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Abstract: An approximate analytical assessment of long wave development due to nonlinear shoaling is obtained and verified against
wave-flume experiments. The phase averaged equation for the nonlinear evolution of shoaling waves by Agnon and Sheremet serves as
a starting point. Their shoaling interaction function J is significantly simplified through the mild slope assumption. Results, which may be
used to assess the long wave input for engineering applications such as harbor resonance studies, are given.
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Introduction

For modeling of agitation and berthing conditions in harbors, it is
essential to assess the height of long waves near the harbor
entrance.

The purpose of this paper is to present an approximate analyti-
cal model for the long wave development, to confirm it against
new wave flume experiments, and to present practical results for
engineering applications.

One manifestation of the quadratic terms in the free-surface
boundary condition is the fact that any two waves, with frequen-
cies �1 and �2, generate two additional waves with frequencies
�1+�2 and �1−�2, called superharmonics and subharmonics,
respectively.

The subharmonics for �1��2 have periods significantly larger
than those of wind waves, �1 min is a typical value�, and are held
responsible for the excitation of harbor resonance. Subharmonic
waves on water of constant depth are ‘bound’ to their ‘parent’
waves, since they propagate with a celerity which is equal to the
group velocity of the parent waves. The situation is somewhat
different in case of variable water depth. For the latter, Agnon
et al. �1993� also show that free subharmonics exist, and derive an
appropriate model equation to study the overall evolution for
unidirectional cases.

Our knowledge about the incident deep-water wave fields usu-
ally comes from wave forecasting models which treat the waves
as a stochastic process. In order to calculate the subharmonics,
i.e., the long waves, which are generated by stochastic nonlinear
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shoaling spectra, the Agnon et al. �1993� model was profoundly
modified in Agnon and Sheremet �1997�. The main results of
Agnon and Sheremet �1997� are summarized in the following
section.

Next, the shoaling interaction function J is simplified by a
stationary phase approach and an analytical solution, which ne-
glects the back influence of the subharmonics on the wind waves,
is compared with new laboratory experiments. Finally, guidelines
to coastal applications are provided.

Eldeberky and Madsen �1999�, as well as Agnon and Sheremet
�2000� include surveys of previous relevant references on subhar-
monics generation.

Basic Equations

Choosing a Cartesian coordinate system �x ,y ,z�, with the y axis
at the shoreline, and x ,z pointing landward and upward, respec-
tively, the discussion is confined to cylindrical beaches for which
the bathymetry is given by z=−h�x�, and to wave fields with
unidirectional y independent spectra

� = Re�
f

af�x�exp i��
−x0

x

kf�h�dx − � f t + � f� �1�

where z=��x , t�=free-surface elevation and t=time. The wave
number kf is related to the frequency � f through the linear
dispersion relation

� f
2 = gkfth�kfh� �2�

where g=gravitational acceleration, and � f = f�0;
f =1,2 , . . . . af�x�=complex amplitudes given as input at say
x=−xo, and � f =random phase shifts uniformly distributed in
�−� ,��.

According to linear water-wave theory

�af� = �2Ff /Cgf�1/2 �3�

Ff =energy flux corresponding to the Fourier mode f , and

Cgf =modal group velocity, given by
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Cgf =
� f

2kf
�1 +

2kfh

sh�2kfh�� �4�

In the framework of linear theory, the modal energy flux remains
constant and is given by

Ff = 1
2Cgf�af�− xo��2 �5�

However, Agnon and Sheremet �1997� have shown that due to
triad interactions on varying depth the energy fluxes of different
modes are interrelated and vary according to

dFf

dx
= 8�

f1

�
f2

	T�0,1,2�Ff1
Ff2

+ T�1,−2,0�Ff2
Ff

+ T�2,−1,0�Ff1
Ff
T�0,1,2� Re�J0:1,2��0:1,2

�

+ 16�
f1

�
f2

	T�0,−1,2�Ff1
Ff2

+ T�1,−0,2�Ff2
Ff

+ T�2,1,0�Ff1
Ff
T�0,−1,2� Re�J2:0,1��2:0,1

� �6�

while the kernel T is

T�0,±1,2� =
g� f

8� f1
� f2

�CgfCgf1
Cgf2

�1/2±�2 − �±�kf1
kf2

+ �1 − �±�
� f1

2 � f2

2

g2 + kf1

2
� f2

� f
± kf2

2
� f1

� f

� �1 − �±�
� f

2� f1
� f2

g2 � �7�

and �0:1,2
� =Kronecker delta � f ,f1+f2

.
The shoaling interaction function J, appearing in Eq. �6�, is

defined as

J0:1,2 = exp�− i�
−�

x

	0:1,2dx���
−�

x

exp�i�
−�

x�
	0:1,2d
�dx� �8�

where 	0:1,2=kf −kf1
−kf2

. Note that for the convenience of the
reader, the notation as in Agnon and Sheremet �1997� has been
followed when possible.

