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Fractal solutions of the inviscid water-wave problem are presented. For gravity waves (neglecting surface tension) free 
surfaces with fractal dimensions 2¼ and 2 ! 3 are obtained. For capillary waves (neglecting gravity), subfractal free surfaces 
with dimension 2 are shown to exist. However, the situation is reversed if one considers time series of the surface elevation 
taken at a fixed point. In this case the capillary wave solution produces graphs with dimension 1~, whereas the graph for 
gravity waves has dimension 1. 

1. Main ideas and results 

1.1. Random surfaces 

Homogeneous  r andom surfaces z = r/(x) = r/(x, y)  are usually specified in terms of their  wavenumber  

spect rum ~ ( k )  = ~ ( k  x, ky),  which is the Four ie r  t ransform of the covariance of the surface displace- 

men t  "O 

~ ( k )  1 fr (2"rr) 2 r l ( x )  n ( x + r )  e - i k ' r d r .  (1.1) 

Assuming  ~ to be a mult ivar ia te  Gauss ian  process there is a way to retrieve r / f r o m  ~ through 

n ( x )  = f~a (k )  cos [k  "x + x ( k ) ]  ~ / 2 ~ ( k )  d k .  (1.2)  

Here  x ( k )  = E(k) are r andom phase shifts having a rec tangular  dis t r ibut ion over the range ( -  w, rr); and  

a(k )  are i n d e p e n d e n t  r andom ampl i tudes  with uni t  mean.  

1.2. Water surfaces 

In  the case of a free surface of a heavy fluid such as water, rt is also a funct ion of t ime t, and  the 

componen t s  in (1.2) are referred to as waves. If the non l inea r  interact ions among  these waves are weak 

enough  the wave f requency to is related to the wavenumber  k through the l inear  dispersion relat ion 

002 = gk + sk 3 , (1.3) 
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where k = Ikl, g is the gravitational acceleration, and s is the ratio between the surface tension 
coefficient and the density of the liquid. In this case (1.2) still applies, but the phase becomes time 
dependent:  x (k )  = e(k) - 0)(k) t. In the sequel we refer to 'pure '  gravity waves (denoted by subscript g) 
and to 'pure '  capillary waves (with subscript c). For these two extreme cases (1.3) is rewritten as 

0)/0), = ( k / k , ) ~  (1.4a) 

where the asterisk is used for scaling, and 

yg = 1/2 ,  "/c = 3 /2 .  (1.4b) 

For water surfaces Srokosz [12] assumes that the amplitudes in (1.2) are Rayleigh distributed on (0, oc) 
with mean 1; whereas Pierson [11] and Kinsman [5] choose a(k) - 1. In the sequel we adopt the second 
choice, which simplifies the mathematical presentation but does not affect the generality of our results. 

1.3. Dynamical eL, olution of free surfaces 

The dynamics of a wave field is conveniently described by the balance of action spectral density 
N(k, t), governed by the weakly nonlinear interaction of resonating wave-triads ( I  T) and wave-quartets 

( I  o): 

aN 
0-7- = IT + l o '  (1.5) 

IT =  16"rr3f f {{N(k,)  N(k2) - N ( k ) [ N ( k , )  + N(k2)]}  

X [ V ( - ) ( k ,  k l ,  k2) ]  2 ( ~ ( k - k  I - k 2 )  a (0)  - 0)1 

+ 2{N(k2)[N(k ) + N(k')] - N ( k ) N ( k , ) }  

x[v' a ( k  + k,  - a(0)  + 0), 

-0 )2)  

--0)2)} dk, dk2, (1.6a) 

I0 = + N(k,)]  - N ( k )  N(k , ) [N(k2)  + N(k3)]} 

X [ ( T ( k ,  k l ,  k2,  k3)]2(~(k  Jr- k I - k 2 - k3) •(0) + 0)1 - 0)2 - 0)3) d k .  d k  2 d k  3. (1 .6b)  

The kernels V ~-) and T can be found in ref. [3]. 

It is well known that 'pure '  gravity waves do not undergo triad resonant interactions (I  T --- 0) and that 
for this case IQ becomes the leading term on the r.h.s, of eq. (1.5). Capillary waves, however, are subject 
to triad and quartet resonances, but the first usually dominates and I o is often disregarded. Hasselmann 
[2] and Valenzuela and Laing [15] were the first to derive 1 o and I T respectively (cf. also refs. [4, 16]). 

