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Abstract - A non-uniform current, such as may be generated by long internal waves, interacts with short surface waves 
and causes patterns on the sea surface that are of interest. In particular, regions of steep breaking waves may be relevant 
to specular radar scattering. 

A simple approach to modelling this problem is to take a set of short, surface waves of uniform wavenumber on the 
sea surface, as may be caused by a gust of wind. The direction of propagation of the surface waves is firstly taken to be 
the same as that of the current, and surface tension and viscous effects are neglected. We have a number of methods of 
solution at our disposal: linear (one-dimensional) ray theory is simple to apply to the problem, a nonlinear SchrGdinger 
equation for the modulated wave amplitude, modified to include to effect of the current, can be used and solutions can 
he found using a fully nonlinear irrotational flow solver. Comparisons between the ‘exact’ nonlinear calculations for two 
dimensions (which are too complicated/ computationally intensive to be extended to three dimensions) compare well 
with the two approximate methods of solution, both of which can be extended, within their limitations, to model the 
full three-dimensional problem; here we present three-dimensional results from the linear ray theory. 

By choosing such a simple (although we consider physically realistic) initial state of uniform wavenumber short 
waves and assuming a sinusoidal surface current, we can reduce the two-dimensional problem to dependence on three 
non-dimensional parameters. 

In three-dimensions, we consider an initial condition with a uniform wavetrain at an angle (Y say, to the propagating 
current, thus introducing a fourth parameter into the problem. Extension of the linear ray theory from one space to two 
space dimensions is numerically quite simple since we maintain uniformity in the direction perpendicular to the current, 
and the only difficulty lies with the presentation of results, due to the large number of variables now present in the 
problem such as initial wavenumber, angle of propagation, position in (z, y, t) space etc. In this paper we present just 
one solution in detail where waves are strongly refracted and form two distinct foci in space-time. There is a collimation 
of the short waves with the direction of the propagating current. @ Elsevier, Paris 

1. Introduction 

Non-uniform currents interact with short surface waves and the resultant patterns on the sea surface are of 
interest. In particular, regions of steep breaking waves may be relevant to specular radar scattering. The scale 
of these currents may be very large, such as those generated by tidal flow over the edge of the continental shelf, 
or else relatively small, such as flow into an estuarine channel. 

Two substantial review papers have been published in this research field. Firstly, Peregrine [l] was concerned 
wit,h both large and small scale currents, currents varying with depth, and turbulence. Jonsson [2] took more 
of an engineer’s - as opposed to an applied mathematician’s - view of wave-current interactions, discussing both 
ocean and coastal areas. 

* Author t,o whom correspondence should be addressed, e-mail: d.h.peregrineQbris .ac.uk, tei:+44(0)117 928 7971, 
f:x+44(0) 117 928 7999. 
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This paper concerns itself with the particular interaction between short surface waves and a surface current 
generated by long internal waves. The problem considered is similar to that discussed by Cargett and Hughes [3]. 
They chose a constant frequency initial condition for the short surface waves, and considered the effect of the 
current in time. We take a constant wavenumber initial condition which, due to the Doppler shift caused by 
the current, involves a whole range of frequencies initially and in time, leads to focussing of the waves by the 
current. We consider this to be a more generic form of initial condition. 

The two-dimensional problem is discussed in Donato, Peregrine and Stocker [4] (hereafter referred to as DPS). 
A simple, linear, two-layer model was used for the internal wave which gives a sinusoidal surface current. The 
surface current is incorporated into a fully nonlinear irrotational flow solver (first used by Dold and Peregrine, [5]) 
to obtain surface profiles which show the effect in time of the current on the short waves. The effect of variation 
of current magnitude, length of the initial short surface waves and initial steepness are discussed. Ray theory 
is used for the linear problem to discuss focussing of the short waves, and surface profiles were generated for 
comparison with results from the fully nonlinear irrotational flow solver. Ray theory (which is presented in this 
context by Crapper, [S]) is based on the assumption that wave properties vary slowly in time. This leads to 
solutions which are valid away from those regions where neighbouring rays cross, that is, at caustics and foci. 

