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ABSTRACT

A solution of Rayleigh’s instability equation, which circumvents the apparent critical-layer singularity, is
provided. The temporal and spatial growth rates of water waves exposed to a logarithmic wind profile are
calculated and discussed. The findings are similar to previously published results, except for shear velocity–
to–wave celerity ratios larger than 2, where the newly calculated growth rates start to decrease after having
reached a distinct maximum. The ratio of the spatial to temporal growth rates is examined. It is shown to
deviate by up to 20% from the leading-order value of 2. The implications of the growth rate to the modal
distributions of energy input from wind to waves, for young and mature seas, and in temporal/spatial growth
scenarios, are analyzed.

1. Introduction

The study of the growth of ocean surface waves by
the wind blowing over them is often treated as a linear
stability problem. Miles (1957) was the first to use Ray-
leigh’s (1880) equation for this problem. When studying
linear stability problems, it seems helpful to consider
two typical scenarios: one of temporal growth and the
other of spatial growth. The shear velocity1 of the wind
U* and the amplitude of the wave a for both scenarios
are given by

(i) the temporal growth scenario

U*�t� � �0, t � 0
u*, t � 0

; a�t� � �a0, t � 0

a0e��0t t � 0

�1.1a,b�

and

(ii) the spatial growth scenario

U*�x� � �0, x � 0
u*, x � 0

; a�x� � �a0, x � 0

a0e�k0x x � 0 .

�1.2a,b�

In (1.1b) and (1.2b), � and � are the temporal and
spatial growth rates, respectively, and to lowest order,
� � �/2 (Gaster 1962). For the sake of completeness, it
is worthwhile to mention that other scenarios of com-
bined growth are, of course, possible. Generally speak-
ing, � and � depend on the shear velocity and on the
wavenumber k0 [or wave frequency �0 � (gk0)1/2].
However, the actual rate of energy transfer from the
wind to the waves depends also on a0 itself. In linear
stability studies, one is interested, among others, to de-
tect the fastest growing mode (wavenumber). Here it is
suggested to widen this interest and to look also at the
fastest energy-accumulating modes under several sce-
narios. The aim of this paper is twofold:

(i) to investigate the accuracy of the relation � � �/2 and
(ii) to find which wave modes (i.e., which parts of the

spectrum) are absorbing most of the energy from
the wind, in both of the aforementioned scenarios
and for young/mature sea states.

In this paper we restrict the discussion to gravity
waves and assume a steady shear velocity in the air. The

1 In this study it is assumed that the wind profile is completely
defined by the shear velocity.
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only effect of turbulence that enters our derivation is its
effect on the mean wind profile.

The mathematical problem is formulated in section 2,
and three different methods of solution are discussed in
section 3. The issues of comparison between temporal
and spatial growth and of the fastest-growing modes
(for young and mature seas) are treated in sections 4
and 5, respectively. Conclusions are drawn in section 6.

2. Mathematical formulation

Assuming two-dimensional inviscid and incompress-
ible flows in the water (denoted by subscript w), as well
as in the air (denoted by subscript a) above it, and
relatively small wavy components superposed on
steady, leading order given, shear flows, the velocities,
pressures, and densities are denoted by

• horizontal air velocity component: Ua(z) � ua(x, z, t);
• vertical air velocity component: �a(x, z, t);
• air pressure: P0 	 g
az � pa(x, z, t), where 
a is the

density of the air;
• horizontal water velocity component: Uw(z) � uw(x,

z, t);
• vertical water velocity component: �w(x, z, t);
• water pressure: P0 	 g
wz � pw(x, z, t), where 
w is

the density of water, and P0 is a constant reference
pressure: Ua and Uw are the prescribed unperturbed
wind and current, respectively.

Note that lowercase letters indicate fluctuating quanti-
ties.