We have rederived both expressions by starting from the Zakharov equation (cf. refs. [14, 18, 19] and 
using the methodology originally applied by Longuet-Higgins [8] to the cubic Schr6dinger equation. 
Details of derivation of I T have been omitted. The derivation is similar to the way that I o is derived in 
ref. [13]. 

It can be shown that the wavenumber spectrum qt(k) is related to the action density N(k) by 

gr (k)  = [ N ( k )  +N(-k ) ]k /20 ) .  (1.7) 
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1.4. Stationary solutions 

Zakharov and Filonenko [20] found that the equation d N / d t  = I o for 'pure '  gravity waves has two 

stationary solutions 

N / N ,  = ( k , / k )  ~ ( 1.8) 

with & = &g = 23/6,  4 (cf. also ref. [22]). 
In a similar way we have proved that the equation d N / d t  = I T for 'pure '  capillary waves has a solution 

of the same nature as (1.8), but with & = &¢ = 17/4. 
The result for capillary waves was derived earlier by Zakharov and Filonenko [21] #1. 
From (1.7) and (1.8) we obtain 

~ 1 ~ ,  = (k , lk )  ~, (1.9) 

where ~g = 10/3, 7 / 2  and ff¢ -- 19/4. For these cases (1.2) becomes 

Oo T r  

~?( x , t )  = r / ,  fo f- r cos{ k (  to)[ x cosO + y sin O] - w t  + e( to,O)}( to, / to)~'/2~/d( t o / w ,  ) dO , 

where 

f l lg= 1 1 / 3 , 4  and fl~¢= 17/6.  

(1.10a) 

(1.lOb) 

1.5. Time series and instantaneous seciions 

Pierson [11] has shown that for a sea surface given by (1.10) the local variation of r/ with time, at any 
fixed point x = x 0, is written as 

,7(t) = ,7, f :  cos[ + (,o,/to)t3'/2 4 d ( t o / w  , ) .  (1.11) 

The three-dimensional stationary Gaussian process (1.10) can also be reduced to another one-dimen- 
sional process, similar to (1.11), if one looks at the wave pattern along any given line at any instant. If the 
distance along this line is denoted by ~', then following Pierson we get 

o o  

r/(s r )  = ~7, fo c o s [ k ~ + e ( k ) ]  ~ / F ( k ) d ( k / k , ) ,  (1.12) 

where 

F ( k ) =  k ,  £'~ ( k *  Icos al ),8, 2 y k , - I  d a  (1.13a) 
,~ -if- ( k ,  Icosal) ~ 

~lWe are grateful to the referee who brought this to our attention. Since the original reference [21] is not easily accessible, we 
give our brief derivation in the appendix. 
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with y given in (1.4b) and /3j in (1.lOb). 

F ( k )  = 2y  f lcos d .  = B(7,½/32) ' 

where B is the beta function (see e.g. ref. [10], eq. 3.5) and 

/32 = 1 + y(/3, - 1). 

Substitution of (1.13b) into (1.12) yields 

r/(~') = 2"r/, v/YB(½, ~ / 3 2 ) f o ~ c o s [ k ~ + e ( k ) ] ( ~ - )  ~2/2 ' x / d ( k / k ,  ) .  

From (1.4b), (1.10b) and (1.14) we obtain 

/32g  = 7 /3 ,  5 / 2  and /32c = 15/4.  

(1.13b) 

(1.14) 

(1.15a) 

(1.15b) 

1.6. Fractal dimensions of the free surface 

In section 2 we prove that the graph of 

o c  

V(t) = fo cos(wt + e) v/S(oJ) doJ, s(,o) 

has a fractal dimension D related to /3 by 

D = (5 - / 3 ) / 2 .  (1.16) 

Substituting (1.10b) and (1.15b) into (1.16) yields the values for D given in table 1. We note that values of 
D in the range between 1 to 2 correspond to fractals with dimension D whereas values between 0 to 1 
correspond to subfractals, namely graphs of dimension 1 having a fractal derivative with dimension 

1 1 1 + D. The dimension of the free surface itself for gravity waves is D + 1 = 27, 2z, whereas for capillary 
waves it is 2. On the other hand, the dimension of the time series for gravity waves is D = 1, whereas for 
capillary waves D = l~z. 

2. Fractai dimension and 1 / t o  t3 spectra 

The goal of the present section is to provide a proof for eq. (1.16), which relates the fractal dimension 
D to the exponent of the spectrum /3. 

