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A numerical scattering chamber (NSC) has been developed to compute backscatter functions for 
geologically realistic seafloor models. In the NSC, solutions are computed to the elastic (or 
anelastic) wave equation by the finite-difference method. This has the following advantages: (a) It 
includes all rigidity effects in the bottom including body and interface waves. (b) It can be applied 
to pulse beams at low grazing angles. (c) Both forward scatter and backscatter are included. (d) 
Multiple interactions between scatterers are included. (e) Arbitrary, range-dependent topography and 
volume heterogeneity can be treated simultaneously. (f) Problems are scaled to wavelengths and 
periods so that the results are applicable to a wide range of frequencies. (g) The method considers 
scattering from structures with length scales on the order of acoustic wavelengths. The process is 
discussed for two examples: a single facet on a flat, homogeneous seafloor and a canonically rough, 
homogeneous seafloor. Representing the backscattered field by a single, angle-dependent coefficient 
is an oversimplification. In a strong scattering environment, time spread of the field is a significant 
issue and an angle-dependent separation of the wave field may not be valid. 

PACS numbers: 43.30.Bp, 43.30.Ma, 43.30.Gv, 43.30.Hw 

INTRODUCTION 

Low-frequency sound (50-1000 Hz) can propagate for 
hundreds of kilometers in the upper ocean before interacting 
with the seafloor at continental margins or sea mounts (Fig. 
1). Observations of basin reverberation indicate that strong 
backscattered signals from the seafloor can occur for these 
long-range paths (Preston and Berkson, 1990). Because of 
the steepness of the corresponding eigenrays, the interaction 
with the bottom occurs at very low grazing angles, often less 
than 20 ø . The physical mechanisms responsible for direct 
backscatter at these very low grazing angles are poorly un- 
derstood. This paper outlines a numerical technique capable 
of predicting the low-frequency acoustic wave field scattered 
from geologically realistic models of the seafloor. This capa- 
bility permits the identification of the physical mechanisms 
that dominate the long-range reverberation from the seafloor 
and it permits the characterization of the variations in bottom 
topography and sub-bottom properties that control the scat- 
tering of low-frequency acoustic waves. In addition to basin 
reverberation, the technique can be applied to other scatter- 
ing problems, such as shallow-water, high-frequency scatter- 
ing from sediments (Jackson and Briggs, 1992), estimation 
of seabed properties from multibeam sonar systems (Matsu- 
moto et al., 1993), and scattering from buried objects (Lim 
et al., 1993). 

A theoretical or numerical approach to the strong back- 
scatter problem should address the following issues. 

(a) The approach should be able to handle scattering from 
heterogeneities with scalelengths on the order of acous- 
tic wavelengths. Strong, long-range backscatter is ob- 
served in the frequency range 50-1000 Hz and there is 
a great deal of structure on the seafloor that has scale- 
lengths comparable to acoustic wavelengths at these 
frequencies. 

(b) Both interface and volume scattering should be treated 
in the same formulation so that a direct comparison can 
be made between the relative effects of each. 

(c) The method should consider energy incident on the 
bottom at low grazing angles (<20 ø ) since these are 
the eigenray angles that dominate long-range propaga- 
tion. 

(d) The method should include shear-wave effects includ- 
ing both body and interface waves. 

(e) The method should treat two-way effects including 
both forward scatter and backscatter. 

(f) Multiple interactions between scatterers should also be 
allowed. 

(g) The energy lost or gained from interface waves, at the 
seafloor and the sediment/basement contact, can be sig- 
nificant for a given scattering problem and should be 
considered in the scattering model. 

The finite-difference method applied to the solution of 
the two-way elastic (or anelastic) wave equation lends itself 
well to this problem. By introducing a "pulse beam" in a 
"numerical scattering chamber" (Stephen, 1991; Stephen, 
1993, Fig. 2; Stephen and Dougherty, 1993), all of the above 
criteria can be met. Also by applying a beamforming algo- 
rithm to the output of the NSC we can compute curves of 
scattering coefficient versus grazing angle for incident beams 
at a given angle. This allows us to compare quantitatively the 
scattering responses for a broad range of seafloor structures. 

I. BACKGROUND MATERIAL 

A. The finite-difference method for seismo-acoustic 
problems 

The historical development of the finite-difference 
method applied to seismo-acoustic problems goes back over 
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FIG. 1. Long-range sound propagation can be represented by eigenrays 
trapped in the surface layers of the ocean. Strong backscatter occurs when 
this energy hits the bottom at a continental margin or seamount. The sound 
hits the seafloor at grazing angles less than about 20 ø and significant energy 
is returned directly back along the incident path. The numerical scattering 
chamber was developed to study the physical mechanisms responsible for 
long-range, low-angle backscatter from the seafloor. This figure is from 
Stephen and Dougherty (1993) . 

25 years (e.g., Alford et al., 1974; Alterman and Karal, 1968; 
Boore, 1970; Kelly et al., 1976) and the field is still an active 
area of research (e.g., Fricke, 1993; Leslie and Randall, 
1992; Yoon and McMechan, 1992). A collection of some of 
the early papers has been compiled by Kelly and Marfurt 
(1990). Depending on the application, various investigators 
apply finite differences to different two-way wave equations 
and Stephen (1988) gives a summary of these up to 1988. 
(We distinguish here between the "wave equation" in the 
time domain and the "Helmholtz equation" in the frequency 
domain.) Many formulations prior to 1986 had stability prob- 
lems at sharp, rough fluid-solid boundaries but the offset- 
grid methods (Madariaga, 1976; Virieux, 1986) show consid- 
erable improvement. In addition to straight second-order 
finite differences, there are related but alternative approaches 
such as higher-order methods (e.g., Dablain, 1986; Levander, 
1988), the pseudospectral method (e.g., Gazdag, 1981; 
Kosloff and Baysal, 1982), and the finite-element method 
(e.g., Teng and Kuo, 1988). The method of finite differences 
has also been applied to one-way or parabolic-wave equa- 
tions (e.g., Claerbout, 1970; Gazdag, 1981; Lee et al., 1981). 
For continuous-wave problems in purely acoustic media, the 
Helmholtz equation can be conveniently solved in the fre- 
quency domain using finite-element methods (e.g., Gan and 
Ludwig, 1993; Murphy and Chin-Bing, 1989). 

