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Shoaling of finite-amplitude surface waves on water 
of slowly-varying depth 
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Periodic wave trains propagating over water which varies in depth in the direction of 
wave propagation are studied by using accurate solutions for wave trains in constant 
depth of water. The accurate solutions are (i) Cokelet's (1977) extension of Stokes' 
approximation and, for the longer waves, (ii) a solution for trains of solitary waves 
using the solitary-wave solution of Longuet-Higgins & Fenton (1974). 

A representative selection of results is shown in diagrams. A feature which arises 
from the use of these accurate solutions is that near the highest wave two solutions 
are possible for a given incoming wave. Although the solutions cannot describe waves 
that break, it is shown that as depth is decreased a point is reached beyond which no 
solution can be found. This is taken to indicate the region in which waves break. 

The limitations of the theory are discussed and analysed. Comparisons with experi- 
mental measurements of Hansen & Svendsen (1979) are included. 
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1. Introduction 
One reasonably successful and much used met,hod of describing the behaviour of 

water waves propagating on water of varying depth is to assume that the depth 
variation has a sufficiently long scale that a t  any point the waves are described to a 
sufficient approximation by a uniform wave-train on a constant depth of water. In 
the simplest case, where the waves are so gentle that linear theory is adequate, 
the propagation paths, or rays, of waves can be calculated over relatively complex 
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topography. However, in the commonest application, for waves approaching a 
coast, as the depth of water decreases so the wave steepness increases and linear theory 
becomes inaccurate. On beaches, waves usually steepen until they break. 

If finite-amplitude solutions for periodic waves are used the calculation of propaga- 
tion paths in a simple manner is no longer possible. When the governing equations are 
analysed (see Whitham 1967) it is found that there are four distinct characteristics 
of the equations indicating that in general some wave properties propagate in different 
directions. Also for moderate to deep water the characteristic directions are complex 
indicating an elliptic character for the equations. We do not enter this problem here, 
since we only consider the relatively simple problem where the bottom topography 
varies in one direction only. We simplify further by only considering waves propagating 
in this direction. (There is no intrinsic difficulty in considering the more general case 
of waves a t  an angle to such cylindrical geometry. This case is being investigated.) 
A typical example is a straight coastline with depth contours all parallel to the same 
direction. Examples of solutions to this problem are those of Svendsen & Brink-Kjaer 
(1972) for cnoidal waves and James (1974a,b) who uses hyperbolic waves near the 
shore and Stokes’ waves further out. The accurate deep-water-wave solution of 
Longuet-Higgins (1975) is used by Peregrine & Thomas (1979) to study the inter- 
action of waves and currents. 

Accurate results are given by Cokelet (1977) for steady gravity waves on any depth 
of water and of any steepness up to the maximum. This paper results from using these 
accurate solutions to describe waves normally incident on a beach. The description 
is in terms of waves propagating from deep water into a region where the depth 
monotonically decreases; but with the type of slowly-varying approximation used 
here, the actual variation of the depth is immaterial as long as it is sufficiently gentle. 

The equations used to describe the waves assume very long scales both for wave 
modulation and for depth modulation. They are averaged equations and are derived 
in Stiassnie & Peregrine (1979) which develops work by Phillips (1966), Whitham 
(1967, 1974) and Crapper (1979) amongst others. The next section gives the equations 
in the simplified form needed here and also describes how Cokelet’s solution method 
is used. In  practice the accuracy of the solution becomes poor as the wavelength to 
depth ratio increases. It was found that a more satisfactory solution for long waves 
is a train of solitary waves (abbreviated to TSW) based on the accurate solitary-wave 
solution given by Longuet-Higgins & Fenton (1974). This TSW approximation has 
the unusual and useful property that it improves as the wave height increases. It is 
described in $3 .  

Results of amplitude variation for a full range of deep-water wave steepnesses are 
described in § 4, together with selected examples of other wave properties. Comparison 
is made with linear theory and the cnoidal wave solution of Svendsen & Brink-Kjzr 
(1972). The accurate wave solutions show maxima of all integral wave properties for 
waves slightly less than the steepest. This leads to the existence of two solutions of 
the equations for waves near the steepest. For given deep-water conditions there is 
a minimum depth a t  which a solution can be found and the corresponding wave al- 
though steep is not the steepest for that depth. 

A theoretical solution based on averaging symmetrical wave trains, such as the 
one used here, cannot predict wave breaking. However, it is reasonable to expect 
breaking in the neighbourhood of a point where solutions cease to exist, and that the 
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amplitude a t  breaking may well be close to the amplitude of that limiting solution. 
In this respect the accurate wave solutions are a marked advance on other solutions 
which rely on the specification of distinct breaking criteria. Section 5 includes a 
discussion of wave breaking in relation t o  these solutions and the properties of the 
limiting solutions are presented as functions of deep-water wave steepness. 

The limitations of the theory are discussed and analysed in $9 6 and 7. I n  particular, 
an analysis of the rate of interaction between two equal solitary waves indicates that 
once waves reach the stage of being described by the TSW approximation then it is 
only for extremely gentle slopes, less than that this theory can be appropriate. 
In  most circumstances, namely less gentle slopes, once crests of waves become similar 
to solitary waves then an approach such as that of Miles (1979) is more suitable. 
However, in practice our results will frequently only differ a little from such a solution. 