Table 1 
Calculated values of D 

Gravity waves Capillary waves 

time series 2/3, 1/2 13/12 
instantaneous sections 4/3, 5/4 5/8 
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Corollary 2.1. The following two stochastic processes, 

dO 

(a) v(t)=fo c o s ( t o t + e ) ~ / S ( t o ) d t o ,  S = t o - ~ ;  (2.1) 

and (b) the 'fractional Brownian motion' [17], 

1 f,(t_s)._,/2W(s)as, (2.2) Vn( t) = F( H + 1/2)  _ 

where W(s) is a Gaussian white noise, are identical provided that 

/3 = 2H + 1. (2.3) 

Proof. First, we write the white noise W(s) in a form similar to (2.1) 

w (  s) = foCOS( tos + , ) . (2.4) 

Second, we note that (2.2) is actually 

VH = _oolH+ l /2w,  (2.5) 

where _®Iff is the fractional integration operator due to Liouville and Riemann, see ref. [9]: 

1 f _=Ixf(X ) = ~ _ J ( t )  ( x -  t ) " - '  dt.  (2.6) 

Third, changing the order of integration and applying Mikolas' results [9] for fractional integration of 
sine and cosine functions we get 

= j tH+l/2f°°cos( to t  + e) dvrd-o~ = [oo ~ -oo1[ 4+1/2 COS(tot + e) v,, 
- -  " 0  J o  

o¢ =ff dvrd-~tocos[tot-(H+l/2)rr/2+e]to-"+l/2'=fo COS[tot+g]~/to-'ZH+')dto. (2.7) 

Last, comparing the result in (2.7) with (2.1), we obtain (2.3). 

Corollary 2.2. The process V=  V n is self-affine, i.e. 

AVH( r At  ) = rH AVH( At  ). (2.8) 
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Proof. 

1 f t l ,_( t_s)H AVH( At  ) = VH( t2) -- V H ( t ' )  -- / ' ( H  + 1/2)  ' / 2W(  s)  ds, (2.9) 

1 f H ~ ( r t _ s ) H _ l / 2 W ( s ) d s  ' (2.10) AVH( r At ) = VH( rt2) -- VH( rt¿) -- F(  H + 1/2)  r,, 

changing the integration variable in (2.10) to S = s / r  and applying the relation W(rS) = r J/2W(S) yields 

rH f t l e ( t _ s ) t , -  AVH( r At ) -- F(  H + 1 /2 )  I /2W(  S ) dS .  (2.11) 

Comparing (2.11) with (2.9) produces (2.8). 

Corollary 2.3. The fractal dimension (capacity) of V =  V H is 

D = 2 - H .  (2.12) 

Proof. First we scale t and VH(t) SO that initially At = 1, and AVH(At )= 1, see fig. 1. 
Second, we divide the range At = 1 into M equal parts, each r = 1 / M  units wide. The vertical extent l 

needed in order to cover the graph V H is determined by the property of affinity and is given by 
l = 1 / M  H. Thus, the vertical column comprises n = M -H+~ r by r squares. The total number  of such 
squares needed to cover that part  of the graph which was originally covered by the 1 by 1 square is 
N = M n = M  2 H•r f t -2"  

VH ( t ) ,  

A t  =1 

- ~ r , ~  

Fig. 1. Covering V H with squares. 

t 
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Third, calculating the capacity, as originally defined by Kolmogorov [6]: 

D lim log N ( r )  log( r n-2)  = 2 - H .  (2.13) 
r---,0 log(r  -1) log(r  -1) 

Last, we note that the term 'fractal dimension' was coined by Mandelbrot, who used it as a synonym 
for the Hausdorff dimension. Other authors use the term 'fractal dimension' as a synonym for capacity. 
Nevertheless, for many examples the capacity and the Hausdorff dimension take on a common value. 

Eq. (1.16) is obtained by eliminating H from (2.3) and (2.12). 

3. Discussion of naturally generated waves 

In addressing the question of the relevance of our findings to naturally generated waves, we consider 
the following: 

(1) The existence of equilibrium ranges with appropriate power law spectra. 
(2) The azimuthal dependence of wave spectra. 
(3) The range of scales over which these power laws apply. 

3.1. Power law spectra 

The wave action spectral density balance equation includes terms due to action exchange among 
different wavenumbers by nonlinear interaction as well as growth due to the wind and dissipation by 
wave breaking (for gravity waves) and viscous effects (in capillary waves). 

It is remarkable that even though we have not taken into account the wind input and dissipation, the 
exponents obtained agree well with reported measurements. 