One challenging aspect of computing two-way wave 
equation solutions on a finite spatial domain is the imple- 
mentation of the Sommerfeld radiation condition (that is, ab- 
sorbing boundaries). A significant development in this area 
was the application of the parabolic approximation at the 
boundary (Clayton and Engquist, 1977; Engquist and Majda, 
1977), but the stability of the early formulations was sensi- 
tive to Poisson's ratio (Emerman and Stephen, 1983). Hig- 

don (1986, 1991) extended the parabolic approximation ap- 
proach in a stable scheme and Peng and Toks6z (1994) 
present a method for determining optimal coefficients in 
these schemes. Another popular absorbing boundary ap- 
proach is to add damping directly to the wave equation in a 
region surrounding the domain (e.g., Cerjan etal., 1985; 
Levander, 1985). 

A major disadvantage of the finite-difference method is 
the computational effort required to obtain accurate solu- 
tions. Depending on the problem, between 10 and 60 grid 
points per wavelength are required for acceptable accuracy 
(Alford et al., 1974; Dougherty and Stephen, 1991). Typical 
grid sizes for elastic solutions cover a propagation region of 
about 100x 100 wavelengths for two-dimensional problems 
and of about 30X30X30 wavelengths for three-dimensional 
problems. To double the frequency for the same problem 
dimensions in space and time requires eight times the com- 
putational effort for a two-dimensional problem. The inclu- 
sion of anelastic effects can also increase the computational 
effort considerably (e.g., Day and Minster, 1984; Emmerich 
and Korn, 1987). 

A second disadvantage of the finite-difference method, 
which it shares with many numerical approaches, is the dif- 
ficulty of confirming accuracy for complex problems. The 
technique has the potential to obtain solutions to problems 
for which no analytical solutions exist, but the accuracy of 
the solutions is not guaranteed. So for a given class of prob- 
lems, results are computed by a number of numerical ap- 
proaches and if the results agree the solution is assumed to 
be correct (e.g., Priolo et al., 1994). Stephen (1983) com- 
pared finite-difference solutions to reflectivity (discrete wave 
number) solutions for range-independent seafloor problems 
with velocity gradients and showed that even for these 
simple models various finite-difference formulations could 
give erroneous results. Stephen (1990) demonstrated excel- 
lent agreement between finite-difference solutions and ana- 
lytical and normal-mode solutions for various range- 
dependent, fluid-wedge models. Similar benchmark studies 
should be carried out for rough-interface and volume- 
scattering models. 

B. Scattering at penetrable, rough, elastic seafloors 

Although the numerical scattering chamber can be ap- 
plied to a broad range of two-dimensional scattering prob- 
lems, the examples in this paper deal with scattering of en- 
ergy incident at small grazing angles from randomly rough, 
penetrable, elastic seafloors. Alternative methods for solving 
this problem include perturbation methods (Chuang and 
Johnson, 1982; Dacol and Berman, 1988; Kennett, 1972; Ku- 
perman and Schmidt, 1989), Rayleigh methods (Bennan and 
Perkins, 1990), Kirchhoff methods (Ogilvy, 1987), 
boundary-integral methods (Haartsen etal., 1994), and 
boundary-element methods (Getstort and Schmidt, 1991). 
Various approaches for fluid-solid boundaries have been 
compared by Berman and Perkins (1990) and Berman 
(1991). The perturbation and Rayleigh methods are limited 
to surfaces with small root-mean-square heights and/or 
slopes. The boundary-integral and boundary-element meth- 
ods are based on models of piecewise homogeneous media. 
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These methods are slightly less general than finite-difference 
methods but for complex models the computational effort is 
comparable. The finite-difference method is unique in that it 
solves the scattering problem for pulses directly in the time 
domain rather than carrying out a Fourier synthesis of 
frequency-domain results. 

Kuperman and Schmidt (1986) combined a boundary- 
perturbation method with a wave-number integral approach 
to study the effects of randomly rough surfaces on the propa- 
gation of coherent compressional and shear waves in a strati- 
fied fluid-solid media. They concluded that rough interface 
scattering into shear waves contributed significantly to the 
transmission loss for both shallow water and Arctic (ice- 
covered) propagation. Dacol and Betman (1988) applied the 
extinction theorem method to scattering from a rough fluid- 
solid boundary. They pointed out the importance of transmis- 
sion into the bottom (compressional and shear) as a loss 
mechanism and they identified peaks in the scattering coef- 
ficients at the compressional and shear critical angles. 
Dougherty and Stephen (1988, 1991), using the finite- 
difference method, and Kuperman and Schmidt (1989), using 
a boundary-perturbation approach (which was theoretically 
equivalent to Dacol and Berman's method), showed that sec- 
ondary scattering into Stoneley (Scholte, interface) waves 
was a significant loss mechanism in addition to scattering 
into shear-body waves. Gerstoft and Schmidt (1991) used a 
boundary element approach to study scattering from surface 
and shallow buried "facets" and also identified the impor- 
tance of interface and flexural waves as a significant loss 
mechanism. 