There are difficulties in making satisfactory comparisons with experiments. These 
are due to the dissipation, reflexion and secondary flows which occur in experiments, 
and to  experimental difficulties of generating a wave train free from extraneous 
harmonics. Comparisons are given in 9 8 with measurements of Hansen & Svendsen 
(1979). These show the importance of dissipation and difficulties of obtaining precise 
experimental results even when great care is taken over wave generation. However, 
encouraging and reasonable agreement is obtained, even in the vicinity of the highest 
waves. 

This paper does not present the most efficient method for calculating particular 
solutions, nor does it attempt an exhaustive presentation of results that could be 
consulted for any conditions. However, a person involved in studying particular 
examples will find some guidance. 

2. Theory and method of solution 
A monochromatic plane wave train approaching a beach over gentle variations of 

dept,h with depth contours parallel to straight wave crests is considered. If reflexion 
and dissipation are neglected then four quantities are constant throughout the 
shoaling region until a point is reached where waves break. They are wave frequency 
w * ,  wave-action flux B*, a Bernoulli constant y* ,  and the mass flux q*. (An asterisk 
is used to  denote dimensional quantities.) If these four quantities are determined by 
a wave train and water conditions a t  one point, then in principle the wave and water 
conditions a t  another point where the depth differs can be found if the waves remain 
as a periodic wave train. 

The depth must be specified relative to a horizontal reference level, which cannot 
be the mean water level since that varies from place to  place. The actual reference 
level is arbitrary; for convenience we choose the mean water level in deep water and 
refer to the corresponding depth (distance to  the bottom), h*, as the undisturbed 
depth of water. 

The mean current is directly related to  the reference frame chosen for defining the 
wave-train solution. We follow Cokelet (1977) and many others back to Stokes (1847) 
in choosing the reference frame in which the average flow a t  any point below a wave 
trough is zero. This means there is a mass-transport associated with the waves. I n  
this work the total mass flow is taken equal to  zero as would be the case for an im- 
pervious beach. 
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The mean water depth, D*, and the current, U*, are two of the four parameters 
required to determine the water and wave conditions a t  one point. Two other, purely- 
wave, parameters are required. I n  the examples which we calculate we use frequency 
and deep-water steepness. This latter quantity can be specified in various ways, for 
example, as H*/L* where H* is wave height and L* is wavelength, as a*k* where 
a* = i H *  is wave amplitude and k* = 2n/L* is wavenumber, or implicitly in several 
ways. For several cases we use the expansion parameter e2 = 1 - p,!restq&ough/~4, 
used by Cokelet (1977) since this enables all the deep-water wave properties to be 
readily determined from his tables. The parameter e2 = 0 for infinitesimal waves and 
increases monotonically to I? = 1 for the steepest wave. 

With the results of Crapper (1979) and the further discussion of Stiassnie & Peregrine 
(1979) it  is a simple matter to write the four constants in terms of a current U*,  the 
mean depth of water D*, and properties of the wave train. This gives 

w* = k*(c*+ U*) ,  (1)  

and 

- 
B* = [ U*I* + 3T" - 2 V* + i ~ D " ( ~ $ ) ' l / k * ,  

y* = g(D* - h*) + +U*2 + & ( u $ ) ~  

p* = pU*D" + I* .  

- 

The wave properties are the phase velocity c*, the wave momentum density I*, the 
kinetic and potential energy densities T* and V*, and the mean of the square of the 
wave-induced water velocity a t  the bed (u$)2. 

The equations ( 1 )  to ( 4 )  are made dimensionless in the following manner. All the 
wave properties which vary with position are made dimensionless with appropriate 
combinations of p ,  g, k*. This means that they correspond exactly with Cokelet's 
(1977) dimensionless variables. The constants on the left-haEd sides of equations (1) 
to (4) and k* are made dimensionless with p ,  g and the wavenumber of the wave train 
in deep water kz. For some applications it may be more convenient to use the fre- 
quency W E  rather than kz. If the deep-water steepness is known then this is a matter 
of simple algebra, and if numerical results are sought the approximation to the dis- 
persion relation suggested by Peregrine & Thomas (1  979) may be useful. An advantage 
of using kz is that the corresponding deep-water steepness of waves is immediately 
apparent from their dimensionless amplitude a, = a*, k$ . In  presenting results k z  is 
used for scaling all variables. 

- 

The resulting dimensionless form of equations (1) to (4) is 

w = w*/(gkz)*  = k*(c+ U ) ,  

B = B*(l~*, )~/pg  = (UI+3T-2V+iDu7)/k3,  

y = y*k*,/g = ( D - h + i U 2 + @ ) / k ,  

q = q*(kf)#/pg* = (DU+I) /k$ .  

( 5 )  

(6) 

(7)  

(8) 

Every wave quantity on the right-hand side of these equations except for k is a 
function of two parameters. Cokelet (1977) uses €2 and d as these parameters. The 
first of these has already been mentioned; d is a (depth) x (wavenumber) parameter 
which is the dimensionless depth of a uniform stream of velocity c which has the 
same mass flux as occurs beneath the wave train in a reference frame in which the 
wave surface is steady. For infinitesimal waves d = D. 
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I n  the example under consideration the mass flow is zero, so that equation (8) 

U = - I / D ,  (9) 

(10) 

(11) 

(12) 

gives 

and equation (5) then gives 

These may be used to eliminate i7 and k from equations ( 6 )  and (7),  yielding 

k = w2D2/(cD - I)'. 