The wavy interface between the water and the air is
z � �(x, t). The continuity equations and the linearized
equations of motion are

�uw

�x
�

��w

�z
� 0, z � 0, �2.1a�

�uw

�t
� Uw

�uw

�x
� U	w�w � 	

1

w

�pw

�x
, z � 0, �2.1b�

��w

�t
� Uw

��w

�x
� 	

1

w

�pw

�z
, z � 0, �2.1c�

�ua

�x
�

��a

�z
� 0, z � 0, �2.2a�

�ua

�t
� Ua

�ua

�x
� U	a�a � 	

1

a

�pa

�x
, z � 0, �2.2b�

and

��a

�t
� Ua

��a

�x
� 	

1

a

�pa

�z
, z � 0. �2.2c�

In the above equations, the prime denotes differentia-
tion with respect to the vertical coordinate, z.

The systems (2.1) and (2.2) have wavy solutions with
wavenumber k and frequency �:

uw � a0 f 	wei�kx	�t�, �w � 	ika0 fwei�kx	�t�, �2.3a,b�

pw � a0


w

k
��� 	 kUw�f 	w � kU	wfw
ei�kx	�t�, �2.3c�

ua � a0 f	aei�kx	�t�, �a � 	ika0 faei�kx	�t�, and

�2.4a,b�

pa � a0


a

k
��� 	 kUa�f 	a � kU	afa
ei�kx	�t�, �2.4c�

where the auxiliary functions fw and fa satisfy Ray-
leigh’s equation

f �w 	 �k2 �
U�w

Uw 	 �
k�fw � 0, z � 0 �2.5�

and

f �a 	 �k2 �
U�a

Ua 	 �
k�fa � 0, z � 0. �2.6�

Note that the real part of a complex quantity represents
the physical variable.

For the interface with initial amplitude a0,

� � a0ei�kx	�t�; �2.7�

the linearized kinematic and dynamic free-surface
boundary conditions are

�w �
��

�t
� Uw

��

�x
; �a �

��

�t
� Ua

��

�x
, z � 0,

�2.8a,b�

and

pw 	 g
w� � pa 	 g
a� 	 
w�
�2�

�x2 , z � 0,

�2.9�

where � is the surface tension divided by the density of
the water.

In terms of the auxiliary functions, (2.8) and (2.9)
reduce to

fw�0� �
�

k
	 Uw�0�, fa�0� �

�

k
	 Ua�0�,

�2.10a,b�

and

�� 	 kUw� � f 	w � U	w� 	 gk 	 �k3 � 
 ��� 	 kUa�

� � f 	a � U	a� 	 gk
 at z � 0, �2.11�

where 
 � 
a/
w.
Equation (2.11) is a dispersion equation, giving the

relation between the frequency � and wavenumber k.
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Restricting the discussion to shear flows for which
U �a(�) and U �w(	�) tend to zero, the two additional
boundary conditions for the auxiliary functions are

f	w 	 kfw � 0, z → 	 � and �2.12a�

f	a � kfa � 0, z → �. �2.12b�

For cases with a negligible current in the water, the
solution of (2.5), (2.10a), and (2.12a) is

fw �
�

k
ekz. �2.13�

Substituting (2.13) into (2.11) and neglecting the influ-
ence of surface tension gives

�2 	 gk � 
 ��� 	 kUa�� f 	a � U	a� 	 gk
 at z � 0.

�2.14�

The numerical examples in this paper are restricted to
logarithmic wind profiles

Ua �
u*
�

ln�1 �
z

z0
�, z � 0, �2.15�

where � � 0.41 is von Kármán’s constant, u* is the
so-called shear velocity, and the roughness z0 is given
by Charnock’s relation with constant �Ch:

z0 � �Chu2

*
g. �2.16�

The methods of solution are outlined in the following
section.

