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PREFACE.

IT 1S now some years since I was requested by the Syndics
of the University Press to allow my papers on mathematical and
physical subjects, which are scattered over various Transactions and
scientific Journals, to be reprinted in a collected form. Many of
these were written a long time ago, and science has in the mean
time progressed, and it seemed to me doubtful whether it was
worth while now to reprint a series of papers the interest of which
may in good measure be regarded as having passed away. How-
ever, several of my scientific friends, and among them those to
whose opinions I naturally pay the greatest deference, strongly
urged me to have the papers reprinted, and I have accordingly
acceded to the request of the Syndics. I regret that in con-
sequence of the pressure of other engagements the preparation
of the first volume has been so long in hand. '

The arrangement of the papers and the mode of treating them
in other respects were left entirely to myself, but both the Syndics
and my friends advised me to make the reprint full, leaning rather
to the inclusion than exclusion of a paper in doubtful cases. I
have acted on this advice, and in the first volume, now presented
to the public, I have omitted nothing but a few papers which
were merely controversial.

As to the arrangement of the papers, it seemed to me that the
chronological order was the simplest and in many respects the

8140C4



vi PREFACE.

best. Had an arrangement by subjects been attempted, not only
would it have been difficult in some cases to say under what head
a particular paper should come, but also a later paper on some one
subject would in many cases have depended on a paper on some
different subject which would come perhaps in some later volume,
whereas in the chronological arrangement each paper reaches up
to the level of the author’s knowledge at the time, so that forward
reference is not required.

Although notes are added here and there, I have not attempted
to bring the various papers up to the level of the present time. I
have not accordingly as a rule alluded to later researches on the
same subject, unless for some special reason. The notes introduced
in the reprint are enclosed in square brackets in order to distin-
guish them from notes belonging to the original papers. To the
extent of these notes therefore, which were specially written for
the reprint, the chronological arrangement is departed from. The
same 1s the case as regards the last paper in the first volume,
which suggested itself during the preparation for press of the
paper to which it relates. In reprinting the papers, any errors
of inadvertence which may have been discovered are of course
corrected. Mere corrections of this kind are not specified, but
any substantial change or omission is noticed in a foot-note or
otherwise.

After full consideration, I determined to introduce an innova-
tion in notation which was proposed a great many years ago, for
at least partial use, by the late Professor De Morgan, in his article
on the Calculus of Functions in the Encyclopedia Metropolitana,
though the proposal seems never to have been taken up. Mathe-
maticians have been too little in the habit of considering the
mechanical difficulty of setting up in type the expressions which
they so freely write with the pen; and where the setting up can
be facilitated with only a trifling departure from existing usage as
regards the appearance of the expression, it seems advisable to
make the change.

Now it seems to me preposterous that a compositor should be
called on to go through the troublesome process of what printers
call justification, merely because an author has occasion to name
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some simple fraction or differential coefficient in the text, in which
term I do not include the formal equations which are usually
printed in the middle of the page. The difficulty may be avoided
by using, in lieu of the bar between the numerator and denomi-
nator, some symbol which may be printed on a line with the type.
The symbol “:” is frequently used in expressing ratios; but for
employment in the text it has the fatal objection that it is appro-
priated to mean a colon. The symbol “ =" is certainly distinctive,
but it is inconveniently long, and dy +dx for a differential coef-
ficient would hardly be tolerated. Now simple fractions are fre-
quently written with a slant line instead of the horizontal bar
separating the numerator from the denominator, merely for the
sake of rapidity of writing. If we simply consent to allow the
same to appear in print, the difficulty will be got over, and a
differential coefficient which we have occasion to name in the text
may be printed as dy/de. The type for the slant line already
exists, being called a solidus. _

On mentioning to some of my friends my intention to use
the “solidus” notation, it met with a good deal of approval, and
some of them expressed their readiness to join me in the use of it,
amongst whom I may name Sir William Thomson and the late
Professor Clerk Maxwell.

In the formal equations I have mostly preserved the ordinary
notation. There is however one exception. It frequently happens
that we have to deal with fractions of which the numerator and
denominator involve exponentials the indices of which are fractions
themselves. Such expressions are extremely troublesome to set
up in type in the ordinary notation. But by merely using the
solidus for the fractions which form the indices, the setting up
of the expression is made comparatively easy, while yet there
is not much departure from the appearance of the expressions
according to the ordinary notation. Such exponential expressions
are commonly associated with circular functions; and though it
would not otherwise have been necessary, it seemed desirable
to employ the solidus notation for the fraction under the symbol
“sin” or “cos,” in order to preserve the similarity of appearance
between the exponential and circular functions.



viil PREFACE.

In the use of the solidus it seems ‘convenient to enact that
it shall as far as possible take the place of the horizontal bar
for which 1t stands, and accordingly that what stands immediately
on the two sides of it shall be regarded as welded into one. Thus
sin nmz/a means sin (nrz + @), and not (sin nmwz) + a. This welding
action may be arrested when necessary by a stop: thus sinnf./r"
means (sin nf) =" and not sin (nf = "),

The only objection that I have heard suggested against the
solidus notation on the ground of its being already appropriated
to something else, relates to a condensed notation sometimes
employed for factorials, according to which z(z+a)... to n
factors is expressed by #"% or by a®*. I do not think the ob-
jection is a serious one. There is no risk of the solidus notation,
as I have employed it, being mistaken for the expression of
factorials; of the two factorial notations just given, that with
the separating line vertical seems to be the more common, and
might be adhered to when factorials are intended; and if a
greater distinction were desired, a factorial might be printed
in the condensed notation as 2™, where the “(” would serve
to recall the parentheses in the expression written at length.

G. G. STOKES.

CAMBRIDGE,
August 16, 1880.
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MATHEMATICAL AND PHYSICAL PAPERS.

[From the Transactions of the Cambridge Philosophical Society,
Vol. viL p. 439.]

ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.
[Read April 25, 1842.]

In this paper I shall consider chiefly the steady motion of
fluids in two dimensions. As however in the more general case
of motion in three dimensions, as well as in this, the calculation
is simplified when wdz+vdy 4+ wdz is an exact differential, I
shall first consider a class of cases where this is true. I need
not explain the notation, except where it may be new, or liable
to be mistaken.

To prove that udx +vdy +wdz is an exact differential, in
the case of steady motion, when the lines of motion are open
curves, and when the fluid in motion has come from an expanse
of fluid of indefinite extent, and where, at an indefinite distance,

ential.  Now from the way in which this equation is obtained,
it S. 1
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MATHEMATICAL AND PHYSICAL PAPERS.

[From the Transactions of the Cambridge Philosophical Society,
Vol. virL p. 439.]

ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.
[Read April 25, 1842.]

IN this paper I shall consider chiefly the steady motion of
fluids in two dimensions. As however in the more general case
of motion in three dimensions, as well as in this, the calculation
is simplified when udr +vdy +wdz is an exact differential, T
shall first consider a class of cases where this is true. I need
not explain the notation, except where it may be new, or liable
to be mistaken.

To prove that udz+vdy +wdz is an exact differential, in
the case of steady motion, when the lines of motion are open
curves, and when the fluid in motion has come from an expanse
of fluid of indefinite extent, and where, at an indefinite distance,
the velocity is indefinitely small, and the pressure indefinitely
near to what it would be if there were no motion.

By integrating along a line of motion, it is well known that
we get the equation

%: Ve b (B + P+ 4+ Coveeereeeeenns ),

where dV= Xdx + Ydy + Zdz, which I suppose an exact differ-
ential. Now from the way in which this equation is obtained,
S. 1



2 :"CN. THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.

it appears that C' need only be constant for the same line of
motion, and therefore in general will be a function of the para-
meter of a line of motion. I shall first shew that in the case
considered (' is absolutely constant, and then that whenever it
is, udz +vdy + wdz is an exact differential *.

To determine the value of C for any particular line of motion,
it is sufficient to know the values of p, and of the whole velocity,
at any point along that line. Now if there were no motion we
should have

%-_— [ 0F B o e b O

p, being the pressure in that case. But considering a point in
this line at an indefinite distance in the expanse, the value of
p at that point will be indefinitely nearly equal to p,, and the
velocity will be indefinitely small. Consequently C is more nearly
equal to O, than any assignable quantity : therefore C'is equal to
0, ; and this whatever be the line of motion considered; therefore
C is constant.

In ordinary cases of steady motion, when the fluid flows in
open curves, it does come from such an expanse of fluid. It is
conceivable that there should be only a canal of fluid in this
expanse in motion, the rest being at rest, in which case the
velocity at an infinite distance might not be indefinitely small.
But experiment shews that this is not the case, but that the
fluid flows in from all sides. Consequently at an indefinite dis-
tance the velocity is indefinitely small, and it seéms evident that
in that case the pressure must be indefinitely near to what it
would be if there were no motion.

Differentiating therefore (1) with respect to x, we get

1d_p_X du dv  dw

PRy Mk P L

1dp _ du  du du
but ;Eii_X_uoﬂ—vd—y—wdz’

dv du dw du
whence v(%—@)+w(d5—d_z)_o,

[* See note, page 3.]
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Similarly, w(%u-}—%)+u<%—g§>=o,
du dw dv dw
'U/(d—z-'%)"‘v(gz‘—-@):o,

B it o dv_du dw _dv (zl_t__d_w
de~dy’ dy dz’ dz dz’

and therefore udz + vdy + wdz is an exact differential.
When udz + vdy + wdz is an exact differential, equation (1)
may be deduced in another Way'f‘ from which it appears that

C is constant. Consequently, in any case, udz + vdy + wdz is, or
is not, an exact differential, according as C is, or is not, constant.

Steady Motion in Two Dimensions.

I shall first consider the more simple case, where udxz + vdy
is an exact differential. In this case u and v are given by the
equations

du dv

= T =0 00000000004 R ()8
du dv .
@—%_0“..”.”“‘““““““.”(4>’

and p is given by the equation
Pop_ti+oy)+0

P
The differential equation to a line of motion is
dy _
de u’

* [This conclusion involves an oversight (see Transactions, p. 465) since the
three preceding equations are not independent, as may readily be seen. I have not
thought it necessary to re-write this portion of the paper, since in the two classes
of steady motion to which the paper relates, namely those of motion in two dimen-
sions, and of motion symmetrical about an axis, the three analogous equations are
reduced to one, and the proposition is true. None of the succeeding results are
affected by this error, excepting that the second paragraph of p, 11 must be re-
stricted to the two cases above mentioned.]

t See Poisson, Traité de Mécanique.

1—2



4 ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.

Now from equation (3) it follows that udy—vdx is always
the exact differential of a function of  and . Putting then

AU = udy —vduz,

U=C will be the equation to the system of lines of motion,
C being the parameter. U may have any value which allows
dU/dy and —dU]/dx to satisfy the equations which » and v satisfy.
The first equation has been already introduced; the second leads
to the equation which U is to satisfy ; viz.

TU | U )
W‘i‘@—— 0800000000000000600I009000 (D).

The integral of this equation may be put under different forms.
By integrating according to the general method, we get

U=F(x+V—1y)+f(z—~=1y).
Now it will be easily seen that U must be wholly real for all
values of « and y, at least within certain limits. But #(«) may
be put under the form F, («) ++— 1 F, (a), where F, («) and F, ()
are wholly real. Making this substitution in the value of U, we
get a result, which, without losing generality, may be put under
the form
U=F(@e+N=1y)+F@e—~-19)

+ V=T {f (@+V=1y) = fl@—V=Tg)},

changing the functions.

If we develope these functions in series ascénding according
to integral powers of y, by Taylor's Theorem, which can always
be done as long as the origin is arbitrary, we get a series which
I shall write for shortness,

U=2 cos ((%y) F(z) —2sin <g;y)f(w),

the same result as if we had integrated at once by series by
Maclaurin’s Theorem.

It has been proved that the general integral of (5) may be
put under the form

U=34=tpy,
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where «*+3°=0. Consequently a and B8 must be, one real, the
other imaginary, or both partly real and partly imaginary. Putting
then a=a, + N=1 a,, B=pB,+ V=1 B,, introducing the condition
that «® + B8°= 0, and replacing imaginary exponentials by sines and
cosines, we find that the most general value of U is of the form

U =3 4encosy.z=siny.g+a) cogn (siny.z + cos v.y+b),

where 4, n, v, a and b have any real values, the value of U being
supposed to be real.

If we take the value of U,
d . (d :
U=2 cos(@y)F(x)—Q sm(%y)f(x),

and develope each term, such as az”, in I (z) or f (), in a series,
and then sum the series by the formula

cosnf +~—1 sin nf = cosf (1 + ? V=1 tan @ ——) s

we find that the general value of U takes the form
U= 3A4r" cos (n0 + B).

As long as the origin of z is arbitrary, only integral powers
of z will enter into the development /7 (x) and f(x), and there-
fore the above series will contain only integral values of ». For
particular positions of the origin however, fractional powers may
enter. The equation

a*U 1 dU | 1 d°U
@ r e g
which (5) becomes when transferred to polar co-ordinates, is satis-

fied by the above value of U, whatever n be, even if it be
imaginary, in which case the value of U takes the form

U =3 47" cos (m —log,r" + B).
We may employ equation (5), to determine whether a proposed
system of lines can be a system in which fluid can move, the

motion being of the kind for which udz+wvdy is an exact
differential.