II. THE NUMERICAL SCA'I'I'ERING CHAMBER (NSC) 

The name "numerical scattering chamber" refers to the 
concept of computing scattering functions numerically by the 
finite-difference method. The numerical scattering chamber 
concept consists of five components: (i) using the finite- 
difference method to obtain scattering solutions with the ad- 
vantages outlined above, (ii) totally surrounding the scatter- 
ing region with absorbing boundaries ("truncated 
domains"), (iii) insonifying the scattering region with a 
pulse beam, (iv) decomposing the scattered field into inter- 
cept time-angle space, and (v) computing scattering strength 
as a function of angle. Similar approaches have been taken 
by other authors. Thorsos and Jackson (1989) addressed scat- 
tering from a rough, pressure-release surface using an 
integral-equation method. Fricke (1991, 1993) studied rough 
surface scattering from ice keels using a point source rather 
than a pulse beam for the incident field. Levander et al. 
(1993) considered scattering from a rough seafloor using a 
semi-infinite plane wave for the incident field. 

The chamber is completely surrounded by an absorbing 
region (Fig. 2). In the case described here we assume a two- 
dimensional Cartesian coordinate system; however, the tech- 
nique can be extended to three dimensions (Burns and 
Stephen, 1990). The structure inside the chamber can be 
completely arbitrary and is specified on a grid with typically 
10-60 grid points per wavelength both vertically and hori- 
zontally. At each grid point we define the compressional and 
shear velocities, the compressional and shear attenuations, 

Beam Generator Seafloor 

/ 

Absorbing Region Observation Box 

FIG. 2. The numerical scattering chamber, in two-dimensional Cartesian 
coordinates, is totally surrounded by an anechoic (absorbing) region. Inside 
the chamber one can "place" arbitrary-depth and range-dependent structure 
including interface and volume scatterers. These are defined by specifying 
compressional and shear velocity, compressional and shear attenuation, and 
density on a grid with from 10 to 60 grid points per wavelength. The struc- 
ture is insonified by a beam generator that is transparent to the scattered 
energy. Time series of the total field (pressure for fluids and normalized 
dilatation and rotation for solids) are acquired on a box of receivers sur- 
rounding the scattering region. These time series are processed to obtain the 
scattered energy as a function of angle. Snapshots of compressional and 
shear wave fields can also be generated to study the scattering mechanisms. 
This figure is from Stephen and Dougherty (1993). 

and the density. For the seafloor scattering problem, we place 
in the chamber realizations of seafloor structure that contain 

either interface roughness and/or volume heterogeneities. 
The upper part of the chamber is generally water and the 
lower part represents sea-bottom material such as sediments 
or basalts. The interface between the water and the seafloor 

continues into the absorbing regions on either side. 
The scattering region is insonified using a pulse beam of 

a given width, a given angle of incidence, and a given time 
dependence. Pulse beams allow us to track energy propaga- 
tion and multipathing in the scattering region. The pulse- 
beam generator is transparent to the scattered field. 

Completely surrounding the scattering region we place a 
box of receivers. In the water column these measure the pres- 
sure field of the incident and scattered waves. In the bottom 

we process the displacement response at the receivers to give 
time series of the normalized dilatation and normalized rota- 

tion (see the Appendix). These correspond to compressional- 
and shear-wave effects, respectively. When the shear modu- 
lus vanishes the normalized dilatation equals the pressure. 

Inside the numerical scattering chamber we compute so- 
lutions to the elastic-wave equation by the finite-difference 
method (Virieux, 1986). The scheme is based on second- 
order, centered finite differences of the elastodynamic equa- 
tions expressed in particle displacement. The initial condi- 
tions are that particle displacement and particle velocity are 
zero and the boundary conditions correspond to the Sommer- 
feld radiation condition on all sides. A complete review of 
absorbing boundary conditions in finite-difference schemes 
for wave equations is given by Cheng (1994). In this paper 
the absorbing boundaries are implemented by solving the 
telegraph equation in a region surrounding the chamber 
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(Cerjan et al., 1985; Levander, 1985). The parameters for the 
telegraph equation are selected to minimize artificial reflec- 
tions. We treat attenuation within the chamber using the 
Pad6-approximant method (Day and Minster, 1984; Stephen 
and Swift, 1994). 

A. The implementation of Gaussian pulse beams 

Many treatments of scattering are based on the infinite 
plane wave as the incident field. However, in a time-space 
formulation as used here the infinite plane wave is ill-posed. 
Since infinite plane waves at non-normal incidence to the 
seafloor interact with the seafloor at all times, the start-up 
field (implemented as a time dependent boundary condition) 
would have to consist of semi-infinite reflected and transmit- 

ted plane waves as well as a semi-infinite incident wave. 
Furthermore, at subcritical grazing incidence the transmitted 
plane wave would become an evanescent wave in the sea- 
floor. To avoid this problem we truncate the lower edge of 
the incident plane wave so that it does not hit the seafloor 
until after the initial time for the computation. By truncating 
the top edge of the plane wave as well we can take advantage 
of a great deal of analysis that has been carried out for beams 
(e.g., (2erven• et al., 1982; Thorsos, 1988). Unfortunately 
scattering results for incident beams become dependent on 
the shape of the beam (Betman and Perkins, 1990). 

