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The long-time evolution of an unstable wave train, consisting of a carrier wave and 
two ' side-band ' components, is investigated analytically. Mathematical expressions, 
involving Jacobian elliptic functions, for the wave envelope characteristics are derived. 
The solution yields the dependence of the long-time evolution on the initial distur- 
bance. Of special interest is the simple formula for the modulation-demodulation 
recurrence period. The latter is shown to yield results in good agreement with those 
obtained from numerical solutions of the nonlinear Schrodinger equation. 

1. Introduction 
1.1. General 

One of the remarkable properties of weakly nonlinear dispersive systems is the exis- 
tence of steady, continuous, progressive wave trains of finite amplitude, the permanent 
form of which results from the balance between dispersion and nonlinear effects. Con- 
cerning gravity waves on water of uniform depth, the search for mathematical 
solutions of such nature has been the subject of many investigations since the classical 
work of Stokes (1849). The stability of a train of steady, periodic water waves was 
taken for granted until quite recently. Thus the discovery by Benjamin & Feir (1967) 
that weakly nonlinear water wave trains are unstable to modulation perturbations 
aroused considerable interest. The problem was to predict their subsequent behaviour 
in time, i.e. their long-time evolution. 

Wave-flume experiments by Lake et al. (1977) have shown how the unstable modu- 
lations grow in time, reach a maximum and then subside. Furthermore, the experi- 
ments have shown how the unsteady wave train becomes, a t  some stage of its 
evolution, nearly uniform again. This interesting behaviour was also confirmed by 
numerical computations (carried out by the same authors) using the nonlinear 
Schrodinger (NLS) equation, derived for water of finite depth by Hasimoto & Ono 
(1972), which proved to represent satisfactorily the long-time evolution of conserva- 
tive water-wave trains. 

Thus, in the absence of dissipation, there is no permanent end state, but an unsteady 
series of modulation and demodulation cycles, known as the Fermi-Pasta-Ulam 
recurrence phenomenon. The cyclic evolution of unsteady wave trains, through their 
influence on the mean water level and on the average currents, introduces new length 
and time scales, which are one or two orders of magnitude larger than the length and 
period of the carrier wave, respectively. A quantitative estimate of these additional 
scales is of great practical interest, since they are probably related to such phenomena 
as surf beats (Longuet-Higgins & Stewart 1962), longshore cellular structure, and 
harbour resonance. 
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Almost all previous theoretical research on the long-time evolution of continuous 
wave trains has relied upon numerical solutions; for instance the work by Yuen & 
Ferguson (1978) on the influence of initial conditions on the long-time evolution, or 
t'he work by Martin & Yuen (1980), where numerical results for the spread of energy 
during this evolution are computed. Considering the limitation to particular cases 
inherent in numerical investigations, we have chosen to present an analytical approach 
( 5  2 )  which, though approximate, allows for a general analysis of the solution. The 
range of applicability of this approach is also determined. In $3, results from the 
analytical approach are compared to those of a reference solution, showing the 
validity of the behaviour predicted by the former as well as its limitations. In  $4, a 
few conclusions of considerable physical significance are drawn from the relatively 
simple expressions obtained. 

1.2. Mathematical statement of the problem 
We consider a system in one horizontal dimension, initially composed of a carrier wave 
of amplitude a and wavenumber k and a symmetric 'side-band' disturbance, con- 
sisting of a pair of identical progressive waves of very small amplitude /3 and wave 
numbers k f Ak differing slightly from that of the carrier, where A k / k  = yak is taken 
as being proportional to the (also small) carrier steepness. 

The initial water-surface elevation for such a system is given by 

~ ( x ,  0) = aB{eikz + Pexp i[( 1 + yak) kx + a] +pexp i[( 1 - yak) kx + a]]. (1.1) 

In (1.1) x is the horizontal distance and a a phase shift, also considered identical for 
both side-band disturbance components. The dimensionless parameters y and a are 
assumed to be 0(1), while the perturbation energy, proportional to 8 = 2p2, is much 
smaller. It is the aim of this paper to study the evolution in time of such a system, as 
governed by the laws of gravity wave propagation in water. 

For water of uniform depth h, the following relations can be written: 

CT = tanh kh, w2 = gka; ( 1 . 2 ~ )  

cp = w / k ,  cg = g [ a +  kh(1- a2 ) ] /2w .  (1.26) 

Equations ( 1 . 2 ~ )  give the linear dispersion relation defining the radian frequency w, 
where g is the acceleration due to gravity. Equations (1.2 b )  define the phase and group 
velocities respectively. We define the parameter 

which will be used in the following discussion. 

t3he free surface elevation ~ ( x ,  t )  by the expression 
A normalized complex wave envelope $(x, t )  is now considered, which is related to 

7 = aB[@i(kz-wt) I. (1.4) 

The horizontal co-ordinate x and time t are transformed to dimensionless variables 
6 and r, respectively: 