=O,

Let f(z,y) = U,=C be the equation to the system, C' being
the parameter. Then, if the motion be possible, some value of
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U which satisfies (5) must be constant for all values of z and y
for which U, is constant. Consequently this value must be a
function of U,. Let it =¢ (U). Then, substituting this value
in (5), and performing the differentiations, we get

¢ @) + (G} +o G+ Lot -0
d2U arU,

$(0), I+ ay

0 T

Now, if the motion be possible, the second term of this equa-
tion must be a function of U,; #, y and U, being connected by
the equation f (=, y)=U,. Consequently, if by means of this
latter equation we eliminate z or y from the second term of (6),
the other must disappear. If it does not, the motion is impossible ;
if it does, the integration of equation (6), in which the variables
are separated, will give ¢ (U,) under the form

$(U)=AF(U)+ B,

or

A and B being the arbitrary constants. The values of » and »
will immediately be got by differentiation, and then p will be
known. Nothing will be left arbitrary but a constant multiplying
the values of » and v, and another added to the value of p.

I shall mention a few examples. Let U =ar* cos 36, 1In this
case the lines of motion are similar parabolas about the same
focus. The velocity at any point varies inversely as the square
root of the distance from the focus.

Again, let U=awxy. In this case the lines of motion are
rectangular hyperbolas about the same asymptotes. Also,

In this case therefore the velocity varies as the distance from the
centre, and the particles in a section parallel to either of the axes
remain in a section parallel to that axis, )

I shall now consider the general case, where udx + vdy need
not be an exact differential.



ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS. 7

In this case p, » and v, are given by the equations

1 dp du du
; d——x—X—ud—x—"U@ cesecicetitnantes (7),
1dp dv dv
E @—Y— d‘— d—g‘l ................... (8),
du  dv ‘
dx E‘ =0 ........... sescsssensrrrans (9).

We still have % =§, for the differential equation to a line of

motion, where udy —vdz is still an exact differential, on account
of equation (9). Eliminating p by differentiation from (7) and
(8), and expressing the result in terms of U, we get the equation
which U is to satisfy, viz.

W4T Yy 0@y ey
dy dz <d.7u’ dy* ) dr dy\ds® " dy*)

or, for shortness,

au d dU d) d*U d"’U)_O (10)*
(dy de dx dy (olz;2 i dy* ) Ty y*.

* [This equation may be applied to prove an elegant theorem due to Mr F. D,
Thomson {see the Oxzford, Cambridge, and Dublin Messenger of Mathematics, Vol,
11 (1866), p. 238, and Vol. 1v. p. 37}, that if a vessel bounded by a cylindrical sur-
face of any kind and by two planes perpendicular to its generating lines be filled
with homogeneous liquid, and the whole be revolving uniformly about a fixed axis
parallel to its generating lines, then if the vessel be suddenly arrested the motion
of the liquid will be steady.

If wbe the angular velocity, we shall have for the motion before impact

U= —f(wg/dy+wxdx)= —do(@+y)=-Lwr?

omitting the constant as unnecessary. If u, v be the components of the change of

velocity produced by impact, it follows from the equations of impulsive motion that

udz+vdy will be a perfect differential dg, where ¢ satisfies the partial differential
2 2

equation y¢=0, y standing for dix? + Edy—‘ If U be the U-function corresponding

to this motion—and such a function exists by virtue of the equation of continuity

whether the motion be steady or not—we have

i rfd¢ de¢ _ ({4 ., ld¢
U= <%d —d—ydx)—f(a—;rdﬁ T%dr),

where the quantity under the sign f is a perfect differential by virtue of the equa-
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In this case, since p= f (Zzl—i dx + g—]; dy) , equations (7) and
(8) give

tion y¢=0; and we see at once that yU’=0. Hence for the whole motion just

after impaet ’
v(U+U)=yU= -20,

which satisfies the equation of steady motion (10); and as the condition at the

boundary, namely that the fluid shall slide along it, is satisfied, being satisfied ini-

tially, it follows that the initial motion after impaet will be continued as steady

motion.

To actually determine the function ¢ or U’, and thereby the motion in any given
case, we must satisfy not only the general equation y¢=0 but also the equation
of condition at the boundary, namely that there shall be no velocity in a direction
normal to the surface, which gives

d d .
(fiigf - wy) dy - (d;f— wx) de=0......... 8 c00000000000a0000000G (@),

at any point of the boundary. If f(z,y)=0 be the equation of the boundary, we
must substitute — df/de—-df /dy for dy/dx in (a), and the resulting equation will
have to be satisfied when f=0 is satisfied.

There are but few forms of boundary for which the solution of the problem can
be actually effected analytically, among which may be mentioned in particular the
case of a rectangle. But by taking particular solutions of the equation y¢ =0,
substituting in (a) and integrating, which gives

= 507245 (75 @apobub 000a00a0a090000000098000009090000 B,
or what comes to the same thing taking particular solutions of the equation yU'=0
and substituting in (8), which gives the general equation of the lines of motion, we
may synthetically obtain an infinity of examples in which the conditions of the
problem are satisfied, any one of the lines of motion being taken as the boundary
of the fluid.

Thus for U’ =%kr3cos 36 we have for the lines of motion

—3r?+Er3c0880="C...oooiiiiiiiiiii e
or — 3w +k{4(rcos)®—3r2.rcos 0} =C
which therefore are cubie curves, recurring when 6 is increased by 120°. (d) is
satisfied by

reosf = a,

giving a straight line, provided
w
k =- gb', Y
Hence when % has the above value the cubic curve (y) breaks up, for the particular
value of the parameter C above written, into three straight lines forming the sides
of an equilateral triangle, and the vessel may therefore be supposed to be an equi-
lateral triangular prism. The various lines of motion correspond to values of the

parameter C from 0 to —2wa?. This case is given by Mr Thomson.

U’ = Ir2cos 26 leads to the case of steady motion in similar and concentric ellipses
considered in the text a little further on, which therefore may be conceived to have
been produced from motion about a fixed axis as pointed out by Mr Thomson. In
fact, any case of steady motion in two dimensions in which yU=const. may be
conceived to have been so produced.]

C=4ka®= — 2wa’.
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2-v- G 25-% %)
(@ dway w)®)

Now %d{(dU) + (ZZ) } = (%g %Zg+%g dia;%} dx

+(dU U dU d”U)d .

dz dzdy ™ dy Ay

whence,

aUu d’de_*_d_U atu ,_aU djgd alUu dsz
dy dxdy dz dxdy I e dy* x——d_g} dz Y

-14{(5) +(3)}- (@ o) (@ T

and therefore

2740 (04 58) (e ),

= V—%(u2+u2)+f(fl?+‘fl )dU

a&U | &*U

dar Ty =X
of (10). Consequently this latter term, which is the value of €' in
(1), comes out a function of the parameter of a line of motion as
it should.

It will be observed that U), is a first integral

We may employ equation (10), precisely as before, to enquire
whether a proposed system of lines can, under any circumstances,
be a system of lines of motion. Let f(x, y)=U,=C, be the
equation to the system; then, putting as before, U=¢ (U))

we get
v @G &) (@)
oo 0 ) ()

or, P¢” (U) +Q¢’ (U =0, suppose.
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Hence, as before, if we express y in terms of « and U, from
the equation f (=, y)=U,, and substitute that value in Q, the

result must not contain . If it does, the proposed system of lines
cannot be a system of lines of motion ; if not, the integration of
the above equation will give ¢ (U,), under the form

¢ (U)=4F(U)+B,

and we can immediately get the values of w, v and p, with the
same arbitrary constants as in the previous case.

One case in which the motion is possible is where the lines of
motion are a system of similar ellipses or hyperbolas about the
same centre, or a system of equal parabolas having the same axis.
In the case of the ellipse, the particles in a radius vector at any
time remain in a radius vector, and the value of p has the form

pV+ A4+ B @& +y).

When however the ellipse becomes a circle, Pand ) vanish in the
equation P$" (U +Q¢' (U,)=0. Consequently the form of ¢
may be any whatever. The value of U, being a” + 3", we have

w=2¢ (U)y, v=—2¢ (U)a;
whence, 4o =4 (¢ (U} (& +57) = 4T, ¢/ (D)}

Hence, the velocity may be any function of the distance from the
centre. It is evident that we may conceive cylindrical shells of
fluid, having a common axis, to be revolving about.that axis with
any velocities whatever, if we do not consider friction, or whether
such a mode of motion would be stable. The result is the same if
we enquire in what way fluid can move in a system of parallel lines.

In any case where the motion in a certain system of lines is
possible, if we suppose two of these lines to be the bases of bound-
ing cylindrical surfaces, and if we suppose the velocity and direc-
tion of motion, at each point of a section of the entering, and also
of the issuing fluid, to be what that case requires, I have not
proved that the fluid must move in that system of lines. When
the above conditions are given there may still perhaps be different
modes of steady motion; and of these some may be stable, and
others unstable. There may even be no stable steady mode of
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motion possible, in which case the fluid would continue perpetually
eddying.

In the case of rectangular hyperbolas, the fluid appeared, on
making the experiment, to move in hyperbolas when the end
at which the fluid entered was broad and the other end narrow,
but not when the end by which the fluid entered was narrow.
This may, I think, in some measure be accounted for. Suppose
fluid to flow out of a vessel where the pressure is p, into one where
it is p,, through a small orifice. Then, the motion being steady,
we have, along the same line of motion, p/p= C'— 1%, where v is
the whole velocity. At a distance from the orifice, in the first
vessel, the pressure will be approximately p,, and the velocity
nothing. At a distance in the second vessel, the pressure will

be approximately p,, and therefore the velocity=«/ g—(ﬂp_—p"’),

nearly. The result is the same if forces act on the fluid. Hence
the velocity must be approximately constant; and therefore, the
fluid which came from the first vessel, instead of spreading out,
must keep to a canal of its own of uniform breadth. This is found
to agree with experiment. Hence we might expect that in the
case of the hyperbolas, if the end at which the fluid entered were
narrow, the entering fluid would have a tendency to keep to a
canal of its own, instead of spreading out.

In ordinary cases of steady motion, when the lines of motion
are open curves, the fluid is supplied from an expanse of fluid, and
consequently udz +wvdy +wdz is an exact differential. Conse-
quently, cases of open curves for which it is not an exact differen-
tial do not ordinarily occur. We may, however, conceive such
cases to occur; for we may suppose the velocity and direction of
motion, at each point of a section of the entering, and also of the
issuing stream, to be such as any case requires, by supposing the
fluid sent in and drawn out with the requisite velocity and in the
requisite direction through an infinite number of infinitely small
tubes.

In the case of closed curves however, in whatever manner the
fluid may have been put in motion, it seems probable that, if we
neglect the friction against the sides of the vessel, the fluid will
have a tendency to settle down into some steady mode of motion.
Consequently, taking account of the friction against the sides of
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the vessel, it seems probable that the motion may in some cases
become approximately steady, before the friction has caused it to
cease altogether.

Motion symmetrical about an awis, the lines of motion being
tn planes passing through the aais.

Before considering this case, it may be well to prove a prin-
ciple which will a little simplify our equations.

The general equations of motion are,

;ZI; _u%—v%_w%“““” o (11),
%}; Y- u%—v%.—wgg...............(12),
%?g:Z—u%—vcg—;—w%..............(13).

And the equation of continuity is
g;-”+g§+%‘z—”=0 ...................... (14)

Putting =, w,, w,, for the last three terms in (11), (12), (13),
respectively, we have

=V —[(wde+wdy+ w,dz).

Hence the pressure consists of two parts, the first, p V, the same
as if there were no motion, the second, the part due to the velocity.
Now the velocities are given by equation (14), and by the three
equations which result on eliminating p from (11), (12), and (13).
These latter equations, as well as (14), will be the same as if there
were no forces since

dX dY dX dz ay _ dl
dy ~dz’ T da’ dz
and therefore we shall not lose generahty by omlttlng the forces
in (11), (12) and (13), since we shall only have to add pV to the
value of p so determined.
When the motion is symmetrical about an axis, and in planes
passing through that axis, let z be measured along the axis, and
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r be the perpendicular distance from the axis, and s be the ve-
locity perpendicular to the axis. Then, transforming the co-ordi-
nates to z and r, and omitting the forces, it will be found that
equations (11), (12) and (13) are equivalent to only two separate
equations, which are

;)— Zl—;' = - % -_w a—z ....................... (1 5),
1dp  dw dw
; a—z- =3 % = 'd? ...................... (16),
and the equation of continuity becomes
ds s  dw
ar + o 7 =[P — (17).

In the case where udz + vdy+wdz is an exact differential, it
will be found that the three equations

du_do du_dv do_dw
dy dx’ dz dx’ dz dy’
are equivalent to only one equation, which is

ds _dw ,
i AU TR LRI (18).

In the general case we get, by eliminating p from (15)

and (16),
4 (e, 00 _d(do du)
dz(sdr+wdz —dr<sdr dz)’
ds ds ds dw d’s d’s
O Tt dde T drde T
_dw dw dw ds+ d*w o d*w
T dr dz dr ar "V ardz Sqa

The differential equation, between z and r, to a line of
motion is

e =
dr
Let u be a factor which renders sdz —wdr an exact differential,
then ‘_iis + dpw _ 0
dz

ds dw dp . dp
o "(Jfrdz) d+wd =0,



14 ON THE STEADY MOTION OF INCOMPRESSIBLE FLUIDS.

or, using (17), g'"‘ _|_w%. _lws ;

whence we easily see that uw =7 is one such factor.

Let then AU = rsdz — rwdr,
1dU 14U
so that =;%, ’U)—'—‘;?Z;.

The equation which U is to satisfy will be got by expressing s
and w in terms of U, and substituting in (19) in the general case,
or by substituting in (18), in the case where udx + vdy + wdz is
an exact differential.

In the latter case the equation which U is to satisfy is

aF T T dr
In the general case, the equation is what I shall write

(dUd dUd){ (d"’U a:u ldU)} 0...21).

