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The wave-action conservation equation for water waves is always derived from a 
Lagrangian for irrotational flow. This is quite satisfactory if the whole flow-field (i.e. 
waves and background current) is irrotational, but is inadequate for a background 
current with a large-scale (vertical) vorticity, even if the flow has negligible vorticity 
on the local scale of a few wavelengths. A wave-action conservation equation is 
derived for this case and equations governing the flow and the waves are given in a 
simple form closely parallel to the irrotational flow equations. 

1. Introduction 
The behaviour of very slowly-varying water-wave trains is usually studied by using 

one of two available sets of averaged equations. Either Phillips’ (1966, 5 3.6) directly 
averaged equations of motion, or Whitham’s (1974, Q 16.7) equations derived from an 
averaged Lagrangian. Whitham’s set, thanks to its elegance, seems to be more 
attractive than Phillips’ more general but cumbersome set. One should bear in mind 
that the Lagrangian used by Whitham is only for irrotational flow. Both sets are 
conveniently presented in a recent paper by Crapper (1979) who extends them to 
include surface tension and shows that Whitham’s equations can be manipulated 
into the same equations as Phillips’ set. 

In this paper the two sets of equations are compared in Q 2. This is followed in 5 3 
by the equations closely resembling, but not identical to, Whitham’s that can be 
obtained from Phillips’ equations. The difference is that Whitham’s consistency 
equations for the current, which include the irrotationality condition, are modified. 
All other equations are unchanged. Finally, in Q 4, versions of the equations are given 
for steady problems with variation in one direction only. 

2. Comparison between Phillips’ and Whitham’s sets of equations 
In considering the general problem of waves propagating over water of slowly- 

varying depth h with pre-existing currents, the following seven unknowns are usually 
chosen as dependent variables: a wave-amplitude measure a, the wave frequency o, 
wavenumber components (k,, k& the average water depth D, and current velocity 
components (U,, U2). These last three cannot be specified ab initio since finite-amplitude 
waves generate and modify currents. 

To determine these unknowns requires seven equations. Three are of a kinematic 
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nature, and common to both approaches. They arise as consistency conditions from 
the definition of k,, k, and w as derivatives of a phase function and are 

and 

where w is defined by the Doppler relation, 

w = v+U,k,, 

and a = a(a, k, D) is the dispersion relation in the absence of current, where k = Ikl. 
There is an important non-uniqueness here, since one is at liberty to define what is 
meant by zero current in water of finite constant depth. We follow all the authors 
cited here in using the definition that the mean horizontal velocity a t  a fixed point 
below the troughs of the waves is equal to the current, U,. Thus U, is the Eulerian- 
mean current, An alternative definition is to take the total mass transport divided 
by pD to  be the current, i.e. zero current = zero mass transport: this gives a different 
result and is not used here. 

The additional four equations in Phillips’ approach, obtained by averaging the 
equations of motion over depth and phase can be written in the following forms. 

Conservation of total mass: 
aD a 

p - + - @DUB + IF) = 0. at axB (3) 

Conservation of total momentum : 

Conservation of total energy: 

a a 3 [&pDUZ+ &pg ( D  -h)2+ T + v + v, I,] +- (U, [tpDU2+pgD(D - h) 
ax, 

+T+ v+v, IB]+~+I ,[g(D-h)+~U2]+SaBv, )  = 0. ( 5 )  

The averaged wave quantities, momentum I,, kinetic and potential energies T, V ,  
and radiation stress or wave-induced momentum flux SaB are defined in appendix A, 
and y = - h(x,) is the bottom topography. The equations may be readily derived from 
Phillips’ (1966) equations (3.6.4, 11 and 18) or Crapper’s (1979) equations (5, 16 and 
27). There are many ways of writing the above equations. The above arrangement of 
terms is such that the left-hand side of each is in conservation form, and within each 
expression the terms are in the order: current, wave, and interaction terms. 

If Whitharn is followed, the velocity U, and a quantity y appear in the averaged 
Lagrangian, - 

y = g ( D - h ) + p + & U ;  (6) 

where u, is the water velocity due to the waves a t  the bottom. In  all presentations of 
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this approach, e.g. Crapper (1979, $ 3 )  or Whitham (1974, 5 16.7) relations equivalent 
to consistency relations for a pseudo-phase are derived. These are 

and 

Equation (8) implies a global restriction to irrotational flow whereas the direct 
approach from the equations of motion only involves assuming that the wave-motion, 
on a local scale, is irrotational. 