(1.5a, b) 
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In  terms of $(5,7), the long-time evolution of a nonlinear wave train like the one 
defined in ( 1 . 1 )  for water of uniform depth is governed by the NLS equation 

i$,r+@,g+P 1$12$ = 0, (1.6) 

where p is given by (1.3). The particular choice of co-ordinates (1.5) leads t o  the 
canonical form (1.6) of the NLS, periodic in ( with period 1. The initial condition in 
terms of $ is obtained by equating (1.4) to our initial system (1 .1 ) .  It follows that 

$(& 0) = 1 + 2,8eia cos 2775. (1 .7 )  

The mathematical statement of the problem is now complete. We seek solutions for 
the complex wave envelope $((, 7)) satisfying (1.6)) which are periodic in (with period 
unity, and subject to the initial condition (1 .7 ) .  

The particular choice of identical side-band amplitudes ,8 and phase shifts a was 
made in order to simplify the presentation. Consideration of two different phase 
shifts merely results in the addition of a constant to  ( in ( 1 . 5 ~ ) .  For different initial 
amplitudes of the side-band components, it can easily be shown, by means of the 
so-called second invariant I ,  (0 2.1)) that  their energy difference must remain constant 
in time. Thus, the initially different (but small) disturbance amplitudes quickly 
become nearly identical. 

2. Approximate analytical solution 
2.1. General properties 

The NLS equation (1.6)) with [E[O, 13, subject t o  periodic boundary conditions, has 
three primitive time invariants. 

The boundary conditions and the particular initial condition (1 .7) ,  which is even, 
ensure that the solution $((,7) is an even function of (, symmetrical about ( = g. 
Thus I ,  = 0 and, since $,[ is continuous, $,[(0,7) = $-,,(&,7) = 0. The latter can be 
used as equivalent boundary conditions for our particular problem. 

2.2. Fourier analysis 

Let, the NLS equation be rewritten as 

for which we seek an approximate solution of the form 

N 

(2.3) 

Note that $N converges in the mean to the solution as N --f 00. Since no discontinuities 
are present, the convergence is also uniform. $N satisfies the periodic boundary con- 
ditions. Moreover, the initial condition implies that 

D&O) = 1 ,  D*-l(o) = /lei“, D+,(O) = 0 (n > 1) .  (2.4) 
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Substitution of (2.3) in (2.2) reduces the problem to the solution of a set of N + 1 first- 
order ordinary differential equations: 

(2.5) 

subject to the initial conditions (2.4)' where A, are the coefficients in the Fourier 
expansion off(E, 7 )  N 1 $ N 1 2  $" (also an even function). Thus 

dDn - + i(27rn), D, -&A, = 0, D-, = D, dr 
(n = 0, 1, . . ., N ) ,  

with 
N 

A,(t) = /1f(E,t)e-2nincdE = zzx DkD1D$(t)Sk+,,,, (n = 0,1, ..., N ) .  (2.7) 
0 k ,  1, m= - N  

The Kronecker 6 in (2.7) has the value 1 if k + 1 - m = n, and is zero otherwise. 

2.3. Analytical solution for a simpli$ed system 
Following an approach similar to that of Bryant (1979, $5), we consider that inter- 
actions occur mainly between the three central wave modes Do (the carrier wave), 
Dl and D-, (the side-band components). We therefore neglect the evolution of other 
components and restrict ourselves to a system (2.5) with N = 1, namely 

i + p[( 1 Do\ 2 + 41 D,l 2) Do + 2D;DgI = 0, (2.8a) 

i-+p[(21Do)2+31D112-~p)Dl+D,2DT] dD*l = 0, (2.8b) 

where P = 87r2/p. The set (2.8) is subject to the initial conditions (2.4) and its primitive 
time invariants are 

( 2 . 9 ~ )  

dr  

dr 

J, = pop+ 2 p 1 p  = 1 + B  ( E  = 2/32),, 

J3 = lDo)4+61Dl)4+81Do)2 ID112-2P ID112+2(DfDT2+Dt2D~) 

= 1 + ( 4  -P+ 2 COB 2 ~ )  S +  (2.9b) 

We note that substitution of $l(t, 7 )  from (2.3) into (2.1), and use of D1(7) = D-l(~) 
lead to J1 E I,, J3 = I3  and I ,  = 0, which indicate the equivalence between the NLS 
and (2.8) for the simplified system. Multiplying (2.8b) by DT and subtracting the 
conjugate of the resulting expression, we arrive at  

idlD112 -- - -p(D,2D;LD;20;) = -2piY(D,2DT,). (2.10) 
d7 

The real part of DfDT2 can be obtained from (2.9b) as 

49?(DfDT2) = J3- 1D014- 61D114- SlD012 lDl12+ 2P(Dll2. (2.11) 

Adding the squares of (2.10) and (2.11) and using (2.9a) leads to the following equa- 
tion for the side-band disturbance energy Z = 2IB1l2: 

(")2 = [2Z(J1 - 2 ) ] 2 -  [J3 - QZ2 - (J1 - Z)2- 4Z(J1 - 2) + PZ],. (2.12) 
,u2 dr  
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Zl, 2, 3 ,4  2l 

FIGURE 1.  The range of variation of 2, for the case a = 0. 