T b G o

The value of p is given by the equation

e (b))

Now
dw

@+ ) =s D drt 0 dz 4 0% ds 40P ar;

and therefore
ds ds dw dw
(sd——l-'w )dr+(33~+wdz)d

=1d (S +ud) + d—~(wdr— sdz) + E"T—’ (sdz — wdr)

=] (s“+w’)+(‘j;: “d@ au;
whence % —% (4w +f( ‘%ﬁ)ldU
=_2_1§{<ZZ) (d_U} fl d*U d”U %dU)dU .(22).
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Hence the quantity under the integral sign must be a function
of U And in fact, we can easily shew by trial that
1 /U &U 1dU
G e DR AU
is a first integral of (21). The last term of (22) is the value of
the constant in (1).

By expanding U in a series ascending according to integral
powers of z, which may be done as long as the origin is arbitrary,
it will be found that the integral of (20) may be written under the
form

U= cos (y2) F (r) + sin (y2) v f(7),
d 1d

where ©*F(r) denotes (d_w‘? @F(o«), and v F(r) deuotes

2

1d. .
that the operation R ra s repeated » times on I7 (r).

We may employ equations (21) or (20) just as before, to
determine whether the motion in a proposed system of lines is
possible. If F(r, z)= U,=C be the equation to the system, we
must have, as before, U= ¢ (U,); whence we get, in the general

case,

s O {E - SO+
s @ E- R RG]

and in the more restricted case where udw + vdy + wdz is an exact
differential, we get

& OH(G2) + )+ o @ (Ga+ G2 -1 40 =0

As before, the ratio of the coefficients of ¢” (U,) and ¢’ (U,) must
be a function of U, alone, when 2, » and U, are connected by the
equation F' (r, 2) = U,. If the motion be possible, it will in general
be determinate, U being of the form Af(r, 2) + B. If U =r how-
ever, the form of ¢ remains arbitrary. In this case the fluid may
be conceived to move in eylindrical shells parallel to the axis, the
velocity being any function of the distance from the axis.
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Particular cases are, where the lines of motion are right lines
directed to a point in the axis, and where they are equal parabolas
having the axis of z for a common axis. In these cases

wudz + vdy + wdz
is an exact differential.
We may employ equations (20) and (21) to determine whether
the hypothesis of parallel sections can be strictly true in any case.

In this case, the sections being perpendicular to the axis of z, we
must have

14U
=—rar - Fes
dU
Zl7=—'f'F(Z);

U==37F(z)+f (2.
Substituting this value in (21), we find, by equating to zero

coefficients of different powers of 7, that the most general case cor-

responds to
U=(a+bz +c)r* + ez + f.

If udw+vdy +wdz be an exact differential, the most general
case corresponds to

U=(a+bz)r’+c+ez.



[From the 7ransactions of the Cambridge Philosophical Society,
Vol. viir. p. 105.]

ON SoME Casegs or Fruip MortioN.
[Read May 29, 1843.]

THE equations of Hydrostatics are founded on the principles
that the mutual action of two adjacent elements of a fluid is normal
to the surface which separates them, and that the pressure is equal
in all directions. The latter of these is a necessary consequence
of the former, as has been shewn by Mr Airy*. An exactly simi-
lar proof may be employed in Hydrodynamics, by which 1t may
be shewn that, if the mutual action of two adjacent elements of a
fluid in motion is normal to their common surface, the pressure
must be equal in all directions, in order that the accelerating force
which acts on the centre of gravity of an element may not become
infinite, when we suppose the dimensions of the element indefi-
nitely diminished. In Hydrostatics, the accurate agreement of the
results of our calculations with experiments, (those phenomena
which depend on capillary attraction being excepted), fully justifies
our fundamental assumption. The same assumption is made in
Hydrodynamics, and from it are deduced the fundamental equa-
tions of fluid motion. But the verification of our fundamental law
in the case of a fluid at rest, does not at all prove it to be true
in the case of a fluid in motion, except in the very limited case of
a fluid moving as if it were solid. Thus, oil is sufficiently fluid to
obey the laws of fluid equilibrium, (at least to a great extent),
yet no one would suppose that oil in motion ought to be considered
a perfect fluid. It would appear from the following consideration,
that the fluidity of water and other such fluids is not quite perfect.

* See also Professor Miller’s Hydrostatics, page 2. :
S. 2
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When a mass of water contained in a vessel of the form of a solid
of revolution is stirred round, and then left to itself, it presently
comes to rest. This, no doubt, is owing to the friction against the
sides of the vessel. But if the fluidity of water were perfect, it
does not appear how the retardation due to this friction could be
transmitted through the mass. It would appear that in that case
a thin film of fluid close to the sides of the vessel would remain at
rest, the remaining part of the fluid being unaffected by it. And
in this respect, that part of Poisson’s solution of the problem of an
oscillating sphere, which relates to friction, appears to me in some
degree unsatisfactory. A term enters into the equation of motion
of the sphere depending on the friction of the fluid on the sphere,
while no such term enters into the equations of motion of the
fluid, to express the equal and opposite friction of the sphere on
the fluid. In fact, as long as we regard the fluidity of the fluid as
perfect, no such term can enter. The only way by which to esti-
mate the extent to which the imperfect fluidity of fluids may
modify the laws of their motion, without making any hypothesis
as to the molecular constitution of fluids, appears to be, to calculate
according to the hypothesis of perfect fluidity some cases of fluid
motion, which are of such a nature as to be capable of being accu-
rately compared with experiment. The cases of that nature which
have hitherto been calculated, are by no means numerous. My
object in the present paper which I have the honour to lay before
the Society, has been partly to calculate some such cases which
may be useful in determining how far we are justified in regarding
fluids as perfectly fluid, and partly to give examples of the methods
by which the solution of problems depending on partial differential
equations may be effected.

In the first seven articles, I have mentioned and explained
some general principles, which are afterwards applied. Some of
these are not new, but it was convenient to state them for the
sake of reference. Others are I believe new, at least in their
development. In the remaining articles, I have given different
problems, of which I have succeeded in obtaining the solutions.
As the problem to be solved is usually stated at the head of each
article, I shall here only mention some of the results. As a parti-
cular case of the problem given in Art. 8, I find that, when a
cylinder oscillates in an infinitely extended fluid, the effect of the
inertia of the fluid is to increase the mass of the cylinder by that of



ON SOME CASES OF FLUID MOTION. 19

the fluid displaced. In part of Art. 9, I find that when a ball pen-
dulum oscillates in a concentric spherical envelope, the effect of the
b’ +2a°
2(6° —a’)
times that of the fluid displaced, a being the radius of the ball, &
that of the envelope. Poisson, in his solution of the problem of the
sphere, arrives at the strange result that the envelope does not at
all retard the oscillating sphere. I have pointed out the errone-
ous step by which he was led to this conclusion, which I am clearly
called upon to do, in venturing to differ from so high an authority.
Of the different cases of fluid motion which I have given, that
which appears to be capable of the most accurate and varied com-
parison with experiment, is the motion of fluid in a rectangular
box which is closed on all sides, given in Art. 13. The experiment
consists in comparing the calculated and observed times of oscil-
lation. I find that when the motion is small, the effect of the
fluid on the motion of the box is the same as that of a solid
having the same mass, centre of gravity, and principal axes, but
having different moments of inertia, these moments being given
by infinite series, which converge with great rapidity. I have also
in Art. 11, given some cases of progressive motion, deduced on the
supposition that the same particles of fluid remain in contact with
the solid, which do not at all agree with experiment.

inertia of the fluid is to increase the mass of the ball by

In almost all the cases given in this paper, the problem of
finding the permanent state of temperature in the several solids
considered, supposing the surfaces of those solids kept up to con-
stant temperatures varying from point to point, may be solved by
a similar analysis. I find that some of these cases have been
already solved by M. Duhamel in a paper inserted in the 22nd
Cahier of the Journal de U Ecole Polytechnique. The cases alluded
to are those of the temperature in a solid sphere, and in a rect-
angular parallelepiped. Since, however, the application of the
formule in the two cases of fluid motion and of the permanent
state of temperature is different, as well as the formule themselves
to a certain extent, I thought it might be worth while to give
them,

1. The investigations in this paper apply directly to incom-
pressible fluids, as the fluids spoken of will be supposed to be,

2—-2
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unless the contrary is stated. The motions of elastic fluids may
in most cases be divided into two classes, one consisting of those
condensations on which sound depends, the other, of those motions
which the fluid takes in consequence of the motion of solid bodies
in it. Those motions of the fluid, which take place in consequence of
very rapid motions of solids, (such as those of bullets), form a con-
necting link between these two classes. The motions of the second
class are, it is true, accompanied by condensations, and propagated
with the velocity of sound, but if the motions of the solids are not
great we may, without sensible error, suppose the motions of the
fluid propagated instantaneously to distances where they cease to
be sensible, and may neglect the condensation. The investigations
in this paper will apply without sensible error to this kind of
motion of elastic fluids.

In all cases also the motion will be supposed to begin from
rest, which allows us to suppose that udx + vdy + wdz is an exact
differential d¢, where u, v and w are the components, parallel to
the axes of w, y, and 2, of the whole velocity of any particle. In
applying our investigations however to fluids such as they exist in
nature, this principle must not be strained too far. When a body
is made to revolve continually in a fluid, the parts of the fluid
near the body will soon acquire a rotatory motion, in consequence,
in all probability, of the mutual friction of the parts of the fluid;
so that after a time udz + vdy + wdz could no longer be taken an
exact differential. Tt is true that in motion in two dimensions
there is one sort of rotatory motion for which that quantity is an
exact differential; but if a close vessel, filled with fluid at first at
rest, be made to revolve uniformly round a fixed axis, the fluid
will soon do so too, and therefore that quantity will cease to be an
exact differential. For the same reason, in the progressive motion
of a solid in a fluid, the effect of friction continually accumulating,
the motion might at last be sensibly different from what it would
be if there were no friction, and that, even if the friction were
very small, In the case of small oscillatory motions however it
would appear that the effect of friction in the forward oscillation,
supposing that friction small, would be counteracted by its effect
in the backward oscillation, at least if the two were symmetrical.
In this case then we might expect our results to agree very nearly
with experiment, so far at least as the time of oscillation is con-
cerned.
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The forces which act on the fluid are supposed in the following
investigations to be such that Xdx+ Ydy + Zdz is the exact dif-
ferential of a function of w, y and z, where X, Y, Z are the com-
ponents, parallel to the axes, of the acccelerating force acting on
the particle whose co-ordinates are @, 7, z. The only effect of such
forces, in the case of a homogeneous, incompressible fluid, being
to add the quantity p[(Xdx + Ydy + Zdz) to the pressure, the forces,
as well as the pressure due to them, will for the future be omitted
for the sake of simplicity.

2. It is a recognized principle, and one of great importance in
these investigations, that when a problem is determinate any solu-
tion which satisfies all the requisite conditions, no matter how ob-
tained, is the solution of the problem. In the case of fluid motion,
when the initial circumstances and the conditions with respect to
the boundaries of the fluid are given, the problem is determinate.
If it were required to find what sort of steady motion could take
place between given surfaces, the problem would not be determi-
nate, since different kinds of steady motion might result from dif-
ferent initial circumstances.

It may be well here to enumerate the conditions which must
be satisfied in the case of a homogeneous incompressible fluid
without a free surface, the case which is considered in this paper.
We have first the equations,

1dp 1dp_ ldp_

i — =, T — @, sz = @00006000800 (4);

du du  du du
putting =, for — o 7 S dy+wd , and w,, =, for the cor-

responding quantities for y and z, and omitting the forces.
We have also the equation of continuity,

du , dv  dw _

dz "t dy y t T

(4) and (B) hold at all times for all points of the fluid mass.

If o be the velocity of the point (z, y, z2) of thé surface of a
solid in contact with the fluid resolved along the normal, and »
the velocity, resolved along the same normal, of the fluid particle,
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which at the time ¢ is in contact with the above point of the solid,
we must have

at all times and for all points of the fluid which are in contact with
a solid.

If the fluid extend to infinity, and the motion at first be zero
at an infinite distance, we must have

u=0, v=0, w=0, at an infinite distance............. ().

An analagous condition is, that the motion shall not become
infinitely great about a particular point, as the origin,

Lastly, if u,, v,, w,, be the initial velocities, subject of course
to satisfy equations (B) and (a), we must have

u=1u, v="0, w=w, when t=0...cc..coecurru.. ...(c).

In the most general cases the equations which », » and w are
to satisfy at every point of the mass and at every time are (5) and
the three equations

@_dﬁrz dﬁr2=d_m-3 @_ﬁ_(&m‘l ©)
A i el e .

These equations being satisfied, the quantity = dx + v, dy+ =, dz
will be an exact differential, whence p may be determined by inte-
grating the value of dp given by equations (4). Thus the condi-
tion that these latter equations shall be satisfied is equivalent to
the condition that the equations () shall be satisfied.

In nearly all the cases considered in this paper, and in all those
of which the complete solution is given, the motion is such that
udx + vdy +wdz is an exact differential d¢. This being the case,
the equations (C) are, as it is well known, always satisfied, the
value of p being given by the equation

T=v0- oL 1{@?0’) +<y)2+%§)2}...............(D),

* For greater clearness, those equations which must hold for all values of the
variables within limits depending on the problem are denoted by capitals, while
those which hold only for certain values of the variables, or of some of them, are
denoted by small letters. The latter class serve to determine the f01ms of the
arbitrary functions contained in the integrals of the former.
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4 (¢) being an arbitrary function of ¢, which may if we please be
included in ¢. In this case, therefore, the single condition which
has to be satisfied at all times, and at every point of the mass is
(B), which becomes in this case

d2¢ dzd’ d2¢

it it @ = O oospvo008o000000000008aC

In the case of impulsive motion, if u,, v,, w,, be the velocities

just before impact, u, v, w, the velocities just after, and ¢ the im-
pulsive pressure, the equations (4) are replaced by the equations

1d
pd—=—b+ f—)gz=—v+vo, ——=_w+wo""(F);

pdz
and in order that these equations may be satisfied it is necessary
and sufficient that (v —u,)de + (v —v,)dy + (w —w,)dz be an exact
differential d¢, which gives

= pP.
The only equation which must be satisfied at every point of the
mass is (B), which is equivalent to (%), since by bhypothesis u,, v,,
and w, satisty (B). The conditions (@) and (b) remain the same
as before.