Point sources are easily implemented in time-domain 
finite-difference schemes, but it is awkward obtaining a 
narrow-angle, low-grazing-angle incident field from a point 
source without interference from head waves and diving 
waves (Stephen and Dougherty, 1993). Arrays of point 
sources generate realistic beams but they always have side- 
lobes, which will affect the observed scattered field, and at- 
tenuating the sidelobe energy will distort the main lobe. 
Stephen and Dougherty (1993) addressed this problem by 
adding attenuation to the water column directly below the 
source to reduce the high-grazing-angle energy incident on 
the seafloor. In this paper we have chosen to implement 
Gaussian beams as the insonifying field for the numerical 
scattering chamber because they have a finite width, they do 
not have sidelobes, and they represent energy propagating at 
a single angle, in homogeneous media, or ray parameter, in 
stratified media. 

The purpose of the Gaussian pulse beam is to restrict the 
insonifying field to a single grazing angle, or at least to a 
narrow range of grazing angles. Since scattering creates a 
resultant field that contains all angles, if we are to analyze 
the scattering problem we need to simplify the insonifying 
field. This is the principal advantage of the infinite plane 
wave; however, the infinite plane wave has other problems as 
mentioned in the discussion in Sec. IV A. Thorsos and Jack- 

son (1989) and Thorsos (1988) encountered similar problems 
in applying integral-equation methods to compute scattering 
cross sections and they also use incident Gaussian beams to 
guard against edge effects. In fact, direct comparisons be- 
tween their integral-equation solutions and our finite- 
difference solutions can be made. The response to more re- 
alistic insonifying fields, which contain a broad range of 
grazing angles, can be determined once the response of the 
component grazing angles is known. The angular width of 

our incident Gaussian beam, determined by beamforming the 
incident field, is shown in Stephen and Dougherty (1993). 
Schmidt and Jensen (1986) also encountered similar prob- 
lems in determining seafloor reflection coefficients and they 
discuss the limitations of the angular spectrum of beams. 

For a Gaussian beam, the infinite plane wave is 
weighted along the wavefront with an exponential profile, 
A exp(-•r2/L2), where A is the maximum amplitude of the 
beam, • is the distance along the wavefront from the center 
of the beam, and L is the half-width of the beam (the width 
where the amplitude is e -• of the peak amplitude). However, 
all beams spread because of energy diffracting out of the side 
of the beam. For a given propagation distance (s- So), there 
is a specific initial half width, L• '• , at the range s o that will 
give the narrowest beam at the range s. In homogeneous 
material, the minimum initial half-width is given by (Cer- 
ven• et al., 1982) 

L•I= [(2 IJO/to)($--So)] 112, (1) 

where o0 is the propagation velocity and to is the angular 
frequency. As path length increases, the minimum beam 
width increases. 

The "spreading" of a Gaussian beam comes from the 
exact solution to the problem. Take initially an infinite plane 
wave in a homogeneous medium and then truncate it. You 
can truncate it sharply with a step function or smoothly with 
a Gaussian beam or any other way. By Huygen's principle 
(e.g., Pierce, 1989, pp. 174-175), the propagating wavefront, 
after truncating the initial plane wave, will be determined 
from the superposition of wavefronts from point sources on 
the initial truncated wave. These will contribute energy at 
angles other than the normal to the original plane wave. By 
analogy with diffractions of energy around the edges of a slit, 
which is also described by Huygen's principle, this spreading 
of the truncated plane wave can be referred to as "diffrac- 
tion." This spreading is not an artifact of some approxima- 
tion to the wave equation nor is it a result of the numerical 
method. 

In bottom-interaction studies the footprint on the sea- 
floor increases with smaller grazing angle and the distance 
over which a finite beam must propagate to cover this foot- 
print also increases. So the narrowest possible beam width 
increases with decreasing grazing angle. 

In the time dimension, the insonifying field is a pressure 
pulse with the shape given by the third derivative of a Gauss- 
ian curve [see Appendix E of Stephen et al. (1985)]. This 
waveform has the advantage that its spectrum is also a 
Gaussian curve. The half-power points of the pressure spec- 
trum occur at 0.68fv and 1.36fv, where f•, is the peak 
frequency. The bandwidth of the source is one octave. 

For example, we consider a Gaussian pulse beam propa- 
gating in a straight, constant-width channel in a homoge- 
neous medium (Fig. 3). The channel corresponds to an ide- 
alized, finite-width "ray" and we can imagine the channel 
reflecting and refracting at a sharp interface according to 
Snell's law. (On refraction at a sharp interface the channel 
width would change.) At 15 ø grazing incidence we take a 
channel width of 18.6k•,, (where k•, is the wavelength in 
water, with a velocity of 1.5 km/s, at the peak frequency of 
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initial half-width 
of 4.7 •. 

final haft-width 
of 6.6 •. 

'.hannel width 

of 18.6 •. 

foo•rint 
at s•afloor 
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FIG. 3. Gaussian pulse beams are used to insonify patches of seafloor in the 
numerical scattering chamber. They have the advantage of providing local- 
ized energy at a fixed grazing angle without sidelobes. We can imagine a 
channel with parallel sides within which the pulse beam propagates. The 
intersection of this channel with the seafloor will be the footprint within 
which all bottom scatter occurs. We would like the footprint and the channel 
to be as narrow as possible in order to localize the bottom interaction and to 
minimize lhe size of the compulational grid. However, for a siren propaga- 
lion distance there is a minimum width Gaussian beam (Cervera) et aL, 
1982). Consider a pulse beam incident on a horizontal plane (a virtual sea- 
floor) at 15 ø grazing angle. We further specify that the beam should be down 
at least 20 dB at the edges of the channel. The narrowest Gaussian beam that 
meets these criteria staffs with a half-width of 4.7A•, and ends with a half- 
width of 6.6X,,. (All length scales are given in units of water wavelengths 
X,, al the peak frequency of the source pulse.) The smallest footprint on the 
seafloor that meets these criteria and is consistent with the wave equation is 
72X,,. wide. At 250 Hz the smallest footprint is 432 m wide. 

