. TURTON, D.D. late Lord Bishop of Ely.
2 vols. Demy Oc~lavo. i$s.

AEABIC AND SANSKRIT.

POEMS OF BEHA ED DIN ZOHEIR OF EGYPT.
With a Metrical Translation, Notes and Introduction, by E. H.

PALMER, M.A., Barrister-at-Law of the Middle Temple, Lord
Almoner s Professor of Arabic and Fellow of St John s College
in the University of Cambridge. 3 vols. Crown Quarto.

Vol. I. The ARABIC TEXT. ios. 6d.\ Cloth extra, 15.?.

Vol. II. ENGLISH TRANSLATION, ios. 6d.-
y
Cloth extra, i$s.

&quot; Professor Palmer s activity in advancing
Arabic scholarship has formerly shown itself

in the production of his excellent Arabic

Grammar, and his Descriptive Catalogue of

Arabic MSS. in the Library of Trinity Col

lege, Cambridge. He has now produced an
admirable text, which illustrates in a remark
able manner the flexibility and graces of the

language he loves so well, and of which he
seems to be perfect master.... The Syndicate
of Cambridge University must not pass with
out the recognition of their liberality in

bringing out, in a worthy form, so important
an Arabic text. It is not the first time that

Oriental scholarship has thus been wisely
subsidised by Cambridge.&quot; Indian Mail.

&quot;

It is impossible to quote this edition with
out an expression of admiration for the per
fection to which Arabic typography has been

brought in England in this magnificent Ori

ental work, the production of which redounds
to the imperishable credit of the University
of Cambridge. It may be pronounced one of

the most beautiful Oriental books that have
ever been printed in Europe : and the learning
of the Editor worthily rivals the technical

get-up of the creations of the soul of one of

the most tasteful poets of Isl^m, the study
of which will contribute not a little to save

honour of the poetry of the Arabs.&quot;

MYTHOLOGY AMONG THE HEBREWS (Engl.
Transl.}, p. 194.

&quot;For ease and facility, for variety of

metre, for imitation, either designed or un

conscious, of the style of several of our own
poets, these versions deserve high praise
We have no hesitation in saying that in both
Prof. Palmer has made an addition to Ori
ental literature for which scholars should be

grateful ; and that, while his knowledge of

Arabic is a sufficient guarantee for his mas
tery of the original, his English compositions
are distinguished by versatility, command of

language, rhythmical cadence, and, as we
have remarked, by not unskilful imitations of

the styles of several of our own favourite

poets, living and dead.&quot; Saturday Review.
&quot; This sumptuous edition of the poems of

Beha-ed-din Zoheir is a very welcome addi

tion to the small series of Eastern poets
accessible to readers who are not Oriental

ists. ... In all there is that exquisite finish of
which Arabic poetry is susceptible in so rare

a degree. The form is almost always beau
tiful, be the thought what it may. But this,
of course, can only be fully appreciated by
Orientalists. And this brings us to the trans

lation. It is excellently well done. Mr
Palmer has tried to imitate the fall of the

original in his selection of the English metre
for the various pieces, and thus contrives to

convey a faint idea of the graceful flow of
the Arabic Altogether the inside of the
book is worthy of the beautiful arabesque
binding that rejoices the eye of the lover of
Arab art.&quot; Academy,

London: Cambridge Warehouse, 17 Paternoster Row.
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NALOPAKHYANAM, OR, THE TALE OF NALA
;

containing the Sanskrit Text in Roman Characters, followed by a

Vocabulary in which each word is placed under its root, with references

to derived words in Cognate Languages, and a sketch of Sanskrit

Grammar. By the Rev. THOMAS JARRETT, M.A. Trinity College,

Regius Professor of Hebrew, late Professor of Arabic, and formerly
Fellow of St Catharine s College, Cambridge. Demy Oclavo. los.

NOTES ON THE TALE OF NALA,
by J, PEILE, M.A. Fellow and Tutor of Christ s College.

[In the Press.

GREEK AND LATIN CLASSICS, &c. (See also pp. 20-23.)

A SELECTION OF GREEK INSCRIPTIONS,
With Introductions and Annotations by E. S. ROBERTS, M.A.
Fellow and Tutor of Caius College. {Preparing.

THE AGAMEMNON OF AESCHYLUS.
With a Translation in English Rhythm, and Notes Critical and Ex
planatory. By BENJAMIN HALL KENNEDY, D.D., Regius Professor

of Greek. Crown Octavo., cloth. 6s.

&quot; One of the best editions of the master- tion of a great undertaking.&quot; Sat. Rev.

piece of Greek tragedy.&quot; A thenceum. &quot;Let me say that I think it a most admira-
&quot;

By numberless other like happy and ble piece of the highest criticism I like

weighty helps to a coherent and consistent your Preface extremely; it is just to the
text and interpretation, Dr Kennedy has

point.&quot; Professor PALEY.

approved himself a guide to Aeschylus of &quot;

Professor Kennedy has conferred a boon

certainly peerless calibre.&quot; Contemp. Rev. on all teachers of the Greek classics, by caus-

&quot;Itis needless to multiply proofs of the ing the substance of his lectures at Cam-
value of this volume alike to the poetical bridge on the Agamemnon of ^Eschylus to

translator, the critical scholar, and the ethical be published. ..This edition of the Agamemnon
student. We must be contented to thank is one which no classical master should be
Professor Kennedy for his admirable execu- without.&quot; Examiner.

THE THE^TETUS OF PLATO by the same Author.

\In the Press.

ARISTOTLE. TIEPI AIKAIO2TNH2.
THE FIFTH BOOK OF THE NICOMACHEAN ETHICS OF
ARISTOTLE. Edited by HENRY JACKSON, M.A., Fellow of Trinity

College, Cambridge. Demy Octavo, cloth. 6s.

&quot;

It is not too much to say that some of Scholars will hope that this is not the only
the points he discusses have never had so portion of the Aristotelian writings which he
much light thrown upon them before. ... is likely to edit.&quot; Athetuzum,

London: Cambridge Warehouse, 17 Paternoster Row.
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PRIVATE ORATIONS OF DEMOSTHENES,
with Introductions and English Notes, by F. A. PALEY, M.A. Editor
of Aeschylus, etc. and J. E. SANDYS, M.A. Fellow and Tutor of St
John s College, and Public Orator in the University of Cambridge.

PART I. Contra Phormionem, Lacritum, Pantaenetum, Boeotum de
Nomine, Boeotum de Dote, Dionysodorum. Crown Octavo, cloth. 6s.

&quot; Mr Paley s scholarship is sound and
accurate, his experience of editing wide, and
if he is content to devote his learning and
abilities to the production of such manuals
as these, they will be received with gratitude
throughout the higher schools of the country.
Mr Sandys is deeply read in the German

literature which bears upon his author, and
the elucidation of matters of daily life, in the
delineation of which Demosthenes is so rich,
obtains full justice at his hands We
hope this edition may lead the way to a more
general study of these speeches in schools
than has hitherto been possible. Academy.

PART II. Pro Phormione, Contra Stephanum I. II.
; Nicostratum,

Cononem, Calliclem. js. 6d.

&quot;To give even a brief sketch of these

speeches [Pro Phormione and Contra. Ste-

phanum~\ would be incompatible with our
limits, though we can hardly conceive a task
more useful to the classical or professional
scholar than to make one for himself. ....
It is a great boon to those who set them
selves to unravel the thread of arguments
pro and con to have the aid of Mr Sandys s

excellent running commentary .... and no
one can say that he is ever deficient

in the needful help which enables us to
form a sound estimate of the rights of the
case It is long since we have come
upon a work evincing more pains, scholar

ship, and varied research and illustration than
Mr Sandys s contribution to the Private
Orations of Demosthenes .&quot; Sat. Rev.

&quot;

the edition reflects credit on
Cambridge scholarship, and ought to be ex
tensively used.&quot; Athenaum.

PINDAR.
OLYMPIAN AND PYTHIAN ODES. With Notes Explanatory
and Critical, Introductions and Introductory Essays. Edited by
C. A. M. FENNELL, M.A., late Fellow of Jesus College. Crown Oc
tavo, cloth, gs.

&quot;Mr Fennell deserves the thanks of all

classical students for his careful and scholarly
edition of the Olympian and Pythian odes.
He brings to his task the necessary enthu
siasm for his author, great industry, a sound
judgment, and, in particular, copious and
minute learning in comparative philology.
To his qualifications in this last respect every
page bears witness.&quot; Athentzum.

&quot;Considered simply as a contribution to
the study and criticism of Pindar, Mr Fen-
nell s edition is a work of great merit. But
it has a wider interest, as exemplifying the

change which has come over the methods
and aims of Cambridge scholarship within
the last ten or twelve years. . . . The short

introductions and arguments to the Odes,
which for so discursive an author as Pindar
are all but a necessity, are both careful and
acute. . . Altogether, this edition is a welcome
and wholesome sign of the vitality and de

velopment of Cambridge scholarship, and we
are glad to see that it is to be continued.&quot;

Saturday Review.
&quot;There are many reasons why Mr C. A.