One observation however is necessary here. The values of u,
v and w are always supposed to alter continuously from one point
in the interior of a fluid mass to another, At the extreme boun-
daries of the fluid they may however alter abruptly. Suppose now
values of u, v and w to have been assigned, which do not alter
abruptly, which satisty equations (B) and (C) as well as the con-
ditions (a), () and (c), or, to take a particular case, values which
do not alter abruptly, which satisfy the equation (B) and the same
conditions, and which render udw + vdy + wdz an exact differential.
Then the values of dp/dz, dp/dy and dp/dz will alter continuously
from one point to another, but it does not follow that the value of
p itself cannot alter abruptly. Similarly in impulsive motion the
value of ¢ may alter abruptly, although those of dg/dx, dg/dy and
dg/dz alter continuously. Such abrupt alterations are, however,
inadmissible ; whence it follows as an additional condition to be
satisfied,

that the value of p or ¢, obtained by integrating
equations (4) or (&), shall not alter abruptly ¢ ........ (d)
from one point of the fluid to another.
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An example will make this clearer. Suppose a mass of fluid
to be at rest in a finite cylinder, whose axis coincides with that of
2, the cylinder being entirely filled, and closed at both ends. Sup-
pose the cylinder to be moved by impact with an initial velocity C
in the direction of 2; then shall

u=0C, v=0, w=0.

For these values render udz +vdy +wdz an exact differential dg,
where ¢ satisfies (£); they also satisfy (a); and, lastly, the value
of ¢ obtained by integrating equations (¥'), namely, ¢’ — Cpx, does
not alter abruptly. But if we had supposed that ¢ was equal
to Cx+ C’6, where 6 =tan™ y/x, the equation () and the con-
dition (a) would still be satisfied, but the value of ¢ would be
C”—p(Cx+0C'0), in which the term pC’d alters abruptly from
2mpC” to 0, as 0 passes through the value 2. The condition (d)
then alone shews that the former and not the latter is the true
solution of the problem.

The fact that the analytical conditions of a problem in fluid
motion, as far as those conditions depend on the velocities, may be
satisfied by values of those velocities, which notwithstanding cor-
respond to a pressure which alters abruptly, may be thus explained.
Conceive two masses of the same fluid contained in two similar
and equal close vessels 4 and B. For more simplicity, suppose
these vessels and the fluid in them to be at first at rest. Conceive
the fluid in B to be divided by an infinitely thin lamina which is
capable of assuming any form, and, at the same time, of sustaining
pressure. Suppose the vessels 4 and B to be moved in exactly
the same manner, the Jamina in B being also moved in any arbi-
trary manner. It is clear that, except for one particular motion
of the lamina, the motion of the fluid in B will be different from
that of the fluid in 4. The velocities «, », w, will in general be
different on opposite sides of the lamina in B. For particular
motions of the lamina however the velocities w, v, w, may be the
same on opposite sides of it, while the pressures are different.
The motion which takes place in B in this case might, only for
the condition (d), be supposed to take place in 4.

It is true that equations (4) or (I), could not strictly speaking
be said to hold good at those surfaces where such a discontinuity
should exist. Still, to avoid the liability to error, it is well to
state the condition (d) distinctly.
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When the motion begins from rest, not only must ude+vdy+wdz
be an exact differential d¢, and w, v, w, not alter abruptly, but
also ¢ must not alter abruptly, provided the particles in contact
with the several surfaces remain in contact with those surfaces;
for if this condition be not fulfilled, the surface for which it is not
fulfilled will as it were cut the fluid into two. For it follows from
the equation (D) that d¢/dé must not alter abruptly, since other-
wise p would alter abruptly from one point of the fluid to another;
and d¢/dt neither altering abruptly nor becoming infinite, it fol-
lows that ¢ will not alter abruptly. Should an impact occur at
any period of the motion, it follows from equations (¥') that that
‘cannot cause the value of ¢ to alter abruptly, since such an abrupt
alteration would give a corresponding abrupt alteration in the
value of ¢.

3. A result which follows at once from the principle laid down
in the beginning of the last article is this, that when the motion
of a fluid in a close vessel which is at rest, and is completely filled,
is of such a kind that udx + vdy + wdz is an exact differential, it
will be steady. For let u, », w, be the initial velocities, and let
us see if the velocities at the same point can remain u, v, w. First,
udx + vdy + wdz being an exact differential, equations (4) will be
satisfied by a suitable value of p, which value is given by equation
(D). Also equation (B) is satisfied since it is so at first. The con-
dition (@) becomes » =0, which is also satisfied since it is satis-
fied at first. Also the value of p given by equation (D) will not
alter abruptly, for dgp/dt =0, or a function of ¢, and the velocities
d¢/dz &c., are supposed not to alter abruptly. Hence, all the
requisite conditions are satisfied; and hence, (Art. 2) the hypo-
thesis of steady motion is correct*,.

4. In the case of an incompressible fluid, either of infinite ex-
tent, or confined, or interrupted in any manner by any solid bodies,
if the motion begin from rest, and if there be none of the cutting
motion mentioned in Art. 2, the motion at the time ¢ will be the

* [N.B. Itis only within a space which is at least doubly connected that such a
motion is possible. Thus in the example given in the preceding article, the axis of
the eylinder, where the velocity becomes infinite, may be regarded as an infinitely
slender core which we are forbidden to cross, and which renders the space within
the cylinder virtually ring-shaped.]
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same as if it were produced instantaneously by the impulsive
motion of the several surfaces which bound the fluid, including
among these surfaces those of any solids which may be immersed in
it. For let u, v, w, be the velocities at the time ¢. Then by a known
theorem udx +vdy + wdz will be an exact differential dé, and ¢
will not alter abruptly (Art. 2). ¢ must also satisfy the equation
(&), and the conditions (a) and (b). Now if «/, ¥/, w', be the velo-
cities on the supposition of an impact, these quantities must be
determined by precisely the same conditions as u, » and w. But
the problem of finding v/, v" and «/, being evidently determinate, it
follows that the identical problem of finding u, v and w is also
determinate, and therefore the two problems have the same solu-
tion; so that ) ) )

w=u, v=v, w=uw.

This principle has been mentioned by M. Cauchy, in a memoir
entitled Mémoire sur la Thém:ie des Ondes, in the first volume of
the Mémoires des Savans Etrangers (1827), page 14. It will
be employed in this paper to simplify the requisite calculations by
enabling us to dispense with all consideration of the previous motion,
in finding the motion of the fluid at any time in terms of that of
the bounding surfaces. One simple deduction from it is that,
when all the bounding surfaces come to rest, each element of the
fluid will come to rest. Another is, that if the velocities of the
bounding surfaces are altered in any ratio the value of ¢ will be
altered in the same ratio.

5. Superposition of different motions.

In calculating the initial motion of a fluid, corresponding to
given initial motions of the bounding surfaces, we may resolve the
latter into any number of systems of motions, which when com-
pounded give to each point of each bounding surface a velocity,
which when resolved along the normal is equal to the given
velocity resolved along the same normal, provided that, if the
fluid be enclosed on all sides, each system be such as not to alter
its volume. For let o', o/, w', v/, &, be the values of u, v, &c., corre-
sponding to the first system of motions; u”, v”, &c., the values of
those quantities corresponding to the second system, and so on;
so that

u=u+u'+.., v=v+0v"+.., w=w+uw'+..,

v=v 4+v +..., o=d+c" +....
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Then since we have by hypothesis «'dz + v'dy + w'dz an exact
differential d¢', u'dx +v"dy +w"dz an exact differential d¢p”, and
soon, it follows that udz 4 vdy + wdz is an exact differential, Again
by hypothesis v' =o', v" =¢'’, &c.,, whence v=0. Also, if the fluid
extend to an infinite distance, u, v, and w must there vanish, since
that is the case with each of the systems ', v/, ', &. Lastly, the
quantities ¢, ¢", &ec.,, not altering abruptly, it follows that ¢,
which is equal to ¢'+ ¢"+ ..., will not alter abruptly. Hence the
compounded motion will satisfy all the requisite conditions, and
therefore (Art. 2) it is the actual motion.

It will be observed that the pressure p will not be obtained
by adding together the pressures due to each of the above systems
of velocities. To find p we must substitute the complete value of
¢ in equation (D). If, however, the motion be very small, so that
the square of the velocity is neglected, it will be sufficient to add
together the several pressures just mentioned.

In general the most convenient systems into which to decom-
pose the motion of the bounding surfaces are those formed by
considering the motion of each surface, or of a certain portion of
each surface, separately. Such a portion imay be either finite or
infinitesimal. In fact, in some of the cases of motion that will be
presently given, where ¢ is expressed by a double integral with a
function under the integral sign expressing the motion of the
bounding surfaces, it will be found that each element of the inte-
gral gives a value of ¢ such that, except about the corresponding
element of the bounding surface, the motion of all particles in
contact with those surfaces is tangential.

A result which follows at once from this principle, and which
appears to admit of comparison with experiment, is the following.
Conceive an ellipsoid, or any body which is symmetrical with
respect to three planes at right angles to each other, to be made
to oscillate in a fluid in the direction of each of its three axes in
succession, the oscillations being very small. Then, in each case,
as may be shewn by the same sort of reasoning as that employed
in Art. 8, in the case of a cylinder, the effect of the inertia of the
fluid will be to increase the mass of the solid by a mass having a
certain unknown ratio to that of the fluid displaced. Let the axes
of co-ordinates be parallel to the axes of the solid; let #, ¥, 2, be
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the co-ordinates of the centre of the solid, and let M, M’, M”, be
the imaginary masses which we must suppose added to that of the
solid when it oscillates in the direction of the axes of «, ¥, 2, respec-
tively. Let it now be made to oscillate in the direction of a line
making angles «, B, v, with the axes, and let s be measured along
this line. Then the motions of the fluid due to the motions of
the solid in the direction of the three axes will be superimposed.
The motion being supposed to be small, the resultant of the pres-
sures of the fluid on the solid will be three forces, equal to

]l[cosazﬁ ]’['CObB M'e sryd
de*’ d 2 de*’
respectively, in the directions of the three axes. The resultant of
these in the direction of the motion will be 2/, d’s/d¢* where

M,= Mcos*a + M’ cos’B + M cossy.

Each of the quantities M, M’, M” and M,, may be determined
by observation, and we may find whether the above relation holds
between them. Other relations of the same nature may be de-
duced from the principle explained in this article.

6. Reflection.

Conceive two solids, 4 and B, immersed in a fluid of infinite
extent, the whole being at rest. Suppose 4 to be moved in any
manner by impulsive forces, while B is held at rest. Suppose the
solids 4 and B of such forms that, if either were removed, and
the several points of the surface of the other moved instantaneously
in any given manner, the motion of the fluid could be determined:
then the actual motion can be approximated to in the following
manner. Conceive the place of B to be occupied by fluid, and 4
to receive its given motion; then by hypothesis the initial motion
of the fluid can be determined. Let the velocity with which the
fluid in contact with that which is supposed to occupy B’s place
penetrates into the latter be found, and then suppose that the
several points of the surface of B are moved with normal velocities
equal and opposite to those just found, 4’s place being supposed
to be occupied by fluid. The motion of the fluid corresponding to
the velocities of the several points of the surface of B can then be
found, and 4 must now be treated as B has been, and so on. The
system of velocities of the particles of the fluid corresponding to
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the first system of velocities of the particles of the surface of B,
form what may be called the motion of A reflected from B; the
motion of the fluid arising from the second system of velocities of
the particles of the surface of 4 may be called the motion of A
reflected from B and again from A, and so on. It must be re-
membered that all these motions take place simultaneously. It
is evident that these reflected motions will rapidly decrease, at
least if the distance between 4 and B is considerable compared
with their diameters, or rather with the diameter of either. In
this case the calculation of one or two reflections will give the
motion of the fluid due to that of A with great accuracy. It is
evident that the principle of reflection will extend to any number
of solid bodies immersed in a fluid; or again, the body B may be
supposed to be hollow, and to contain the fluid and 4, or else 4
to contain B. In some cases the series arising from the successive
reflections can be summed, in which case the motion will be deter-
mined exactly. The principle explained in this article has been
employed in other subjects, and appears likely to be of great use
in this. It is the same for instance as that of successive influences
in Electricity.

7. If a mass of fluid be at rest or in motion in a close vessel
which it entirely fills, the vessel being either at rest or moving in
any manner, any additional motion of translation communicated
to the vessel will not affect the relative motion of the fluid. For
it is evident that on the supposition that the relative motion is
not affected the equation (B) and the condition (z) will still be
satisfied. Also,if w , w,, =,, be the components of the effective force
of any particle in the first case, and U, V, W, be the components
of the velocity of translation, then

qu av aw
Tt g Tt g Tt

will be the components of the effective force of the same particle
in the second case. Now since by hypothesis & dz+ =, dy + = dz
is an exact differential, as follows from equations (C), and U, V, W,
are functions of ¢ only, it follows at once that

(’w +dU)d +(ﬁr +dV)dJ+( d;:r)dz
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1s an exact differential, where #, y, z, are the co-ordinates of any
particle referred to the old axes, which are themselves moving in
space with velocities U, V, W. But if «,, y,, 2,, be the co-ordinates
of the same particle referred to parallel axes fixed in space, we
have

zo=w+[Udt, y,=y+[Vdt, 2 =z+[Wdt,

whence, supposing the time constant, de=dz,, dy=dy,, dz=dz,,
and therefore
dUu av aw
(w1+ Ti{) dl‘l'*‘ <@'2+ ?[t') d‘?/l + (Ws'*‘ —d't‘) dzl

is an exact differential. Hence, equations (4) can be satisfied by
a suitable value of p. Denoting by p the pressure about the par-
ticle whose co-ordinates are , ¥, #, in the first case, the pressure
about the same particle in the second case will be

au dvV  dW
p+v & —p (o Gy G e),

none of the terms of which will alter abruptly, since by hypothesis
p does not.