As the extension of the fully nonlinear irrotational flow solver to three dimensions is computationally im- 
practical (at present), we use linear ray theory to obtain three-dimensional solutions. To set the scene, we first 
briefly present solutions for two dimensions; that is, we take the direction of the surface waves to be that of the 
(uni-directional) surface current. Then, we consider the three-dimensional situation where the short waves are 
initially at an angle to the propagating current. As there are many parameters now present in this problem, 
in the present paper, we restrict ourselves to the discussion of a case where the waves are strongly refracted 
i.e. they focus, and they initially propagate, relative to the current, at an angle of 7r/6 to the current. This 
particular case is of interest in that two foci form, whereas at small angles to the current only one focus forms, 
as in the two-dimensional problem. 

Another method which can be extended to model the three dimensional problem is to consider a modulated, 
weakly nonlinear wavetrain. Its amplitude and phase are described by a nonlinear Schrodinger equation modified 
to include to a large-scale weak surface current. Solutions generated using this nonlinear equation are valid 
when the surface waves form part of a single, slowly varying wave train and are therefore only useful prior to 
focussing or wave breaking. 

Xote that our model does not allow any current modification by the surface waves. That is, we allow the 
surface current to remain sinusoidal for all time. Some theoretical approaches do include the wave-current 
coupling, for example Rizk & Ko [7], and it would be possible here, but this is not the focus of our attention. 

In section 2 we discuss the model used, and reduce the problem to a four-parameter problem. A discussion 
of the ray theory method used is briefly given in section 3. Justification for the use of ray theory is given in 
section 4 by comparison with the fully nonlinear potential solver in two dimensions. Section 5 shows results 
using the three-dimensional ray theory when the current and initial short surface waves are at an angle of 7r/6 
to each other. Our conclusions are given in section 6. 

2. Model 

The model used is the same as that described in DPS so this account is brief. The fluid is taken to be 
inviscid and incompressible and the short surface waves considered are taken to be long enough such that 
surface tension effects can be neglected but short enough to be locally independent of any density stratification. 
A simple, linear, two-layer model for the internal wave is used. This results in a sinusoidal form for the internal 
wave, and the corresponding surface current. We take an (Si, x2, y, t) coordinate system, where y is measured 
vertically upwards, di and 22 are on the ‘sea’ surface and t is time. The frequency and wavenumber of the 
internal wave are taken to be fl and (K, 0) respectively and are related by 

0” = SK(pz - Pl) 

p1 + pi coth Kh, ’ (1) 
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FIGURE 1. Streamlines in the two-layer internal-wave model. 

where g is the acceleration due to gravity and p1 and p2 are the densities of the upper and lower layers 
respectively. The uni-directional current is aligned along the il axis with surface current, U= (VI, 0) where 
U1 = UC cos(Kitl - 0t) and UC being the maximum magnitude of the current. 

Although here we have considered a two-layer model, our analysis and results are also valid for any plausible 
density stratification where the uppermost streamline is sinusoidal. In addition, we assume that the surface 
waves themselves have no effect on the stratification, as they are short enough such that the upper layer can be 
considered deep. However, in time, the large scale modulation induced by a non-uniform wavetrain may change 
the form of the internal wave. It is possible to add in a linear perturbation to model this change in waveform, 
but for this unsteady problem of initially constant wavenumber, we do not expect to see any large effects due 
to this modulation, and so have not included such effects here. 

For presenting some of the results, we move into a frame of reference (x1, x2, t) moving with the phase 
speed V of the surface current, where x1 = 21 - Vt. In this frame of reference the current becomes steady: 
UI(:cl, x2) = UC cos(Kxl) - V and we give streamlines of the flow in a vertical section in figure 1. Also, note 
t,hat length and time are non-dimensionalised with l/K and m respectively. 
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The initial condition considered on the ‘sea’ surface is a uniform wavetrain of wavenumber h and amplitude 
a0 at time t = 0 and an angle cro to the propagating current. As the short, surface waves are propagating 
over long internal waves, /&I = Ice is taken to be very much greater than K. The uni-directional nature of the 
propagating current together with this simple initial condition combine to imply uniformity in the x2-direction 
and hence the wavenumber component in the xz-direction remains constant, Icz = ko sin cro. 

By choosing such a simple (although we consider it to be physically sensible, for example after a gust of 
wind) initial state and assuming a sinusoidal surface current, we can reduce this three dimensional problem to 
four non-dimensional parameters: two velocity ratio parameters, I3 and y defined by 

and (2) 

where g is acceleration due to gravity, Ice and cl are the initial wavelength and phase speed respectively of the 
short waves, V is the phase speed of the internal wave and UC is the maximum magnitude of the surface current. 
The third parameter is the initial steepness of the short surface waves which is just a simple multiplier for linear 
theory, and the fourth is CYO, the angle between the propagating current and the initial wavenumber of the short 
waves. Taking CYO = 0 reduces the problem to a three parameter problem which models the two dimensional 
case. 