(C -I/D)B ( -  P / D +  3 T -  2Y+ + D z )  = B d ,  

(c- I / D ) 2  (D - h + $2 + 412/D2) = yw2 and 

respectively. The constants on the right-hand sides of equations ( 1  1) and (12)  can 
be found a t  any reference point by determining the left-hand side a t  that point. 
For example in deep water we may write 

Bus = C> ( 3Tm - 2Vm) (13) 

and yw2 = &(D, - h,) (14) 

where in this latter term D,  - h, is zero for our chosen reference level. 
We follow Cokelet (1977) in the method of solving for the wave properties and hence 

can consider the two equations ( 1  1 )  and (12) as two equations for e2 and d once the 
constants and h are given. However, since the dependence of wave properties on d is 
very complicated, we solve the equations by first choosing d ;  equation (1 1) is then an 
equation to be solved for €2. Then h, k and U are found from equations (12), (10) 
and (9) respectively. All wave properties can be found from e2, d and k. 

In  Cokelet's (1977) method for finding wave properties a power series in e2 is found 
for each variable. The coefficients of a number of terms are evaluated, N = 50 is 
often appropriate, and the corresponding ( + N ,  4 N )  Pad6 approximant is used to 
evaluate the property. In  the spirit of this approach, equation (11)  is expressed as 
a finite power series in $for which zeros are to be determined. The equation was solved 
using a method based on Pad6 approximants given in Baker (1975, p. 80). The method 
gives an indication of how accurate the resulting solutions are. Once .c2 is known all 
other quantities are also expressed as power series in c2 and evaluated by using Pad6 
approximants. Double precision arithmetic was used on an ICL 2980 computer (16 
decimal places). 

It was found that as values of h (or d )  were decreased the above approach fails to 
give accurate results. That is, only one, or no, significant digit could be found by the 
root-solving method. This occurred for values of d ranging from 0.63 for the higher 
waves to lower values. An indication of the limits of solution can be found in figure 
3(b). More terms in the series, quadruple precision and different root-solving methods 
failed to improve matters. Examination of the tables in Cokelet (1977) also shows a 
similar, but smaller, loss of accuracy once e c d  is greater than 0.5 (i.e. d < 0-69). As 
a result a different approach was used for the longer waves, and is described in the 
next section. 

3. A train of solitary waves 
Long periodic waves of moderate amplitude are described well by the near-linear 

cnoidal wave solution. As the parameter in the cn function approaches one the wave 
profiles look like a sequence of solitary waves with a flat uniform stretch of water 
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FIGURE 1. Definition diagram for a train of solitary waves. 

between each crest. This aspect of water waves has long been noted (e.g. Murik 1949; 
Iwagaki 1968) and also applied to waves on a beach. Accurate integral properties of 
solitary waves are given by Longuet-Higgins & Fenton (1974). These are used to 
obtain accurate integral properties of a train of solitary waves (a TSW approximation). 
As is demonstrated in figures 2 and 3 this approximation agrees well with Cokelet’s 
method of solution in a region where both methods can be expected to be accurate. 

Longuet-Higgins & Fenton (1974) use an expansion parameter w ,  which we denote 
by us, and indicate that a [7, 71 Pad6 approximant is sufficient for 4 figure accuracy 
of integral properties for all waves up to the highest. Appropriate coefficients are 
given in that paper. The approximation is to take a solitary wave to represent <each 
crest and for the interval between the outskirts of each crest to be a uniform flow, 
that is, water of constant depth and velocity. This can be done as a formal matching 
process to a higher order, using linear theory with cosh variation of the surface between 
each crest but that is not needed in the present study. 

The waves are considered in two reference frames. The first corresponds to that of 
Cokelet’s Stokes’ wave solution, with zero mean flow below the level of the troughs. 
This means there must be a non-zero velocity, u:, beneath the flat region of the wave, 
shown in figure 1. The depth of water in the flat region is h,*. The wavelength and 
height of the wave train are 2n/k* and 2a* and it has velocity c*, in terms of 
Cokelet’s notation. For the solitary wave we use Longuet-Higgins & Fenton’s notation 
with the addition of a subscript s. Thus C, is the total circulation of the solitary 
wave, E ,  its height, M, its ‘excess’ mass and F, its velocity. The quantity k*h: appears 
frequently and is denoted by p. 

Consideration of the mean circulation per unit length, gives 

but in this first reference frame, C = 0 so that 

Thus 

The mean depth 

c = c*(k*/g)J = pJ(F,-pCS/2n).  

D = k*D* = p(1 +pMS/2n).  

Other quantities are most readily found by consideration of the waves in a second 
frame of reference in which the wave profile is a t  rest. Then the mass flow 

Q = cd = Q*k*a/pgJ = @F,, (18) 
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FIGURE 2. Comparison of phase velocity squared, ca, against amplitude, a, for waves oh finite 
depth of water between Cokelet's (1977) solution (--- 0 0 0 )  and the train of solitary waves 
approximation (-). 

giving d ,  the total head 

and the momentum flux 
R = k"R* = p ( 1  + &F,2), 

S = S*k*'/pg = p'(4 + F;), 

are all readily determined in the uniform flow between the crests. 
The above relations, (16) to  (ZO), together with the relations given by Cokelet 

(1977) are sufficient to express the integral quantities in equations (5) to (8), (11) 
and (12) in terms of solitary wave properties and p. The solitary-wave properties are 
all functions of the expansion parameter w, so that instead of equation (1 1) relating 
e2 and d ,  an equation involving p and w, arises. Considered as a function of p the 
equation is an eighth-order polynomial. Hence, given w, the solitary-wave properties 
are evaluated and p is then found by standard root solving routines. All the other 
wave and water properties are then readily found. 