M. Fennell s edition of Pindar s Olympian
and Pythian Odes ; should not go unnoticed,
even though our spaca forbids doing it full

justice; as a helpful complement and often

corrective of preceding editions, both in its

insight into comparative philology, its critical

acumen, and its general sobriety of editing.
In etymology especially the volume marks a

generation later than Donaldson s, though
holding in respect his brilliant authority. . .

Most helpful, too, is the introductory essay
on Pindar s style and dialect, while the

chronological sequence of the Odes (pp.
xxxi. xxxii.), and the Metrical Schemes,
which immediately precede the text and com
mentary, leave nothing to be desiderated.&quot;

Contemporary Review.

THE NEMEAN AND ISTHMIAN ODES. [Preparing.

London : Cambridge Warehouse, 1 7 Paternoster Row.



THE CAMBRIDGE UNIVERSITY PRESS. ii

PLATO S PH^DO,
literally translated, by the late E. M. COPE, Fellow of Trinity College,

Cambridge. Demy O&amp;lt;ftavo. 5^.

ARISTOTLE.
THE RHETORIC. With a Commentary by the late E. M. COPE,
Fellow of Trinity College, Cambridge, revised and edited by J. E.

SANDYS, M.A., Fellow and Tutor of St John s College, Cambridge,
and Public Orator. With a biographical Memoir by H. A. J. MUNRO,
M.A. Three Volumes, Demy Octavo, i. us. 6d.

&quot;This work is in many ways creditable to

the University of Cambridge. The solid and
extensive erudition of Mr Cope himself bears
none the less speaking evidence to the value
of the tradition which he continued, if it is

not equally accompanied by those qualities of

speculative originality and independent judg
ment which belong more to the individual

writer than to his school. And while it must
ever be regretted that a work so laborious

should not have received the last touches of
its author, the warmest admiration is due to

Mr Sandys, for the manly, unselfish, and un

flinching spirit in which he has performed his

most difficult and delicate task. If an English
student wishes to have a full conception of
what is contained in the Rhetoric of Aris

totle, to Mr Cope s edition he must
go.&quot;

A cademy.
&quot;Mr Sandys has performed his arduous

duties with marked ability and admirable tact.

...Besides the revision of Mr Cope s material

already referred to in his own words, Mr
Sandys has thrown in many useful notes ;

none more useful than those that bring the

Commentary up to the latest scholarship by
reference to important works that have ap
peared since Mr Cope s illness put a period
to his labours. When the original Com
mentary stops abruptly three chapters be
fore the end of the third book, Mr Sandys

carefully supplies the deficiency, following
Mr Cope s general plan and the slightest
available indications of his intended treat

ment. In Appendices he has reprinted from
classical journals several articles of Mr
Cope s ; and, what is better, he has given the
best of the late Mr Shilleto s Adversaria.
In every part of his work revising, supple
menting, and completing he has done ex

ceedingly well.&quot; Examiner.
&quot; A careful examination of the work shows

that the high expectations of classical stu

dents will not be disappointed. Mr Cope s

wide and minute acquaintance with all the
Aristotelian writings, to which Mr Sandys
justly bears testimony, his thorough know
ledge of the important contributions of mo
dern German scholars, his ripe and accurate

scholarship, and above all, that sound judg
ment and never-failing good sense which are
the crowning merit of our best English edi

tions of the Classics, all combine to make
this one of the most valuable additions to the

knowledge of Greek literature which we have
had for many years.

&quot;

Spectator.
&quot;Von der Rhetorik isteine neue Ausgabe

mit sehr ausfuhrlichem Commentar erschie-
nen. Derselbe entha.lt viel schatzbares ....
Der Herausgeber verdient fiir seine muhe-
volle Arbeit unseren lebhaften Dank.&quot;

Susemihl in Bursiaris Jahresbericht.

THE BACCHAE OF EURIPIDES.
with Introduction, Critical Notes, and Archaeological Illustrations,

by J. E. SANDYS, M.A., Fellow and Tutor of St John s College, Cam
bridge, and Public Orator. Crown Octavo, cloth, los. 6d.

P. VERGILI MARONIS OPERA
cum Prolegomenis et Commentario Critico pro Syndicis Preli

Academici edidit BENJAMIN HALL KENNEDY, S.T.P., Graecae

Linguae Professor Regius. Extra Fcap. Oclavo, cloth. 5.9.

London : Cambridge Warehouse, r 7 Paternoster Row.
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M. T. CICERONIS DE OFFICIIS LIBRI TRES,
with Marginal Analysis, an English Commentary, and copious Indices,
by H. A. HOLDEN, LL.D. Head Master of Ipswich School, late Fellow
of Trinity College, Cambridge, Classical Examiner to the University
of London. Third Edition. Revised and considerably enlarged.
Crown Octavo. 9^.

&quot;Dr Holden truly states that Text, index of twenty-four pages makes it easy to

Analysis, and Commentary in this third edi- use the book as a storehouse of information
tion have been again subjected to a thorough on points of grammar, history, and philo-
revision. It is now certainly the best edition sophy. . . . This edition of the Offices, Mr
extant. A sufficient apparatus of various Reid s Academics, Lffilius, and Cato, with
readings is placed under the text, and a very the forthcoming editions of the De Finibus
careful summary in the margin. The Intro- and the De Natura Deorum will do much to
duction (after Heine) and notes leave nothing maintain the study of Cicero s philosophy in
to be desired in point of fulness, accuracy, Roger Ascham s university.&quot; Notes and
and neatness ; the typographical execution Queries.
will satisfy the most fastidious eye. A careful

M. T. CICERONIS PRO CN. PLANCIO ORATIO
by the same Editor. [/;; the Press.

M. TULLII CICERONIS DE NATURA DEORUM
Libri Tres, with Introduction and Commentary by JOSEPH B. MAYOR,
M.A., Professor of Classical Literature at King s College, London,
formerly Fellow and Tutor of St John s College, Cambridge, together
with a new collation of several of the English MSS. by J. H. SWAINSON,
M.A.jformerly Fellow of Trinity Coll., Cambridge. DemySvo. los. 6d.

MATHEMATICS, PHYSICAL SCIENCE, &c.

THE ELECTRICAL RESEARCHES OF THE
HONOURABLE HENRY CAVENDISH, F.R.S.

Written between 1771 and 1781, Edited from the original manuscripts
in the possession of the Duke of Devonshire, K. G., by J. CLERK
MAXWELL, F.R.S. Demy 8vo. cloth. i8s.

&quot;This work, which derives a melancholy satisfaction to Prof. Maxwell to see this

interest from the lamented death of the editor goodly volume completed before his life s

following so closely upon its publication, is a work was done.&quot; Athencp.um.

valuable addition to the history of electrical
&quot; Few men have made such important dis-

research. . . . The papers themselves are most coveries in such different branches of Natural

carefully reproduced, with fac-similes of the Philosophy as Cavendish. . . The book before

author s sketches of experimental apparatus. us shews that he was in addition the discoverer

Every department of editorial duty of some of the most important of the laws of

appears to have been most conscientiously electricity.&quot; Cambridge Review.

performed ; and it must have been no small

A TREATISE ON NATURAL PHILOSOPHY.
By Sir W. THOMSON, LL.D., D.C.L., F.R.S., Professor of Natural

Philosophy in the University of Glasgow, and P. G. TAIT, M.A.,
Professor of Natural Philosophy in the University of Edinburgh.
Vol. I. Part I. i6s.

&quot; In this, the second edition, we notice a could form within the time at our disposal

large amount of new matter, the importance would be utterly inadequate.&quot; Nature.

of which is such that any opinion which we

London: Cambridge Warehouse, 17 Paternoster Row.
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ELEMENTS OF NATURAL PHILOSOPHY.
By Professors Sir W. THOMSON and P. G. TAIT. Part I. 8vo. cloth,
Second Edition. ^s.

&quot;This work is designed especially for the trigonometry. Tiros in Natural Philosophy
use of schools and junior classes in the Uni- cannot be better directed than by being told

versities, the mathematical methods being to give their diligent attention to an intel-

limited almost without exception to those of ligent digestion of the contents of this excel-
the most elementary geometry, algebra, and lent vade mecum&quot;Iron.

A TREATISE ON THE THEORY OF DETER
MINANTS AND THEIR APPLICATIONS IN ANALYSIS
AND GEOMETRY, by ROBERT FORSYTH SCOTT, M.A., of
St John s College, Cambridge. Demy 8vo. 12s.

HYDRODYNAMICS,
A Treatise on the Mathematical Theory of the Motion of Fluids, by
HORACE LAMB, M.A., formerly Fellow of Trinity College, Cambridge;
Professor of Mathematics in the University of Adelaide. DemySvo. 12s.

THE ANALYTICAL THEORY OF HEAT,
By JOSEPH FOURIER. Translated, with Notes, by A. FREEMAN, M.A.
Fellow of St John s College, Cambridge. Demy Octavo. i6s.