the source in pressure) and its footprint on the horizontal 
plane is 72kw. The narrowest Gaussian beam that can propa- 
gate across the footprint starts with a half-width of 4.7k, and 
is down 35 dB on the edges of the channel. After propagating 
across the footprint, the beam has spread to a half-width of 
6.6•w and the beam is down only 20 dB on the edges of the 
channel. This "spreading" of the beam is caused by diffrac- 
tion of energy out of the ray tube and is not caused by geo- 
metrical spreading. For this model the edges of the ray tube 
are parallel. The spreading loss within the NSC caused by 
this effect is negligible. For example, the computed scatter- 
ing strength of the specular reflection from a flat seafloor {the 
dashed line in Fig. 9) is 0 dB within 0.2 dB. 

Figure 4 shows snapshots of the pulse beam crossing the 
numerical scattering chamber for the case of a homogeneous 
medium. Parameters for the model are given in Table I. All 
snapshots from the NSC display compressional or shear 
"amplitude densities" as defined in the Appendix. To mini- 
mize the size of the computational domain the whole beam is 
never entirely within the chamber. The beam is over 18 
wavelengths across and about 3 wavelengths long. There is 
no indication of reflections from the boundaries of the cham- 

ber. 

For a low-grazing-angle problem there can be very 
many wavelength size scatterers within the footprint of the 
narrowest acceptable beam. Note that, although this issue is 
clearly evident in the time-space-domain finite-difference 
solutions, the physical constraints are placed by the wave 

equation and the physics of sound propagation. All modeling 
approaches and analysis techniques face the same limita- 
lions. 

B. Beamforming 

To quantify the amount of energy propagating at various 
angles, we apply beamforming to the time series results from 
the numerical scattering chamber. To represent fully the low- 
angle energy and the energy trapped near the interface, we 
include in the beamforming the time series on the vertical 
arrays on either side of the scattering chamber as well as on 
the horizontal array at the top of the chamber. In this discus- 
sion we only consider the pressure response in the water 
column and the energy scattered upward in the NSC. The 
downward-scattered compressional and shear waves in the 
bottom could be treated in a similar fashion using the dilata- 
tional and rotational fields. 

Before applying the beamforming, we subtract the inci- 
dent field, computed for a model with no structure in the 
chamber, from the observed time series (Fig. 4). This is con- 
sistent with the common definition in scattering theory that 
the scattered field is the total field minus the incident field 

(e.g., Pierce, 1989, p. 425). 
Beamforming, or slant stacking, is an application of the 

radon transform (Chapman, 1978; 1981, Durrani and Bisset, 
1984). The slant stack in geophysics and acoustics is nor- 
mally applied to single linear arrays of receivers (Kappas 
et aL, 1990; Stoffa et aL, 1981). However, in the analysis 
presented here we need to represent accurately the low- 
grazing-angle propagation and we use both vertical and hori- 
zontal linear arrays simultaneously in the slant stack. Our 
approach is similar to Fricke (1991), but, since there are 
differences from conventional processing, we outline briefly 
here the algorithm that we used. 

The time series from the NSC represent the pressure 
field (normalized dilatation or normalized rotation, see the 
Appendix) as functions of time and range, u(t,x), and time 
and depth, u(t,z). To display the results, we use the ray 
parameter p, which is related to the incident angle i and the 
grazing angle 0 by p=sin(i)/V=cos(O)/V, where V is the 
velocity along the array and it is assumed constant. The 
beam formed field in 'r-p space is then given, in terms of the 
horizontal array data for example, by 

ti( r,p ) = • • u( t + px,x )dx, (2) 
where r is the intercept time, that is, the time referenced to a 
trace at the origin (x=0). 

This transform is implemented for a finite amount of 
discrete data on orthogonal linear arrays as follows. The 
horizontal array consists of M traces separated by Ax. The 
vertical arrays on the left and right sides extend from the 
horizontal array down to the seafloor. They consist of N L and 
N R traces, respectively, and the traces are separated by Az. 
All traces have K time points at an interval of At. 

The NSC is constructed so that all scattering occurs 
within the receiver box. Outside of the receiver box, in the 
absorbing boundary regions, the structure is laterally homo- 
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FIG. 4. Snapshots of the compressional wave field at times of 5, 40, and 75 periods (P) are shown for the Gaussian pulse beam as it propagates across the 
numerical scattering chamber filled with homogeneous water. The beam is about three wavelengths long and over 18 wavelengths across. There are no 
discernible reflections from the absorbing boundaries. 
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TABLE I. Parameters for the back•atter models. 

Geoacoustic parameters 

Media 

Water 

Hard bottom 

(basalt) 

Source parameters 

The sourca: pulse is the third derivative of a Gaussian curve. 
The peak frequency in pressure is 250 Hz. 
The bandwidth in pressure between half power frequencies is one octave (170-340 Hz). 