An alternative initial condition, considered in the two-dimensional case by Gargett and Hughes [3], is the 
case of considering the frequency, w, to be initially constant everywhere. This simplifies the analysis as the 
frequency remains constant along rays. It is a physically realistic initial condition, for example in the case of 
a free surface wave packet approaching a region of surface current. In this constant frequency case, for certain 
physical parameters, waves are trapped in a region between two caustics either side of the position of maximum 
current. At this point of maximum current, waves travelling with the current are propagating much faster than 
those against the current. That is, there is a region of both very short and very long waves superposed at the 
point of maximum current. This is discussed further in DPS. 

In this paper we give particular attention to waves which are strongly refracted and focus in space-time. 
That is, we choose to show results for only one value of (0, y) = (0.122,2.416). These values correspond to, 
for example, 300 short waves on an internal wave of wavelength 120m, pycnocline depth 6 m, with density 
difference of the two layers 2.5 parts per thousand and a surface current of strength approximately O.O4m/s. 
An investigation into how the two-dimensional wave properties vary in the (0, y) phase plane is given in DPS. 

3. Method of solution 

R.ay theory assumes that at any particular point the solution locally looks like an infinite periodic plane 
wavetrain so that any variations in wave amplitude, a, frequency w and wavenumber & are slow. 

The short surface wave dispersion relation is: 

(w - &l~)~ = gk (3) 

where k = I/c[ is the wavenumber of the short waves and w is the frequency. This is solved along with the ray 
equations: 

dx 
= =g+c& 
dt (4) 

where cg is the group velocity for surface waves in the absence of a current, & = k/k, and cl/& clefines 
diffcrentiat,ion along a ray. In our case where we have moved in to a frame of reference where the current is 
steady, u= (UC cos(Kzl ) - V, 0) and := (x1, x2). The frequency, w, is then constant along each particular ray - 
the value being defined by the initial conditions - and values for the wavenumber, &, along the rays are obtained 
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by solution of (3) and (4). We generate surface profiles using the conservation of wave action equation to obtain 
wave amplitude, and a phase equation, both of which are valid along the rays. Details are omitted and the 
reader is once again referred to DPS. Representations of the free surface are generated from this information 
and results can be compared in the two-dimensional case to those from a fully nonlinear potential solver which 
has been adapted to include a sinusoidal surface current. Details of this latter code are given in Dold and 
Peregrine [5] and the alterations made to include the current are given in DPS. 

4. Two-dimensional results 

Figure 2 shows a space-time ray diagram for the values of (0,~) = (0.122,2.416). Two wavelengths and 
over one period of the internal wave are shown. The maximum and minimum values of the surface current are 
indicated by lines (- - - -) and (- . - . -) respectively. Note that these results are given in the fixed frame 
of reference (gl, t). The rays are seen to focus at approximately t = 65, and the points of ray reflection in 
the frame of reference moving with the phase speed of the internal wave are indicated by an asterix. Figure 3 
shows the corresponding results from the fully nonlinear code, and it is clear the linear ray theory predicts the 
focussing and corresponding steepness of the waves well 2. Here we have started the nonlinear calculations with 
20 waves of steepness a&o = 0.01. This is due to the fact that it is computationally impractical to compute 
hundreds of short waves - the values of U, and V have been adjusted in the calculation to correspond to the 
physical situation described in section 2 with the same values of 0 and y. The fully nonlinear code calculates 
solutions up to ‘wave breaking’; that is, until there are insufficient points in regions of high surface curvature 
to obtain solutions within the accuracy required. However, as the results we present in this paper are from 
linear ray theory, we restrict ourselves to the less steep waves which do not break. Further calcul&ions and 
discussions of the steeper waves are to be found in DPS. 

The profiles shown in figure 3 have been given a vertical exaggeration of 40:1, and the regions RI and Rrl 
from the streamline pattern in figure 1 are indicated. As we have chosen values of 0 and y which correspond 
to waves that are strongly refracted, we can see in region RI, where the streamlines are diverging, the waves 
become longer and less steep. Conversely in region RII, where the streamlines are converging, the waves become 
short,er and steeper. This intuitive simplification of how the surface current effects the short waves is useful in 
explaining some of the three-dimensional effects we find later. 