The right-hand side of (2.12) is a fourth-order polynomial in 2, &(Z), whose roots are 

(2.13) 

Introducing the values of J1 and J3 computed from the initial conditions, and ex- 
pressed in (2.9), the roots (2.13), accurate to order E ,  become 

(2.14) I 2, = €[ 1 - 4P-1 cos2a], 

2, = ~[1-4(4-P)-'sin2a], 

2, = $(4-P)+ [++4(4-P)-1sin2a]~, 

2, = 2P - [ 1 - 4P-1 cos2 a] E .  

We note that all four roots are real and that two of them (Zl, in (2.14)) are always in 
a neighbourhood of order E about the initial value Z(0) = E .  The value of a determines 
which is the largest between these two roots. 

The variation of the roots with P for the case a = 0 is illustrated in figure 1. The 
lines for Z, and 2, were plotted to O(l) ,  and those corresponding to 2, and 2, were 
sketched to O(e2). Since &(Z) must be positive (left-hand side of (2.12)), and Z varies 
continuously starting from Z(0) = E ,  the admissible variation range is the shaded 
area in figure 1.  This is illustrated in figure 2 where sketches of &(Z) at three repre- 
sentative sections P c 0, P > 4 and 0 < P < 4 are presented. In the first two cases 
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/ 

c O ( J  

FIGURE 2. Rmge of definition of 2 for: (a) P < 0, ( b )  P > 4 and (c) 0 < P < 4. 

(a) ,  (b ) ,  the admissible range of variation of Z is bound to the small interval between 
2, and 2,. Thus, the evolution of the disturbance remains of O(s) and the solution is 
stable. In the third case (c), both 2, and 2, are located to the left of s while Z ,  and Z ,  
are located to the right. The relative locations of 2, and 2, are determined by the 
limit P = 4 + O(e) while the relative locations of Zl and 2, are determined by the 
limit P = 4 cos2a + O(s2). For case (c), the admissible range of variation of 2 becomes 
O( l), so that the disturbance may grow from its initial value s to 5(4 - P )  + O(E). 

In  the following, we refer to the cases where the simplified solution is applicable, 
namely 1 < P < 4 (see §2.6), and rename the roots Zl,2 = c , d ,  2, = b,  Z ,  = a so 
a > b > Z 2 c > d. The evolution of the perturbation energy 2 is found by inte- 
grating (2.12) in the form: 

(2.16) p7 = p y  [&(y)l-J (c < z < b) .  

Following Byrd & Friedman (1971, p. 116), we develop the right-hand side of 

”] cd2, (2.16) 

(2.15) and, after some algebraic manipulations, we eventually arrive a t  
a - b  ( . - C ) ( E - d )  s 
a--E ( b - c ) ( b - d )  cn 
( a - b ) ( a - d ) ( s - c )  
( a - E ) ( b - d ) ( a - c )  

1--( 

sd2 1+ 
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where sd = sn/dn; cd = cn/dn represent Jacobian elliptic functions of argument 
- &[7(a - c )  (b  - d ) ] ) , ~  and modulus K ,  with 

( b - c ) ( a - d )  
( a - c ) ( b - d ) '  

K2 = 

We note that the terms B - c  and E - d  in (2.16) are O(s), so the square brackets have 
essentiaIly the value I. Hence (2.16) can be written 

+O(E).  (2.17) 
b - 2  b ab( 1 - Cd2) 
a-Z c a-bCd2 
-- - - c d 2 ( - & ( 7 a b ) t p 7 , ~ ) + 0 ( e )  or 2 = 

More explicitly, the energy of the pair of side-band disturbance components evolves 
in time according to 

(2.18) 

Expression (2.18) is periodic, with the period ?governed by the behaviour of the cd2 
function, t 

Since 

is nearly unity, we may write (see Byrd & Friedman 1971, equation 112.01) 

(2.19) 

If 4 cos2a = P, then 2, and 2, become 0 ( e 2 )  and (2.19) is modified accordingly to read 

(2.20) 

'2.4. The onset of growth 
We now consider the asymptotic behaviour of Z for 7+0, through the Taylor 
expansion 

(2.21) 

Computing the exact expressions for the derivatives from (2.10) and substituting 
Z(0) = B ,  we obtain 

From this expression, we see that, as long as 7 is small, Zremains of O(s). However, as 
time elapses and 2 becomes BO(s) but still 2 4 5(4 -P), we can refer to (2.12), 
neglecting terms of O(e) when compared with 2, and terms in 2 when compared to 
either P or 4 - P. For that range of 7,  (2.12) reduces to 