The correction �± in Eq. �7�, which was added here to Agnon
and Sheremet’s �1997� original kernel, and was obtained by
Eldeberky and Madsen �1999� is given by

�± = 2Cgf�kf � kf1
− kf2

�/� f �9�

Mild Slope Assumption

It is assumed that the bottom slope s=dh /dx is small in compari-
son to the wave-number mismatch �=	0:1,2 /kf, so that

s

�
= �dh/dx�/�	0:1,2/kf� = o�1� �10�

Integrating the second integral in Eq. �8� twice by parts, and
neglecting terms of order s2 /�3, when compared to terms of order

2
1/� and s /� , gives
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J0:1,2 = −
i

	0:1,2
�−�� exp− i�

−�

x

	0:1,2 d
� −
1

	0:1,2
3

d	0:1,2

dx
−

i

	0:1,2

�11�

Eq. �6� requires two additional integrations �one over x due to the
x derivative on its left hand side �l.h.s.�, and the other over � f1
which replaces the � f1

on the right hand side �r.h.s.� when �0

tends to zero�. Thus, the fast oscillation of the first term in
Eq. �11� renders its contribution to the end result much smaller
than that of the monotonic terms, and one can replace Eq. �8� by

J0:1,2 = − � 1

	0:1,2
3

d	0:1,2

dx
+

i

	0:1,2
� �12�

Nonetheless, Agnon and Sheremet �1997� prove that Eq. �8� is a
solution of their Eq. �3.13�, which reads

dJ0:1,2

dx
+ i	0:1,2J0:1,2 = 1 �13�

Substituting Eq. �12� into the l.h.s. of Eq. �13� gives

3

�	0:1,2�4�d	0:1,2

dx
�2

−
1

�	0:1,2�3

d2	0:1,2

dx2 +
i

�	0:1,2�2

d	0:1,2

dx

−
i

�	0:1,2�2

d	0:1,2

dx
+ 1 = 1 + O� s2

�2� �14�

which by virtue of Eq. �10� indicates that Eq. �12� is a good
approximate solution of Eq. �13�, and thus also a good approxi-
mation to Eq. �8�.

Simplified Solution

Taking an input energy flux at large depth h0=h�−xo�, for which it
is assumed that most of the energy is concentrated in the wind-
wave domain

Ff�x=−xo
=�Ff

�h0� for f = 1,2, . . . , f̂ �long waves�

Ff
�x0� for f = f̂ + 1, f̂ + 2, . . . �wind waves�

�15�

so that a typical Ff
�h0� is very small compared to the typical Ff

�xo�.

Subharmonic waves �f =1,2 , . . . f̂� are developed and grow as
a result of the nonlinear interaction during the shoaling process.
As long as they themselves remain small enough, they do not
affect the wind wave significantly, and Eq. �6� simplifies consid-
erably to

dFf

dx
= 16�

f1,f2

f1,f2

�
= f̂+1

=�

T�0,−1,2�
2 Ff1

�xo�Ff2

�xo� Re�J2:0,1��2:0,1
�

for f = 1,2, . . . f̂ �16�

Substituting Eq. �12� into Eq. �16� and integrating gives

Ff = Ff
�h0� − 16 �

f1= f̂+1

f1=�

Ff1

�xo�F�f1+f�
�xo� �

h0

h

T�0,−1,0+1�
2 �	

�h

dh

	3

for f = 1,2, . . . f̂ �17�
where
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	 = kf+f1
− kf − kf1

�18�

Note that Eq. �17�, which is our main result, depends on the local
depth h �and not on the coordinate x or the details of the bathym-
etry� and on the boundary condition at x=−xo, only. The fact that
the long waves obtained by the simplified solution Eq. �17� are
good approximations to those of the full problem Eq. �6�, is dem-
onstrated in the section entitled “Guidelines for Applications.”