&quot;Fourier s treatise is one of the very few matics who do not follow with freedom a
scientific books which can never be rendered treatise in any language but their own. It

antiquated by the progress of science. It is is a model of mathematical reasoning applied
not only the first and the greatest book on to physical phenomena, and is remarkable for

the physical subject of the conduction of the ingenuity of the analytical process em-
Heat, but in every Chapter new views are ployed by the author.&quot; Contemporary
opened up into vast fields of mathematical Review, October, 1878.

speculation. &quot;There cannot be two opinions as to the
&quot; Whatever text-books may be written, value and importance of the Theorie de la

giving, perhaps, more succinct proofs of Chaleur. It has been called an exquisite
Fourier s different equations, Fourier him- mathematical poem, not once but many times,
self will in all time coming retain his unique independently, by mathematicians of different

prerogative of being the guide of his reader schools. Many of the very greatest of mo-
into regions inaccessible to meaner men, how- dern mathematicians regard it, justly, as the
ever expert.&quot; Extractfrom letter of Pro- key which first opened to them the treasure-

fessor Clerk Maxwell. house of mathematical physics. It is still the
&quot;

It is time that Fourier s masterpiece, text-book of Heat Conduction, and there

The Analytical Theory of Heat, trans- seems little present prospect of its being
lated by Mr Alex. Freeman, should be in- superseded, though it is already more than
troduced to those English students of Mathe- half a century old.&quot; Nature,

MATHEMATICAL AND PHYSICAL PAPERS,
By GEORGE GABRIEL STOKES, M.A., D.C.L., LL.D., F.R.S., Fellow
of Pembroke College, and Lucasian Professor of Mathematics in the

University of Cambridge. Reprinted from the Original Journals and

ransactions, with Additional Notes by the Author. Vol. I. Demy
Octavo, cloth. 15^-.

AN ELEMENTARY TREATISE ON QUATERNIONS,
By P. G. TAIT, M.A., Professor of Natural Philosophy in the Univer

sity of Edinburgh. Second Edition. Demy 8vo. 14^.

London: Cambridge Warehouse, 17 Paternoster Row.
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COUNTERPOINT.
A Practical Course of Study, by Professor G. A. MACFARREN, M.A.,
Mus. Doc. Second Edition, revised. Demy Quarto, cloth, js. 6d.

A CATALOGUE OF AUSTRALIAN FOSSILS
(including Tasmania and the Island of Timor), Stratigraphically and

Zoologically arranged, by ROBERT ETHERIDGE, Jun., F.G.S., Acting
Palaeontologist, H.M. Geol. Survey of Scotland, (formerly Assistant-

Geologist, Geol. Survey of Victoria). Demy O6lavo, cloth, los. 6d.
&quot;The work is arranged with great clear- papers consulted by the author, and an index

ness, and contains a. full list of the books and to the genera.&quot; Saturday Review.

ILLUSTRATIONS OF COMPARATIVE ANA
TOMY, VERTEBRATE AND INVERTEBRATE,

for the Use of Students in the Museum of Zoology and Comparative
Anatomy. Second Edition. Demy Octavo, cloth, 2s. 6d.

A SYNOPSIS OF THE CLASSIFICATION OF
THE BRITISH PALAEOZOIC ROCKS,

by the Rev. ADAM SEDGWICK, M.A., F.R.S., and FREDERICK
M C

COY, F.G.S. One vol., Royal Quarto, Plates, *, u.

A CATALOGUE OF THE COLLECTION OF
CAMBRIAN AND SILURIAN FOSSILS

contained in the Geological Museum of the University of Cambridge,

by J. W. SALTER, F.G.S. With a Portrait of PROFESSOR SEDGWICK.

Royal Quarto, cloth, 7s. 6d.

CATALOGUE OF OSTEOLOGICAL SPECIMENS
contained in the Anatomical Museum of the University of Cam
bridge. Demy Octavo. 2s. 6d.

THE MATHEMATICAL WORKS OF
ISAAC BARROW, D.D. ,-

Edited by W. WHEWELL, D.D. Demy Octavo. js. 6d.

ASTRONOMICAL OBSERVATIONS
made at the Observatory of Cambridge by the Rev. JAMES CHALLIS,
M.A., F.R.S., F.R.A.S., Plumian Professor of Astronomy and Experi
mental Philosophy in the University of Cambridge, and Fellow of

Trinity College. For various Years, from 1846 to 1860.

ASTRONOMICAL OBSERVATIONS
from 1 86 1 to 1865. Vol. XXI. Royal 4to. cloth. 15^.

London: Cambridge Warehouse, 17 Paternoster Row.
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LAW.
AN ANALYSIS OF CRIMINAL LIABILITY.

By E. C. CLARK, LL.D., Regius Professor of Civil Law in the

University of Cambridge, also of Lincoln s Inn, Barrister at Law.

Crown 8vo. cloth, 75. 6d.

A SELECTION OF THE STATE TRIALS.

By J. W. WiLLiS-BUND, M.A., LL.B., Barrister-at-Law, Professor of

Constitutional Law and History, University College, London. Vol. I.

Trials for Treason (13271660). Crown 8vo. cloth, iSs.

&quot; A great and good service has been done volumes of the State Trials.&quot; Contemporary
to all students of history, and especially to Review.

those of them who look to it in a legal aspect,
&quot; This work is a very useful contribution

by Prof J. W. Willis-Bund in the publica- to that important branch of the constitutional

tion of a Selection of Casesfrom the State history of England which is concerned with

Trials . . . Professor Willis- Bund has been the growth and development of the law of

very careful to give such selections from the treason, as it may be gathered from trials be-

State Trials as will best illustrate those fore the ordinary courts. The author has

points in what may be called the growth of very wisely distinguished these cases from

the Law of Treason which he wishes to those of impeachment for treason before Par-

bring clearly under the notice of the student, liament, which he proposes to treat in a future

and the result is, that there is not a page in volume under the general head Proceedings

the book which has not its own lesson in Parliament. &quot;/&quot;^ Academy.
In all respects, so far as we have been able &quot;This is a work of such obvious utility

to test it this book is admirably done.&quot; that the only wonder is that no one should

Scotsman. have undertaken it before. ... In many
,. , . ~ , respects therefore, although the trials are

&quot;Mr Willis-Bund has edited A Selection more or ]ess abridgedj this is for the ordinary
of Cases from the State Trials which is

studen t s purpose not only a more handy,
likely to form a very valuable addition to

bu(
. a more useful work than Rowell s.&quot;

the standard literature. . . ihere can
Saturday Review.

be no doubt, therefore, of the interest that Within the boards of this useful and
can be found in the State trials. But they handy book the student will find everything
are large and unwieldy, and it is impossible he can desire {n the way of lists of cases
for the general reader to come across them .

n at iength or referred to, and the
Mr WUlUBund has therefore done good statutes bearing on the text arranged chro-
service in making a selection that is m the no lOgically. The work of selecting from
first volume reduced to a commodious torm. Howell s bulky series of volumes has been

The Examiner. done with much judgment, merely curious

&quot;Every one engaged, either in teaching cases being excluded, and all included so

or in historical inquiry, must have felt the treated as to illustrate some important point

want of such a book, taken from the unwieldy of constitutional law.&quot; Glasgow Herald.

Vol. II. In the Press.

THE FRAGMENTS OF THE PERPETUAL
EDICT OF SALVIUS JULIANUS,

collected, arranged, and annotated by BRYAN WALKER, M.A. LL.D.,

Law Lecturer of St John s College, and late Fellow of Corpus Christi

College, Cambridge. Crown 8vo., Cloth, Price 6s.

&quot;This is one of the latest, we believe mentaries and the Institutes . . . Hitherto

quite the latest, of the contributions made to the Edict has been almost inaccessible to

legal scholarship by that revived study of the ordinary English student and such a

the Roman Law at Cambridge which is now student will be interested as well as perhaps

so marked a feature in the industrial life surprised to find how abundantly the extant

of the University. ... In the present book fragments illustrate and clear up points which

we have the fruits of the same kind of have attracted his attention in the Commen-

thorough and well-ordered study which was taries, or the Institutes, or the Digest. -

brought to bear upon the notes to the Com- Law Times.

London: Cambridge Warehouse, 17 Paternoster Row.
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THE COMMENTARIES OF GAIUS AND RULES
OF ULPIAN. (New Edition, revised and enlarged.)

With a Translation and Notes, by J. T. ABDY, LL.D., Judge of County
Courts, late Regius Professor of Laws in the University of Cambridge,
and BRYAN WALKER, M.A., LL.D., Law Lecturer of St John s

College, Cambridge, formerly Law Student of Trinity Hall and
Chancellor s Medallist for Legal Studies. Crown Oc~tavo, i6s.