Naturally, before using this TSW approximation i t  is desirable to check its accuracy. 
The simplest way to do this is to compare results calculated by the TSW approxi- 
mation with the results tabulated by Cokelet (1977). A comparison of the two solution 
methods is given for c2 as a function of a in figure 2. 

The length scale of a solitary wave increases as its amplitude decreases, so the 
TSW approximation must fail as a --f 0. This failure is evident in the figure. Conversely 
as the amplitude increases the length-scale of a solitary wave decreases and the TSW 
approximation can be expected to improve. (A pleasant change from linear and near- 
linear solutions.) The difference between the solutions is significant for the whole 
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range of amplitudes at e-d = 0.5 which corresponds to p in the range 0.6 to 0.67, but 
the difference becomes very slight for lesser depths. Indeed for the higher waves, and 
e-O1 2 0.7, which is for p < 0.35 we suspect that the TSW approximation is more 
accurate than Cokelet’s solution since he only gives 3 or less significant figures for 
many properties. TSW is essentially a long wave approximation which implies 
,u = k*h<$ < 1, so that it is gratifying to see the good agreement obtained for only 
moderately small values of p. 

4. Theoretical results 
To illustrate the theory twelve different wave steepnesses in deep water were chosen 

and the corresponding wave trains in shallower water have been calculated up to the 
highest wave consistent with the imposed conditions. For presenting the results the 
single length scale (k:)-l has been used to form dimensionless quantities so that the 
corresponding quantities of 5 2 are multiplied by the appropriate power of k. 

The chosen deep-water amplitudes are 

0.371, 0.307, 0.232, 0.187, 0.131, 

am = a*, kz = 0.0918, 0.0579, 0.0409, 0.0157, i 0.314 x 0.157 x 0.336 x 

The first eight values correspond to & = 0.7, 0.5, 0.3, 0-2, 0.1, 0.05, 0.02 and 0.01. 
The remaining, smallest four values correspond to H,/L, = 5 x 
5 x and 1-07 x 10-4 and were chosen to ease comparison with the cnoidal-wave 
results given in tabular form by Svendsen & Brink-Kjaer (1973) and Svendsen & 
Hansen (1977). (Noto, in the latter paper deep-water conditions should be incorporated 
by energy-flux conservation which means using both tables 1 and 2 of the paper.) 
For each of these values of a, a considerable amount of results could be presented. 
To keep within reasonable bounds, all results for the wave amplitude are given, some 
more results are given only for 6: = 0.7 and 0-01, that is aaC = 0-371 and 0-0409. 
Then, in the next section, wave breaking is discussed and results relevant to wave 
breaking are presented. 

In  figure 3 the results are given for amplitude as a function of the local undisturbed 
depth of water, h = h*k:. Three ‘nested’ diagrams are used in order that results for 
the steepest waves can be shown clearly. The results of four theoretical solutions are 
given in order that comparisons can be made. They are soIutions using (i) Cokelet’s 
method, (ii) the TSW approximation, (iii) cnoidal waves and (iv) linear theory. The 
individual points calculated are plotted and in the case where the Pad6-approximant 
root-finding method indicated low accuracy (i.e. less than three significant figures) 
the points are marked. 

Every solution curve which involves accurate steep-wave solutions (i.e. Cokelet’s 
method and TSW) has a vertical tangent and is double valued for the highest waves. 
This is not surprising because of the maximum of all integral properties of waves just 
below the steepest waves. This feature also appears in the results of Peregrine & 
Thomas (1979) for steep waves on currents. For brevity we refer to this portion of 
the curve as the ‘ breaking region ’. Whether or not such a description is appropriate, 
and the problems of interpreting this part of the solution are discussed in the next 
section. 

1 x 
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For waves which are already steep in deep water, say €5 2 0.3, it can be seen in 
figure 3(a) that there is little variation in amplitude until the final rapid rise to the 
breaking region. Unlike linear theory which predicts an initial decrease, this finite- 
amplitude solution shows a small initial increase in amplitude. For the steepest waves 
there is no diminution before the breaking region. Slightly lower waves, such as 
€5 = 0.5 show a rise and then a fall in amplitude. This relativeIy complicated behaviour 
is difficult to explain. Some of the problems of interpretation can be seen by examining 
Cokelet’s (1977) figures 16, 14 and 15 for the flux of mass, momentum and energy 
respectively. Note the way in which his solution curves intersect for different depths, 
(e-d = 0, 0.1 and 0.2). Part of the difficulty of interpretation is that the concept of 
group velocity is not readily extended to finite-amplitude waves. There is a sub- 
stantial discussion of group velocities for finite-amplitude deep-water waves in 
Peregrine & Thomas (1979), Q 6. 

For waves of lesser deep-water steepness, say €5 < 0.1, linear theory does give a 
good indication of the initial changes, so that in figures 3 ( b )  and 3 (c) a large portion 
of the depth variation has been omitted. 