As mentioned previously, in regions where neighbouring rays meet, ray theory breaks down as variation in 
wave propert,ies is too rapid: the wave action equation predicts infinite amplitudes. We therefore present results 
with a cut-off steepness value, taken to be ak = 0.40. The results could be improved by including diffractive 
effects using Airy functions at caustics and the Pearcey cusp function at the focus (for example, see Marston [8] 
for further details). Since we have exact solutions such as in figure 3, this extension is not followed here. 

Figure 4(a) compares the fully nonlinear results (full line) with the linear ray theory results (dotted line), 
for non-dimensional time t = 60. We see that the comparison is good away from the region just before the 
focus where the amplitude predicted by the ray theory is too large. Figure 4(b) makes the same comparison 
at t = 106, some time after the focus. Here the waves tend to be in the same place for both the linear and 
nonlinear results, but the waves outside the caustics in the nonlinear case are less steep than predicted by ray 
theory implying that nonlinear self focussing may be acting on the energy between the caustics. Figure 4(c) 
shows the region between the caustics in more detail. The steep group of waves close to the left hand caustic has 
trwrlled faster in the nonlinear case which is to be expected as steeper waves travel faster than small amplitude 
linear waves. Also, the short waves just outside the left hand caustic are not predicted by ray theory, although 
matching using an Airy function does predict a wave profile of this type (Peregrine, [l]). 

\VV conclude that, the linear ray theory gives good results where waves are not too steep and in regions away 
froin rapid variations in wave properties. Therefore we have some confidence in results from three-dimensional 
r;Ly thcbory calculations which cannot be compared to a fully nonlinear model. 

L ,N~)f.c t.hat, figures 2 aud 3 correspond to figures 4 and 5 in DPS. 
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FIGURE 2. R.ay diagram: the frame of reference is fixed, surface current = lIJ, cos(i - 0.093t) 
and (0,~) = (0.122,2.416). 
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FIGURE 3. Fully nonlinear results: standard case. The frame of reference is fixed. Surface 
current, = U, cos(i - O.O93t), (0,~) = (0.122,2.416), initial steepness of 20 waves is n&o = 0.01 
and vertical exaggeration 4O:l. 
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FIGURE 4. Comparing linear and nonlinear results: surface current = U, cos(? - O.O93t), 
(0,~) = (0.122,2.416), fully nonlinear results ( -), linear ray theory results (. . . ’ . . ), initial 
steepness of 20 waves is a& = 0.01, (a) t = 60, (b) t = 106 and (c) t = 106 showing more 
detail between the caustics. 

5. Three-dimensional results 

In three dimensions, we now consider an initial condition with a uniform wavetrain with wavenumber, &, 
at an angle NO say, to the current direction, thus introducing a fourth parameter into the problem. The 
coordinate system is shown in figure 5. From equation (4), we note that rays are only perpendicular to the 
crests in t,he absence of a current. Extension of the linear ray theory from one space to two space dimensions 
is Iiumerically quite simple, especially since we have uniformity in the zz-direction, and the only difficulty lies 
with the presentation of results, due to the large number of variables now present in the problem such as initial 
wavenumber, angle of propagation, position in ($1, x2, t) space etc. Results presented are for the same values 
of (0, y) as for the two dimensional case, except that now CYO = 7r/6. 
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FIGURE 5. Initial wavetrain with crests an angle (~0 to the surface current direction. 

As the current propagates only in the xl-direction, the wavenumber, kz in the x2-direction remains constant, 
as mentioned earlier. Without loss of generality we consider only the rays from x2 = 0 since variation in the 
x2-direction only arises from the different initial phases of the waves as x2 varies. Figure 6 shows a ray diagram 
for cyo = 7r/6 and (0,-i) = (0.122,2.146) for the rays starting from Kzl E [0,2n] and 22 = 0. Note that this ray 
diagram is presented in a moving frame of reference as opposed to figure 2, which is presented in a fixed frame 
of reference. The rays have focussed in two regions indicated by CI and CII. 

The focus in region Cr looks very similar to the type of focus we found in the two-dimensional case. We 
could think of the situation as qualitatively similar to having an initial wavenumber of kl in the xl-direction, 
giving an effective y to be (g/kl) i /V N 2.60 i.e. a larger value of y which means we expect the focus to occur 
later (according to the work given in DPS). This is indeed the case here. 