2 = s ( l + 2 p s i n 2 a ) + O ( ~ ~ )  ( T - t o ) .  (2.22) 

dZ - = +p(P(4-P))*Z. 
a7 

(2.23) 

t Note that, if K I 1 (no disturbance), then cd z 1 and 2 I 0, so lg11 f 1. This bears some 
resemblance to the elementary example du/dt = - (1  -u2)t with u(0) = 1. The trivial solution 
u = 1 is unstable to disturbances in the initial condition, giving rise to the oscillatory solution 
u = cos t .  
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2 sin 2a ] exp{-(P(4-P))4p~). (2.24) 

The latter expressions indicate an exponential growth, whose fastest rate, in terms of 
p7, occurs for P = 2, in accordance with Benjamin & Feir (1967). 

.)I 2.5. The evolution of the wave envelope 
Taking the modulus of $l(g, 7 )  = Do + 2 4  cos 2n5, we obtain 

I$c.’l2 = J1 - 2 + 2 2  cos2 2nt + 2(D0DT + Dg 4) cos 2 4  (2.25) 

‘Substituting in (2.25) the identity 

DoDl*+DgDl 3 s[(Dpp+DO*”;) +Z(Jl-Z)]+, (2.26) 

where S is the sign of cosa, t  and noting that the expression in square brackets in 
(2.26) can be obtained as a function of 2 from the J3 invariant (2.9b), one arrives at 

l$ll2 = { - 2(J, - J;)  + 2(4J1 - P) 2 - 7Z2 

+ [S(2(J3-J!) + 2PZ-22)~+4Zcos21r~]2}/8Z. (2.27) 

Equation (2.27) can be rewritten in the form 

1$112 = &(4 - P) - &Z+ i ( S ( 2 P -  2)* + 424 cos + O(S). (2.28) 

is found by substituting in (2.28) the expression (2.18) The explicit evolution of 
for 2, which.eventually leads to 

(4-P)(2P-1)cd2+P{S(2P-1)~+2[(4-P)(1-cd2)]~cos2n~}2 . (2.29) 

Equating to zero the derivative of (2.29) with respect to 5, it  can be seen that maxima 
and minima occur only at 6 = 0 and 5 = 8 (of course, the solution is symmetric about 
6 = 4). The derivative of (2.29) also vanishes a t  

7P - (4  - P) Cd2 I $ l l2  = 

)”I 2P-  1 tm=2narccos[--S( 1 
2 ( 4 - P ) ( 1 - ~ d 2 )  ’ (2.30) 

if the argument of the arccosine function falls within the admissible range ( -  1,l). 
Thus, whenever cd2 < 1 - a(2P - 1) (4 - P)-l (which can only occur for P < J$- N 2-83), 

has a minimum a t  5,. On the other hand, for 7 close to zero, or for all 7 when 
P > 2.83, expression (2.30) is insignificant and I$ll is monotonic in 0 < 5 < t .  

2.6. The range of applicability of the solution 
Among the assumptions made in $ 1 ,  we considered the y parameter to be O(l) ,  so 
A k l k  is of the order of the (small) slope ak. Referring to (2.3) for $N, pairs of terms of 
index n and - n are regarded as symmetric side-band components with Ak/k replaced 

(2.31) 
by 

n Aklk  = nyak ( n  = 1,2,  .. ,, N ) .  

t The marginal cases where cos a = 0 are excluded from this analysis. 
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-P 
4 2 1  a 

0 f 1 2 3 

p- f  - 
FIGURE 3. Stability and instability regions for the side-band pairs of components. 

Here, n y  replaces y so, from (1.3), p / n 2  should replace p. Recalling that P = 8+/p, 
and the stability limit P > 4 (see figure l),  it  follows that 

n2P > 4 (i.e. n > ZP-~) (2.32) 

implies stability of the nth pair of side-band components. In an analogous way 

n2P = 2 (i.e. n = ( 2 / ~ ) 4 )  (2.33) 

indicates the most unstable behaviour of pair n (see $2.4). These limits are illustrated 
in figure 3, where n is plotted versus both P-* and P. 

From this figure, it  can be seen that, in the range P > 4 (P-* < i), even the first 
pair of side-band disturbance components (n = 1)  is stable. At P = 4 the n = 1 pair 
enters the unstable interaction region (point A ) .  In the range 4 > P > 1 only this 
n = 1 pair is unstable, the most unstable case occurring a t  P = 2 (point C). A t  P = 1 
the second pair of side-band components n = 2 enters the instability region (point B).  
Thus, the proposed approximate solution, which assumes only one pair of unstable 
disturbance components, is invalid for P c 1. The value P = 1 is the limit between 
the ‘simple’ and ‘complex’ evolutions referred to by Yuen & Ferguson (1978). For a 
given value of P (or p),  the number of modes actively participating in the energy 
exchange with the carrier can be easily found from figure 3. 