Typical wavelengths 

Compressional waves in water (h..): 6 m 
Compressional waves in basalt: 12 m 
Shear waves in basalt: 6.9 m 

Computational parameters 

Grid interval: 0.4 m or 15 points/h•, 
Time step: 0.04 ms 

geneous so that there will be no scattering. For a given struc- 
ture within the NSC, all backscattered energy in the water 
column, with grazing angles from 0 ø to 90 ø, crosses the hori- 
zontal array and the left vertical array. All forward-scattered 
energy, with grazing angles from 90 ø to 180 ø , crosses the 
horizontal array and the right vertical array. The following 
discussion applies to the backscattered beams but the 
forward-scattered beams are treated in an analogous fashion. 
For a given ray parameter or angle, the width of the wave- 
front interacting the array is 

Wt.=(N•.-1)Az sin i+(M-1)Ax cos i. (3) 

Time is referenced to the trace at the upper left corner and 
traces are labeled incrementally with distance away from the 
upper left corner. (Note that for the forward-scattered field, 
time is referenced to the trace at the upper right comer.) The 
slant stack, normalized to unit length along the wavefront, is 

( fi( rj,p•)= Az sin i'• uint['rj+(l -- 1)qAz,zt] 
1=2 

M-t ]) +Ax cos i • uint[;'j+(l-1)pAx,zl 
I=1 

X(W•l), (4) 

where q = (1 _p2)•/2. Linear interpolation is carried out be- 
lween discrete time points. To avoid edge effects a cosine 
taper is applied within WdlO from the edges of the wave- 
front. With this normalization, the same plane wave at dif- 
ferent angles of incidence will have traces of the same mag- 
nitude in the slant stack. 

The NSC output has a low level of high- and low- 
frequency numerical noise that can reduce the sensitivity of 
the method to low levels of scatter. Since we know that the 

scattering process is linear and we know the bandwidth of 
the source, we filter out the numerical noise at parasitic fre- 

quencies. For example, for a source with 60 dB down points 
at 2 and 25 Hz we apply a bandpass filter between I and 30 
Hz. 

Various representations of scattering (scattering strength, 
scattering cross section, target strength) are based on ratios 
of intensity, which, for acoustic waves, are proportional to 
the mean square of the pressure time series. (The Appendix 
presents the compressional and shear intensities that apply in 
the solid.) To obtain scattering functions, we take the mean 
square level of the stacked traces as a function of ray param- 
eter or angle, normalized to the mean square level of the 
incident beam. The duration taken for the mean square levels 
is the same for both the incident and scattered fields and it is 

large enough to include all of the scattered energy. The scat- 
tering functions are therefore based on total energy in the 
incident and scattered fields. 

In summary, the steps involved in producing scattering 
functions from the numerical scattering chamber are as fol- 
lows. 

(a) Create a model of the seafloor by defining compres- 
sional velocity, shear velocity, compressional attenua- 
tion, shear attenuation, and density on a two- 
dimensional grid. Fluids are represented by a shear 
velocity of zero. 

(b) Run the finite-difference calculations in the numerical 
scattering chamber to get the pressure time series of the 
total field on a box array of receivers (along the top and 
down the left and right sides in the water). Snapshots 
and videos can be used to gain insight into the scatter- 
ing mechanisms. 

(c) Subtract the incident field from the pressure time series 
to obtain the scattered field and take a radon transform 

(slant stack) of the box array data to obtain the scat- 
tered pressure field in r-p space. 

(d) Compute scattering coefficients as a function of angle 
by dividing the scattered field intensity (mean square 
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FIG. 5. Snapshots from the NSC for the compressional and shear wave fields at a flat water-basalt interface are shown at a time of 40P. (Model parameters 
are given in Table I.) Since the beam is incident at less than the critical grazing angle for compressional and shear waves, the beam is totally reflected. 
Evanescent "roots" of the reflected wave are observed below the seafloor in both the compressional and shear wave fields (Stephen and Bolmer, 1985). 

level of the stacked traces normalized to beamwidth) 
by the intensity of the incident field. 

III, EXAMPLES 

A. The scattering function for a single facet on the 
seafloor 

To demonstrate the numerical scattering chamber, we 
consider a single facet on a flat, hard bottom. As a reference 
we show first a snapshot from the NSC for a flat, hard sea- 

floor (Fig. 5). The incident beam angle (15 ø ) is well below 
the critical grazing angles for compressional and shear waves 
in the bottom (60 ø and 30 ø, respectively) and the beam is 
totally internally reflected. (The parameters for the models 
are given in Table I.) At this time step, the upper edge of the 
beam has not yet reached the seafloor and the lower edge of 
the beam has been reflected. These full-wave solutions also 
show the evanescent tails of compressional and shear energy 
in the bottom (Stephen and Bolmer, 1985). Note the absence 
of compressional and shear transmitted waves and compres- 
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FIG. 6. Snapshots from the NSC for a single facet on the interface between water and basalt are shown at a time of 50P. The facet is one wavelength high 
and is inclined to be normal to the incident beam. The energy partitioning is quite complex. The facet acts as a secondary point source (diffractor) on the 
interface. It excites compressional and shear body waves in the bottom, a shear head wave in the bottom, a compressional head wave in the water, forward 
and backward propagating interface waves, and diffracted compressional and shear waves. The back-diffracted energy in the water column, which is 
significant for the long-range backscatter problem, exhibits time spread due to reverberation within the facet. There is both a magnitude and a duration in the 
backscattered field. 

sional and shear head waves that would normally be present 
for a point source solution [see Fig. 7 of Dougherty and 
Stephen (1988)]. Since this flat seafloor model does not have 
any legitimate backscattered energy it can be used to deter- 
mine the numerical noise floor of the method. 