3. Methods of solution

To find fa, for given k and �, one has to solve

f 	a 	 �k2 �
U�a

Ua 	 �
k�fa � 0, z � 0 �3.1�

with the two boundary conditions

fa�0� � �
k, f 	a��� � 	kfa���; �3.2a,b�

see (2.6), (2.10b), (2.15), and (2.12b).
However, one cannot choose k and � freely since

they have to fulfill the dispersion relation

�2 	 gk � 
��� f 	a�0� � u*
�z0
 	 gk�; �3.3�

see (2.14) and (2.15).
Owing to the influence of the wind, the frequency �

and the wavenumber k can have small but important
deviations from their values �0 and k0 in windless con-
ditions. This fact is made explicit by the notation

� � �0 � �1; ��1�
�0 K 1 and �3.4a�

k � k0 � k1; �k1�
k0 K 1, �3.4b�

where �1 and k1 can be complex and

�0
2 � gk0, �3.5�

is the windless dispersion relation.
At least three methods of solution are possible; they

will be referred to as the singular approach, exact ap-
proach, and higher-order solution for spatiotemporal
growth—for reasons to become obvious later.

a. The singular approach

In this approach (�, k) are replaced by �0 and k0 in
(3.1), (3.2a,b) as well as on the rhs of (3.3) and by
(3.4a,b) on the lhs of (3.3):

f �a 	 �k0
2 �

U�a
Ua 	 �0
k0

�fa � 0, z � 0, �3.6�

fa�0� � �0
k0, f 	a��� � 	k0 fa���, and �3.7a,b�

�1
2 � 2�0�1 	 gk1 � 
�0� f 	a�0� � u*
�z0 	 �0
.

�3.8�

Neglecting the small first term on the lhs of (3.8) and
then dividing by 2�0 gives

�1 	 cg0
k1 �




2
� f 	a�0� � u*
�z0 	 �0
, �3.9�

where cg0
� g/2�0 is the group velocity.

Equation (3.6) is singular at the so-called critical
layer, where Ua � c0, c0 � �0 /k0, is the phase velocity.
This singular equation has been solved by Conte and
Miles (1959), Janssen (1991), and Beji and Nadaoka
(2004), among others.

Taking the imaginary part of (3.9) and recognizing
that

Im��1� �
�a
�t

a
; Im�k1� � 	

�a
�x

a

are the temporal and spatial growth rates of the ampli-
tude a (i.e., one-half of the wave height, a � 0), respec-
tively, one obtains

�a

�t
� cg0

�a

�x
�


a

2
Im�f 	a�0��. �3.10�

Equation (3.10) is rewritten in terms of energy as

��a2�

�t
� cg0

��a2�

�x
� 
a2 Im�f 	a�0��. �3.11�
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Note that the first/second term on the lhs of (3.11) van-
ishes for pure spatial/temporal growth conditions. In
any case, it turns out that �1 or k1 (or both) have imagi-
nary parts so that the original Rayleigh equation (3.1) is
actually regular, which leads us to the following two
additional methods of solution.

b. The exact approach

Substituting (3.4a,b) into (3.1), (3.2a,b) and (3.3)
yields

f �a 	��k0 � k1�
2 � U�a��Ua 	

�0 � �1

k0 � k1
��fa � 0, z � 0,

�3.12�

fa�0� � ��0 � �1�
�k0 � k1�; f 	a��� � 	�k0 � k1�fa���,

�3.13a,b�

and

��0 � �1�2 	 g�k0 � k1� � 
���0 � �1�� f 	a�0� � u*
�z0


	 g�k0 � k1��. �3.14�

In the above system, Ua, k0, and �0 � �gk0 are given
and fa(z), k1, and �1 are unknowns to be found simul-
taneously. It is quite clear that the system (3.12)–(3.14)
has too many unknowns, and either k1 or �1 has to be
omitted, that is, set to zero. Note that the case k1 � 0
corresponds to pure temporal growth, whereas �1 � 0
corresponds to pure spatial growth. It is self-evident
that for these two special cases the above regular equa-
tion is the exact equation for the problem at hand,
whereas the singular approach should be treated as its
approximation.