Whitham's formulation gives the mass conservation equation ( 3 ) ;  in place of 
momentum conservation there are equations ( 7 )  and in place of the energy equation 
there is wave-action conservation, which may be written 

It is interesting to note that if a factor of 277 is introduced then wave-action, 2nI /k ,  
is the momentum per wave relative to the mean flow V,. 

Crapper (1979) shows that Whitham's equations are consistent with Phillips'. Here 
we show that for a flow with large-scale vorticity the wave-action equation (9) still 
holds and deduce the new equations needed corresponding to equations (7) and (8). 

3. Derivation of equations 
It proves necessary to use all the exact relations between the integral properties of 

water waves that are derived by Longuet-Higgins (1975). For convenient reference 
some are given in appendix B. The algebra is long and tedious; only an outline is given 
here. 

The initial part of the algebra, to transform the energy equation into a form close 
to that of the wave-action equation, may be summarized as 

( (E5)  - y (E3)  - + (37'- 2V + 

where, for example, y ( E 3 )  stands for y times equation ( 3 ) ,  y still being defined by (6). 
Using 2T = cI and the three other wave relations given in appendix B eventually 
leads to 

However, from the momentum equation, more precisely from ( ( E 4 )  - &(E3),}/pD, 
after using equations ( 2 ) ,  (B 2 )  and (B 3 ) ,  we obtain 
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In equations (10) and (1  1)  the term in curly brackets is just the left-hand side of 
equation (9) and is eliminated from these equations, in 

to give 

So equation (10) becomes identical to equation (9). Thus, wave-action, defined as Ilk, 
is conserved for waves on a rotational current. 

Having proved equation (9) to be valid we see that equations (1 1) yield the following 
equations, 

Thus equations (12) and (13) replace the consistency equations (7) and (8) in order to 
make Whitham's approach fully equivalent to Phillips ! 

This last pair of equations can be rewritten to show the influence of the waves on 
the currents more directly: 

The last two terms are zero if there are no waves. The last three terms become negligible 
for infinite depth and the current is uncoupled from the waves, as is assumed by 
Peregrine & Thomas (1979). However, the shallow-water approximation which is 
being used for the cumnt  is inappropriate as h -+ co and further analysis is required. 
This should be similar to the analysis involved in studies of short waves on longer 
waves, for example, see the discussion in Peregrine (1976, $11. F). 

4. Discussion and simple examples 
After the recent work on averaged equations and wave-action by Andrews & 

McIntyre (1978a, b)  it  is not surprising that conservation of wave-action is confirmed 
here for water waves on a rotational flow since they derive such a conservation relation 
for very general types of wave motion. The averaging operator used by Andrews & 
McIntyre to prove most of their results differs from that used in this paper and hence 
a direct use of their results is not possible in this context. Andrews & McIntyre's 
theory is applicable to slowly-varying water waves if averaging is confined to averaging 
with respect to phase and a dependence on the vertical coordinate retained. This may 
be very useful for studying the vertical distribution of wave-induced currents. The 
generalized Lagrangian-mean description introduced by Andrews & McIntyre 
suggests that it may also be valuable to consider water-wave motion relative to a 
reference frame in which there is zero mass flow associated with the waves. Jonsson 
(1978) also draws attention to this reference frame. The details of such a change are 
being investigated, but are not considered appropriate for this paper which aims to 
unify past work in this subject. 

The new equations (1  2) and (13) to replace the ' pseudo-consistency ' equations (7) 
and (8) are simple in appearance. It is possible to rearrange them into other simple 
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combinations, but which particular equations are most suitable for use in any par- 
ticular problem is likely to vary considerably. 