The wave field changes considerably when a single facet 
is introduced onto the seafloor (Fig. 6). In this case the facet 
is one wavelength high and its slope is normal to the incident 
beam. Because of its small size the facet acts as a point 

diffractor, or secondary source, on the seafloor after it is 
insonified by the incident beam. Compressional and shear 
transmitted waves and compressional and shear head waves 
are clearly observed in the forward direction. These are ki- 
nematically equivalent to the paths that would be expected 
for a point source on the seafloor. Because the facet is on the 
seafloor it also acts as a source of interface (StoneIcy) waves. 
These are largest in the forward direction but they can be 
distinctly seen in the backward direction as well. Diffracted 
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FIG. 7. Time series along a horizontal array in the water column for the single-facet model show the incident and reflected beams, the forward-propagating 
head wave, and the diffractions. 
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FIG. 8. Beamforming (or slant-stacking) the time series in Fig. 7 (after subtracting out the incident field) gives the time series of the "best" plane wave at 
various angles. The specularly reflected wave is the largest event and is observed around 165 ø. The forward-propagating head wave is the large event at 120". 
The forward and backward diffractions have a uniform amplitude over a broad range of angles. Even though the facet was tilted to be normal to the incident 
beam there is no indication of a significant, normal incidence reflection back from the facet. This would be expected at the 15" trace indicated by the arrow. 
Since the facet is only a wavelength in size it acts as a point diffractor. 
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FIG. 9. The scattering coefficient as a function of angle is the energy of the 
r-p field in Fig. 8 divided by the energy in the incident beam. The scattering 
function for the flat seafloor model (Fig. 5) is shown as a reference (dashed 
line). For the flat seafloor model the only arrival is the specular reflection 
with a peak value of 0 dB. The width of the reflection peak indicates the 
resolution of the processing. Ideally it would be a delta function, but it has 
a finite width because of spreading of the beam in the NSC and because of 
the resolving power of the Fourier transform and slant-stacking procedure. 
The flat seafloor curve also shows the level of the numerical noise floor in 

the calculations. The scattering function for the facet model (solid line) 
shows the relatively uniform level of the diffracted field even at very low 
grazing angles (well above the numerical noise floor). The forward-scattered 
head wave is a significant event at 120 ø. The specular reflection for the facet 
model is lower in amplitude than for the fiat seafloor model by about 6 dB 
because of energy lost in the scattering process. 

compressional and shear body waves are also observed. 
The time series for the facet model, on a horizontal row 

of receivers near the top of the model, are shown in Fig. 7. 
The incident beam, the reflected beam, the diffracted com- 
pressional wave, and the head wave can be clearly identified. 
The stacked traces are shown in Fig. 8. Events that appear as 
straight lines in the time series appear as points in the beam- 
formed data. The incident and reflected beams, which are 
kinematically very close approximations to plane waves, 
both appear as straight lines in the t-x data. The incident 
field is subtracted out prior to stacking, but on stacking the 
reflected field collapses to a point and appears as a concen- 
tration of energy at 165 ø at a time of 75P (Fig. 8). [The 
period (P) is computed at the peak frequency of the source.] 
Also in the stacked data, the head wave appears as a concen- 
tration of energy at an angle of 120 ø at about 60P. The 
small-amplitude features across the whole section are omni- 
directional diffractions from the facet. 

Figure 9 shows the scattering function for the flat seaf- 
loor model (Fig. 5) and the facet model (Fig. 6). The back- 
scattered energy for the flat seafloor model represents the 
numerical noise floor. The peak in the forward-scattered di- 
rection for the flat seafloor has a magnitude of 0 dB and 
represents the specularly reflected beam. The width of this 
peak represents the resolution of the incident beam and the 
postprocessing. For the facet the amplitude of the reflected 
beam is decreased. The offset of the seafloor at the facet 

creates a time shift in the reflected beam, which gives some 
destructive interference during stacking. The head wave 

shows up clearly at the forward critical angle, 120 ø . The 
diffracted energy is relatively uniform at a level of -30 dB. 

B. A rough, basaltic seafloor 

As a second example of the numerical scattering cham- 
ber we consider a rough, basaltic seafloor. This bathymetric 
profile is based on a canonical profile using seafloor statistics 
representative of the Pacific Ocean (Goff and Jordan, 1988, 
1990). The profile was generated for a sample every 1.0 m, 
but, we have applied the profile directly with a spacing of 0.4 
m. At the scale we have applied it, this profile is not the 
result of the Goff-Jordan algorithm, but it is still a good 
canonical, rough model for testing algorithms. The relief is 
about 10Xw over a range of 70Xw. For a peak frequency of 
the source of 250 Hz this corresponds to 60 m of relief over 
420 m. In this example the bottom is completely homoge- 
neous (Table I). 

Figure 10 shows the compressional and shear wave 
fields in the scattering chamber 40 periods (0.16 s) after the 
pulse beam initiated contact with the seafloor. In the absence 
of the seafloor this frame would show a nearly vertical planar 
wavefront, 33, w wide, at about 353, w range. The rough sea- 
floor has essentially destroyed the beam. Considerable en- 
ergy is scattered into diffracted shear waves in the bottom 
and Stoneley waves on the interface. The interface waves 
propagate in forward and backward directions from the scat- 
tering centers until they reach another scattering center, 
where they reradiate back into the water column. Scattering 
centers in this context refers to topography on the seafloor 
that has enough curvature to act as a diffractor or secondary 
source. There are three broad humps, about 5Xw across, on 
the upward slope, at about 153, w, 253, w, and 32X•, that are 
the source of distinct diffractions in the upward-scattered 
field (see below). 

The weak energy in the compressional wave field be- 
tween 423, w and 60X w includes the head wave energy and 
energy that was forward scattered as compressional waves in 
the bottom. In the shear wave frame the rightmost energy, 
beyond 42Xw, is converted shear waves. The strong energy 
between 25X• and 42X• is scattered shear waves propagating 
downward and backward (to the left). Packets of high energy 
near the interface in both compressional and shear frames are 
interface waves generated by secondary scattering (Huygen's 
principle) from roughness elements on the interface. The 
backscattered shear and interface waves convert back into 

compressional waves in the water (seen in the compressional 
frame to the left of 30Xw) and contribute to the low-angle 
backscattered field. 