1) TEMPORAL GROWTH

Substituting k1 � 0 in (3.12), (3.13a,b), and (3.14)
gives

f �a 	 �k0
2 �

U�a
Ua 	 c0�1 � �1
�0��fa � 0, z � 0

�3.15�

fa�0� � c0�1 �
�1

�0
�, f 	a��� � 	k0 fa���

�3.16a,b�

2�0�1 � �1
2 � 
���0 � �1�� f 	a�0� � u*
�z0� 	 �0

2�

�3.17�

2) SPATIAL GROWTH

Substituting �1 � 0 in (3.12), (3.13a,b), and (3.14),

f�a 	��k0 � k1�
2 �

U�a
Ua 	 c0
�1 � k1
k0�

�fa � 0, z � 0,

�3.18�

fa�0� � c0��1 �
k1

k0
�; f 	a��� � 	�k0 � k1�fa���,

�3.19a,b�

and

	gk1 � 
��0� f 	a�0� � u*
�z0
 	 g�k0 � k1��.

�3.20�

The method of solution of the exact approach is the
same for the spatial and temporal cases and is outlined
for the latter. Equation (3.15) is of second order but has
to obey three boundary conditions: (3.16a,b) and (3.17).
The first two are used while solving the Rayleigh equa-
tion (3.15) for a given value of �1, whereas the dynamic
boundary condition (3.17) is used to obtain the follow-
ing iteration for �1, until a specified number of signifi-
cant digits remains unchanged. The iteration is started
with a “first guess” imaginary value for �1.

In solving the ODE (3.15), a large value of z is cho-
sen, typically k0z� � 100, where (3.16b) is replaced by

fa � 1; f 	a � 	k0 at z � z�. �3.21�

Equation (3.15) is solved by stepping from z� to z � 0,
using Mathematica’s solver, and then normalizing
to satisfy the kinematic boundary condition (3.16a).
Table 1 demonstrates the convergence of the process,
for the example with �Ch � 0.0178, u* � 0.08c0, and

 � 10	3.

Note that the deviation of the new (exact approach)
results from singular (critical layer) calculations, for the
temporal scenario, is less than 10%; see appendix. A
similar iterative method was used by Morland et al.
(1991) to study another instability problem. The limi-
tation of the exact solution is its inability to treat the
combined growth problem, a difficulty which is over-
come by the third method of solution.

c. Higher-order solution for spatiotemporal growth

Taking the expansion of fa to first order in �1 and k1:

fa � f0 � f��1 � fkk1 � O��1
2, k1

2, �1k1�. �3.22�

Equations (3.12)–(3.14) can now be expanded in orders
of �1 and k1. The leading order gives (3.6)–(3.8). At the
next order we have a system for f�:
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f �� 	 �k0
2 �

U�a
Ua 	 �0 
k0

� f� � �f0, z � 0, �3.23�

� � U�a
k0 
�Ua 	 �0
k0�2,

�3.24�

and

f��0� � 1
k0; f 	���� � 	k0 f���� �3.25a,b�

and a system for fk:

f �k 	 �k0
2 �

U�a
Ua 	 �0 
k0

�fk �
	�0

k0
�f0 � 2k0 f0;

�3.26�

fk�0� �
	�0

k0
2 ; f 	k��� � 	f0��� 	 k0 fk���.

�3.27a,b�

Expanding (3.14) to O(�1, k1) leads to

�1 	 �cg0
� cg1

�k1 �



2�f	0�0� �
u*
�z0

	 �0��
�1 	




2�f	0�0�

�0
�

u*
�z0�0

� f	��0���,

�3.28a�

where

cg1
�




2
��0

g
f 	k�0� 	 1 �

f 	0�0�

�0
�

u*
�z0�0

� f 	��0��cg0
.