Comparison with Experiments

Experimental Setup

The experiments were performed in CAMERI’s wave flume. The
flume is 45 m long �from the wave maker to the end wall�, 2.4 m
wide, and 1.5 m deep. A rubble mound slope 1:6, 4 m long, cov-
ered by a wave-absorbing sheet, is located near the end wall to

Table 1. Location and Depth of Wave Gages �Central Gauges Are
Marked in Bold�

Gauge number
Distance �mm� from

wavemaker board
Water depth

�mm�

1 2,300 450

2 4,660 450

3 5,000 450
4 5,100 450

5 7,100 434

6 12,246 377

7 14,346 353

8 14,646 350
9 14,746 349

10 16,546 329

11 23,945 264

12 25,694 252

13 25,954 250
14 26,054 249

15 27,554 239

16 34,123 168

17 35,503 152

18 35,723 150
19 35,823 149

20 37,023 136

Fig. 1. Wave flume details �all measures are in mm�
168 / JOURNAL OF WATERWAY, PORT, COASTAL, AND OCEAN ENGINE

Downloaded 04 May 2009 to 132.68.132.251. Redistribution subject to
reduce wave reflection. Fig. 1 presents the experimental setup.
The figure indicates flume dimensions, depth, and slope of the sea
bed, and location of wave gages.

Twenty wave gages were installed along the centerline of the
flume. The use of a set of three wave gages at each measurement
station enables decomposition of the recorded wave signal into
incident and reflected spectra. The method of decomposition as
well as recommendations regarding the distance between the
wave gages in a decomposition set are described by Goda �1985�.
Since the suitable distance is related to the typical wavelength in
the spectrum, different triplets to analyze short and long waves
were used. The 20 wave gages measure short and long wave
spectra at four stations of different depths along the flume �45, 35,
25, and 15 cm deep�. At each station, five gages provide a triplet
suitable for short wave decomposition and a triplet suitable for
long wave decomposition, where the central gage is shared by
both triplets. Table 1 indicates the location of the gages, which
were sampled at 50 Hz, and the water depth at that location.

For the decomposition of the recorded long waves into inci-
dent and reflected parts, it is required to know from theory the
wave numbers of the incident and reflected waves related to their
period. The long wave energy is distributed between free and

Table 2. Input Data for Pierson–Moskowitz Spectra at h=45 cm

Experiment number
Hshort
�cm�

Tp spectral peak
�s�

Hlong
�cm�

PM-1 1.43 0.74 0.02

PM-2 2.23 0.78 0.03

PM-3 2.88 1.17 0.05

PM-4 4.20 1.26 0.14

PM-5 5.15 1.26 0.25

Fig. 2. Comparison of theoretical results with experiments
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locked waves, which have different dispersion relations. Hence,
two different approaches were utilized. In the first approach, the
long incident and long reflected waves were assumed to behave as
free waves and have their wave number given by the linear dis-
persion relation Eq. �2�. In the second approach, the reflected long
waves were assumed to behave as free waves, whereas the inci-
dent long waves were assumed to be bound waves with celerities
equal to the group velocity of the spectral peak of the short
waves. The incident wave heights produced by the above decom-
positions were within 15% from each other.

The difference in the heights of the reflected waves obtained
by the two different decomposition approaches was significant,
but their energy content in shallow water was small in comparison
to the energy of the incident waves.

The values for Hlong incident Hlong reflected for all experi-
ments, and for both decomposition approaches, are given in
Tables 5 and 6 in the Appendix. In the sequel the results from the