In  the solutions for waves of intermediate deep-water steepness, 0.1 2 €5 > 0.01, 
it is very encouraging to see how the TSW approximation approaches Cokelet’s 
solution and the calculated points then intertwine along the same line. For steep 
waves TSW is quite satisfactory for values of p up to 0.5. We were unable to use 
Cokelet’s method for long waves, as has been noted in 5 2, and the points in figure 3 ( b )  
indicate where solutions were no longer obtainable. However, for these longer waves 
TSW is satisfactory if the amplitude is not too small. Cnoidal wave theory is not 
adequate until waves of lower deep-water steepness are considered. These are shown 
in figure 3 (c). 

For the waves shown in figure 3 (c), no solutions with Cokelet’s method are worth 
computing. Linear and cnoidal wave theory are quite satisfactory until the waves are 
of appreciable amplitude compared with the depth; in which case the TSW approxi- 
mation can be used with confidence. Note, the discussion in 9 6 indicates that these 
particular solutions can only rarely be directly useful. 

Figure 4 shows the variation of wavenumber, k ,  set-down, 6 = h - D,  and ‘wave- 
induced return current’, - U ,  for waves of deep-water steepness a = 0.371, s: = 0.7, 
H / L  = 0.118. The same quantities are shown in figure 5 for a = 0-0409, €5 = 0.01, 
H I L  = 0-013. The variation of wavenumber shows no surprising features; a t  least, 
if one is already familiar with the two solutions for the steepest waves. I n  figure 5, 
which is where a greater variation is shown, as the amplitude increases so it can be 
seen that the wavelength is longer than linear theory predicts. Since the linear result 
comes directly from the dispersion relation one might expect that the nonlinear 
dispersion relation indicates the direction of departure from the linear result. For a 
constant frequency waves of greater steepness have a longer wavelength in a given 
depth of water and this is borne out by the results in figure 5. I n  figure 4 the linear 
and nonlinear results €or k are so close because the wave-induced current causes a 
significant doppler shift, on the other hand the constant frequencies in the two solutions 
differ by about 7%. The wave set down is generally insignificant and does not exceed 
1% of the local depth. 
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FIQURE 3 (a, b ) .  For legend see facing page. 
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0 0.0 I 0.02 0.03 0.04 
h 

FIGURE 3. Variation of wave amplitude with still water depth. These are both made dimen- 
sionless with k*,. Representative points for four theoretical solutions are shown. The line joins 
the most accurate solutions. (a), ( b ) ,  (c) The points with a line through are less well determined 
than. the others. , Cokelet’s method ; A, TSW ; 0, linear theory ; A, cnoidal theory. 

1-96 2.0 2.04 
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I .04 
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-1oou 

1 2 3 OD 0 
h 

FIQURE 4. Theoretical variation of wavenumber k, set down 8, and current U, with depth for 
deep waterwaveswithe2, = 0.7, H J L ,  = 0.118. 0-0, Cokelet’smethod; 0 0, linear theory. 
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0.2 0.3 0.4 

h 

FIGURE 5. Theoretical variation of wavenumber k, set down 6, a n d  current U ,  with depth for 
deep water wave with E: = 0.01, Hm/Lm = 0.013. 0 ,  Cokelet’s method; A, TSW; 0, linear 
theory. 

5. Wave breaking 
The results presented in this paper are based on the assumption that a t  any point 

the waves are locally similar to a train of periodic travelling waves. However, most 
waves incident on a beach break, and breaking is always asymmetrical about the 
wave crest, whereas the travelling wave solutions are all symmetrical. It is a reasonable 
conjecture that a small amount of asymmetry has little effect on the integral properties 
of waves. For example, both Yuen & Lake (1975, equation (5)) and Smith (1976, 
equation (4c)) have an asymmetrical term in their velocity potentials, owing to 
gradients of amplitude and current respectively, yet the resulting averaged equations, 
which are for ‘faster’ modulations than the equations used here, can be derived from 
properties of the usual symmetrical wave train. This suggests that a slowly-varying 
wave-train theory may have a greater applicability than appears a t  first sight. 
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The process of wave breaking is poorly understood. However, considerable progress 
has been made for waves on deep water. Longuet-Higgins (1978a, b )  and Longuet- 
Higgins & Cokelet (1978) show that steep wave-trains in deep water have instabilities 
that lead to wave breaking. One instability is of a type that includes the modulational 
Benjamin-Feir instability. This is probably not very relevant in the context of waves 
on beaches since the growth of the instability is slow and it diminishes as the depth 
decreases. The other instabilities affect very steep waves and when they occur the 
waves break on a time scale of less than a wave period. These seem to be most relevant 
to wave breaking in this context. 

One of these more rapid instabilities is associated with the maximum of the phase 
velocity as a function of steepness and the other appears to be associated with the 
maximum of the first Fourier component. There are corresponding maxima for waves 
on a finite depth of water, and it is a reasonable conjecture that these also are related 
to instabilities which rapidly lead to breaking. 

The solutions presented in the previous section show singularities a t  steepnesses 
which are close to, though not precisely the same as, the steepness of maximum phase 
velocity. The singularities appear in the diagrams as vertical tangents to the solution 
curve. Clearly such an ‘infinite’ rate of change with depth contradicts the slowly- 
varying wave assumption. More significant is the absence of any solution for shallower 
depths and the large steepness a t  which the singularity appears. In  the absence of 
any precise criterion for breaking it is reasonable to associate these singularities with 
a change in character of the waves which relatively rapidly leads to wave breaking. 
That is, we suggest that waves will break after travelling a distance of the order one 
wavelength past the point where the solution is singular. 