&quot; As scholars and as editors Messrs Abdy explanation. Thus the Roman jurist is

and Walker have done their work well. allowed to speak for himself, and the reader
For one thing the editors deserve feels that ne is really studying Roman law

special commendation. They have presented in the original, and not a fanciful representa-
Gaius to the reader with few notes and those tion of it.&quot; Athencentm.

merely by way of reference or necessary

THE INSTITUTES OF JUSTINIAN,
translated with Notes by J. T. ABDY, LL.D., Judge of County Courts,
late Regius Professor of Laws in the University of Cambridge, and

formerly Fellow of Trinity Hall
;
and BRYAN WALKER, M.A., LL.D.,

Law Lecturer of St John s College, Cambridge ; late Fellow and
Lecturer of Corpus Christi College ;

and formerly Law Student of

Trinity Hall. Crown Octavo, i6s.

&quot; We welcome here a valuable contribution attention is distracted from the subject-matter
to the study of jurisprudence. The text of by the difficulty of struggling through the

the Institutes is occasionally perplexing, even language in which it is contained, it will be
to practised scholars, whose knowledge of almost indispensable.&quot; Spectator.
classical models does not always avail them &quot;The notes are learned and carefully corn-

in dealing with the technicalities of legal piled, and this edition will be found useful

phraseology. Nor can the ordinary diction- to students.&quot; Law Times,

aries be expected to furnish all the help that
&quot; Dr Abdy and Dr Walker have produced

is wanted. This translation will then be of a book which is both elegant and useful.&quot;

great use. To the ordinary student, whose Athenceum.

SELECTED TITLES FROM THE DIGEST,
annotated by B. WALKER, M.A., LL.D. Part I. Mandati vel

Contra. Digest XVII. i. Crown 8vo., Cloth, 5^.

&quot;This small volume is published as an ex- say that Mr Walker deserves credit for the

periment. The author proposes to publish an way in which he has performed the task un-

annotated edition and translation of several dertaken. The translation, as might be ex-

books of the Digest if this one is received pected, is scholarly.&quot; Law Times.

with favour. We are pleased to be able to

Part II. De Adquirendo rerum dominio and De Adquirenda vel amit-

tenda possessione. Digest XLI. i & n. Crown Octavo, Cloth. 6s.

GROTIUS DE JURE BELLI ET PACIS,
with the Notes of Barbeyrac and others ; accompanied by an abridged
Translation of the Text, by W. WHEWELL, D.D. late Master of Trinity

College. 3 Vols. Demy Oc&quot;lavo, I2s. The translation separate, 6s.

London: Cambridge Warehouse, 17 Paternoster Row.
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HISTOKY.

LIFE AND TIMES OF STEIN, OR GERMANY
AND PRUSSIA IN THE NAPOLEONIC AGE,

by J. R. SEELEY, M.A., Regius Professor of Modern History in

the University of Cambridge, with Portraits and Maps. 3 Vols.

Demy 8vo. 48^.

&quot;

If we could conceive anything similar

to a protective system in the intellectual de

partment, we might perhaps look forward to

a time when our historians would raise the

cry of protection for native industry. Of
the unquestionably greatest German men of
modern history I speak of Frederick the

Great, Goethe and Stein the first two found

long since in Carlyle and Lewes biographers
who have undoubtedly driven their German
competitors out of the field. And now in the

year just past Professor Seeley of Cambridge
has presented us with a biography of Stein

which, though it modestly declines competi
tion with German works and disowns the

presumption of teaching us Germans our own
history, yet casts into the shade by its bril

liant superiority all that we have ourselves

hitherto written about Stein.... In five long
chapters Seeley expounds the legislative and
administrative reforms, the emancipation of

the person and the soil, the beginnings of
free administration and free trade, in short

the foundation of modern Prussia, with more
exhaustive thoroughness, with more pene
trating insight, than any one had done be
fore.&quot; Deutsche Rundschau.

&quot;Dr Busch s volume has made people
think and talk even more than usual of Prince

Bismarck, and Professor Seeley s very learned
work on Stein will turn attention to an earlier

and an almost equally eminent German states

man It is soothing to the national

self-respect to find a few Englishmen, such
as the late Mr Lewes and Professor Seeley,

doing for German as well as English readers
what many German scholars have done for

us.
&quot;

Times.
&quot; In a notice of this kind scant justice can

be done to a work like the one before us ; no
short resume can give even the most meagre
notion of the contents of these volumes, which
contain no page that is superfluous, and
none that is uninteresting To under
stand the Germany of to-day one must study
the Germany of many yesterdays, and now
that study has been made easy by this work,
to which no one can hesitate to assign a very
high place among those recent histories which
have aimed at original research.&quot; Athe*
neeum.

&quot;The book before us fills an important
gap in English nay, European historical

literature, and bridges over the history of

Prussia from the time of Frederick the Great
to the days of Kaiser Wilhelm. It thus gives
the reader standing ground whence he may
regard contemporary events in Germany in

their proper historic light We con

gratulate Cambridge and her Professor of

History on the appearance of such a note

worthy production. And we may add that it

is something upon which we may congratulate

England that on the especial field of the Ger
mans, history, on the history of their own
country, by the use of their own literary

weapons, an Englishman has produced a his

tory of Germany in the Napoleonic age far

superior to any that exists in German.&quot;

Examiner.

THE UNIVERSITY OF CAMBRIDGE FROM
THE EARLIEST TIMES TO THE ROYAL
INJUNCTIONS OF 1535,

by JAMES BASS MULLINGER, M.A. Demy 8vo. cloth (734 pp.), \is.

the University during the troublous times of

the Reformation and the Civil War.&quot; Athe-
&quot;We trust Mr Mullinger will yet continue

his history and bring it down to our own
day.&quot; Academy,

&quot;He has brought together a mass of in

structive details respecting the rise and pro

gress, not only of his own University, but of

all the principal Universities of the Middle

Ages We hope some day that he may
continue his labours, and give us a history of

nceum.
&quot; Mr Mullinger s work is one of great

learning and research, which can hardly fail

to become a standard book of reference on
the subject. . . . We can most strongly recom
mend this book to our readers.&quot; Spectator.

London : Cambridge Warehouse, 1 7 Paternoster Row.
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HISTORY OF THE COLLEGE OF ST JOHN
THE EVANGELIST,

by THOMAS BAKER, B.D., Ejected Fellow. Edited by JOHN E. B.

MAYOR, M.A., Fellow of St John s. Two Vols. Demy 8vo. 24^.

&quot;To antiquaries the book will be a source
of almost inexhaustible amusement, by his

torians it will be found a work of considerable
service on questions respecting our social

progress in past times ; and the care and
thoroughness with which Mr Mayor has dis

charged his editorial functions are creditable

to his learning and industry.&quot; Athenceum.
&quot; The work displays very wide reading,

and it will be of great use to members of the

college and of the university, and, perhaps,
of still greater use to students of English
history, ecclesiastical, political, social, literary

and academical, who have hitherto had to be
content with Dyer.

&quot;

Academy.
&quot;

It may be thought that the history of a

college cannot beparticularlyattractive. The
two volumes before us, however, have some
thing more than a mere special interest for

those who have been in any way connected
with St John s College, Cambridge; they
contain much which will be read with pleasure
by a farwider circle... The index with which
Mr Mayor has furnished this useful work
leaves nothing to be desired.&quot; Spectator.

HISTORY OF NEPAL,
translated by MUNSHI SHEW SHUNKER SINGH and PANDIT SHRI
GUNANAND

;
edited with an Introductory Sketch of the Country and

People by Dr D. WRIGHT, late Residency Surgeon at Kathmandu,
and with facsimiles of native drawings, and portraits of Sir JUNG
BAHADUR, the KING OF NEPAL, &c. Super-royal 8vo. Price 2is.

&quot; The Cambridge University Press have
done well in publishing this work. Such
translations are valuable not only to the his

torian but also to the ethnologist; Dr
Wright s Introduction is based on personal
inquiry and observation, is written intelli

gently and candidly, and adds much to the

value of the volume. The coloured litho

graphic plates are interesting.&quot; Nature.
&quot;The history has appeared at a very op

portune moment...The volume... is beautifully

printed, and supplied with portraits of Sir

Jung Bahadoor and others, and with excel

lent coloured sketches illustrating Nepaulese
architecture and religion.&quot; Examiner.

&quot;Von nicht geringem Werthe dagegen sind
die Beigaben, welche Wright als Appendix*
hinter der history folgen lasst, Aufzah-

lungen namlich der in Nepal iiblichen Musik-
Instrumente, Ackergerathe, Miinzen, Ge-
wichte, Zeittheilung, sodann ein kurzes
Vocabular in Parbatiya und Newari, einige
Newari songs mit Interlinear-Uebersetzung,
eine Konigsliste, und, last not least, ein
Verzeichniss der von ihm mitgebrachten
Sanskrit-Mss., welche jetzt in der Universi-
tats-Bibliothek in Cambridge deponirt sind.&quot;

A. WEBER, Literaturzeituug, Jahrgang
1877, Nr. 26.

THE ARCHITECTURAL HISTORY OF THE
UNIVERSITY AND COLLEGES OF CAMBRIDGE,
By the late Professor WILLIS, M.A. With numerous Maps, Plans,

and Illustrations. Continued to the present time, and edited

by JOHN WILLIS CLARK, M.A., formerly Fellow

of Trinity College, Cambridge. [In the Press.