Since then the present hypothesis satisfies all the requisite
conditions, it follows from Art. 2 that that hypothesis is correct.
If F be the additional effective force of any particle of the vessel
in consequence of the motion of translation, and we take new axes
of #, y', 2, of which the first is in the direction of F, the additional
term introduced into the value of the pressure will be —pFur,
omitting the arbitrary function of the time. The resultant of the
additional pressures on the sides of the vessel will be equal to F°
multiplied by the mass of the fluid, and will pass through the
centre of gravity of the fluid, and act in the directon of — &',

8. Motion between two cylindrical surfaces having a common
axis.

Let us conceive a mass of fluid at rest, bounded by two cylin-
drical surfaces having a common axis, these surfaces being either
infinite or bounded by two planes perpendicular to their axis. Let
us suppose the several generating lines of these cylindrical surfaces
to be moved parallel to themselves in any given manner consistent
with the condition that the volume of the fluid be not altered:
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it is required to determine the initial motion at any point of the
mass.

Since the motion will take place in two dimensions, let the
fluid be referred to polar co-ordinates =, 8, in a plane perpendicular
to the axis,  being measured from the axis. Let @ be the radius
of the inner surface, b that of the outer, () the normal velocity
of any point of the inner surface, /'(0) the corresponding quantity
for the outer.

Since for any particular radius vector betwcen ¢ and b the
value of ¢ is a periodic function of @ which does not become in-
finite, (for the motion at each point of each bounding surface
is supposed to be finite), and which does not alter abruptly, it
may be expanded in a converging series of sines and cosines of
0 and its multiples. Let then

¢ =P, +37 (P, cosnd+ Q,sinnb) ... (1).
Substituting the above value in the equation
d( dé\  d’¢
’r%(r%)_i-d—ﬂz_o .................. (2),

which ¢ is to satisfy, and equating to zero the coefficients of
corresponding sines and cosines, which is allowable, since a given
function can be expanded in only one series of the form (1), we
find that P, must satisfy the equation

d( dP) _
Ta—’:(f‘—a;)——o,

of which the general integral is
P =Alogr+ B,
the base being ¢, and P, and @, must both satisfy the same

equation, viz.
d( dp, Tl
(" ) R0,

of which the general integral is
P =Cr"+C"r"

We have then, omitting the arbitrary constant in ¢, as will
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be done for the future, since we have occasion to use only the
differential coeflicients of ¢,

b=Ad logr+=27{(4,r"+ 4" r") cosnf

+ (B + B ) sinnf] oo (3),
i s s i
‘17? — F(0) When £=a.eesnesne @),
‘“’ =F(8) when #=b ..roceveen. ereerees(5).
e £(6)=C,+37(C, cosnf + D, sin nf),

F(0)=C +327(Ccos nf + IV, sinnf);
so that

1 2m ’ ’ __1 iz 4 p
00=§7~Tf0 f@ae, ¢, = f F(€) cosnb'do,

D, ——f f(6)sinnf'de,

with similar expressions for C ', &c.  Then the condition (4)
gives

%’ + 3 n{(~A4,a” @+ A',a"") cos nb
+ (= B,a~®*1 4 B an~1) sin nf} =0, + %7 (C, cos n +D, sin nf) ;

whence, {
A,=aC,,
1

A,am 0 — 4 gr-1=— 0,

1
Ba- @) B qrl=— ;zD"'

Similarly, from the condition (5), we get
A4,=0bC",

Ao — A = O,

Bb -0t — B b= — }L D,
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It will be observed that aC,=0bC",, by the condition that the
volume of fluid remains unchanged, which gives

ff(e)de' bf @) 9.

From the above equations we easily get

‘zn bﬁn

-A (bzn 2n) { —ntl O’",_a/—'n+1 0,,,},
and, changing the sign of n, ‘
’ 1 n+1 Y 'Il+1
A n= n (b2" ) {b C Qn}’

with similar expressions for B, and B',, involving D in place of C.
We have then

p=alClogr+3=; }2 " =[O0 O, —a™™ C,) cosnd

+ (™D, —a™" D,)sin nf] a® b0

+ [ O, —a"" C,) cos nb

+ ("D, —a"™D,)sinnf] "} .eeriiiiiiiniann (6),
which completely determines the motion.

It will be necessary however, (Art. 2), to shew that this value
of ¢ does not alter abruptly for points within the fluid, as may
be easily done. For the quantities C,, D, cannot be greater than

27
717_ f + f(6) df, where each element of the integral is taken posi-
0

tively ; and since by hypothesis £ () is finite for all values of 6
from 0 to 2, it follows that neither C, nor D, can be numerically
greater than a constant quantity which is independent of n. The
same will be true of C', and 2',. Remembering then that r>a
and <b, it can be easily shewn that the series which occur in (6)
have their terms numerically less than those of eight geometric
series respectively whose ratios are less than unity; and since
moreover the terms of the former set of series do not alter abruptly,
it follows that ¢ cannot alter abruptly. The same may be proved
in a similar manner of the differential coefficients of ¢. The other
infinite series expressing the value of ¢ which occur in this paper
may be treated in the same way: and in Art. 10, where ¢ is
expressed by a definite integral, the value of ¢ and its differential

S. 3
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coefficients will alter continuously, since that is the case with each
element of the integral. It will be unnecessary therefore to
refer again to the condition (d).

If the fluid be infinitely extended, we must suppose €', and
D', to vanish in (6), since the velocity vanishes at an infinite
distance ; we must then make b infinite, which reduces the above
equation to

n+1
a

¢ =aC0,log r — = —, {C, cosnf + D, sin n6} .....(7).

nr®

This value of ¢ may be put under the form of a definite
integral: for, replacing C,, €, and D, by their values, it becomes

a iy g & el @\ [P N ey
2—7T10gr]0f(9)d9 ‘;Elﬁ(;) fof(e)cosn(e-e)da,
which becomes on summing the series
a om ' A a v a) ] ,.
Q;logrfo F(0)do +77fo log {1-—2;003(9—-9)+—7_—2J\ £(0)de’;

whence

dp _a [?(1 arcos (0 — &) —a’ } N
El;_v—r;fo {Q r*— 2ar cos (0 - 6) +ad° f()do.

If we suppose 7 to become equal to a the quantity under the
integral sign vanishes, except for values of @', which are indefinitely
near to 6. The value of the integral itself becomes 7f (8)*. Hence
it appears, that to the disturbance of each element of the surface,
there corresponds a normal velocity of the particles in contact
with the surface, which is zero, except just about the disturbed
element. The whole disturbance of the fluid will be the aggregate
of the disturbances due to those of the several elements of the
surface. The case of the initial motion of fluid within a eylinder,
and the analogous cases of motion within and without a sphere,
which will be given in the next article, may be treated in the
same manner.

The velocity in the direction of » given by the equation (7),
(=de/dr),

- 90, R (“)Ml{()’n cos n8 + D, sin n6},

r %

* Poisson, Théorie de la Clalcur, Chap. viL,
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and that perpendicular to », and reckoned positive in the same
direction as 0, (=d¢/rd6),

a\?t1
=37 (;) {C, sin n6 — D, cos nb)}.

Conceive a mass of fluid comprised between two infinite
parallel planes, and suppose that a certain portion of this fluid
contains solid bodies bounded by cylindrical surfaces perpendicular
to these planes. The whole being at first at rest, suppose that
the surfaces of these solids are moved in any manner, the motion
being in two dimensions. Conceive a circular cylindrical surface
described perpendicular to the parallel planes, and with a radius so
large that all the solids are comprised with it. Then, (Art. 4), we
may suppose the motion of the fluid at any time to have been
produced directly by impact. On this supposition the initial
motion of the part of the fluid without the above cylindrical
surface will be determined in terms of the normal motion of the
fluid forming that surface, as has just been done. If C, be different
from zero, then, at a great distance in the fluid, the velocity will
be ultimately aC,/r, and directed to or from the axis of the
cylinder, and alike in all directions. Since the rate of increase
of volume of a length 7 of the cylinder is equal to

T f " £(0) A6 = 2mlaC,,
0

it appears that the velocity at a great distance is proportional
to the expansion or contraction of a unit of length of the solids.
If however there should be no expansion or contraction, or if
the expansion of some of the solids should make up for the con-
traction of the rest, then in general the most important part of
the motion at a great distance will consist of a velocity C’cos 6,. /r*
directed to or from the centre, and another ¢ sin 6, . /»* perpen-
dicular to the radius vector, the value of ¢’ and the direction from
which 6, is measured varying from one instant to another. The
resultant of these velocities will vary inversely as the square of
the distance.

Resuming the value of ¢ given by equation (6), let us suppose
that the interior cylindrical surface is rigid, and moved with a
velocity C in the direction from which 8 is measured, the outer

3—2
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surface being at rest: then f(0)=Ccosd, F(0)=0; whence
C,=C, and the other coefficients are each zero. We have then

¢=— ia‘ (I;—g 2 r) CoS B .iviiiiiniiiinns (8).

Suppose now that the inner cylinder has a small oscillatory
motion about an axis parallel to the axis of the cylinders, the
cylinders having their axes coincident in the position of equi-
librium. Let 4 be the angle which a plane drawn through the
axis of rotation, and that of the solid cylinder at any time makes
with a vertical plane drawn through the former. The motion
of translation of the axis of the cylinder will differ from a recti-
linear motion by quantities depending on +*: the motion of
rotation about its axis will be of the order 4, but will have no
effect on the fluid. Therefore in considering the motion of the
fluid we may, if we neglect squares of 4, consider the motion
of the cylinder rectilinear, The expression given for ¢ by equa-
tion (8) will be accurately true only for the instant when the
axes of the cylinders coincide; but since the whole resultant
pressure on the solid eylinder in consequence of the motion is
of the order 4, we may, if we neglect higher powers of {» than the
first, employ the approximate value of ¢ given by equation (8).
Neglecting the square of the velocity, we have

d

In finding the complete value of d¢/dt it would be necessary to
express ¢ by co-ordinates referred to axes fixed in space, which
after differentiation we might suppose to coincide with others
fixed in the body. But the additional terms so introduced de-
pending on the square of the velocity, which by hypothesis is
neglected, we may differentiate the value of ¢ given by equation
(8) as if the axes were fixed in space. We have then, to the first
order of approximation,

,dC
2
gf——%{b +7'} cos 0.

If 7 be the length of the cylinder, the pressure on the element
lad@, resolved parallel to # and reckoned positive when it acts
in the direction of x,
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1290

& T—‘ﬁ{b +a}cos 6a6;
b*— a

and integrating from 6 =0 to & =2, we have the whole resultant

pressure parallel to z

dC
dt

Since dC/dt is the effective force of the axis, parallel to @, and

that parallel to y is of the order 4, we see that the effect of

the inertia, of the fluid is to increase the mass of the cylinder
2

by ZZ; e where p is the mass of the fluid displaced. This

2
=_?ZZ +a27rpl .

imaginary additional mass must be supposed to be collected at the
axis of the cylinder.

If the cylinder oscillate in an infinitely extended fluid & = 0,
and the additional mass becomes equal to that of the fluid dis-
placed. This appears to be a result capable of being compared
with experiment, though not with very great accuracy. Two
cylinders of the same material, and of the same radius, but whose
lengths differ by several radii, might be made to oscillate in
succession in a fluid, at a depth sufficiently great to allow us
to neglect the motion of the surface of the fluid. The time of
oscillation of each might then be calculated as if the cylinder
oscillated in vacuum, acted on by a moving force equal to its
weight minus that of the fluid displaced, acting downwards
through its centre of gravity, and having its mass increased by an
unknown mass collected in the axis. Equating the time of oscil-
lation so calculated to that given by observation, we should
determine the unknown mass. The difference of these masses
would be very nearly equal to the mass which must be added
to that of a cylinder whose length is equal to the difference of
the lengths of the first two, when the motion is in two dimensions.
This evidently comes to supposing that, at a distance from the
middle of the longer cylinder not greater than half the difference
of the lengths of the two, the motion may be taken as in two
dimensions. The ends of the cylinders may be of any form,
provided that they are all of the same. They may be suspended
by fine equal wires, in which case we should have a compound
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pendulum, or attached to a rigid body oscillating above the fluid
by means of thin flat bars of metal, whose plare is in the plane of
motion, Another way of getting rid of the motion in three
dimensions about the ends would be, to make those ends plane,
and to fix two rigid planes parallel to the plane of motion, which
should be almost in contact with the ends of the cylinder.

9. Motion between two concentric spherical surfaces.—Motion
of a ball pendulum enclosed in a spherical case.

Let a mass of fluid be at rest, comprised between two con-
centric spherical surfaces. Let the several points of these surfaces
be moved in any manner consistent with the condition that the
volume of the fluid be not changed: it is required to determine
the initial motion at any point of the mass.