The amplitude of waves a t  breaking may also be estimated from the amplitude of 
the singularity in the solution. However, since the details of wave breaking must 
depend on other influences, such as bottom slope; and the height of waves a t  breaking 
varies significantly with the way in which the wave breaks, e.g. a jet of water projected 
from the crest can rise a little a t  first, such a parameter is difficult to predict with our 
present incomplete knowledge of the breaking process. 

By taking the ‘breaking point’ to be coincident with the singularity of a solution, 
we have plotted several wave parameters a t  breaking as functions of the deep-water 
wave steepness a,. These appear in figures 6 and 7 where all the curves have been 
extrapolated to a deep-water steepness of a = 0-41. This corresponds to the lower 
boundary, in steepness, of the rapid instabilities found by Longuet-Higgins (19783). 

The variation of most properties shows a greater change from deep-water values 
as the initial deep-water steepness decreases. This is an effect of the greater-change 
of depth required before waves break. The left portion of each curve depends on the 
properties of steep solitary waves through the TSW approximation. For example, the 
amplitude/depth ratio asymptotes to just under half the height of the maximum 
solitary wave. 

The variation of set-down, a,, and return current, -Ub, each show a maximum. 
In  deep water there is no set-down; on the other hand, the wave-action flux for gentle 
waves is necessarily small thus again causing a small set-down. Hence, between the 
two extremes of waves which are close to breaking in deep water and very gentle 
deep-water waves a maximum is to be expected. 
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FIGURE 6.  Theoretical variation a t  the ‘breaking point’ of wavenumber kb, amplitude a,, 
depth h,, set down S,, and current U,, with deep-water steepness a; k; = a,. 

FIGURE 7.  Theoretical variation a t  the ‘breaking point’ of amplitude amplification ab/aw, ampli- 
tude to depth ratio a,/h,, and wave steepness a,k,, with deep-water steepness a*,k*, = a,. 
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6. Limitations of the theory 
The basic solutions used here give accurate values for the properties of trains of 

periodic surface waves on water. All previous theoretical descriptions of this problem 
have had to use approximate solutions for the periodic waves or other approximations 
to the mathematical problem. It is thus worth examining carefully the remaining 
sources of error. 

There are the inaccuracies due to the mathematical idealization of the physical 
situation. That is the motion is assumed to be inviscid and irrotational. In  all real 
examples of water waves there is dissipation and non-uniform currents are generated. 
Dissipation could be readily incorporated into this mathematical approach if only 
appropriate expressions for bottom stress and energy dissipation were available for 
all water waves. Some expressions which might be used include the laminar dissipation 
of cnoidal waves (Miles 1976) and empirical results for waves with turbulent boundary 
layers by Kamphuis (1975) and by Jonsson & Carlsen (1976). 

Even if wave trains enter a region without currents, they soon generate currents, 
even in a laboratory wave flume. These are not readily predicted, e.g. see Dore (1977) 
for some recent work, and may not even be steady for steady wave conditions (Russell 
& Osorio 1958). Even if these rotational currents are known it is not a trivial matter 
to include their effects on the waves, e.g. see the review by Peregrine (1976). However, 
their order of magnitude is usually small, of the order 1% of the wave’s phase velocity 
(e.g. compare U, and kcl from figure 6). 

The assumptions required for the mathematical solution imply the following wave 
properties. (i) Wave reflexion is insignificant, (ii) the waves are periodic, and (iii) 
the rate of change of depth is sufficiently small that waves can ‘adjust’ to changes 
in depth in a manner which is not sensitive either to the rate of change of slope or 
the direction of slope of the bed (note: we are assuming that waves retain their sym- 
metry of shape about their crests). These first two properties are unimportant in the 
linear theory for which wave solutions are superposed without interaction. For non- 
linear waves this is not so. However for gentle beaches where there is little reflexion 
one should not expect reflexion to modify the local amplitudes by any more than the 
amplitude of the reflected wave. 

Precise periodicity of incident waves is difficult to achieve even in a laboratory 
experiment. In nature, waves from deep water do not have constant amplitude even 
when the spectrum is very narrow, as with distant swell. Locally generated waves 
have a broader spectrum and there may well be important nonlinear effects in this 
case; there is certainly a wide spread of positions at  which individual waves crests 
break. For the present we cannot expect theory to be very helpful in the latter case, 
but some progress may be made with near-linear theory for the former example by 
considering modulation equations (e.g. see Lake & Yuen 1978). 

The third property, that the wave train ‘adjusts’ to changes in depth has only been 
considered briefly in the past. For example, Svendsen & Hansen (1976) consider that 
the appropriate parameter to be kept small is the relative change of depth over one 
wavelength, i.e. 

S = a L / h  < 1, (21) 

where 01 is the bed slope Idhldxl. The matter is discussed again in Svendsen & Hansen 
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(1978) for the Boussinesq equations. A non-zero bed slope does lead to an asymmetry 
of waves about their crests, and in this second paper, it is calculated for cnoidal waves 
and a satisfactory comparison with experiment is achieved. Since this asymmetry 
is travelling with the wave, it is possible to calculate its effect on the integral properties 
of the wave train and to refine the slowly-varying wave theory for that solution. 
We have not done this; the result would depend on the local bed slope. However, an 
order of magnitude estimate is possible from Svendsen & Hansen’s (1978) solution. 
This indicates a proportionate correction to  the energy flux of (L/h)3 aG( Ur)  where 
G( Ur)  is a function of the Ursell number 

Ur = HL2/h3. (22) 

a .g 10-4(h/~)3. (23) 

The solution curves for G show that it is O(1O-4) for a wide range of Ur so that we 
need 

This last result suggests that it is the longer waves which are least likely to adjust 
to changes in depth. Some idea of why this is so can be obtained by considering the 
two extremes. I n  deep water, the group velocity is only one half the phase velocity 
and this is a clear indication that any one wavelength of a wave train is interacting 
strongly with its environment (i.e. the other waves of the train). This strong interaction 
can lead to relatively rapid changes in the properties of a single wave crest. 