London : Cambridge Warehouse, 1 7 Paternoster Row.
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SCHOLAR ACADEMICAE:
Some Account of the Studies at the English Universities in the

Eighteenth Century. By CHRISTOPHER WORDSWORTH, M.A.,
Fellow of Peterhouse ;

Author of &quot;

Social Life at the English
Universities in the Eighteenth Century.&quot; Demy octavo, cloth, 15^.

&quot;The general object of Mr Wordsworth s

book is sufficiently apparent from its title.

He has collected a great quantity of minute

and curious information about the working
of Cambridge institutions in the last century,
with an occasional comparison of the corre

sponding state of things at Oxford. It is of

course impossible that a book of this kind

should be altogether entertaining as litera

ture. To a great extent it is purely a book

of reference, and as such it will be of per
manent value for the historical knowledge of

English education and learning. &quot;Saturday

Review.
&quot; In the work before us,which is strictlywhat

it professes to be, an account of university stu

dies, we obtain authentic information upon the

course and changes of philosophical thought
in this country, upon the general estimation

of letters, upon the relations of doctrine and

science, upon the range and thoroughness of

education, and we may add, upon the cat

like tenacity of life of ancient forms.... The

particulars Mr Wordsworth gives us in his

excellent arrangement are most varied, in

teresting, and instructive. Among the mat
ters touched upon are Libraries, Lectures,
the Tripos, the Trivium, the Senate House,
the Schools, text-books, subjects of study,
foreign opinions, interior life. We learn

even of the various University periodicals
that have had their day. And last, but not

least, we are given in an appendix a highly
interesting series of private letters from a
Cambridge student to John Strype, giving
a vivid idea of life as an undergraduate and
afterwards, as the writer became a graduate
and a fellow.&quot; University Magazine.

&quot;Only those who have engaged in like la

bours will be able fully to appreciate the
sustained industry and conscientious accuracy
discernible in every page. . . . Of the whole
volume it may be said that it is a genuine
service rendered to the study of University
history, and that the habits of thought of any
writer educated at either seat of learning in

the la--t century will, in many cases, be far

better understood after a consideration of the
materials here collected.&quot; Academy.

MISCELLANEOUS.

STATUTA ACADEMIC CANTABRIGIENSIS.

Demy Octavo. 2s. sewed.

ORDINATIONES ACADEMLE CANTABRIGIENSIS
Demy Oclavo, cloth. 3^. 6d.

TRUSTS, STATUTES AND DIRECTIONS affecting

(i) The Professorships of the University. (2) The Scholarships and

Prizes. (3) Other Gifts and Endowments. Demy 8vo. $s.

COMPENDIUM OF UNIVERSITY REGULATIONS,
for the use of persons in Statu Pupillari. Demy Octavo. 6d.

London: Cambridge Warehouse, 17 Paternoster Row.
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CATALOGUE OF THE HEBREW MANUSCRIPTS
preserved in the University Library, Cambridge. By Dr S. M.
SCHiLLER-SziNESSY. Volume I. containing Section I. The Holy

Scriptures; Section II. Commentaries on the Bible. Demy Octavo. 9^.

A CATALOGUE OF THE MANUSCRIPTS
preserved in the Library of the University of Cambridge. Demy
Octavo. 5 Vols. ioj. each.

INDEX TO THE CATALOGUE. Demy Odavo. los.

A CATALOGUE OF ADVERSARIA and printed
books containing MS. notes, preserved in the Library of the University
of Cambridge. $s. 6d.

THE ILLUMINATED MANUSCRIPTS IN THE
LIBRARY OF THE FITZWILLIAM MUSEUM,

Catalogued with Descriptions, and an Introduction, by WILLIAM
GEORGE SEARLE, M.A., late Fellow of Queens College, and Vicar of

Hockington, Cambridgeshire. Demy Oclavo. js. 6d.

A CHRONOLOGICAL LIST OF THE GRACES,
Documents, and other Papers in the University Registry which con

cern the University Library. Demy Octavo. 2s. 6d.

CATALOGUS BIBLIOTHEOE BURCKHARD-
TIAN^E. Demy Quarto. $s. ,,r

London: Cambridge Warehouse, 17 Paternoster Row.
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Cambrfoge 35tble for

GENERAL EDITOR : J. J. S. PEROWNE, D.D., DEAN OF

PETERBOROUGH.

THE want of an Annotated Edition of the BIBLE, in handy portions,

suitable for School use, has long been felt.

In order to provide Text-books for School and Examination pur

poses, the CAMBRIDGE UNIVERSITY PRESS has arranged to publish the

several books of the BIBLE in separate portions at a moderate price,

with introductions and explanatory notes.

The Very Reverend J. J. S. PEROWNE, D.D., Dean of Peter

borough, has undertaken the general editorial supervision of the work,

and will be assisted by a staff of eminent coadjutors. Some of the

books have already been undertaken by the following gentlemen :

Rev. A. CARR, M.A., Assistant Master at Wellington College.

Rev. T. K. CHEYNE, Fellow ofBalliol College, Oxford.

Rev. S. Cox, Nottingham.
Rev. A. B. DAVIDSON, D.D., Professor ofHebrew, Edinburgh.
Rev. F. W. FARRAR, D.D., Canon of Westminster.

Rev. A. E. HUMPHREYS, M.A., Fellow of Trinity College, Cambridge.

Rev. A. F. KIRKPATRICK, M.A., Fellow of Trinity College.

Rev. J. J. LIAS, M.A., late Professor at St Davids College, Lampeter.

Rev. J. R. LUMBY, D.D., Norrisian Professor ofDivinity.

Rev. G. F. MACLEAR, D.D., WardenofStAugustine s Coll., Canterbury.

Rev. H. C. G. MOTJLE, M. A., Fellow of Trinity College.

Rev. W. F. MOULTON, D.D., Head Master of the Leys School, Cambridge.

Rev. E. H. PEROWNE, D.D., Master of Corpus Christi College, Cam

bridge, Examining Chaplain to the Bishop ofSt Asaph.

The Ven. T. T. PEROWNE, M.A., Archdeacon ofNorwich.

Rev. A. PLUMMER, M.A., Master of University College, Durham.

Rev. E. H. PLUMPTRE, D.D., Professor of Biblical Exegesis, King s

College, London.

Rev. W. SANDAY, M.A., Principal of Bishop Hatjield Hall, Durham.

Rev. W. SiMCOX, M.A., Rector of Wcyhill, Hants.

Rev. ROBERTSON SMITH, M.A., Professor ofHebrnv, Aberdeen.

Rev. A. W. STREANE, M.A., Fellow ofCorpus Christi Coll., Cambridge.

The Ven. H. W. WATKINS, M.A., Archdeacon of Northumberland.

Rev. G. H. WHITAKER, M.A., Fellow of St John s College, Cambridge.

Rev. C. WORDSWORTH, M.A., Rector of Glaston, Rutland.

London: Cambridge Warehouse, 17 Paternoster Row.
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THE CAMBRIDGE BIBLE FOR SCHOOLS. Continued.

Now Ready. Cloth, Extra Fcap. 8vo.

THE BOOK OF JOSHUA. Edited by Rev. G. F.

MACLEAR, D.D. With i Maps. is. 6d.

THE BOOK OF JONAH. By Archdn. PEROWNE. is. 6d.

THE GOSPEL ACCORDING TO ST MATTHEW.
Edited by the Rev. A. CARR, M.A. With i Maps. is. 6d.

THE GOSPEL ACCORDING TO ST MARK. Edited

by the Rev. G. F. MACLEAR, D.D. (with 2 Maps), is. 6d.

THE GOSPEL ACCORDING TO ST LUKE. By
the Rev. F. W. FARRAR, D.D. (With 4 Maps.) 4-r. 6d.

THE ACTS OF THE APOSTLES. By the Rev.

Professor LUMBY, D.D. Part I. Chaps. I XIV. With i Maps.
is. 6d.

PART II. Preparing.

THE EPISTLE TO THE ROMANS. By the Rev.

H. C. G. MOULE, M.A. S.T. 6d.

THE FIRST EPISTLE TO THE CORINTHIANS.
By the Rev. Professor LIAS, M.A. With a Map and Plan. is.

THE SECOND EPISTLE TO THE CORINTHIANS.
By the Rev. Professor LIAS, M.A. is.

THE GENERAL EPISTLE OF ST JAMES. By the

Rev. Professor PLUMPTRE, D.D. is. 6d.

THE EPISTLES OF ST PETER AND ST JUDE.
By the Rev. Professor PLUMPTRE, D.D. is. 6d.

London: Cambridge Warehouse, 17 Paternoster Row.
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THE CAMBRIDGE BIBLE FOR SCHOOLS.-^***/.)