Let a, b, be the radii of the inner and outer spherical surfaces
respectively ; then employing the co-ordinates r, 6, w, where »
is the distance from the centre, & the angle which » makes with
a fixed line passing through the centre, » the angle which a plane
passing through these two lines makes with a fixed plane through
the latter, the value of ¢ corresponding to any radius vector
comprised between a and b can be expanded in a converging
series of Laplace’s coefficients. Let then

V, being a Laplace’s coefficient of the n* order.
Substituting in the equation, ‘
drg . 1 d (. ,do 1 d'¢
PG o a0 (0 0 30) T 0 s = O
which ¢ is to satisfy, employing the equation
1 dy/. ,dV, 1 &'V,
RO+ V.ot i (0 0 G6) + 5 g’
and then equating to zero the Laplace’s coefficients of the several
orders, we find

=0...(9),

arv,
T3 —nn+1)V,=0.
The general integral of this equation is
C'

Vn=07’"+p+—1 )
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where C and C' are functions of € and w. Substituting in the
equation (9), and equating coefficients of the two powers of r
which enter into it separately to zero, we find that both €' and C’
satisfy it, and therefore are both Laplace’s coefficients of the n
order. We have then

=32V, p" + Zr 040 (10),

where Y, and Z, are each Laplace’s coefficients of the n* order,
and do not contain r. Let f(6, w) be the normal velocity of the
point of the inner surface corresponding to 6 and w, F'(0, w) the
corresponding quantity for the outer; then the conditions which
¢ is to satisfy are that

2% =f (0, w) when r=a,

%’; = (6 o) when r =1,

Let f (6, w), expanded in a series of Laplace’s coefficients, be
e SHOE B SIS

which expansion may be performed by the usual formula, if not
by inspection: then the first condition gives

52 (Ve — (n+1) Z,a-0+9) = STP,;
and equating Laplace’s coefficients of the same order, we get
nY o" 11— (n+1)Z,a" " A=P ............ (1.
Let F(0, »), expanded in a series of Laplace’s coefficients, be
P +P,... P +..;
then from the second condition, we get
nY br 1= (n+1)Z b2 =P .......... (12).
From (11) and (12) we easily get
PLte— P gnte
Vo= — iy
@1t P h-(-1) _ P g~ (-1}
» (n + 1) (b1 — 20 1) ’
provided n be greater than 0. If =0, we have
—a?Z=PF, -b0Z=r,
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But the condition that the volume of the fluid be not altered,
gives
w (27 w [2mr
a* f [ 70, )sin 0d€dw=b2f f F(6, )sin 0d6dw,
oJo 0Jo
or 47a*P, = 47b*P",,
which reduces the two equations just given to one.

We have then, omitting the constant Y,

® [bi+l — gnt1) -1 {% (P, b7*2 — P, ar+2)
a2n+1 Z)Zn +1
a4+l
which determines the motion.

When the fluid is infinitely extended, we have P, =0 since

the velocity vanishes at an infinite distance, and b = o, whence
® aﬂ+2-P"1
L RSk

It may be proved, precisely as was done, (Art. 8), for motion
in two dimensions, that if any portion of an infinitely extended
fluid be disturbed by the motion of solid bodies, or otherwise,
if all the fluid beyond a certain distance from the part disturbed
were at first at rest, the velocity at a great distance will ultimately
be directed to or from the disturbed part, and will be the same
in all directions, and will vary as #*. The coeflicient of +™* will
be proportional to the rate of gain or loss of volume of the part
disturbed. If however this rate should be zero, then the most
important part of the velocity at a great distance will in general
be that depending on the term —}da’P,.r™ in ¢, Since the
general form of P, is

A cos @+ Bsin 6 cos w+C sin  sin o,

(P b-n=1) — P g~(r-1) r“‘"“’} ...(13),

we easily find, by making use of rectangular co-ordinates, changing
the direction of the axes, and then again adopting polar co-
ordinates, that the above term in ¢ takes the form Dcosf, .77
0, being measured from some line passing through the origin.
The motion will therefore be the same as that round a ball
pendulum in an incompressible fluid, the centre of the ball being
in the origin; a case of motion which will be considered im-
mediately. In order to represent the motion at different times,
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we must suppose the velocity and direction of motion of the
ball to change with the time.

The value of ¢ given by equation (13) is applicable to the
determination of the motion of a ball pendulum "enclosed in a
spherical case which is concentric with the ball in its position of
equilibrium. If C be the velocity of the centre of the ball at
the instant when the centres of the ball and case coincide, and
if & be measured from the direction in which it is moving, we
shall have

Jf(@)=Ccosb, F(0)=
o P,=0, P=Ccosf, P,=0,&c, P =0, &c,
and the value of ¢ for this instant is accurately
Oa’ b
~ o2 ('r + 5 ) cos 6,
which, when b= o, becomes

__Uda’cos @
27,2 ’
which is the known expression for the value of ¢ for a sphere
oscillating in an infinitely extended, incompressible fluid.

It may be shewn, by precisely the same reasoning as was
employed in the case of the cylinder, that in calculating the
small oscillations of the sphere the value of d¢/d¢ to be employed is

dC’
@ dt b’
— (a+ o )cos@
and from the equation p = — p d/dt, we easily find that the whole
resultant pressure on the sphere in the direction of its centre, and
tending to retard it is
4 mpa’ ﬁ)z@
31)3—-0,3( 2a*) dt’
and that perpendicular to this direction is zero. Since dC/dt is
the effective force of the centre in the direction of the motion, and
that perpendicular te this direction is of the second order, the
effect of the inertia of the fluid will be to increase the mass of the
sphere by a mass

7pa’ (a+ bs> B+ 20’ n

o Oiiadans
“3F= )TV —a 2’
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@ being the mass of the fluid displaced ; so that the effect of the
case is, to increase the mass which we must suppose added to
that of the ball in the ratio of 0° + 24° to J*—d’.

Poisson, in his solution of the problem of the oscillating sphere
given in the Mémoires de U Académie, Tome X1.arrives at a different
conclusion, viz. that the case does not at all affect the motion of
the sphere. When the elimination which he proposes at p. 563
is made, the last term of equation (f), p. 550, becomes

oy a’t At
s (=59 (@ + & )
where a is the velocity of propagation of sound, and & the ratio
of the density of air to that of the ball, ¢ and ¢’ being functions
derived from others which enter into the value of ¢ by putting
r=c¢, where c is the radius of the ball. He then argues that
this term may be neglected as insensible, since it involves § in
the numerator and @* in the denominator, tacitly assuming that
3 3

Z—tf—"+%t5 is not large since ¢ is not large. Now for the disturb-
ances of the air which have the same period as those of the
pendulum d¢/d¢ is not large compared with ¢, as it is for those on
which sound depends. Let then Poisson’s solution of equation (a),
p. 547 of the volume already mentioned, be put under the form

=MD D2 (D) (),

S' and F’ denoting the derived functions, and all the Laplace’s
coefficients except those of the first order being omitted, the value
of ¢ just given being supposed to be a Laplace’s coefficient of that
order. Then if we expand the above functions in series ascending
according to powers of 7/a, we find

b= 5 (F O+ FO) = 5 U O+ F" ()

0 n Y
+:§-a3{f &) —=F"@®}+...;
and in order that when a =0 this equation may coincide with
(10), when all the Laplace’s coefficients except those of the first
order are omitted in that equation, it will be seen that it is
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necessary to suppose f'(¢§)—F"'(f), and therefore f(t)— F(z),
to be of the order @', while £'(¢) + F (¢) is not large. Putting then

FO=x()+d= (),

Ft)=x () —d'= (1),
we shall have

§+C’=x(t—g)+x<t+§)+a3{w(t—%>—w(t+-2>};

g+
so that —(flts &)
term which Poisson proposes to leave out will be of the same

order of magnitude as those retained.

will contain a term of the order a? and the

In making the experiment of determining the resistance of
the air to an oscillating sphere, it would appear to be desirable
to enclose the sphere in a concentric spherical case, which would
at the same time exclude currents of air, and facilitate in some
measure the experiment by increasing the small quantity which is
the subject of observation. The radius of the case however ought
not to be nearly as small as that of the ball, for if it were, in
the first place a small error in the position of the centre of the
ball when at rest might not be insensible, and in the second place
the oscillations would have to be inconveniently small, in order
that the value of ¢ which has been given might be sufficiently
approximate. The effect of a small slit in the upper part of the
case, sufficient to allow the wire by which the ball is supported
to oscillate, would evidently be insensible, for the condensation
being insensible in a vertical plane passing through the axis of
rotation, since the alteration of pressure in that plane is insensible,
the air would not have a tendency alternately to rush in and out
at the slit.

10. Effect of a distant rigid plane on the motion of a ball
pendulum.

Although this problem may be more easily solved by an arti-
fice, it may be well to give the direct solution of it by the method
mentioned in Article 6. In order to calculate the motion re-
flected from the plane, it will be necessary to.solve the following
problem :
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To find the imtial motion at any point of & mass of fluid in-
finitely extended, except where 1t vs bounded by an infinite solid but
not rigid plane, the initial motion of each point of the solid plane
being given.

It is evident that motion directed to or from a centre situated
in the plane, the velocity being the same in all directions, and
varying inversely as the square of the distance from that centre,
would satisfy the condition that udz+ vdy 4+ wdz is an exact
differential, and would give to the particles in contact with the
plane a velocity directed along the plane, except just about the
centre. Let us see if the required motion can be made up of an
infinite number of such motions directed to or from an infinite
number of such centres.

Let x, y, 2, be the co-ordinates of any particle of fluid, the
plane xy coinciding with the solid plane, and the axis of z being
directed into the fluid. Let &, ', be the co-ordinates of any point
in the solid plane : then the part of ¢ corresponding to the motion
of the element dz'dy’ of the plane will be

V(= y)da'dy
Je@—2)+(y-y) +7
and therefore the complete value of ¢ will be given by the equa-

tion
(&, y)Yda'dy .
¢= f j_ww G iy e (14).

The velocity parallel to z at any point = d¢/dz '

(&, o )zdad' dy
f_J {(z—a) +y(y y)ZM’}%'

Now when z vanishes the quantity under the integral signs
vanishes, except for values of &' and y indefinitely near to  and y
respectively, the function yr(2’, y') being supposed to vanish when
# ory is infinite. Let then o =x+& y =y +n, then, £ and 7,
being as small as we please, the value of the above expression
when z = 0 becomes '

£ [ d
T off f” eNADaeE i ey S
&d -, (& +q'+2")%
Now if ¥ (z, ¥) does not alter abruptly between the limits = — £,
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and @+, of 2, and y—7, and g+, of ¥, the above expression
may be replaced by
E/ /
Y, ) x the limit of [ [ —FI
% - —ﬂ,(f -+ 7 +Zz)7
which is = — 2m{ (z, ).

If now f (', %) be the given normal velocity of any point (2, ¥
of the solid plane, the expression for ¢ given by equation (14) may
be made to give the required normal velocity of the fluid particles
in contact with the solid plane by assuming

@) == 5 F (@),

pun k[ [ Ly
o2 3 N ) N T

This expression will be true for any point at a finite distance from
the plane zy even when f («,) does alter abruptly; for we may
first suppose it to alter continuously, but rapidly, and may then
suppose the rapidity of alteration indefinitely increased : this will
not cause the value of ¢ just given to become illusory for points
situated without the plane zy.

whence

If it be convenient to use polar co-ordinates in the plane xy,
putting z=gcos », y =g sinw, & =¢'cose’, y'=g¢'sinw’, and re-
placing £ (2, y') by £ (¢’ @), the equation just given becomes

R W) o G A5 (. L
?="5, 0Jo [¢%+¢* —2gq cos (0 — &) + 275

To apply this to the case of a sphere oscillating in a fluid per-
pendicularly to a fixed rigid plane,let a be the radius of the sphere,
and let its centre be moving towards the plane with a velocity ¢'
at the time ¢&. Then, (Art. 4), we may calculate the motion as if
it were produced directly by impact. Let & be the distance of the
centre of the sphere from the fixed plane at the time £, and let
the line & be taken for the axis of 2, and let 7, 8, be the polar co-
ordinates of any point of the fluid, » being the distance from the
centre of the sphere, and € the angle between the lines » and A.

Then if the fluid were infinitely extended around the sphere we
should have

Ca’ecos 6 &
¢—— -——2—7‘5— ........................... (10 .
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The velocity of any particle, resolved in a direction towards the
plane, = d¢/dr . cos @ — dp/rd . sin 0

Ca® .
=" fcos*@ — L sin®4).
1.3 { 2

For a particle in the plane xy we have
rcos@=h, rsinf=g,
and the above velocity becomes
Oa® (287 - ¢%)
We must now, according to the method explained in (Art. 6), sup-

pose the several points of the plane zy moved with the above
velocity parallel to 2. We have then

o~ _Cd’ (20— q")
f<Q’w)— 2(hg+glg)% H
whence, for the motion of the sphere reflected from the plane,

— __f f% (2]7’2_ glg)qldqld("’ (16)
B+ ¢ ¢+ ¢~ 299 cos (0 — ') + 2227

We must next find the velocity, corresponding to this value of
¢, with which the fluid penetrates the surface of the sphere, We
have in general

z=h—rcosf, g=rsinb,
whence
(¢ + " — 249 cos (0 — &) + 27}
= {I* +1* + ¢"* — 2hr cos § —2¢’r sin 6 cos (& — o)L
Now supposing the ratio of a to A to be very small, and retaining
the most important term, the value of d¢/dr when r=a will be

equal to the coefficient of  when ¢ is expanded in a series ascend-
ing according to powers of r,

f J‘2" (2h* = ¢™) {& cos 0+ ¢ sin 0 cos (w — w')} ¢'dg' de’
#* +4%)*
s 2R —q¢* 4 d Ca’ cos 0
=~ Ca'h cosd | _(hT—Qggrl_———Slf— oveveneseen (17).