On the other hand, the longest waves are described well by a train of solitary waves. 
Each wave crest is separated by a flat trough from its neighbours and is almost 
independent of them. Thus in many circumstances the crests can be expected to 
respond to changes of depth individually. For example, Miles (1979) gives a near- 
linear theoretical discussion of a solitary wave on a beach. It is shown how mass in 
the wave is not conserved, some of the wave trails behind the crest and for a consistent 
theory the reflected wave must be included. Numerical solutions are presented in 
Peregrine (1967). 

In  the next section a quantitative assessment of the interaction between solitary 
waves is used to find a criterion for judging when a beach is of sufficiently mild slope. 

7. Interactions between wave crests in shallow water 
A measure of the interaction between solitnry-wave crests can be obtained by 

considering just two waves. There is no solution corresponding to two equal solitary 
waves propagating unchanged. They do interact. Solutions which do have two equal 
solitary waves a t  one instant are solutions that describe the interaction between two 
solitary waves which commence with slightly differing amplitudes. The larger wave 
catches up with the smaller, they interact and exchange identities. At the mid-point 
of the interaction the wave crests have equal amplitudes. 

The solution of the Korteweg-de Vries equation for two solitary waves is given by 
Whitham (1974, equation (17.21)). A space-time sketch of the wave crest trajectories 
is given in figure 8. It is difficult to use the explicit solution to find the minimum 
distance between the crests in terms of the original difference in amplitude. However, 
it  is straightforward to obtain an approximate value by using their change of phase. 
When this is transformed to the physical (x*, t*)  plane from Whitham’s dimensionless 
variables, the following is obtained. 
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FIGUBE 8. The trajectories of two almost equal solitary waves in space-time. 

Two solitary waves of heights H*( 1 + v )  and H*( 1 - v) on depth h* of water have a 
minimum separation A* given by 

where v < 1.  
h*/h* 1: 2(h*/3H*)& log (2/v), (24) 

A good measure of the rate of interaction between the crests is the rate of change 
of crest height at the mid-point of the interaction, say dy*/dt*. Again this is difficult 
to determine from the explicit solution, but Lax (1968) derives an ordinary differential 
equation for a corresponding dimensionless quantity, m,, in his equation (2.28). After 
some algebra this yields: 

(25) dy” - - 
dt* 2 

Elimination of v between (25) and (24) yields 

as a measure of the interaction of wave crests of height H* and distance A* apart. 
Now, we need to compare this with the interaction of a wave crest with the bottom 

slope. If we follow Miles (1979), the major variation of amplitude of a solitary wave 
is given by his equation (4.2), which can be written as 

y*h* = constant. 
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dh* ax* H* drl*=- -- - 21 h* a(gh*)*. 
at* Z( dx*)  at* (27) 

In  a periodic wave train in water of constant depth the interactions between adjacent 
(and possibly more distant) crests balance in such a way that the wave profile is in 
steady translation. I n  water of slowly-varying depth, when there is sufficient distance 
between crests that  the TSW approximation is accurate, it is quite possible for each 
crest to behave like an individual solitary wave. (In extreme cases, individual incident 
waves disintegrate into a succession of secondary crests.) Thus, the waves can be 
correctly represented as a period wave train only if the interaction between crests, 
(26), is more rapid than the interaction with the slope (27). After a little rearrangement 
we obtain: 

a < 2( 3)*(H*/h*)* exp [ - 4(3 Ur)+] ,  (28) 

where Ur is the Ursell number defined earlier in equation (22). 
It is well known the Ursell number is large for long waves such as we are considering. 

Thus the exponential in (28) is small. The factor multiplying the exponential is a t  
most O( 1)  and small when H*/h* is small. The exponential has the values 0.01, 0.001, 
0.0001 a t  values of Ur of 28, 64, and 113 respectively. In  this context it is more useful 
to note that the TSW approximation becomes accurate in figure 3 when Ur is in the 
range 80 to 100. The corresponding values of the exponential in expression (28) are 
4.3 x to 1.7 x This implies the TSW solutions are only appropriate for 
beach slopes of the order This is rather a severe restriction. 

8. Comparison with experiment 
A substantial amount of experimental data has been measured for waves on beaches. 

We make our comparison with the recent data of Hansen & Svendsen (1979). A wide 
range of incident waves were measured by them for the single beach slope of 1 in 35. 
Advantages of these experiments are that considerable care is taken to generate 
periodic waves and minimize free harmonics (see Hansen & Svendsen 1974); and 
measurements of height, wave velocity and wave profiles are given. 