A sufficient number N of modes to be considered in the expression (2.3) for $N in the 
Fourier analysis of 52.2, and in its actual computation (as described in $3.1) for a 
particular value of P, is obtained when taking, say, 3 pairs of components within the 
stability region, as indicated by the N-line of figure 3. 
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3. Comparison between the analytical and numerical solutions 
3.1. The reference solution 

In order to appraise the validity of the behaviour predicted by the approximate 
analytical solution just described, a presumably 'exact ' reference solution, which is 
free of limiting assumptions, is necessary. The reference solution for the problem 
stated in 5 1.2 is obtained by means of numerical schemes. Two independent alterna- 
tive numerical approaches were employed for that purpose, namely a, finite-difference 
approximation scheme and the evaluation of the Fourier solution of $2.2 using a 
sufficient number N of terms. 

In  the first approach, J - 1 equal segments A,$ span the interval 0 < E < fi while 
equal intervals A7 span the time co-ordinate. The finite-difference approximation 
operates on discretized values 1C.j" = $(&, 7%), where ,$j = (j - 1) A t  and 7, = n 117. A 
standard iterative Crank-Nicholson scheme is written 

+ $Fig + 
- 2@ + $?+I 

A7 At? 

+&pl$r'412($?+'+$T) = 0 (j = 1,2,  ..., J ;  n = 0,  1, ...), (3.1) 

subjecttotheinitialcondition (1.7)andto boundary conditions $: = $:, $;+' = $-"J-'. 
The scheme conserves numerically the first invariant when integrating over f by 
means of the trapezoidal rule, irrespective of the approximation used for I$T+*lz. 
It gives rise to a tridiagonal system of algebraic equations solved by means of the 
double-sweep algorithm. The matrix coefficientsinclude I $?+*I2, for which the approxi- 
mations I $TI 1 $?+'I and fi( I $; I + I $?+'I 2 ,  were tried, yielding almost identical results. 
The accuracy of the solution was appraised by comparing computed values of I: 
with the invariant value 4 at time 0. The scheme proved to be stable, and sufficient 
accuracy was obtained for J = 24, h = Ar/Af8 = - 1 (negative A implies advance in 
physical time; (1.5b)) and 3 iterations per time step. 

In the second approach, we rewrite (2.6) in the form 

Dn(r) + ipe-i(2nn)*7 Jrr'"' ei(2nn)'tAn(t) &] e-2'(2nn)eA7 

( n  = 0, 1, ..., N ) ,  

and approximate the integral (for sufficiently small A7) by means of 

iHAn(7) + An(7+A7)1 eWnn)*t &. 

This leads to the expressions 

00(7 + AT) = Do(.) + +ip(A0(7 + AT) + A0(7)) (n  = O ) ,  
D*n(7+A7) =fDn(~)+(1-f)(An(7+A7)+A0(7))/Pn2 (n  = 1,2,  . . . , N ) ,  

where f = e-i(2nn)eA7. The latter expressions, coupled with (2.7), are applied iteratively 
within a time step. The accuracy of the evaluated expression (2.3) is appraised by 
comparing computed values of 
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l l  

0 0.1 0.2 0.3 0.4 

-T 

FIGURE 4. The evolution of I$l at 6 = 0 for a = 0, 8 = 0.05 and P = 2. 

1 I 1 I I 1 I 

1 

I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

-r 

FIGURE 5. The evolution of l$l at 6 = 0 for a = 0, = 0.05 and P = 3. 

with the corresponding invariant values a t  time 0, as given by (2.9). The procedure 
was, in some aspects, inspired by the work of Gajewsky (1978). Results from sensitivity 
runs indicate that sufficient accuracy is obtained for N = 5,  AT = - 10-3, and 5 itera- 
tions per time step. 

The accuracy of the reference solution is shown by the fact that, with the exception 
of slight differences a t  the peaks, both unrelated numerical approaches yield almost 
identical results. 

3.2. The stability range 
Several runs of the numerical schemes were performed in order to verify the stability 
range predicted by the approximate analytical solution. For instance, it was verified 
that I$([, .)I remains of the order of the initial disturbance for P = - 1 and P = 4. 
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1 .o hP 
p = o  0,n  - 

/3 = 0.005 

0.08 
0, n (0.10) 

p = 0.05 in - i, - 

1.1 2.0 

1.90 
- (1.89) 

0.29 
- (0.29) 

0.34 
- [0*58] 

0.09 0.17 
(0.11) (0.18) 

0.29 

0.17 
- [0.34] 

- (0.18) 

3.0 

- 
0.30 
(0.29) 
0.29 
(0.29) 

TABLE 1. The moddation-demodulation cycle period T for 
various values of P,  u and /l 

Also, ‘complex’-type evolutions were obtained for P = 0.5 and P = 0.2 which, 
according to figure 3, involve 2 and 4 unstable pairs of side-band components, res- 
pectively. Sections 3.3, 3.4 refer to numerical runs in the range of applicability of the 
simplified analytical solution, i.e. 1 < P < 4. 