For gravity waves, Phillips [10] summarizes several field and laboratory experiments. His results agree 
exactly with the value fig = 3.5 of eq. (1.9). The other theoretical value, fig = 3.33, seems too close to the 
first one to make it possible to distinguish between them experimentally. 

For capillary waves generated in a wind-wave tunnel Lleonart and Blackman [7] obtained results that 
correspond to ffc = 5. This is very close to our result of ffc = 4.75. 

It is quite likely that in the range considered (see section 3.3), nonlinear wave-wave interaction are 
dominant especially when compared with the combined effect of wind input and dissipation. Van Gastel 
[16] has computed the time scales for the different processes and has reached this conclusion. 

3.2. Angular spread 

We have considered equilibrium spectra which are isotropic. Unidirectional spectra can also be 
derived (cf. ref. [13]). A more general form, widely used, is that of a product of a frequency-dependent 
function and an azimuth-dependent one. We note that recent measurements of two-dimensional spectra 
of short gravity wind waves (0.2-1.6 m) by Banner et al. [1] clearly indicate a uniform angular distribution 
of energy. If one wishes to consider spectra which have the form of a power of the frequency times an 
angular factor, the derivation of the fractal dimension follows through, regardless of the angular spread. 
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3.3. Domain  o f  applicability 

It is clear that no natural object can be an ideal fractal any more than it can be completely smooth. 
The usefulness of the fractal description is related to the ranges of scales over which the power law 
spectra apply. We do not expect them to apply for scales on which wind input and dissipation become 
dominant, nor in the intermediate range of gravity-capillary waves, where the dispersion relation is not 
well approximated by power laws. For gravity waves Phillips [10] suggests a good agreement with the 
power law for wavelengths in the range between 0.1 and about 15 m, which gives a scale ratio of 
approximately 27. For capillary waves Lleonart and Blackman's measurements [7] suggest that the power 
law applies for wavelengths between about 2 mm and 1.6 cm (1.6 cm being already in the gravity-capillary 
range), giving a scale ratio of 23. 
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Appendix. Equilibrium of capillary waves 

The evolution equation for capillary waves can be written in terms of N as 

dN  
dt  - 16"¢3f f( (V°~O2[N'N2-N( N1 + x2)] 6 ( k - k l - k 2 )  6(O')- O) I--(D2) 

+ 2(V2~10))2[ U2( U + U , )  - UUl] 6 ( k  + k ,  - k2)  6 ( w  + o2, - o22) ) dk I dk 2. (A.1) 

For a steady state solution, the r.h.s, of (A.1) equals zero. Following Zakharov and Filonenko [20], we 
look for isotropic solutions in the form 

U ( k )  = N ( k ) .  (A.2) 

Using polar coordinates for the wavenumbers and averaging (A.1) over the angles, we obtain 

oc 

dk f 2 ~  d N  
k-d-~O Jo d T  dO = fro [ S°'2( N1N2 - NNl  - NN2)  6(o2 - w,  -602)  

+282o1(NN 2 + N 1 N  z - UN1) 6(o) + o21 - o22) ] dw I do)2, (A.3) 

2"¢ 

where 

dk  dkl  dk2 
8°12 = 16"rr3kklk2 d o  [ [ [  (V(~12))2 6 (k  - k 1 

dWl do) 2 -- k 2 )  dO dO 1 dO 2 (A.4) 
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and N is taken as a function of to. Note that S012 = So2 ~ since Vo~ ) = V0~2~ ). S is homogeneous in to of 
degree 8 /3 ,  i.e. for any positive a: 

S(  O~to' O/tol' O~to2) = 0/8/35( to'  to l '  to2) '  (A.5) 

since for 'pure '  capillary waves V (-) is homogeneous in k of degree 9 /4 ,  and k is proportional to 0) 2/3. 

Due to the delta functions, the integration over the (o l ,  to2) plane in the r.h.s, of (A.3) can be reduced 
into line integrals. There , i s  a correspondence among triads in the two terms in eq. (A.3), through 
permutations of indices, which coincides with the appropriate symmetry of the interaction coefficients, S. 
We divide the domain of integration for the first term into two integrals, I 1 and I2, and the second into 
I 3 and 14. We then map each of the domains onto the domain of I l, making use of the homogeneity of S 
and the isotropy of N: 

4 
k d k  d fo2~NdO = E In, (A.6) 

dto ~ n=l 

where 

I 1 = f o / 2 d t o 2  50,0-2,2(  m o - 2 N 2  - N N o _  2 - N N 2 )  , 

12 = fo to/2 dtol  So, 1,0-1( NINo-  1 - NN1 - NNo-  l ), 

13 = 2fo dtom So+ I ,o , I (NNo+I  - NtNo+~ - N N i ) ,  

/4 = 2f2 ~ dto2 Sz,o,2-0( NN2 + N2-0N2 - NN2-0),  

(A.6a) 

(A.6b) 

(A.6c) 

(A.6d) 

where i - j  stands for l, such that to t = toi --toj" The paths of integration in the (to1, to2) plane are shown 
in fig. 2. 