Among the simplest examples of significant problems are those for steady wave 
fields, i.e. a/at = 0, with variation in one direction only, i.e. a/ax2 = 0. Equations (1) 
and (2) and the Doppler relation reduce to 

k, = constant, (14) 

and o = B + U, ka = constant. (15) 

pDU, + I, = constant = Q,, say, 

Mass conservation gives constant mass flux in the x1 direction, 

(16) 

and similarly wave-action flux in the x1 direction is 

(17) 
I - kl - U, + (3T - 2 V + ipDu,2) - = constant. k k2 

Equations ( 12) and ( 13) become 

and 

These equations can be integrated in certain special cases. If the flow is irrotational, 
dU,ldx, = 0, and equations (18) to (20) are satisfied by y = constant. Irrotational 
flow includes many important examples such as waves approaching a beach, at  any 
angle. 

If there is vorticity, dU,/dx, + 0, then Q, = 0. This constraint is independent of 
the wave field and is due to our implicit requirement that the velocity field satisfy 
the shallow-water equations in the absence of waves. Equation (19) is then the only 
non-trivial equation of (18) to (20). It is not directly integrable; however, equation 
(4) for a = 2 is integrable, and gives 

U, I, + S,, = constant, (21) 

and equation (4) for a = 1 gives 

d dh 

which may be more convenient than equation (19). This is particularly so if refraction 
of waves by currents alone is considered. That is, if h(x,) is constant, since then 
the right-hand side of (22) is zero and it may be integrated. 
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Appendix A. Definitions of integral wave properties 

Cokelet (1977) and Crapper (1979). The mean wave momentum density is 
The following definitions are those of Longuet-Higgins (1975) and are also used by 

where (ua,v) is the velocity field of the wave alone in the frame of reference where 
Ea = 0,  y = ~ ( g ,  t )  is equation of the free surface and the overbar denotes an average 
over the phase (ka x, - crt) of the waves. The radiation stress tensor is 

where p is the pressure. The energy flux vector is 

E = J " ua[~p(uguj+w2)+p+pg(y+h-D)]dz .  
- h  

The kinetic and potential energies are: 

and 

T = S' frp(ua u, + v2) dz, 
-h 

Y = i p g [ 7 -  (D-h)2J.  

Appendix B. Relations between the integral wave properties 

= - Cka ( 3 T - 2 V + + p D G ) + g I a 2 ,  
k 

saj = - kB (3T - 2V + 4pDZ) + S,@(T - V +  BpDZ) 
k2 

and 

where c = u / k  is the wave phase velocity. Equations (B 1)  and (B 3 )  are given by 
Longuet-Higgins (1975) and equation (B 2 )  by Crapper (1979). 

a(T - V )  = l a c  - k-yT - 2 v + frp~g) ak - f r p 3  a ~ ,  (B 3 )  

R E F E R E N C E S  

ANDREWS, D. G. & MCINTYRE, M. E. 1978a An exact theory of nonlinear waves on a Lagrangian- 
mean flow. J. Fluid Mech. 89, 609-646. 

ANDkEWS, D. G. & MCINTYRE, M. E. 19785 On wave-action and its relatives. J .  Fluid Mech. 

CRAPPER, G. D. 1979 Energy and momentum integrals for progressive capillary-gravity waves. 

COKELET, E. D. 1977 Steep gravity waves in water of arbitrary uniform depth. Phil.  Trans. 

JONSSON, I. G. 1978 Energy flux and wave action in gravity waves propagating on a current. 

89, 647-664. 

J .  Fluid Mech. 94, 13-24. 

ROY. SOC. A 286, 183-230. 

J .  Hydraul. Res. 16, 223-234. 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 23 Aug 2009 IP address: 134.246.166.17

On water waves 407 

LONG~JET-HIWINS, M .  S. 1975 Integral properties of periodic gravity waves of finite amplitude. 

PEREGRINE, D. H. 1976 Interactions of water waves and currents. Adv. Appl. Mech. 16, 9-117. 
PEREGRINE, D. H. & THOMAS, G. P. 1979 Finite-amplitude deep-water waves on currents. 

PHILLIPS, 0. M. 1966 The I>ynumics of the Upper Ocean. Cambridge University Press. 
WHITHAM, G. B. 1974 Linear and Non-Linear Waves. Wiley-Interscience. 

Proc. Roy. SOC. A 342, 157-174. 

Phil. Trans. Roy. SOC. A 292, 371-390. 

http://journals.cambridge.org