Three particular experiments have been selected for comparison almost spanning 
the range of periods and steepnesses used. In  figures 9 (a) ,  10 and 11 the experimental 
measurements of the wave height are shown together with three, theoretical curves. 
The agreement between them is about as good as can be expected without the inclusion 
of some dissipation in the theory. We have refrained from including dissipation since 
there is no reliable method of estimating it for the highest waves which are of the 
greatest interest in this work. Comparisons with Svendsen & Hansen’s (1977) work 
which shows experiments together with cnoidal wave curves which include dissipation 
indicate that a t  least for the lower waves this would lead to good agreement. In  each 
diagram there is an indication of the length of the highest calculated waves. In  every 
case the experimental waves have broken within half a wavelength of the cessation 
of solutions. This is in tune with the discussion of 9 5. The wave height of the ‘breaking 
point’ solution is also close to the maximum recorded wave height. The breaking 
amplitude is not indicated in the experimental records but can reasonably be expected 
to be close to the maximum. 
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FIGURE 10. Comparison of theory and experiment; wave height against water depth, the theo- 
retical wavelength of the limiting wave is indicated. Test A06103. Mean period 1.67 s;  theo- 
retical deep water values for the middle curve are H*, = 37.5 mm, a*, k*, = 0-027, E: = 0-0044. 
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Figure 9 ( b )  shows a comparison between theory and experiment for the waves’ 
phase velocity. Only one theoretical curve is shown since the other two of figure 9 (a )  
are very close. 

The wave profiles near breaking were measured by Hansen & Svenclsen and are 
shown for these three wave conditions in figure 12. They are measured as profiles in 
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FIGURE 11. Comparison of theory and experiment: wave height against water depth, the 
theoretical wavelength of the limiting wave is indicated. Test 031041. Mean period 3 - 3 3 s ;  
theoretical deep water values for the middle curve H*, = 30.5 mm, af k*, = 0.0053. 

~ , , ? r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~  I r,,, ~ ~ ~ " " " " l " ' ~ " ~ ~ ~ " " " ~ " " ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ " ~ ~ ~ '  

FIGURE 12. Profiles of waves in Hansen & Svendsen's (1979) experiments used for comparison 
in figures 9-1 1 .  They are all for the highest, or close to highest, waves. The profiles were measured 
as a function of time from a slowly-moving carriage. This has been converted to an equivalent 
horizontal distance, using the wave velocity. The vertical exaggeration is 7 : 4  for figures (a), 
( b )  and (c), and is 1 5 : l  for figure (d ) .  (a )  Test 101101: wave 430, D* = 147.6 mm; wave 431, 
D* = 146.4 mm. ( b )  Test A06113 (identical conditions to test AO6103) : wave 74, D* = 71.0 mm; 
wave 75, D* = 69.8mm. (c) and (d )  Test 031041; wave 317, D* = 94.7mm; wave 318, 
D* = 92.7 mm. Individual data points are shown in the places where a smooth profile cannot 
easily be drawn. 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 23 Aug 2009 IP address: 134.246.166.17

Surface waves on water of slowly-varying depth 803 

time but are drawn approximately to  the same horizontal equivalent length-scale. 
The longest waves have too few data points to define the crests well and individual 
data points are shown in the curve. The shortest wave is reasonably symmetrical, 
asymmetry of the intermediate wave is noticeable but not strong. The longest wave 
is very strongly asymmetrical. It is also plotted with a greater vertical exaggeration 
since this shows its features more clearly. Each crest is developing strong features of 
its own, there is a ‘shelf’ behind each wave, due to the lack of mass conservation in 
the slowly-varying solitary-wave crest. I n  the final wave (number 318) there is a 
clear secondary crest. It is surprising that the comparison with the theory is so good, 
its Ursell number is about 3000. Even for the shortest wave in figure 12 Ur is quite 
large, approximately 80. This does raise a question as to whether the departure between 
theory and experiment is due entirely to dissipation since individual solitary wave 
crests would tend to gain amplitude slower than the theoretical solutions shown. 
The behaviour of individual crests may become the more important factor as waves 
approach breaking. 

9. Conclusion 
The effect of gradual variations of water depth on a periodic wave train have been 

investigated by using accurate solutions for periodic travelling waves on water of 
constant depth. It proved necessary to use an approximation of a train of solitary 
waves to accurately describe long waves. 

The solutions show that there is a limiting depth for every wave train as it propa- 
gates into shoaling water. The relevance of the limiting solution to wave breaking is 
discussed and comparison with experiment indicates that there is as good agreement 
as can be expected. The comparison with experiment also shows that dissipation is 
significant, but it is possible that other effects are of comparable significance. 

These other effects are described in a discussion of the limitations of the theory. 
In  particular a criterion for its application to long waves is deduced, and from that 
it is concluded that when the TSW solution is accurate, the method is only appropriate 
for beach slopes of order 

Anyone wishing to use this method as a working tool is advised to consider revising 
the method used to  solve for the high-order Stokes’-wave coefficients. Longuet- 
Higgins ( 1 9 7 8 ~ )  gives quadratic relations between them which can replace the cubic 
relations used by Cokelet. 

The method can be extended to a wider class of problems. Work is in progress on 
the closely related problem of waves incident a t  an angle to a beach with straight, 
parallel contours, and further work is envisaged to investigate waves in the neigh- 
bourhood of caustics. A more challenging problem is to deal with problems of more 
general topography, that  is problems equivalent to ray -tracing for linear waves. 

We thank E. D. Cokelet for giving us a copy of his computer subroutine for cal- 
culating the Stokes’-wave coefficients, and J. Buhr Hansen and I. A. Svendsen for 
sending us experimental data in advance of publication. 
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