Table 3. Nondimensional Characteristic Height of Long Waves Ĥlong As

Function of Nondimensional Depth ĥ for Different Peak Enhancement
Factors �

ĥ �=1 �=2.8 �=4 �=7

6.00 0.0001 0.0001 0.0001 0.0001

5.00 0.0142 0.0143 0.0144 0.0144

4.00 0.0246 0.0250 0.0252 0.0253

3.00 0.0410 0.0425 0.0431 0.0436

2.50 0.0543 0.0569 0.0578 0.0588

2.00 0.0768 0.0814 0.0830 0.0848

1.80 0.0899 0.0956 0.0975 0.0998

1.60 0.1074 0.1145 0.1169 0.1196

1.40 0.1318 0.1406 0.1436 0.1470

1.20 0.1674 0.1787 0.1825 0.1868

1.00 0.2237 0.2388 0.2438 0.2493

0.90 0.2640 0.2818 0.2877 0.2942

0.80 0.3193 0.3409 0.3480 0.3558

0.75 0.3545 0.3786 0.3866 0.3953

0.70 0.3974 0.4246 0.4335 0.4434

0.65 0.4503 0.4814 0.4916 0.5029

0.60 0.5169 0.5532 0.5650 0.5781

0.55 0.6029 0.6458 0.6598 0.6754

0.50 0.7168 0.7688 0.7858 0.8047

0.45 0.8729 0.9377 0.9587 1.9822

0.40 1.0957 1.1790 1.2060 1.2363

0.35 1.4306 1.5422 1.5783 1.6190

0.32 1.7125 1.8482 1.8920 1.9414

0.30 1.9521 2.1083 2.1587 2.2156

0.28 2.2509 2.4328 2.4914 2.5577

0.26 2.6297 2.8443 2.9134 2.9917

0.24 3.1193 3.3764 3.4591 3.5529

0.22 3.7669 4.0802 4.1810 4.2954

0.20 4.6467 5.0367 5.1621 5.3045

0.18 5.8819 6.3799 6.5398 6.7218

0.16 7.6875 8.3436 8.5542 8.7940

0.14 10.4649 11.3649 11.6536 11.9825

0.12 15.0320 16.3337 16.7509 17.2267

0.10 23.2558 25.2823 25.9313 26.6719
first approach, which assumes free long waves, are adopted.
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Input Parameters

The wave generation signal was obtained by applying an inverse
discrete Fourier transform on the Pierson–Moskowitz spectrum.
For each experiment, the duration of generation signal was 900 s.

However, the real input parameters taken as boundary condi-
tions for comparison of theory and experiments are those of the
incident spectrum as measured at the deepest station �45 cm�. The
input parameters are given in Table 2.

In Table 2 and elsewhere, Hshort is the total characteristic
wave height �Hmo�, defined as four times the square root of the
area under the spectral density function

Fig. 3. Evolution of JOWSWAP spectra with depth. Deep water
conditions are: Hshort=5.2 m and Tp=12.6 s: �a� �=1 and �b� �=4.

Fig. 4. Spectral density of long waves for experiment PM-4 at water
depth of 25 cm
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Hshort = 4�1

2 �
f f̂+1

af
2�1/2

�19�

Hlong=characteristic wave height of the long waves, i.e., those

with frequencies smaller than �0
� 1

2 + f̂��0.40 Hz

Hlong = 4� 1

2�
f=1

f̂

af
2�1/2

�20�

In the present study, f̂ =6.
Although the wave generation signal does not include long

wave energy, it was generated in the flume due to reflection.
For comparison with theory each input spectrum was repre-

sented by 41 bins, of which the first six were considered as long
waves �periods above 2.5 s�. The first bin had the frequency
�0=0.06104 Hz, which is also the frequency difference between
bins. Each bin contained five frequencies of the measured input
spectrum.

Results

Fig. 2 gives the theoretical and measured characteristic long wave
height as function of water depth. The continuous curves present
the theoretical solution given by Eq. �17�, while the experimental
results are given at the four depths of measurement. The largest
depth �45 cm� is the input depth. The theory assesses the evolu-
tion of long wave energy from a given �deep� water depth toward
the shallow water. Due to wave reflection, the experimental re-
sults present considerable long wave energy at the deep water
near the wave generator. In Fig. 2 the input wave spectrum for
each theoretical run is the measured one at water depth of 45 cm,
including the long wave energy.

The experiment reference name, as given in Table 2 for the
input parameters, is indicated near each curve.

The characteristic height of the long waves Hlong, depends on
the choice of the frequency that distinguishes between short and
long waves. This frequency is not rigorously defined; however, it
should be selected in the interval of low energy density, which
usually exists between the ranges of short and long waves in
spectral energy plots. The frequency distinction of 0.4 Hz was
selected in view of the spectral energy distribution obtained in the
measurements. Obviously, when theoretical and experimental re-
sults are compared, the same frequency of distinction is selected.

The agreement between the calculated and measured results
for all cases is rather satisfactory.