3.3. Comparison of envelope profiles I $ ( ? ) /  at ( = 0 

We have chosen to present some particular representative sections of the wave 
envelope, namely, 1$(0,~)1 for a = 0, /3 = 0.05 and P = 2 and 3 (figures 4 and 5 
respectively). The values of 7 are negative, so they correspond to positive physical 
time (see (1.5b)). Full lines in these figures represent the analytical profiles I$l(O, T)], 
computed from expressions (2.16) and (2.27), while dotted lines are the results from 
the numerical solutions. 

In  figures 4 and 5 it  is seen that the peak values of ]+I from the numerical solutions 
are 2.4 and 2.0 for P = 2 and P = 3, respectively. On the other hand, the analytical 
solution allows for a maximum value = 34, corresponding to an equal energy 
distribution between the carrier and the single pair of side-band components. How- 
ever, much better agreement is obtained when comparing modulation-demodulation 
cycle periods 7. The reference periods are measured between successive peaks in 
I @(O,  7) I from the numerical solutions. 

More results are summarized in table 1, where the values enclosed in parentheses 
were calculated from (2.19) while those in square brackets are from (2.20). It can be 
seen, from figures 4 and 5 and table 1,  that the values predicted by (2.19) are in pretty 
good agreement with results from the numerical solutions, while those from (2.20) are 
rather large. The p = 0 case corresponds to an initial condit’ion where only numerical 
background noise (of the order /3 - 10-ls) was present. 

3.4. Comparison of envelope profiles I+(S)l at selected values of 7 

We have chosen to present some sections of the envelope at fixed values of 7 corres- 
ponding to the most modulated states. In  terms of the simplified analytical solution, 
the most modulated situation occurs when the disturbance energy Z is largest 
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2 

1 

0 1 

FIQURE 6. The shape of 1 $ 1  versw 5 at the most modulated situation, for P = 2. 

0 4 I 

FIQURE 7. The shape of l$l versus 5 a t  the most modulated situation, for P = 3. 

(2 = b 2! 3(4- P) in (2.27)) i.e. when cd = 0. Figure 6 corresponds to P = 2, p= 0.05 
and a = 0. The values Ern predicted by expression (2.30) with cd = 0 are indicated. 
Dotted lines represent the numerical solutions, while full lines are plots of the sim- 
plified analytical solution 1@'1. A case in which 111.1 is monotonic in 0 Q 5 Q 3 for all T 
(and, in particular, at the most modulated states) is illustrated in figure 7 for P = 3, 
@ = 0.05 and a = 0. 

Inspection of figures 4-7 and table 1 shows that, although different in detail, the 
general features of the reference numerical solution behave essentially as predicted 
by the expressions of the approximate analytical solution. In particular, the presence 
or absence of a minimum in 0 < 5 < 8 according to the value of P (see $2.5) was 
correctly predicted. An extremely important feature concerns the uniqueness of the 
111.1 versus 5 shape at the most modulated situations. The analytical envelope shape 
1@'1 of (2.29) indicates a weak dependence on the initial-condition parameters a andp. 
The dependence however exists through the O(s) terms and modulus of cd in that 
expression, and governs the onset of the evolution. Nevertheless, at  the most modula- 
ted situations (cd = 0 in (2.29)), I$l(lJl is only dependent on P . t  

This important property was verified for P = 2 and P = 3 by running the numerical 
solutions with different values of a and /3 and superimposing 191 versu8 5 profiles 
corresponding to the most modulated situations. In particular, the dotted lines of 

t The influence of u on I$ll through 8, (2.29), is of minor importance. I ts  effect is st most a 
shift of 4 in 6 .  

8 F L M  116 
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figures 6 and 7, which were plotted from runs with ,8 = 0.05 and a = 0, are identical 
with the profiles obtained from runs with ,8 = 0.005 and/or a = - ST. 

4. Physical considerations 

4.1. The power of the simpli$ed analytical solution 
From the comparison of results with reference numerical solutions it becomes clear 
that, although the simplified analytical solution yields poor quantitative results for 
the envelope amplitude, it is an extremely powerful tool for predicting qualitative 
features of the solution and general trends. In  particular, correct predictions for the 
general recurrence phenomenon are recognized, as well as the instability ranges where 
it occurs. 

Having gained confidence in the power of the approximate solution, we take advan- 
tage of it to draw a few implications of practical significance. 