Changing the variables of integration in (A.6a)-(A.6d) as follows: 

(A.6a):  09 2= ;~, 

(A.6b) : co 1 = ~', 

(A.6c):  to1 =a~¢ ,  

(A.6d) : 09 2 = adto , 

O ~ c = t o / ( t o - - ~ ' ) ,  dto I - 2d¢, --O~ c 

a a = to/~', dto 2 = - a  2 d~', 
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Fig. 2. In tegra t ion  path. 

and rewriting (A.6a)-(A.6d) in the new variables of integration and applying (A.5) yields: 

2 co/2 
1 ' + 1 2 =  fo d ~ S ( w , o ~ - ~ , ~ ) [ N ( t o - ~ ) N ( ~ ) - N ( w ) N ( w - ~ ) - N ( o J ) N ( ~ ) ] ,  

13 = 2 f o / Z d ~  alc4/3S( to , to - ~, ( )  

× [N(ac(W - {))  N ( a c w )  + N ( a c ; )  N(acW) - N ( a c ( o j  - ~')) N(ac~ ' ) ] ,  

14 = 2f0w/2 d~" c~4/3S( oJ, s r, ~0 - ~ ) 

X [ U(Otd~" ) N ( a d W  ) + N ( a d ( W  -- ~) )  N ( a d w  ) -- N(ad~" ) N ( a d ( W  -- ~'))]. 

Substitution of the above into (A.6) and assuming 

N(w)  = N , ( w / m , )  x (A.7) 
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gives 

k dk d r2"x 2N2, 
-d--~-~ j ° UdO= toZx foO' /2d~S(to , ( , to-()  [ ~ x ( t o - ( ) x - t o x ( t o - ~ ) x - t o x (  x] 

X [~ -14 /3+2x( to  _ ~- )14 /3+2x _ 0.)14/3+2x(0-1 -- ~ ' ) 1 4 / 3 + 2 x  _ to4/3+2x¢14/3+2x] .  

(A.8) 

The first of the expressions in square brackets is equal to zero for x = - 1 ,  and the second for 

14/3 + 2x = - 1, i.e. for x = - 17/6. The solution x = - 1 implies a uniform energy density and is less 
interesting. The spectrum 

N = N ,  ( w/ to,  ) - 17/6  (A.9) 

can be viewed as an approximate solution for the high-frequency 

capillarity. 
The wave action flux p(to) and the wave energy flux q(to) satisfy 

range, which is dominated by 

0p dk ON 
0--~ = k d---~ Ot ' (A.lOa) 

0q  , dk ON 
: -KT-dto- -. (A.lOb) 

Since (ON/Ot)k(dk/dto) was found to be homogeneous in 0-1 of order (11/3 + 2x), p and q are 

homogeneous in 0-1 of orders (14/3 + 2x) and (17/3 + 2x), respectively, yielding for x - - -  17/6; 
p =p , / t o ,  q = q , .  From eq. (A.3)we see that N ,  is proportional to ql/2. 

For equilibrium, (A.10a) dictates p ,  = 0. To find the direction of the energy flux q, we examine the 
interaction of a single resonant triad, k = k~ + k 2. From (A.1) we see that wave action is added to N(k)  
at a rate 

32~r3V°)[N, NE - N ( N ,  +N2)  ] = AN, (A.11) 

which is positive for x = - 17/6. N(k 0 and N(k 2) decrease each at that same rate, so together they lose 
twice the wave action that N(k)  receives. Thus, wave action is only conserved over the whole spectrum 
but not for each triad separately. In contrast, for any spectrum, energy and momentum are conserved 
within each triad: 

ANto = ANto I + ANto2, (A.12a) 

A N k  = A N k  1 + A N k  2 (A.12b) 

since 0-1 = 0-11 + o.12, k = k I -'l- k 2.  Thus it is clear that the energy flux is directed to higher wavenumbers, 
where it can be dissipated by viscosity. 
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