The second focus in region CII is expected following the work of Peregrine and Smith [9] on steady wave 
fields. In figure 7 of their paper on nonlinear effects near caustics, they show part of the linear dispersion 
relation for waves on a uni-directional current U(x)i. This figure shows that for a range of values of k2g/w2, 
two caustics form, as opposed to the usual one in this steady situation. The two caustics are of different - ‘R’ 
and ‘S’ - types, and we expect this situation to be related to that here, where we get one or two foci depending 
on our value of (~0. This is a topic for further investigation. 

The colour variation on figure 6 indicates the angle (Y between the direction of the propagating current, and 
the wavenumber k. The basic behaviour of (Y can be explained in terms of the focussing and defocussing effect 
of the surface current generated by the internal wave. The wavenumber in the x2-direction remains constant for 
all time. In the region Kxl E [0, 7r] the current has a focussing effect which also increases the wavenumber, kl, in 
the xl-direction, which in turn decreases the angle cy i.e. the waves turn towards the direction of the propagating 
current. As the phase speed of the waves relative to the water decreases as the wavenumber increases, the waves 
in this region are slowed down. Conversely, in the region Kzl E [.rr, 2~1, the surface current has a defocussing 
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Ray diagram in the (51, t) plane showing the variation of angle a (with (0,~) = 
and a0 = n/6). 
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effect in the xl-direction, kl decreases and the waves become longer. The value of Q is increased and these long 
waves turn away from the direction of the propagation current. 

Figures 7 to 9 show representations of the ‘sea’ surfaces corresponding to figure 6 for times: t = 70, t = 110 
and t = 160 respectively in a frame of reference moving with the internal wave. These times are indicated 
on figure 6. The grey scale is chosen to show the waves with small steepnesses where we are confident about 
the predictions by linear ray theory. As ray theory predicts infinite values for amplitudes in regions where 
neighbouring rays cross, a cut off value for wave steepness is taken in figures 7 to 9 at ak = 0.40, as in our 
two-dimensional results. Regions where steepnesses exceed this value are shown in white. In practice, these 
are regions where nonlinear and/or diffractive effects are important. Black lines on figures 7 to 9 indicate the 
troughs of the waves. That is, in regions CI and C{r indicated on figure 6, where there are three overlapping 
wave trains, there are three sets of lines. 

Figure 7 shows the surface predicted by linear ray theory at t = 70, a time just prior to the first focus. 
The effect of the current on the wavenumber magnitude and direction of the surface waves is clearly seen. At 
KXI - 1, the waves are being focussed. That is, they have become shorter and steeper - we note that steeper 
waves are indicated on these figures by a sharp black/white contrast. In addition, the direction of these focussing 
waves has changed from at t = 0 - they have moved so as to propagate more in the direction of the propagating 
current. Conversely away from this region where Kq E [~,27r], the waves have become longer and less steep. 
Also, as indicated by the colour variation on figure 6, the waves have turned away from the direction of the 
propagating current. 

Figure 8 shows the surface at t = 110. This is a time shortly after the first focus and before the second 
focus. Region Cr indicated on on this figure is a region of three overlapping wavetrains. The easiest way to 
comprehend this wave formation is to once again refer to the ray diagram, figure 6. One wave train - ‘on top’ - 
enters region CJ from the right. These waves have the smallest value of a, i.e. they have turned to propagate 
almost, in the direction with the current; they are the shortest waves. The second wave train enters ‘below’ 
from the left; this is made up of longer waves which have propagated from the region Kzl E [x, 2~1, and are 
travelling with larger LY values i.e. away from the current direction. The third wavetrain is generated from the 
‘fan’ of rays which comes from the focus and adjacent caustics. These rays have less energy and have less effect 
on the form of the final surface pattern - they merely modulate the criss-cross pattern formed by the other two 
wave trains. The resultant pattern in region Cr is actually easier to see at a later time when the area covered 
is larger, as shown in figure 9. In a physical situation, one would expect to see a region of steep waves where a 
set of longer waves propagating at an angle to the direction of the current meets a set of shorter waves almost 
collimated with the current. At Kzl N 7r, a second focus made up of longer waves is forming. These long 
waves are steeper than the surrounding waves and they are propagating at a large angle to the direction of the 
current. 