�3.28b�

The imaginary part of (3.28a) reduces to (3.9) at leading
order and leads to an evolution equation corresponding
to (3.11). The values of f �0(0), f ��(0), and f �k(0) can be
found without solving the singular Eqs. (3.6), (3.23),
and (3.26). Instead, we solve (3.12) and (3.13) with
three sets of values for (�1, k1) (choosing complex val-
ues, to avoid singularity). If the values for (�1, k1) are
small enough, we can extract the above three values of
f �0(0), f ��(0), and f �k(0) from the three values of f �a(0) and
Eq. (3.22). The computational results for temporal/
spatial growth scenarios agree with the results of the
exact method.

4. Comparison between spatial and temporal
growth conditions

For temporal or spatial growth, respectively: k or �
is kept constant that is, (k � k0 or � � �0),
Im{�} or Im{	k} provide the growth rates, and Re{�}
(or Re{k}) are slightly different from �0 (or k0). These
slight changes as functions of u*/c0 hardly exceed 6%,
as one can see from Fig. 1.

The ratio of the dimensionless spatial growth rate �
to its temporal counterpart � is given in Fig. 2:

� � 	Im�k�
k0; � � Im���
�0. �4.1�

TABLE 1. Demonstration of convergence for two values of k0z�; u
*

/c � 0.08, 
 � 0.001, � � 0.41, and �Ch � 0.0178.

Iteration �/�0 for k0z� � 100 �/�0 for k0z� � 10

1 1.0 � 0.0001 i 1.0 � 0.0001 i
2 0.999 651 � 0.000 081 505 8 i 0.999 651 � 0.000 081 505 8 i
3 0.999 493 � 0.000 073 111 3 i 0.999 493 � 0.000 073 111 3 i
4 0.999 420 � 0.000 069 299 5 i 0.999 420 � 0.000 069 299 4 i
5 0.999 387 � 0.000 067 568 3 i 0.999 387 � 0.000 067 568 2 i
6 0.999 372 � 0.000 066 781 9 i 0.999 372 � 0.000 066 781 9 i
7 0.999 366 � 0.000 066 424 7 i 0.999 366 � 0.000 066 424 7 i
8 0.999 362 � 0.000 066 262 5 i 0.999 362 � 0.000 066 262 5 i
9 0.999 361 � 0.000 066 188 8 i 0.999 361 � 0.000 066 188 8 i

10 0.999 360 � 0.000 066 155 3 i 0.999 360 � 0.000 066 155 3 i
11 0.999 360 � 0.000 066 140 1 i 0.999 360 � 0.000 066 140 1 i
12 0.999 360 � 0.000 066 133 2 i 0.999 360 � 0.000 066 133 2 i
13 0.999 360 � 0.000 066 130 1 i 0.999 360 � 0.000 066 130 1 i
14 0.999 360 � 0.000 066 128 7 i 0.999 360 � 0.000 066 128 6 i
15 0.999 360 � 0.000 066 128 0 i 0.999 360 � 0.000 066 128 0 i
16 0.999 360 � 0.000 066 127 7 i 0.999 360 � 0.000 066 127 7 i
17 0.999 360 � 0.000 066 127 6 i 0.999 360 � 0.000 066 127 6 i
18 0.999 360 � 0.000 066 127 5 i 0.999 360 � 0.000 066 127 5 i
19 0.999 360 � 0.000 066 127 5 i 0.999 360 � 0.000 066 127 5 i
20 0.999 360 � 0.000 066 127 5 i 0.999 360 � 0.000 066 127 5 i
21 0.999 360 � 0.000 066 127 5 i 0.999 360 � 0.000 066 127 4 i
22 0.999 360 � 0.000 066 127 5 i 0.999 360 � 0.000 066 127 4 i
23 0.999 360 � 0.000 066 127 5 i 0.999 360 � 0.000 066 127 4 i

110 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 37



Note that the ratio �/� varies in the range 1.75 to 2.4,
which is within 20% of the value 2 (the ratio of the
phase velocity to the group velocity), predicted by (3.9)
and by Gaster (1962). Note that (3.9) also predicts

�Re�k1�
k0�
�Re��1�
�0� � 	2, �4.2�

as is clearly reflected in Fig. 1.