The distribution of energy in the long wave range for broad
spectra is discussed in the following section. Generally speaking,
the comparison between the experiments and theory indicates the
usefulness of the latter for practical applications, which are ad-

Table 4. Long Waves at h=6 m: Comparison of Simplified and Exact S

Tp �s� 9.4 9.4 10.9 12.9

Hshort �m� 2 2.3 1.6 2

Hlong �m� from Eq. �6� 0.50 0.67 0.41 0.6

Hlong �m� from Table 3 0.49 0.65 0.45 0.7
dressed in the following section.
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Guidelines for Applications

The simplified solution Eq. �17� enables us to provide data which
can serve as guidelines for field applications in a rather condensed
fashion. Starting in deep water with Ff

�h0��0 and Ff
�x0� as deter-

mined from JONSWAP spectra with different peak enhancement
factors �, one can use Eq. �17� to obtain Table 3 for the nondi-
mensional long wave characteristic wave height

Ĥlong = gTp
2Hlong/4�2Hshort2 �21�

where Hshort=characteristic height of the Joint North Sea Wave
Project �JONSWAP� spectrum in deep water, and Tp=its peak
period.

The nondimensional depth in the left column of Table 3 is

ĥ = 4�2h/gTp
2 �22�

In the construction of Table 3, long waves were defined as
those with wave periods larger than twice the spectral peak pe-
riod. From the table, one can see that narrow spectra �i.e., large ��
produce somewhat larger long waves than broad spectra.

To demonstrate the use of Table 3, consider the case
Hshort=5.2 m; Tp=12.6 s; �=4; and h=15 m. For this case Eq.

�22� gives ĥ=0.38, and the table yields Ĥlong=1.4, and finally
from Eq. �21� Hlong=0.95 m.

Some caution should be taken when using Table 3 for appli-
cations. Namely, one should not use the table whenever
Hshort�h /2, since wave breaking is expected; and when Hlong
turns out to be larger than 0.3 Hshort, for which the assumption
of the simplified solution starts to lose its validity.

For harbor resonance studies, one needs Hlong as well as in-
formation about the spectral distribution of the long waves en-
ergy. From the calculated examples in Fig. 3 one can see that the
long waves spectral density can be roughly approximated by a
linear decrease, from a maximum at frequency →0 to zero at
frequency � half the peak frequency. The quasitriangular shape
of the spectral density of the long waves is also evident from the
experiments, as one can see in Fig. 4. Fig. 4 gives the spectral
density of the long waves for experiment PM-4 at a water depth
of 25 cm. It includes the measured incident and reflected parts of

Table 5. Analyzed Incident/Reflected Long Waves from Experiments �in
cm� for Free Incident Waves

Depth �cm�

Experiment 45 35 25 15

PM-l 0.02/0.01 0.03/0.01 0.03/0.01 0.04/0.03

PM-2 0.03/0.02 0.04/0.02 0.05/0.03 0.11/0.11

PM-3 0.05/0.04 0.06/0.04 0.10/0.06 0.23/0.13

PM-4 0.14/0.13 0.17/0.12 0.30/0.17 0.58/0.28

s for JONSWAP Spectra with �=2.8

12.2 12.2 13.4 13.4 14.4 14.4

1.5 2.2 1.3 1.6 1.5 1.9

0.45 0.98 0.45 0.70 0.71 1.09

0.51 1.09 0.43 0.65 0.71 1.14
PM-5 0.25/0.18 0.33/0.17 0.69/0.29 1.33/0.43
olution

7

0
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the spectrum. The bar diagram in Fig. 4 gives the incident spectral
density in a coarse frequency resolution, which is the same as the
one that has been used in solving Eq. �17�.

To strengthen confidence in the values provided by Table 3,
they have been checked against results obtained by solving Eq.
�6� directly �see Sheremet and Stiassnie 1996�. The input in this
comparison consists of JONSWAP spectra with �=2.8, and vari-
ous combinations of Hshort and Tp. In Table 4 values of Hlong,
for water depth h=6 m, as calculated from Table 3 and as com-
puted from Eq. �6� are compared, and found to agree within 10%.

Note that another possible mechanism for the generation of
long waves is related to the breaking of wave groups and to the
surf zone �see Baldock et al. 2004�. However, Battjes et al. �2004�
claim that on mild slopes this breakpoint generation is ineffective
compared to subharmonic generation which dominates. In any
case, harbor entrances are usually well outside the surf zone.
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Appendix

The results of the first approach, for which free incident long
waves and free reflected long waves are assumed, are presented in
Table 5.

The results of the second approach, for which locked incident
long waves and free reflected long waves are assumed, are pre-
sented in Table 6.
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