Preparing.

THE FIRST BOOK OF SAMUEL. By the Rev.

A. F. KIRKPATRICK, M.A. {Immediately.
te.

THE BOOK OF JEREMIAH. By the Rev. A. W.

STREANE, M.A. {Nearly ready.

THE BOOKS OF HAGGAI AND ZECHARIAH. By
Archdeacon PBROWNE.

THE BOOK OF ECCLESIASTES. By the Rev.

Professor PLUMPTRE.

THE GOSPEL ACCORDING TO ST JOHN. By
the Rev. \V. SANDAY and the Rev. A. PLUMMER, M.A.

{Nearly ready.

In Preparation.

THE CAMBRIDGE GREEK TESTAMENT,
FOR SCHOOLS AND COLLEGES,

with a Revised Text, based on the most recent critical authorities, and

English Notes, prepared under the direction of the General Editor,

THE VERY REVEREND J. J. S. PEROWNE, D.D.,

DEAN OF PETERBOROUGH.

THE GOSPEL ACCORDING TO ST MATTHEW. By the

Rev. A. CARR, M.A. {In the Press.

The books will be published separately, as in the &quot;Cambridge Bible

for Schools.&quot;

London : Cambridge Warehouse, \ 7 Paternoster Row.
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THE PITT PRESS SERIES.

I. GREEK.
THE ANABASIS OF XENOPHON, BOOK VI. With

a Map and English Notes by ALFRED PRETOR, M.A., Fellow of
St Catharine s College, Cambridge ; Editor of Persius and Cicero ad Atticum
Book I. Price is. bd.

&quot; In Mr Pretor s edition of the Anabasis the text of Kiihner has been followed in the main,
while the exhaustive and admirable notes of the great German editor have been largely utilised.

These notes deal with the minutest as well as the most important difficulties in construction, and
all questions of history, antiquity, and geography are briefly but very effectually elucidated.&quot; Tkt
Examiner.

BOOKS I. III. IV. & V. By the same Editor. 2s. each.

BOOK II. By the same Editor. Price 2s. 6d.

&quot;Mr Pretor s Anabasis of Xenophon, Book IV. displays a union of accurate Cambridge
scholarship, with experience of what is required by learners gained in examining middle-class

schools. The text is large and clearly printed, and the notes explain all difficulties. . . . Mr
Pretor s notes seem to be all that could be wished as regards grammar, geography, and other
matters.&quot; The Academy.

&quot;Another Greek text, designed it would seem for students preparing for the local examinations,
is Xenophon s Anabasis, Book II., with English Notes, by Alfred Pretor, M.A. The editor has

exercised his usual discrimination in utilising the text and notes of Kuhner, with the occasional

assistance of the best hints of Schneider, Vollbrecht and Macmichael on critical matters, and of

Mr R. W. Taylor on points of history and geography. . . When Mr Pretor commits himself to
&quot; Had we to introduce a young Greek scholar to Xenophon, we should esteem ourselves for

tunate in having Pretor s text-book as our chart and guide.&quot; Contemporary Review.

AGESILAUS OF XENOPHON. The Text revised
with Critical and Explanatory Notes, Introduction, Analysis, and Indices.

By H. HAILSTONE, M.A., late Scholar of Peterhouse, Cambridge, Editor of

Xenophon s Hellenics, etc. Cloth, is. 6d.

ARISTOPHANES RANAE. With English Notes and
Introduction by W. C. GREEN, M.A., Assistant Master at Rugby School.

Cloth. 3j. 6d.

ARISTOPHANES AVES. By the same Editor. New
Edition. Cloth.

3.5-.
6d.

&quot;The notes to both plays are excellent. Much has been done in these two volumes to render

the study of Aristophanes a real treat to a boy instead of a drudgery, by helping him to under
stand the fun and to express it in his mother tongue.&quot; The Examiner.

EURIPIDES. HERCULES FURENS. With Intro

ductions, Notes and Analysis. ByJ. T. HUTCHINSON, M.A., Christ s College,
and A. GRAY, M.A., Fellow of Jesus College. Cloth, is.

&quot;Messrs Hutchinson and Gray have produced a careful and useful edition.&quot; Saturday
Review.

London: Cambridge Warehouse, 17 Paternoster Row.
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LUCIANI SOMNIUM CHARON PISCATOR ET DE
LUCTU, with English Notes by W. E. HEITLAND, M.A., Fellow of

St John s College, Cambridge. New Edition, with Appendix, y. 6J.

II. LATIN.

M. T. CICERONIS DE AMICITIA. Edited by J. S.

REID, M.L., Fellow of Gonville and Caius College, Cambridge. Price $s.

&quot;Mr Reid has decidedly attained his aim, namely, a thorough examination of the Latinity
of the dialogue. The revision of the text is most valuable, and comprehends sundry
acute corrections. . . . This volume, like Mr Reid s other editions, is a solid gain to the scholar

ship of the country.&quot; Athenceum.
&quot;A moie distinct gain to scholarship is Mr Reid s able and thorough edition of the De

A midtid of Cicero, a work of which, whether we regard the exhaustive introduction or the

instructive and most suggestive commentary, it would be difficult to speak too highly. . . . When
we come to the commeiuary, we are only amazed by its fulness in proportion to its bulk-

Nothing is overlooked which can tend to enlarge the learner s general knowledge of Ciceronian
Latin or to elucidate the text.&quot; Satrirday Review.

M. T. CICERONIS CATO MAJOR DE SENECTUTE.
Edited by J. S. REID, M.L. Price y. 64.

&quot; The notes are excellent and scholarlike, adapted for the upper forms of public schools, and

likely to be useful even to more advanced students.&quot; Guardian.

M. T. CICERONIS ORATIO PRO ARCHIA POETA.
Edited by J. S. REID, M.L. Price is. 6d.

&quot;

It is an admirable specimen of careful editing. An Introduction tells us everything we could
wish to know about Archias, about Cicero s connexion with him, about the merits of the trial, and
the genuineness of the speech. The text is well and carefully printed. The notes are clear and
scholar-like. . . . No boy can master this little volume without feeling that he has advanced a long
step in scholarship.&quot; The Academy.

M. T. CICERONIS PRO L. CORNELIO BALBO ORA-
TIO. Edited by J. S. REID, M.L. Fellow of Caius College, Cambridge.
Price is. 6d.

&quot;We are bound to recognize the pains devoted in the annotation of these two orations to the

minute and thorough study of their Latinity, both in the ordinary notes and in the textual

appendices.&quot; Saturday Review.

QUINTUS CURTIUS. A Portion of the History.
(ALEXANDER IN INDIA.) By W. E. HEITLAND, M. A., Fellow and Lecturer

of St John s College, Cambridge, and T. E. RAVEN, B.A., Assistant Master

in Sherborne School. Price y. 6d.

&quot;Equally commendable as a genuine addition to the existing stock of school-books is

Alexander in India, a compilation from the eighth and ninth books of Q. Curtius, edited for

the Pitt Press by Messrs Heitland and Raven. . . . The work of Curtius has merits of its

own, which, in former generations, made it a favourite with English scholars, and which still

make it a popular text book in Continental schools The reputation of Mr Heitland is a

sufficient guarantee for the scholarship of the notes, which are ample without being excessive,
and the book is well furnished with all that is needful in the nature of maps, indexes, and ap
pendices.&quot; -Academy.

London : Cambridge Warehouse, 1 7 Paternoster Row.
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P. OVIDII NASONIS FASTORUM LIBER VI. With
a Plan of Rome and Notes by A. SiDGWiCK, M.A. Tutor of Corpus Christi

College, Oxford. Price is. 6d.

&quot; Mr Sidgwick s editing of the Sixth Book of Ovid s Fasti furnishes a careful and serviceable
volume for average students. It eschews construes which supersede the use of the dictionary,
but gives full explanation of grammatical i: sages and historical and mythical allusions, besides

illustrating peculiarities of style, true and false derivations, and the more remarkable variations of
the text.&quot; Saturday Review.

&quot;

It is eminently good and useful. . . . The Introduction is singularly clear on the astronomy of

Ovid, which is properly shown to be ignorant and confused; there is an excellent little map of

Rome, giving just the places mentioned in the text and no more ; the notes are evidently written

by a practical schoolmaster.&quot; The Academy.

GAI IULI CAESARIS DE BELLO GALLICO COM
MENT. I. II. With English Notes and Map by A. G. PESKETT, M.A.,
Fellow of Magdalene College, Cambridge, Editor of Caesar De Bello Gallico,
VII. Price is.

GAI IULI CAESARIS DE BELLO GALLICO COM-
MENTARIUS SEPTIMUS. With two Plans and English Notes by A. G.

PESKETT, M.A. Fellow of Magdalene College, Cambridge. Price is.

&quot; In an unusually succinct introduction he gives all the preliminary and collateral information
that is likely to be useful to a young student ; and, wherever we have examined his notes, we
have found them eminently practical and satisfying. . . The book may well be recommended for

careful study in school or college.&quot; Saturday Review.