In order now to determine the motion reflected from the
plane and again from the sphere, we must suppose the several
points of the sphere to be moved with a mnormal velocity
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Ca’cos 0. /81, or, which is the same, we must suppose the whole
sphere to be moved towards the plane with a velocity Ca®/8%°.
Hence the value of ¢ corresponding to this motion will be given
by the equation

Ca’ cos 0
¢ == W ....................... (18)-

For points at a great distance from the centre of the sphere,
the motion which is twice reflected will be very small compared
with that which is but once reflected. For points close to the
sphere however, with which alone we are concerned, those motions
will be of the same order of magnitude, and if we take account
of the one we must take account of the other.

Putting g=rsinf, z=h—rcosd in (16), expanding, and
retaining the two most important terms, we have

a’r cos t?)
8h?

K being a constant, the value of which is not required, and the
second term being evidently found by multiplying the quantity
at the second side of (17) by 7. Adding together the parts of ¢
given by equations (15), (18) and (19), putting » =a, replacing
C by dC/dt, and taking for h the value which it has in equili-
brium, just as in the case of the oscillating cylinder in Article 8,
we have for the small motion of the sphere
3
d¢ ac a(1+3a>d0

@—:I(dt—é §7II—3 %COSO.

¢=0<K_

The resultant of the part of the pressure due to the first term
is zero: that due to the second term is greater than if the plane
were removed in the ratio of 1+ 34°/8h* to 1. Consequently, if
we neglect quantities of the order a*/F*, the effect of the inertia
of the fluid is, to add a mass equal to (1 + 3a°/8%%).4x to that of
the sphere, without increasing the moment of inertia of the latter
about its diameter. The effect therefore of a large spherical case
is eight times as great as that of a tangent plane to the case,
perpendicular to the direction of the motion of the ball.

The effect of a distant rigid plane parallel to the direction
of motion of an oscillating sphere might be calculated in the
same manner, but as the method is sufficiently explained by the
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first case, it will be well to employ the artifice before alluded to,
an artifice which is frequently employed in this subject. It con-
sists in supposing an exactly symmetrical motion to take place
on the opposite side of a rigid plane, by which means we may
evidently conceive the plane removed.

Let the sphere be oscillating in the direction of the axis of «,
the oscillations in this case, as in the last, being so small that
they may be taken as rectilinear in calculating the motion of the
fluid; and instead of a rigid plane conceive an equal sphere to exist
at an equal distance on the opposite side of the plane zy, moving
in the same direction and with the same velocity as the actual
sphere. Let 7, 6, @, be the polar co-ordinates of any particle
measured from the centre of the sphere, @ being the angle between
r and a line drawn through the centre parallel to the axis of z,
and w the angle which the plane passing through these lines makes
with the plane wz. Let ', &, ’, be the corresponding quantities
symmetrically measured from the centre of the imaginary sphere.

If the fluid were infinite we should have for the motion cor-
responding to that of the given sphere

Ca® cos @
¢ = 92

-

The motion reflected from the plane is evidently the same as
that corresponding to the motion of the imaginary sphere in an
infinite mass of fluid, for which we have

_ Ca® cos &'
T e
Now 1’ cos@ =r cosf, 7 siné sinw =7 sinf sin ,
¥ sin @' cosw’ + 7 sin 8 cos w =24 ;
whence 7? = 1® + 4h* — 4hr sin 0 cos o,
and equation (21) is reduced to
r Ca’r cos 0
e e

Retaining only the terms of the order a*r/k° or 7*/A’ so as to get
the value of d¢/dr to the order a’/h’, the above equation is re-
duced to

Ca’r cos 8 s
4) = — —I—WF—_ 50008000600 00388500500 (22),
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and the value of d¢p/dr when r=a is, to the required degree of
approximation,
Ca’® cos 6
B (7
For the value of ¢ corresponding to the motion of the imaginary
sphere reflected from the real sphere, we shall therefore have
Ca’ cos 0
b=— TERIEE e
Adding together the values of ¢ given by (20), (22) and (23),
putting 7 =a, and replacing ¢ by d0/dt, we have, to the requisite
degree of approximation,
@__g(l 3 a”)dG
) 16 1) dt
Hence in this case the motion of the sphere will be the same as
if an additional mass equal to (1+34°/162%) . 3 were collected
at its centre. The effect therefore of a distant rigid plane which
is parallel to the direction of the motion of a ball pendulum will
be half that of a plane at the same distance, and perpendicular
to that direction. It would seem from Poisson’s words at page 562
of the eleventh volume of the Mémoires de U Académie, that he
supposed the effect in the former case to depend on a higher
order of small quantities than that in the latter.
If the ball oscillate in a direction inclined to the plane, the
motion may be easily deduced from that in the two cases Jjust
given, by means of the principle of superposition.

. cos 0.

11. The values of ¢ which have been given for the motion
of translation of a sphere and cylinder do not require us to
suppose that either the velocity, or the distance to which the
centre of the sphere or axis of the cylinder has been moved, is
small, provided the same particles remain in contact with the
surface. The same indeed is true of the values corresponding to
a motion of translation combined with a motion of contraction
or expansion which is the same in all directions, but varies in any
manner with the time. The value of ¢ corresponding to a motion
of translation of the cylinder is — Ca® cos §.77, C being the velo-
city of the axis, and 6 being measured from a line drawn in the
direction of its motion. The whole resultant of the part of the
pressure due to the square of the velocity is zero, since the velocity
at the point whose co-ordinates are r, 8, is the same as that at

S. 4
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the point whose co-ordinates are » and = —6. To find the re-
sultant of the part depending on de/dt, it will be necessary to
express ¢ by means of co-ordinates referred to axes fixed in space.
Let Oz, Oy, be rectangular axes passing through the centre of
any section of the cylinder, = the angle which the direction of
motion of the axis makes with Oz, 6 the inclination of any radius
vector to Ox; then
2

p=-%
__@(C=+ 0%
- ory
putting C" and C” for the resolved parts of the velocity C along
the axes of # and y respectively. Taking now axes Az, Ay,
parallel to the former and fixed in space, putting a and B for the
co-ordinates of O, differentiating ¢ with respect to ¢, and replacing
da/dt by (', and dB/d¢ by C”, and then supposing « and B to
vanish, we have

(rcos@ cosw +rsinf sinw)

of. dC’ dc”

dp @0 22 (Cat Oyp © <‘”W+ 9_077)
Ry e

The resultant of the part of the pressure due to the first two
terms is zero, since the pressure at the point (x, y) depending on
these terms is the same as that at the point (—a, —y). It will
be easily found that the resultant of the whole pressure parallel
to @, and acting in the negative direction, on a length I of the
cylinder, is equal to mpla®.d(’/dt, and that parallel to y equal to
mpla®. dC”/dt. The resultant of these two will be mpla®l’, where
I is the effective force of a point in the axis of ‘the cylinder, and
will act in a direction opposite to that of . Hence the only
effect of the motion of the fluid will be, to increase the mass of
the cylinder by that of the fluid displaced. In a similar manner
it may be proved that, when a solid sphere moves in any manner
in an infinite fluid, the only effect of the motion of the fluid is to
increase the mass of the sphere by half that of the fluid displaced.
A similar result may be proved to be true for any solid sym-
metrical with respect to two planes at right angles to each other,
and moving in the direction of the line of their intersection in
an infinitely extended fluid, the solid and fluid having been at
first at rest. Let the planes of symmetry be taken for the planes
of xy and xz, the origin being fixed in the body: then it is evident
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that the resultant of the pressure on the solid due to the motion
will be in the direction of the axis of x, and that there will be
no resultant couple. Let C be the velocity of the solid at any
time; then the value of ¢ at that time will be of the form
OV (x, y, 2), where C alone contains ¢ (Art. 4), and the velocity
of the particle whose co-ordinates are «, y, 2, being proportional
to O, the vis viva of the solid and the fluid together will be
proportional to C*. Now if no forces act on the fluid and solid,
except the pressure of the fluid, this vis viva must be constant*;
therefore €' must be constant ; therefore the resultant of the fluid

pressure on the solid must be zero. If now C be a function of ¢
we shall have

ac
p=—p¥(z, 9 2) Zﬁ"‘]’?

p’ being the pressure when C is constant. Since therefore the
resultant of the fluid pressure varies for the same solid and fluid
as dC/d¢ the effective force, and for different fluids varies as p,
the effect of the inertia of the fluid will be, to increase the mass
of the solid by = times that of the fluid displaced, n depending
only on the particular solid considered.

Let us consider two such solids, similar to each other, and
having the co-ordinate planes similarly situated, and moving with
the same velocities. Let the linear dimensions of the second
be greater than those of the first-in the ratio of m to 1. Let

* If an incompressible fluid which is homogeneous or heterogeneous, and con-
tains in it any number of rigid bodies, be in motion, the rigid bodies being also
in motion, if the rigid bodies are perfectly smooth, and no contacts are formed or
broken among them, and if no forces act except the pressure of the fluid, the
principle of vis viva gives )

dZmv?

o =TT cooccodBbongononsaaoooogmngoacgocns (a),
where » is the whole velocity of the mass m, and the sign 2 extends over the whole
fluid and the rigid bodies spoken of, and where dS is an element of the surface
which bounds the whole, p, the pressure about the element dS, and » the normal
velocity of the particles in that element, reckoned positive when tending into the
fluid, and where the sign /i’ extends to all points of the bounding surface. To apply
equation (a) to the case of motion at present considered, let us first confine our-
selves to a spherical portion of the fluid, whose radius is r, and whose centre is near
the solid, so that dS refers to the surface of this portion. Let us now suppose r to
become infinite : then the second side of (a) will vanish, provided p, remain finite,
and » decrease in a higher ratio than =2, Both of these will be true, (Art. 9); for
» will vary ultimately as 73, since there is no alteration of volume, Hence if the
sign = extend to infinity, we shall have Zmv? constant.

Lo

R
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u, v, w, be the velocities, parallel to the axes, of the particle (z, y, 2)
in the fluid about the first; then shall the corresponding velocities
at the point (mz, my, mz) in the fluid about the second be also
u, v, w. For

udmz + vdmy + wdmz =m (udzx + vdy + wdz)...... (24),

and is therefore an exact differential, since udw +vdy+wdz is
one : also the normal at the point (z, v, 2) in the first surface will
be inclined to the axes at the same angles as the normal at the
point (ma, my, mz) of the second surface is inclined to its axes,
and therefore the normal velocities of the two surfaces at these
points are the same; and the velocities of the fluid at these two
points parallel to the axes being also the same, it follows that the
normal velocity of each point of the second surface is equal to
that of the fluid in contact with it. Lastly, the motion about
the first solid being supposed to vanish at an infinite distance
from it, that about the second will vanish al$o. Hence the sup-
position made with respect to the motion of the fluid about the
second surface is correct. Now putting ¢ for [(udx +vdy + wdz)
for the fluid in the first case, the corresponding integral for the
fluid in the second case will be md, if the constant be properly
chosen, as follows from equation (24). Consequently the value of
that part of the expression for the pressure, on which the resist-
ance depends, will be m times as great for any point in the second
case as it is for the corresponding point in the first. Also, each
element of the surface of the second solid will be m* times as
great as the corresponding element of the surface of the first.
Hence the whole resistance on the second solid will be m® times
as great as that on the first, and therefore the quantity » depends
only on the form, and not on the size of the solid.

When forces act on the fluid, it will only be necessary to add
the corresponding pressure. Hence when a sphere descends from
rest in a fluid by the action of gravity, the motion will be the same
as if a moving force equal to that of the sphere minus that of
the fluid displaced acted on a mass equal to that of the sphere
plus half that of the fluid displaced. For a cylinder which is
so long that we may suppose the length infinite, descending hori-
zontally, every thing will be the same, except that the mass to be
moved will be equal to that of the cylinder plus the whole of the
fluid displaced. In these cases, as well as in that of any solid
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which is symmetrical with respect to two vertical planes at right
angles to each other, the motion will be uniformly accelerated,
and similar solids of the same material will descend with equal
velocities. These results are utterly opposed even to the com-
monest observation, which shews that large solids descend much
more rapidly than small ones of the same shape and material,
and that the velocity of a body falling in a fluid (such as water),
does not sensibly increase after a little time. It becomes then
of importance in the theory of resistances to enquire what may be
the cause of this discrepancy between thcory and observation.
The following are the only ways of accounting for it which suggest
themselves to me.

First. It has been supposed that the same particles remain in
contact with the solid throughout the motion. It must be re-
membered that we suppose the ultimate molecules of fluids (if
such exist), to be so close that their distance is quite insensible, a
supposition of the truth of which there can be hardly any doubt.
Consequently we reason on a fluid as if it were infinitely divisible.
Now if the motion which takes place in the cases of the sphere
and cylinder be examined, supposing for simplicity their motions
to be rectilinear, it will be found that a particle in contact with
the surface of either moves along that surface with a velocity which
at last becomes infinitely small, and that it does not reach the
end of the sphere or cylinder from which the whole is moving
until after an infinite time, while any particle not in contact with
the surface is at last left behind. It seems difficult to conceive of
what other kind the motion can be, without supposing a line
(or rather surface) of particles to make an abrupt turn. If it
should be said that the particles may come off in tangents, it must
be remembered that this sort of motion is included in the con-
dition which has been assumed with respect to the surface.

Secondly. The discrepancy alluded to might be supposed to
arise from the friction of the fluid against the surface of the solid.
But, for the reason mentioned in the beginning of this paper, this
explanation does not appear to me satisfactory.