5. On the fastest energy-accumulating modes

Figure 3 gives the newly calculated temporal growth
rate for �Ch � 0.0144 and 
 � 1/800, together with pre-
viously published results from Komen et al. (1994). The
main difference between the new result and that of
Komen et al. is in the maximum found near u*/c0 � 2,
which identifies a fastest-growing mode (i.e., largest �)
for a given shear velocity u*. Note that the experimen-
tal data for large u*/c0 is already within the gravity–
capillary range, whereas both theoretical lines are for
pure gravity waves.

The related, fastest energy-accumulating modes, for

four different physical scenarios are addressed next.
These scenarios are as follows: (I) temporal growth
where all modes have the same initial amplitude a0; (II)
temporal growth where all modes have the same initial
steepness �0 � ak; (III) and (IV) similar to (I) and (II),
respectively, but for spatial growth conditions. To
achieve the above goal one has to nondimensionalize
the dependent variables d(a2)/dt and d(a2)/dx by using
(a0, g, and u*) for cases I and III and by using (�0, g,
and u*) for cases II and IV. From dimensional consid-
erations one can show that

u*
ga0

2

d�a2�

dt
� 2�u*
c��;

g

�0
2u3

*

d�a2�

dt
� 2�c
u*�3�

�5.1a,b�

and

u2

*
ga0

2

d�a2�

dx
� 2�u*
c�2�;

g

�0
2u2

*

d�a2�

dx
� 2�c
u*�2�.

�5.1c,d�

Note that different length scales have been used to nor-
malize a and x in (5.1c,d), which is appropriate because
of the linear nature of the problem.

FIG. 2. Ratio of spatial to temporal growth rates, for
�Ch � 0.0144, 
 � 1/800.

FIG. 1. Variation of frequency Re{�} for temporal growth (solid
line) and variation of wavenumber Re{k} for spatial growth
(dashed line) for �Ch � 0.0144 and 
 � 0.001 25.

FIG. 3. Temporal growth rate (solid line) from Komen et al.
(1994, p. 85); new calculation with �Ch� 0.0144 and 
 � 1/800
(dashed line). Different symbols represent experimental results
from various authors; for details see Fig. 2 of Plant (1982).
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The results are depicted in Fig. 4 as functions of the
independent variable c/u*; the maxima and the ranges
of c/u* for which the energy-accumulating range is
larger than half of the appropriate maximum are given
in Table 2.

For young seas, where all modes are assumed to have
the same initial amplitude (see cases I and III), most of
the energy goes into the very short waves, c/u* ∈ (0.1,
0.7) and no substantial difference between the temporal
and spatial scenarios is detected. For mature seas,
where all modes are assumed to have the same initial
steepness �0, a profound difference between the two
scenarios occurs. For the temporal cases, most of the
energy goes into rather long waves c/u* � 7; whereas,
for its spatial parallel, the energy goes into a wide range
of modes c/u* ∈ (0.5, 17).

6. Summary

The study of the growth of waves under the influence
of wind using the Miles theory, which was started al-

most 50 years ago (Miles 1957), is continuing to stimu-
late the interest of the scientific community. Such stud-
ies find their main application in improving the accu-
racy of wave-forecasting models.

The present paper addressed a few issues, some of
which help to obtain new answers, and others open

FIG. 5. The auxiliary function fa(z), for �Ch� 0.0178, 
 � 10	3,
and u

*
� 0.067c0. (a), (b) The modulus of the complex function fa,

and (c) its argument.

FIG. 4. Modal distribution of energy input from wind to waves:
(a) Temporal growth, all modes start with the same amplitude a0;
(b) temporal growth, all modes start with the same steepness �0;
(c), (d) similar to (a), (b) but for spatial growth.

TABLE 2. Fastest energy-accumulation modes.