&quot;The notes are scholarly, short, and a real help to the most elementary beginners in Latin

prose.&quot; The Examiner.

BOOKS IV. AND V. by the same Editor. Price 2s.

BEDA S ECCLESIASTICAL HISTORY, BOOKS
III., IV., the Text from the very ancient MS. in the Cambridge University

Library, collated with six other MSS. Edited, with a life from the German of

EBERT, and with Notes, &c. by J. E. B. MAYOR, M.A., Professor of Latin,

andj. R. LUMBY, D.D., Norrisian Professor of Divinity. Price fs. 6d.

&quot;To young students of English History the illustrative notes will be of great service, while

the study of the texts will be a good introduction to Mediaeval Latin.&quot; The Nonconformist.

&quot;In Bede s works Englishmen can go back to origines of their history, unequalled for

form and matter by any modern European nation. Prof. Mayor has done good service in ren

dering a part of Bede s greatest work accessible to those who can read Latin with ease. He
has adorned this edition of the third and fourth books of the

&quot;

Ecclesiastical History&quot; with that

amazing erudition for which he is unrivalled among Englishmen and rareiy equalled by Germans.
And however interesting and valuable the text may be, we can certainly apply to his notes

the expression, La sauce vaut mieux qiie le poisson. They are literally crammed with interest

ing information about early English life. For though ecclesiastical in name, Bede s history treats

of all parts of the national life, since the Church had points of contact with all.&quot; Examiner.

P. VERGILI MARONIS AENEIDOS LIBER VII. Edited
with Notes by A. SIDGWICK, M.A. Tutor of Corpus Christi College,

Oxford. Cloth, is. 6d.

London: Cambridge Warehouse, 17 Paternoster Row.
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BOOKS VI., VIIL, X., XL, XII. by the same Editor.

is. 6d. each.
&quot; Mr Arthur Sidgwick s Vergil, Aeneid, Book XII. is worthy of his reputation, and is dis

tinguished by the same acuteness and accuracy of knowledge, appreciation of a boy s difficulties

and ingenuity and resource in meeting them, which we have on other occasions had reason to

praise in these pages.&quot;
The Academy.

&quot;As masterly in its clearly divided preface and appendices as in the sound and independent
character of its annotations. . . . There is a great deal more in the notes than mere compilation
and suggestion. . . . No difficulty is left unnoticed or unhandled.&quot; Saturday Review.

BOOKS VII. VIIL in one volume Price $s.

BOOKS X., XL, XII. in one volume. Price $s.6d.

M. T. CICERONIS ORATIO PRO L. MURENA, with

English Introduction and Notes. By W. E. HEITLAND. M.A., Fellow

and Classical Lecturer of St John s College, Cambridge. Second Edition,

carefully revised. Small 8vo. Price 3*.

&quot; Those students are to be deemed fortunate who have to read Cicero s lively and brilliant

oration for L. Murena with Mr Heitland s handy edition, which may be pronounced four-square

in point of equipment, and which has, not without good reason, attained the honours of a

second edition.&quot; Saturday Review.

M. T. CICERONIS IN Q. CAECILIUM DIVINATIO
ET IN C. VERREM ACTIO PRIMA. With Introduction and Notes

by W. E. HEITLAND, M.A., and HERBERT COWIE, M.A., Fellows of

St John s College, Cambridge. Cloth, extra fcp. 8vo. Price 3*.

M. T. CICERONIS IN GAIUM VERREM ACTIO
PRIMA. With Introduction and Notes. By H. COWIE, M.A., Fellow

of St John s College, Cambridge. Price is. 6d.

M. T. CICERONIS ORATIO PRO T. A. MILONE,
with a Translation of Asconius Introduction, Marginal Analysis and

English Notes. Edited by the Rev. JOHN SMYTH PURTON, B.D., late

President and Tutor of St Catharine s College. Cloth, small crown 8vo.

Price is. 6d.

&quot;The editorial work is excellently done.&quot; The Academy.

M. ANNAEI LUCANI PHARSALIAE LIBER
PRIMUS, edited with English Introduction and Notes by W. E. HEITLAND,

M.A. and C. E. HASKINS, M.A., Fellows and Lecturers of St John s Col

lege, Cambridge. Price is. 6d.

&quot;A careful and scholarlike production.&quot;
Times.

11 In nice parallels of Lucan from Latin poets and from Shakspeare, Mr Haskins and Mr

Heitland deserve praise.&quot; Saturday Review.

London: Cambridge Warehouse, 17 Paternoster Row.
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ill. FRENCH.

HISTOIRE DU SIECLE DE LOUIS XIV. PAR
VOLTAIRE. Chaps. I. XIII. Edited with Notes Philological and His

torical, Biographical and Geographical Indices, etc. by GuSTAVE MASSON,
B.A. Univ. Gallic., Officier d Academie, Assistant Master of Harrow School,
and G. W. PROTHERO, M.A., Fellow and Tutor of King s College, Cam
bridge, is. 6d.

&quot;Messrs Masson and Prothero have, to judge from the first part of their work, performed
with much discretion and care the task of editing Volta re s Siecle de Louis XIV for the Pitt

Press Series. Besides the usual kind of notes, the editors have in this case, influenced by Vol
taire s summary way of treating much of the history, gi\

ren a good deal of historical informa

tion, in which they have, we think, done well. At the beginning of the book will be found
excellent and succinct accounts of the constitution of the French army and Parliament at the

period treated of.&quot; Saturday Review.

HISTOIRE DU SIECLE DE LOUIS XIV. PAR
VOLTAIRE. Chaps. XIV. XXIV. With Three Maps of the Period,
Notes Philological and Historical, Biographical and Geographical Indices,

by G. MASSON, B.A. Univ. Gallic., Assistant Master of Harrow School, and
G. W. PROTHERO, M.A., Fellow and Tutor of King s College, Cambridge.
Price is. 6d.

LE VERRE D EAU. A Comedy, by SCRIBE. With a

Biographical Memoir, and Grammatical, Literary and Historical Notes. By
C. COLBECK, M. A., late Fellow of Trinity College, Cambridge; Assistant

Master at Harrow School. Price is.

&quot;

It may be national prejudice, but we consider this edition far superior to any of the series

which hitherto have been edited exclusively by foreigners. MrColbeck seems better to under
stand the wants and difficulties of an English boy. The etymological notes especially are admi
rable. . . . The historical notes and introduction are a piece of thorough honest work.&quot; Journal
of Education.

M. DARU, par M. C. A. SAINTE-BEUVE, (Causeries du
Lundi, Vol. IX.). With Biographical Sketch of the Author, and Notes

Philological and Historical. By GUSTAVE MASSON. is.

LA SUITE DU MENTEUR. A Comedy in Five Acts,
by P. CORNEILLE. Edited with Fontenelle s Memoir of the Author, Voltaire s

Critical Remarks, and Notes Philological and Historical. By GUSTAVE
MASSON. Price is.

LA JEUNE SIBERIENNE. LE LEPREUX DE LA
CITE D AOSTE. Tales by COUNT XAVIER DE MAISTRE. With Bio

graphical Notice, Critical Appreciations, and Notes. By GUSTAVE MASSON.
Price is.

London : Cambridge Warehouse, \ 7 Paternoster Row.
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LE DIRECTOIRE. (Considerations sur la Revolution

Franchise. Troisieme et quatrieme parties.) Par MADAME LA BARONNE DE
STAEL-HOLSTEIN. With a Critical Notice of the Author, a Chronological
Table, and Notes Historical and Philological. By G. MASSON. Price is.

&quot;Prussia under Frederick the Great, and France under the Directory, bring us face to face

respectively with periods of history which it is right should be known thoroughly, and which
are well treated in the Pitt Press volumes. The latter in particular, an extract from the
world-known work of Madame de Stae l on the French Revolution, is beyond all praise for

the excellence both of its style and of its matter.&quot; Times.

DIX ANNEES D EXIL. LIVRE II. CHAPITRES i 8,

Par MADAME LA BARONNE DE STAEL-HOLSTEIN. With a Biographical
Sketch of the Author, a Selection of Poetical Fragments by Madame de
StaeTs Contemporaries, and Notes Historical and Philological. By GUSTAVE
MASSON. Price is.

&quot; The choice made by M. Masson of the second book of the Memoirs of Madame de Stae l

appears specially felicitous. . . . This is likely to be one of the most favoured of M. Masson s

editions, and deservedly so.&quot; Academy.

FRfiDEGONDE ET BRUNEHAUT. A Tragedy in Five
Acts, by N. LEMERCIER. Edited with Notes, Genealogical and Chrono

logical Tables, a Critical Introduction and a Biographical Notice. By
GUSTAVE MASSON. Price is.

LE VIEUX CELIBATAIRE. A Comedy, by COLLIN
D HARLEVILLE. With a Biographical Memoir, and Grammatical, Literary
and Historical Notes. By the same Editor. Price is.