4.2. The injuence of the initial disturbance on the long-time evolution 

Three parameters characterize the initially disturbed system: a, /3 and y, see (1.1).  
y enters the solution explicitly through the p coefficient defined in  (1.3), which 
multiplies the nonlinear term in the NLS equation (1.6). In  the analytical solution, 
P = 87r2/p is used to represent this parameter. y also enters the solution implicitly 
through the dimensionless variable 5, ( 1 . 5 ~ ) .  The physical time variation of the solu- 
tion appears, on the other hand, in terms of pr,  which does not depend on y, ( 1 . 5 b ) .  
However, y is involved in the physical time variation through 5. 

The influence of y through P and 5 on the solution (2.29) is by far the strongest 
among the three parameters. Irrespective of the exact amplitude p and phase a of 
the initial disturbance, it determines its range of stability ( 5  2.6) and the shape of the 
envelope a t  the most modulated states. Also, the value of y for which P = 2 deter- 
mines the fastest rate of growth of the disturbance ($2.4). Concerning the latter, it 
seems plausible that disturbances with that particular value of y will be selected by 
nature to dominate the long-time cyclic evolution of an originally uniform wave train 
(see Longuet-Higgins 1980). 

The most important feature of the solution (2.29) is its cyclic nature, oscillating 
periodically between an almost uniform wave-train state (cd - 1)  and a most modu- 
lated situation (cd = 0). From expressions (2.19) and (2.20) it  is seen that the period 
of the modulation-demodulation cycle is governed by the initial disturbance amplitude 
/3 and, to a lesser extent, by a and y .  In  terms of dimensional time, this period T3 is 
given by 

where p;i is given by (2.19) or, in the case where 4 cos2a = P, by (2.20). We note that 
our approach is invalid in the vicinity of kh = 1.363 where p = 0. In  that event, the 
NLS equation (1.6) is not sufficient to model the evolution of the system and higher- 
order terms are required (see Johnson 1977). Restricting ourselves to p > 0, it seems, 
from (2.22) and the second term of (2.24) that, in terms of physical timepr, the fastest 
growth a t  the onset of the evolution is obtained (besides P = 2) for sin 2a = - 1.  One 
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could thus speculate about the priority of disturbances having a = - in, Qn, at least 
for the very early stage of the evo1ution.t 

If it proves to be correct that nature selects the fastest growing mode ( P  = 2, 
a = an, $n) to dominate the long-time evolution, then the modulation-demodulation 
period can be estimated approximately from (4.1) and (2.20), which yield 

T3 = w-l(ak)-21n (16/3p4) = w-1(ak)-2(1.674-41n/3). ( 4 . 2 ~ )  

For other values of a (but still with P = 2), T3 is sufficiently well represented by the 
expression 

T3 = w-1(ak)-21n (8 /3p2)  = w-1(ak)-2 (0.981 -2lnB). (4.2b) 

This expression is exact for a = 0 and a = n. Expressions (4.2) illustrate the most 
relevant influence of p on the solution. To our knowledge no such expressions for 
predicting the modulation-demodulation period have been published previously. 

4.3. Characteristic time and length scales 

The unstable evolution of nonlinear wave trains displays three different time scales, 
namely : 

(4.3) 

and the modulation-demodulation period T3. As a first guess, the choice 1 = O(ak) 
in (4.1), (4.2) for T3 seems plausible, and leads to T3 -N T2/ak. The modulation period 
T2 is implicit in the solution (2.29) through the E variable (recall the definition ( 1 . 5 ~ )  
of E ) .  Again, the most relevant value of y to be considered for T2 is perhaps the one 
corresponding to P = 2, i.e. ,u = ( 2 ~ ) ~  in (1.3). In  particular, for deep water CT = 1, 
w2 = kg and cg = w/2k (see (1.2)). Thus (1.3) becomes 

I the wave period TI = 2n/w, 

the modulation period T, = 2niAk cg = 2n/yak2cg, 

p = 8n2/P = (4n/y)2, 

which, for P = 2, indicates y = 2. In  this event, (4.3) reduces to 

T2 = 2n/Gak = Tl/ak (deep water). (4.4) 

In order to visualize the three characteristic time scales, a sketch of the water 
surface variation in time q ( t ) ,  a t  a fixed location x, for the case P = 2,a  = &T, p = 0.1, 
is illustrated in figure 8. As an example, let us consider a 60 m long, 1-5 m high wave 
in deep water. Hence T, N 6.2 s, T, N 14 min and T3 -N 15 min ((4.2b) with /3 = 0-1) 
or T3 21 29 min ( ( 4 . 2 ~ )  with /3 = 0.1). In  an analogous way, the shapes of the water 
surface T,I(Z) at instants t corresponding to an intermediate state and to the most 
modulated state are sketched in figure 9 (a) and (b), respectively. Note that the wave 
groups appear to contain half the number of individual waves in space as they do in 
time. 

Two length scales are characteristic of the problem, namely: 

the wavelength L, = 2n/k, 

the group length L, = LJyak. 

t From (2.22) we note that, at  the very early stage, the growth is linear and independent of P. 
Whenever sin 2a = 0, the growth is initially parabolic in p. Immediately after, the growth 
becomes exponential, as indicated by (2.24). This behaviour bears some resemblance with the 
well-known combined Phillips-Miles mechanism in the context of wave generation by wind. 

a-2 
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FIGURE 8. Sketch of the surface elevation at a fixed point, as a function of time t .  