Case
Location of

maximum c/u
*

Range of substantial
energy accumulation

I 0.44 0.3–0.7
II 16 7–20
III 0.35 0.1–0.6
IV 0.74 0.5–17
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further questions. These issues are mentioned below in
order of appearance:

(i) A method of solution, called the exact approach,
that circumvents the critical-layer singularity was
adopted. The deviations between this method and
the standard singular approach were found to be
less than 10%.

(ii) The spatial growth rate was computed directly.
The ratio of the spatial to temporal growth rates
was shown to deviate by up to 20% from the lead-
ing-order value of c/cg.

(iii) An efficient higher-order solution method was in-
troduced that closely reproduced the exact ap-
proach results.

(iv) The wave modes that extract most of the energy
from the wind were found, as one would expect, to
depend on the actual sea condition. The profound
difference in the range of substantial energy input,
between temporal growth and spatial growth for a
“mature” sea, seems less intuitive.

Note that the maximum growth rate in Fig. 3 and the
maxima in Figs. 4a, 4c, and 4d are for a small c/u*value.
Unless u*, and also U10 � Ua |z�10m, are very large (U10

beyond 20 m s	1), these waves are within the gravity–
capillary range. A more detailed study of these maxima
for less strong winds will require including the surface
tension term.

Last, the auxiliary function fa(z) is illustrated in Fig.
5, which demonstrates how different it is from
exp(	k0z). The large derivatives for z � zcr indicate
the possible importance of viscous terms. Nevertheless,
for large enough z, the relative deviation of | fa(z) | from
an exponential decay, that is, the quantity |const| fa| 	
e	k0z| /e	k0z, is less than 1% for z � (2�/k0) and less than
1‰ for z � 10(2�/k0).
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APPENDIX

Comparison between the Exact and Singular
Approaches

The exact method of solution is essentially different
from the singular critical layer approach and is ex-
pected to provide improved results. In Table A1, new
results by the exact approach for the normalized tem-
poral growth rate are compared with those of Conte
and Miles (1959), and Beji and Nadaoka (2004), using
their normalization, their coefficients �Ch � 0.0178, 
 �
10	3, and their values of c0 /U1, where U1 � u*/�.

The deviation of the new (exact approach) results
from previous (critical layer) calculations is less than
7%. Conte and Miles, as well as Beji and Nadaoka, do
not provide results for values of u*/c0 larger than 0.4. In
this range of larger values of u*/c0, the method used by
Janssen (1991) gives accurate results.

Rerunning the critical layer subroutine, written by
Janssen (1991), for 
 � 0.001 225 and �Ch � 0.0144, we
have obtained the comparison presented in Table A2.

TABLE A2. Normalized growth rate 4�Im{�1}/�0 from
two sources.

u
*

/c0

New calculation
exact approach

Janssen (1991)
singular approach

0.1 0.0017 0.0016
0.2 0.0066 0.0064
0.3 0.015 0.015
0.5 0.045 0.043
1 0.22 0.20
1.5 0.59 0.54
3 0.45 0.43

TABLE A1. Normalized growth rate 2�0Im{�1}/
k2
0U 2

1 from three different sources.

c0 /U1 u
*

/c0

New calculation
(exact approach)

Conte and Miles (1959)
(singular approach)

Beji and Nadaoka (2004)
(singular approach)

1 0.4 3.57 3.54 3.53
2 0.2 3.43 3.41 3.41
3 0.13 3.44 3.43 3.43
4 0.1 3.44 3.43 3.43
5 0.08 3.31 3.30 3.30
6 0.067 2.98 2.98 2.97
7 0.057 2.45 2.44 2.44
8 0.05 1.76 1.75 1.75
9 0.044 1.02 1.02 1.02

10 0.4 0.410 0.405 0.405
11 0.036 0.0742 0.0725 —
12 0.033 0.001 88 0.001 77 —
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The new results are within 10% of those obtained by
the critical layer method.
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