Figure 9 shows the surface at t = 160 after the second focus has formed. There are now two regions of three 
overlapping wavetrains. The form of the focus in region Cr is as discussed for figure 8, but the region is now 
much larger. R.egion CII is formed of longer waves overlapping, so the crests of the resultant waves are of a 
different form. In this case, the wavetrain made up of the shorter waves enters from the left and the longer 
waves enter from the right. The crests in region Cl are short and thin, whereas the crests in region C,, are more 
circular. Note that this figure more clearly shows the phase jump of f7r/2 at the caustics by the discontinuities 
in the black lines indicating the position of the wave troughs. 

Figures 7 to 9 are an attempt to give snapshots of the surface at one time. The underlying wavetrains are of 
course moving. If two non-collinear wavetrains are superposed, the surface pattern is such that there is another 
moving frame of reference in which the surface is stationary. This is generally not the case for the superposition 
of waves in the focussing region formed of three wave trains here, in regions Cf and CII, which are essentially 
unsteady wave patterns when viewed on the wave scale. However, the relative unsteadiness of these two regions 
is ciiffcrent. Region Cl is a fast modulation of the shorter waves (seen to the left of t,he focussing region) and 
n-ill thcroforc~ 1~~ moving less quickly t,han region Cl, which is, conversely, a slow modulat,ion of t,hc longer waves 
(again seen t,o the left,). 
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FIGURE 7. I\;;I\Y~ sllrf;rcx: ;lt tirrlc t = 70 (nit11 (0, -y) = (0.122, 2.-llG), (I() = T/G md n&J = 0.01). 
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FIGURE 8. W;LVP surf;lc~~ at, t,imcb f = 110 (nit11 (H,y) = (0.122. 2.416). fY() = T/G and a&-J = 0.01). 

restricted 0I.U pXYlt.~Lti~JIl t.0 0X1(’ (‘XV, t&kg ill1 initiill iIIl(!jlC Of 0(, = T/G bc~t,woen the direction of the 
propagating: current, atltl it set of short SII~~;ICC \V;IV~S of const;mt, ~~av(~llll~~ll)(tr; t,hcl strength of current and 
number of iuitially sh0r.t~ n’avm IV(I liav(: choscw n-ns :\ situation wht~, in tllc! two tlinmlsional case, the waves 
w&e strongly refrac:t,c!tl ilIlt il foc,lIs fomic~tl. Tlic: maiu rCmlt, wf: se0 is tllilt, in tlics rc~giorl of converging streamlines 
of t,he surface current,, t.lv:o f0c.i for~l~. T11o first ~OC:IIS is of a siulilar for111 to t IliLt, f’o111~cl in t,he two dimensional case 
consisting of very short, \vilv(‘s, ~~l~cswts tllc, SC~CYJ~JC~ is I~MCIC 111) lo~yyr \vikv(‘s. T11cb sllort, waves are collimated by 
t,lie current, variat,ion~ illlC1 1 II(’ 1011~:(‘1. \VilT(‘S [JrO[Jil g;lttx i\\\‘iiy from t,llc, (lim:tion of the> current. The explanation 
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given for the have hch;~~~io~~r ill thrw tlimc\nsions is roughly txplaincxl in terms of t 11~ convergence and divergence 
of the surface current. 

Consitlerat,ion of a wicl(‘r r;111~0 of’ init,i;Ll anglw shows that, t,hc:ro is a riLIlg(! of CY() within (0, n/2) which will 
gi\:; two foci for (:(lrt,;Arl ~~i\Ill(~> of tllcx ~~olocity rat,io I);~riun(!tcrs (0, 7). Tl 11’ ;lI)I)I’(JilCh of Peregrine and Smith [9] 
on steady caustics ill l.~vt, (lilli(~lk~iolls slio~~ltl ll(>lp to explain t,liis ~~lIc!IIOIrIPII~l, ittl(l this is the subject of further 
work which also inc:llltk t 11~1 IN’ of ;I c.~lrrc~Iit,-~~loclifi(!(l nonlin(~ar Schriitlingor (!(llli\t ion t,o model nonlinear effects 
in t,w:o and t,hrce tlirnc~Il~ii)lls j)r~~-iixtlssiug. 
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Since the wave refraction depicted here occurs within a single wavelength of the underlying internal wave, it 
is unlikely that the type of wave patterns obtained depend strongly on the precise, sinusoidal current variation 
t,hat is chosen. Indeed, focussing is a generic property of ray solutions, and hence we can expect focussed 
wave regions such as those shown here to arise on other unsteady current fields. Note the two different types, 
one representing a collimation of short waves towards the current direction and the other giving a strongly 
three-dimensional and unsteady surface pattern. 
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