Thirdly. It appears to me very probable that the spreading
out motion of the fluid, which is supposed to take place behind
the middle of the sphere or cylinder, though dynamically possible,
nay, the only motion dynamically possible when the conditions
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which have been supposed are accurately satisfied, is unstable ;
so that the slightest cause produces a disturbance in the fluid,
which accumulates as the solid moves on, till.the motion is quite
changed. Common observation seems to shew that, when a solid
moves rapidly through a fluid at some distance below the surface,
it leaves behind it a succession of eddies in the fluid. When the
solid has attained its terminal velocity, the product of the resist-
ance, or rather the mean resistance, and any space through which the
solid moves, will be equal to half the vis viva of the corresponding
portion of its tail of eddies, so that the resistance will be measured
by the vis viva in the length of two units of that tail. So far
therefore as the resistance which a ship experiences depends
on the disturbance of the water which is independent of its
elevation or depression, that ship which leaves the least wake
ought, according to this view, to be ceteris paribus the best sailer.
The resistance on a ship differs from that on a solid in motion
immersed in a fluid in the circumstance, that part of the resist-
ance is employed in producing a wave,

Fourthly. The discrepancy alluded to may be due to the
mutual friction, or imperfect fluidity of the fluid.

12.  Motion about an elliptic cylinder of small eccentricity *.

The value of ¢, which has been deduced (Art. 8), for the
motion of the fluid about a circular cylinder, is found on the
supposition that for each value of r there exists, or may be

[* This particular problem, so far at least as concerns motion of translation,
is of little interest in itself, because Green (see Transactions of,the Royal Society
of Edinburgh, Vol. xuL. p. 54, or p. 315 of his collected works) has determined the
motion of a fluid about an ellipsoid moving in any manner with a motion of trans-
lation only; and the ellipsoid includes of course as a particular case an elliptic
cylinder of any eccentricity. The problem in the text will however serve as an
example of the mode of proceeding in the case of a cylinder of any kind differing
little from 2 circular cylinder.

In the case of such a cylinder, supposed to be free from abrupt changes of form,
it might safely be assumed that the expression for ¢ which applies to the fluid
beyond the greatest radius veetor of any point of the surface might also be used
for some distance within, as explained in the text. By starting with this assumption,
which would be verified in the end, the process of solution would of course be
shortened. We should simply have to take the expression (31'), form the expression
(26') for the velocity normal to the surface, putting r=c (1 +e cos26), and expand-
ing as far as the first power of ¢, and equate the result to the expression (26). We
should thus determine the arbitrary constants in (31'), which wonld complete the
golution of the problem.]
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supposed to exist, a real and finite value of ¢. This will be true,
in any case of motion in two dimensions where udx 4+ vdy is an
exact differential, for those values of r for which the fluid is not
interrupted, but will be true for values of » for which it is in-
terrupted by solids only when it is possible to replace those solids
at any instant by masses of fluid, without affecting the motion
of the fluid exterior to them, those masses moving in such a
manner that the motion of the whole fluid might have been
produced instantaneously by impact. In some cases such a
substitution could be made, while in others it probably could not.
In any case however we may try whether the expansion given
by equation (3) will enable us to get a result, and if it will, we
need be in no fear that it is wrong (Art. 2). The same remarks
will apply to the question of the possibility of the expansion of ¢
in the series of Laplace’s coefficients given in equation (10), for
values of » for which the fluid is interrupted. They will also
apply to such a question as that of finding the permanent tempe-
rature of the earth due to the solar heat, the earth being supposed
to be a homogeneous oblate spheroid, and the points of the
surface being supposed to be kept up to constant temperatures,
given by observation, depending on the latitude.

In cases of fluid motion such as those mentioned, the motion
may be determined by conceiving the whole mass of fluid divided
into two or more portions, taking the most general value of ¢ for
each portion, this value being in general expressed in a different
manner for the different portions, then limiting the general value
of ¢ for each portion so as to satisfy the conditions with respect to
the surfaces of solids belonging to that portion, and lastly in-
troducing the condition that the velocity and direction of motion
of each pair of contiguous particles in any two of the portions are
the same. The question first proposed will afford an example
of this method of solution.

Let an elliptic cylinder be moving with a velocity C, in the
direction of the major axis of a section of it made by a plane
perpendicular to its axis. The motion being supposed to be in

two dimensions, it will be sufficient to consider only this section.
Let
r=c (14 ecos 20)

be the approximate equation to the ellipse so formed, the centre
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being the pole, and powers of e above the first being neglected.
Let a circle be described about the same centre, and having a
radius y equal to (14 %) ¢, & being 4 ¢, and being a small quantity
of the order e. Let the portions of fluid within and without the
radius y be considered separately, and putting

r=c+2e,

let the value of ¢ corresponding to the former portion be
P +Qz+ RZ,

P, Q and R being functions of 6, and the term in z* being retained,
in order to get the value of d¢/dr true to the order ¢ while the
terms in 2°, &c. are omitted. Substituting this value of ¢ in
equation (2), and equating to zero coefficients of different powers
of z, we have

Q 1 d2P

2 2 dg*’

which is the only condition to be satisfied, since the other equations
would only determine the coefficients of 2°, &ec. in terms of the
preceding ones. We have then

¢=P+Qz_2lc(Q+%%€>z2 ............ (25).

Now if £ be the angle between the normal at any point of the
ellipse, and the major axis, we have

£ =0+ 2¢sin 26,
and the velocity of the ellipse resolved along the nérmal

= cos £=C (1 —¢) cos 8 + Ce cos 30......... (26).

The velocity of the fluid at the same point resolved along the
normal is

d¢ -+ 2esin 26 4) .......... e (26,
or Zf 2: sin 26 d¢ ........... R ¢} 2 8

Let P and Q be expanded in series of cosines of # and its mul-
tiples, so that

P=37P,cosnd, @Q=2;Q,cosnb,
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there being no sines in the expansions of P and @, since the
motion is symmetrical with respect to the major axis; then

Pr=E7 {Pn +Q.z2— %} (Qn——%—z Pn> 22} cosnf ....(28);

d¢ =5, {Q,, (Q,, - q;—zl’,,> z} oS Nf.uivunerenn.. (29) ;
1 _do_ o, (Do & = gn i
porips Al Zon {? ,+ < p c2> z} sinnd .oeinnnen. (30).

For a point in the ellipse, z= ce cos 20, whence from (27), (29) and
(30), we find that the normal velocity of the fluid

=E:{anosm9+»;[n(n—2)l—:"— n] cos (n—2) 0

€

+§[n(n+2)%— ,,]cos(n+2) 0},

which is the same thing as
sfs[ne-al=-q.]+0,
== %[n (n+2) %"3 —Qn+2]} cos nf ....(31),

if we suppose P and ) to be zero when affected with a negative
suffix, This expression will have to be equated to the value of
Ccos € given by equation (26).

For the part of the fluid without the radius ¢ we have
¢=4, logr+ Ef;i" cosnf*......cee.. (31",

since there will be no sines in the expression for ¢, because the
motion is symmetrical with respect to the major axis, and no
positive powers of 7, because the velocity vanishes at an infinite
distance. :

From the above value of ¢ we have, for the points at a distance
« from the centre,

* The first term of this expression is aceurately equal to zero, since there is
no expansion or contraction of the solid (Art. 8). I have however retained i, in
order to render the solution of the problem in the present article independent of
the proposition referred to.
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‘Zl‘f’ 4, _ Efn—ﬁl" cos n#,
r '7

d
p d% = 21 'y,,ﬂ " sin 7.

Equating the above expressions to the velocities along and per-
pendicular to the radius vector given by equations (29) and (30),
when z is put = ke, and then equating coefficients of corresponding
sines and cosines, we have

(1_k)Qn+kn=% ’;A e (32),
(1- L) ", = fiﬂ e s (33),

when 7 > 0, and equating constant terms we have
A
(-8 @=2",

from which equation with (32) and (33) we have, putting

'Y=(1+k)c:
%:ij{;, Q. __n:il“ when 7>0, and Q—j;

Substituting these values in the expression (31), it becomes

E”{E (n+1) (n—2) ﬂ_l—”f,+ (n+1) (n+2) ,,";;”}005110

A
¢

— %Aé" cos 20.

In the case of a circular cylinder the quantities 4,, 4,, 4,, &e. are
each zero. In the present case therefore they are small quantities
depending on e. Hence, neglecting quantities of the order €
in the above expression, it becomes

A" +2—€A1 cos 30 — S et €08 1,

which must be equal to C{(1—e)cosé+ecos36)]. Equating
coefficients of corresponding cosines, we have

A ==C1-¢c,
Ag=—060‘,

and the other quantities 4,, 4,, &c. are of an order higher than e.
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Hence, for the part of the fluid which lies without the radius v,
we have

¢p=-0C {(l—e)%cos0+§§ cos36} ceeennn(34),

and for the part which lies between that radius and the ellipse we
have from (28) :

=— Cc{(1 —¢)cosf+ecos 30} + C[(1—e¢) cos 0 + 3e cos 36} =

The value of ¢ given by equation (35) may be deduced from
that given by equation (3%) by putting r =c + 2, and expanding as
far as to 2> In the case of the elliptic cylinder then it appears
that the same value of ¢ serves for the part of the fluid without,
and the part within the radius y. If the cylinder be moving with
a velocity €’ in the direction of the minor axis of a section, the
value of ¢ will be found from that given by equatlon (34) by
changing the sign of ¢, putting ¢’ for 0, and supposing € to be

measured from the minor axis. ’

If the cylinder revolve round its axis with an angular velocity
o, the normal velocity of the surface at any point will be 2wec sin 26.
Since € is neglected, we may suppose this normal velocity to
take place on the surface of a circular cylinder whose radius is c;
whence (Art. 8) the corresponding value of ¢ will be

wec!

If we suppose all these motions to take place together, we have
only (Art. 5) to add together the values of ¢ corresponding to
each. If we suppose the motion very small, so as to neglect
the square of the velocity, we need only retain the terms depend-
ing on dw/dt, dC/dt and dC’/dt, in the value of d¢/dt, and we
may calculate the pressure due to each separately. The resultant
of the pressure due to the term dw/d¢ will evidently be zero, on
account of the symmetry of the corresponding motion, while the
resultant couple will be of the order €, since the pressure on
any point of the surface, and the perpendicular from the centre on
the normal at that point, are each of the order e. The pressure
due to the term dC/dt will evidently have a resultant in the
direction of the major axis of a seetion of the cylinder; and it will
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be easily proved that the resultant pressure on a length 7 of the
cylinder is mpc®l (1 — 2¢) dC/dt. That due to the term dC’/dt will
be mpc’l (14 2¢)dC'/dt, acting along the minor axis. If the
cylinder be constrained to oscillate so that its axis oscillates in a
direction making an angle a with the major axis, and if C” be
its velocity, which is suppesed to be very small, the resultant
pressures along the major and minor axes will be

w (1 — 2e¢) cos a»ddt— and w (1 +2¢) sinaddt

respectively, where p is the mass of the fluid displaced. Resolving
these pressures in the direction of the motion, the resolved part
will be p (1 —2ecos22) dC”/dt, or p(l—%e cos2a)dC’/dt, e
being the eccentricity ; so that the effect of the inertia of the fluid
will be, to increase the mass of the solid by a mass equal to
w (1 — 1é*cos 22), which must be supposed to be collected at the
axis,

A similar method of calculation would apply to any given solid
differing little either from a circular cylinder or from a sphere.
In the latter case it would be necessary to use expansions in series
of Laplace’s coefficients, instead of expansions in series of sines
and cosines.

13.  Motion of fluid in a closed box whose interior is of the form
of a rectangular parallelepiped.

The motion being supposed to begin from rest, the motion
at any time may be supposed to have been produced by impact
(Art. 4). The motion of the box at any instantamay be resolved
into a motion of translation and three motions of rotation about
three axes parallel to the edges, and passing through’the centre
of gravity of the fluid, and the part of ¢ due to each of these
motions may be calculated separately. Considering any one
of the motions of rotation, we shall see that the normal velocity
of each face in consequence of it will ultimately be the same
as if that face revolved round an axis passing through its centre,
and that the latter motion would not alter the volume of the
fluid. Consequently, in calculating the part of ¢ due to any one
of the angular velocities, we may calculate separately the part
due to the motion of each face.

Let the origin be in a corner of the box, the axes coinciding.
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with its edges. Let a, b, ¢, be these edges, U, V, W, the velocities,
parallel to the axes, of the centre of gravity of the interior of the
box, o, ®”, @, the angular velocities of the box about axes
through this point parallel to those of «, ¥, 2. Let us first con-
sider the part of ¢ due to the motion of the face xz in conse-

"e

quence of the angular velocity o',

The value of ¢ corresponding to this motion must satisfy the
equation

LA %‘E S (36),
with the conditions

%= 0, when =0 or @ .........euen.. (37),

Z—j =0, when y=b...cce.cvvrvinrinnin..n. (38),

gg_w"'(x—%a), when y=0............ (39),

within limits corresponding to those of the box.

Now, for a given value of y, the value of ¢ between =0 and
x=a can be expanded in a convergent series of cosines of 7r/a
and its multiples; and, since (37) is satisfied, the series by which
d¢/dx will be expressed will also hold good for the limiting values
of , and will be convergent. The general value of ¢ then will be
of the form 27Y, cosnmz/a. Substituting in (36), and equating
coefficients of corresponding cosines, which may be done, since any
function of z can be expanded in but one such series of cosines
between the limits 0 and a, we find that the general value of
Y, is Cermvla 4 ('e=nmvla, or, changing the constants,

I/’” L2 _An (emr(b—y)/a, + e-'n‘/r(b—;l/)/a) -I—B" (emry/a + e—n-rrg//a)’
when n > 0, and for n =0,

If

]

= Ay + B,.
From the condition (38) we have

A+ ma 3T nB, (emhia — ¢=nbla) cos nrxja =0 :
whence 4, =0, B, =0, and, omitting B,,

¢=37 A, (evmb-via 4 g-nm(-1/a) cos narx/a.
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From the condition (39), we have
— 7@ 27 nd, (enmtia — g=nbia) cos nrarja = o' (@ — }a).
Determining the coefficients in the usual manner, we have
2

2
A = % {1 — (= 1)} + (erm¥le — g=nmdia) ;

whence
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