FIGURE 9. Sketch of the surface elevation 7 as a function of the horizontal distance x, for: 
(a) an intermediate state, and (b) the most modulated state. 

For the previous deep-water example, L, = 60 m and L, il: 382 m. Inspection of 
figure 8 shows that, for the particular case sketched, the ratio between the duration 
of a state where the wave train is almost uniform to that where it is strongly modulated 
is about 2 to 1.  This ratio becomes smaller for other values of a. In  figures 8 and 9 one 
can see how an initially uniform wave-train state evolves to a most modulated situa- 
tion resembling envelope solitons containing waves that are much higher and much 
smaller than the original ones. 

Note that one could reproduce the entire analysis of this paper by interchanging 
space and time, if the problem was stated in terms of a periodic disturbance in time 
a t  a fixed point x. In that case, our original NLS equation (1.6) should be replaced by 
a simplified version of Djordjevid & Redekopp’s (1978) equation (2.14). 
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FIGURE 10. Schematic view of the mean free surface 7j  and direction of the mean current 6. 

4.4. Mean surface level and mean current 

The modulation-demodulation process gives rise to changes in the mean free-surface 
level f ,  relative to that of the uniform wave train. Following Davey & Stewartson 
(1974, equation (2.23)), and using our notation, this is given by 

(ak)2 [( 1 - a2) + a/2kh] 
k?'i(x,t) = - (IPl2- 11, 2 4  1 - ci/gh) (4.5) 

where most symbols are defined in 0 1.2 and I$ll2 is given in $2.5. In  a similar way, 
the mean current ti for zero mass flux, can be written as 

Expressions (4.5) and (4.6) correspond in principle to a long wave whose length is the 
length of the group L, and whose speed of propagation is the group velocity cg. This 
is illustrated schematically in figure 10, where the wave envelope is represented by 
dashed lines, the mean free surface level by a full line, and the direction of the mean 
current by arrows. 

The minus sign in (4.5) and (4.6) indicates a relative depression in the mean free- 
surface level beneath the higher waves, coupled with a mean flow in the direction 
opposite to that of the wave propagation. The highest value that [$'I2 - 1 can attain 
is 2. However, values as high as 5 are to be expected from the reference solution. 

For deep water, (4.5) and (4.6) vanish, and expressions for 7 and ti would have to 
include terms of O ( ( U ~ ) ~ ) .  Referring to Dysthe (1980), when his equations (4.2) and 
(4.3) are solved, for the case of very deep water,? the following expressions are ob- 
tained, and replace (4.5) and (4.6), respectively: 

kT(x, t )  = - $ ~ ( a k ) ~  ( I$ll2 - 1) (very deep water), (4.7) 
G(x,t)/c, = -2y(ak)3[(D,,DT +D,*Dl)e2nccos2nfl+ 2)D1)2e4n5~os47r5]. (4.8) 

Here, 6 represents the dimensionless vertical co-ordinate$ 

and all other symbols were defined in $$1.2 and 2.3. 

t Meaning deep even with respect to the length of the group, i.e. Akh & 1 or yakah & 1. 
$ y = 0 a t  the reference mean free surface and is positive upwards. 
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In  the vicinity of the free water surface, or ‘upper layer’, for which g + O ,  (4.8) 
reduces to 

Expression (4.7) is in agreement with Longuet-Higgins & Stewart (1964). 

E(x,t)/c, = -y(ak)3 ( l p y -  1). (4.9) 

4.5. Conclusions 
An analytical solution is proposed for the long-time evolution of a simplified system, 
where interactions are allowed to take place between a carrier wave and only one pair 
of side-band components. 

It is shown that a ‘simple’ unstable evolution occurs only in the range 1 < P < 4. 
The evolution is periodic in time and the period is governed by the natural logarithm 
of the initial side-band disturbance energy. This energy oscillates between O(s) and a 
maximum value of about 3(4-P). It is also suggested that the fastest rate of dis- 
turbance energy growth occurs for P = 2 and sin 2a = - 1. 

Although a system allowing for more interacting components must be considered, 
we feel that the approximate analytical solution yields a reliable qualitative indica- 
tion of the general trends and behaviour of the recurrence phenomenon, especially 
during the onset of the process, where little energy has dispersed out of or entered the 
simplified system. Our confidence in the capabilities of the analytical solution stems 
from its favourable comparison with reference results from two independent numerical 
approaches to the solution of the NLS equation. 

The analytical solution is helpful in visualizing the evolution of the water surface 
level in space and time and in deriving the relevant characteristic scales. Also, it  leads 
to approximate expressions for the mean free-surface variation and mean current. 
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