&quot; M. Masson is doing good work in introducing learners to some of the less-known French
play-writers. The arguments are admirably clear, and the notes are not too abundant.&quot;

A tademy.

LA METROMANIE, A Comedy, by PlRON, with a Bio

graphical Memoir, and Grammatical, Literary and Historical Notes. By the

same Editor, Price is.

LASCARIS, ou LES GRECS DU XVE
. SIECLE,

Nouvelle Historique, par A. &quot;F. VILLEMAIN, with a Biographical Sketch of

the Author, a Selection of Poems on Greece, and Notes Historical and

Philological. By the same Editor. Price is.

London : Cambridge Warehouse, 1 7 Patcrnvst-er -Row*
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IV. GERMAN.

HAUFF. DAS WIRTHSHAUS IM SPESSART. Edited
by A. SCHLOTTMANN, Ph.D., Assistant Master at Uppingham School.
Price y. 6d.

&quot;

It is admirably edited, and we note with pleasure that Dr Schlottmann in his explanation
always brings out the kinship of the English and German languages by reference to earlier or
modern English and German forms as the case may be. The notes are valuable, and tell the
student exactly what he will want to know, a merit by no means common.&quot; Examiner.

&quot;As the work abounds in the idiomatic expressions and phrases that are characteristic of
modern German, there are few books that can be read with greater advantage by the English
student who desires to acquire a thorough knowledge of conversational German. The notes,
without being cumbersome, leave no real difficulty unexplained.&quot; School Guardian.

DER OBERHOF. A Tale of Westphalian Life, by KARL
IMMERMANN. With a Life of Immermann and English Notes, byWiLHELM
WAGNER, Ph.D., late Professor at the Johanneum, Hamburg. Price y.

A BOOK OF GERMAN DACTYLIC POETRY. Ar
ranged and Annotated by WILHELM WAGNER, Ph.D. Professor at the

Johanneum, Hamburg. Price y.

2&amp;gt;er erfte tfteu^ug (THE FIRST CRUSADE), by FRIED-
RICH VON RAUMER. Condensed from the Author s History of the Hohen-
staufen ,

with a life of RAUMER, two Plans and English Notes. By
WILHELM WAGNER, Ph.D. Price is.

&quot;Certainly no more interesting book could be made the subject of examinations. The story
of the First Crusade has an undying interest. The notes are, on the whole, good.&quot; Educational
Times.

A BOOK OF BALLADS ON GERMAN HISTORY.
Arranged and Annotated by WILHELM WAGNER, Ph. D. Price is.

&quot;It carries the reader rapidly through some of the most important incidents connected with
the German race and name, from the invasion of Italy by the Visigoths under their King Alaric,
down to the Franco-German War and the installation of the present Emperor. The notes supply
very well the connecting links between the successive periods, and exhibit in its various phases of

growth and progress, or the reverse, the vast unwieldy mass which constitutes modern Germany.&quot;

Times.

DER STAAT FRIEDRICHS DES GROSSEN. By G.
FREYTAG. With Notes. By WILHELM WAGNER, Ph.D., Professor at the

Johanneum, Hamburg. Price is.

&quot;Prussia under Frederick the Great, and France under the Directory, bring us face to face

respectively with periods of history which it is right should be known thoroughly, and which
are well treated in the Pitt Press volumes.&quot; Times.

&quot;

Freytag s historical sketches and essays are too well known in England to need any com
mendation, and the present essay is one of his best. Herr Wagner has made good use of Carlyle s

great work in illustration of his author.&quot; Journal ofEducation.

tfnabenialjre. (17491759.) GOETHE S BOY-
HOOD : being the First Three Books of his Autobiography. Arranged
and Annotated by WILHELM WAGNER, Ph. D. Price is.

London : Cambridge Warehouse, 1 7 Paternoster Row.
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GOETHE S HERMANN AND DOROTHEA. With
an Introduction and Notes. By the same Editor. Price %s.

&quot;The notes are among the best that we know, with the reservation that they are often too

abundant.&quot; Academy.

2)a 3afir 1813 (THE YEAR 1813), by F. KOHLRAUSCH.
With English Notes. By the same Editor. Price is.

V. ENGLISH.

LOCKE ON EDUCATION. With Introduction and Notes
by the Rev. R. H. QUICK, M. A. Price 3*. 6d.

&quot; Mr Quick has made the study of educational matters and the lives of educational reformers

a speciality. He has given us an edition of Locke which leaves little to be desired. In addition

to an introduction, biographical and critical, and numerous notes, there are two appendices

containing Locke s scheme of working schools, and Locke s other writings on education. The
passages in Locke bearing upon the physical training of children are annotated in harmony with

modern science by Dr J. F. Payne. The book forms one of the Pitt Press Series, and its general

get up is worthy of the University Press.&quot; The Schoolmaster.

THE TWO NOBLE KINSMEN, edited with Intro
duction and Notes by the Rev. Professor SKEAT, M.A., formerly Fellow

of Christ s College, Cambridge. Price 3-r. 6d.

&quot;This edition of a play that is well worth study, for more reasons than one, by so careful a
scholar as Mr Skeat, deserves a hearty welcome.&quot; Athetueum.

&quot;Mr Skeat is a conscientious editor, and has left no difficulty unexplained.&quot; Times.

BACON S HISTORY OF THE REIGN OF KING
HENRY VII. With Notes by the Rev. J. RAWSON LUMBY, D.D.,
Norrisian Professor of Divinity ;

Fellow of St Catharine s College. 3-r.

SIR THOMAS MORE S UTOPIA. With Notes by the
Rev. J. RAWSON LUMBY, D.D., Norrisian Professor of Divinity; Fellow

of St Catharine s College, Cambridge. Price 3^. 6d.

&quot; To enthusiasts in history matters, who are not content with mere facts, but like to pursue
their investigations behind the scenes, as it were, Professor Rawson Lumby has in the work now
before us produced a most acceptable contribution to the now constantly increasing store of

illustrative reading.&quot; The Cambridge Revie^.v.

&quot;To Dr Lumby we must give praise unqualified and unstinted. He has done his work

admirably Every student of history, every politician, every social reformer, every one
interested in literary curiosities, every lover of English should buy and carefully read Dr
Lumby s edition of the Utopia. We are afraid to say more lest we should be thought ex

travagant, and our recommendation accordingly lose part of its force.&quot; The Teacher.

SIR THOMAS MORE S LIFE OF RICHARD III.

With Notes, &c., by Professor LUMBY. [Nearly ready.

LECTURES ON EDUCATION, Delivered in the Uni
versity of Cambridge in the Lent Term, 1880. By J. G. FITCH.

[Nearly ready.

[Other Volumes are in preparation^

London : Cambridge Warehouse, 1 7 Paternoster Row.
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LOCAL EXAMINATIONS.
Examination Papers, for various years, with the Regulations for the

Examination Demy Ocftavo. 2s. each, or by Post, 2s. id.

The Regulationsfor the Examination in 1880 are now ready.

Class Lists, for various years, 6d. each, by Post yd. After 1877, Boys
is.. Girls 6d.

Annual Reports of the Syndicate, with Supplementary Tables showing
the success and failure of the Candidates. 2s. each, by Post 2s. 2d.

HIGHER LOCAL EXAMINATIONS.
Examination Papers for 1880, to which are added the Regulations for

1 88 1. Demy Octavo. 2s. each, by Post 2s. 2d.

Reports of the Syndicate. Demy Oclavo. u., by Post is. id.

TEACHERS TRAINING SINDICATE.
Examination Papers for 1880, to which are added the Regulations for

1881. Demy Oclavo. 6d., by Post jd.

CAMBRIDGE UNIVERSITY REPORTER.
Published by Authority.

Containing all the Official Notices of the University, Reports of
Discussions in the Schools, and Proceedings of the Cambridge Philo

sophical, Antiquarian, and Philological Societies, ^d. weekly.

CAMBRIDGE UNIVERSITY EXAMINATION PAPERS.
These Papers are published in occasional numbers every Term, and in

volumes for the Academical year.

VOL. VIII. Parts 87 to 104. PAPERS for the Year 18789, i2s. cloth.

VOL. IX. 105 to 1 1 9. 1879 80, 12s. cloth.

Oxford and Cambridge Schools Examinations,
1. PAPERS SET IN THE EXAMINATION FOR CER-

tificates, July, 1879. Price is. 6d.

2. LIST OF CANDIDATES WHO OBTAINED CERTI-
ficates at the Examinations held in December, 1879, and in June and July,

1880; and Supplementary Tables. Price 6d.

3. REGULATIONS OF THE OXFORD AND CAMBRIDGE
Schools Examination Board for the year 1881. Price 6d.

4. REPORT OF THE OXFORD AND CAMBRIDGE
Schools Examination Board for the year ending Oct. 31, 1879. Price is.

Uonfcon :

CAMBRIDGE WAREHOUSE, 17 PATERNOSTER ROW.

CAMBRIDGE: PRINTED BY c. j. CLAY, M.A., AT THE UNIVERSITY TRESS.
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