The backscattered field is quite complex in the time se- 
ries plots (Fig. 11) where it appears as energy with negative 
slopes. The corresponding beamformed field (Fig. 12) is sim- 
pler and three distinct diffractions, from the humps men- 
tioned in Fig. 10, are responsible for most of the upward- 
scattered field. At angles less than about 50 ø, the scattered 
field is more diffuse and has much longer time spreads (up to 
50P) than the higher angle field. The scattering function for 
the very rough seafloor (Fig. 13) increases significantly at 
low angles and is about 6 dB greater at 15 ø than at 90 ø. The 
monostatic backscatter value at 15 ø is -18.5 dB. The in- 
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FIG. 10. Compressional and shear wave fronts are shown 40 periods after a pulse-beam at 15 ø grazing incidence hit a very rough, basaltic seafloor from the 
left. If the seafloor were not present the beam would have propagated cleanly to about 35k•. Energy to the left of 35X•, is caused by backscatter and 
reverberation from the rough seafloor. Strong backscattered shear and interface waves can be seen in the shear wave frame. These convert back into 
compressional waves in the water and are a significant mechanism for strong, low-angle backscatter. (Model parameters are given in Table I.) This figure is 
from Stephen (1993). 

crease in scattering cross section at low angles is consistent 
with previously reported results by Dougherty and Stephen 
(1988), Stephen and Dougherty (1993), Stephen etal. 
(1993), and Stephen (1993}. 

IV. DISCUSSION 

A. Plane waves, beams, and the insonification pattern 
on the seafloor 

Many approaches to seafloor scattering problems are 
based on the notion of plane waves. Ideally the wavefront for 

a plane wave extends infinitely in the plane and has constant 
amplitude. This notion is particularly powerful in the analy- 
sis of energy partitioning at flat interfaces (e.g., Lamb's prob- 
lem) and in the plane-wave decomposition of the field from a 
point source (e.g., the Sommerfeld and Weyl integrals). The 
Fourier, Hankel, and radon transforms used in these ap- 
proaches are rigorously defined mathematical operations that 
are applied to general time series and fields independently of 
the physics of the underlying wave equations. However, al- 
though it is sometimes convenient to interpret the trans- 
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FIG. 11. Time series of pressure along a horizontal line of receivers are shown for the rough seafloor model of Fig. 10. To the right of the figure some weak 
energy occurs before the reflected beam. This is head wave energy created from a number of scattering centers and is analogous to the head wave, energy in 
Fig. 7, but is less distinct. Similarly there is considerable backscattered energy behind the incident beam to the left of the figure. This corresponds to 
backscattered diffractions from a number of interacting scattering centers. 

formed wave fields in terms of plane waves, it is important to 
remember that an infinite plane wave is not a valid source for 
the wave equation for heterogeneous media. We often lapse 
into thinking about the "incident plane wave" and the "scat- 
tered plane waves in the far field" but these are not valid 
entities in the context of the wave equation for heteroge- 
neous media. 

At the other extreme, it is also often convenient to imag- 
ine energy propagating along infinitely thin tubes or rays. For 
example, propagation from the source to the seafloor is often 
represented as an infinitely thin ray and the scattering from 
the seafloor is based on the notion of an infinitely wide pla- 
nar wavefront (e.g., Caruthers and Bourgeois, 1992). Both 
the ray and the plane wavefront are physically unrealistic but 
they are convenient because they separate out the angle de- 
pendence of the interaction. Given the complexity of the 
wave field from a point source (spherical wavefront) above a 
flat interface the simplicity of single-angle interaction is well 
worth pursuing. 

Synthesizing beams from arrays of point sources is a 
physically realistic and well-posed approach. However, it has 
the problem of sidelobes and results in beams almost as wide 
as the Gaussian beam approach. For example, a continuous 
line array, with a rectangular aperture function with the same 
half-width as the Gaussian beam in Fig. 3 (4.7hw) , would 
have a beam width at the 20-dB level at the end of the chan- 

nel of 13.4h. (compared to 18.6h• for the Gaussian beam) 
but the largest sidelobe would only be down 13.3 dB from 

the peak (Burdie, 1991). In strong scattering problems the 
sidelobes will excite scattering in the seafloor, which can 
reradiate at the same time and angle as scattering from the 
main beam. 

The Gaussian beam approach is an attempt to improve 
on geometrical ray theory for finite-bandwidth problems and 
is a reasonable compromise (e.g., Thorsos and Jackson, 
1989). It is a well-posed source to the wave equation and the 
energy is focused along a narrow range of angles. 

It does not make sense to base a scattering theory on a 
plane-wave approximation in the far field but to ignore the 
propagation effects between the far field and the scattering 
region. In applied ocean acoustics the "beam" is created by 
an array of point or directional sources and the propagation 
effects from the source to the seafloor can be quite complex 
and can include caustics. Identifying the insonification pat- 
tern on the seafloor even at a single frequency is a challeng- 
ing problem. Since the insonification pattern is an interfer- 
ence effect, not simply a ray or beam propagation effect, 
small changes in frequency can cause large changes in the 
pattern. 

Also, since the beam is created by an array, reciprocity 
cannot be used to return the energy to the source-receiver 
location. For example, in Fig. 1, a monostatic experiment 
would have a receiver array at the same location as the 
source array. From the figure it is tempting to assume that the 
transmission loss along the ray path will be the same for 
propagation from the source to the seafloor as for propaga- 
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FIG. 12. The slant stack of the time series in Fig. 11 for the rough seafloor model is more complex than for the single facet (Fig. 8). At near-normal angles 
there appear to be three distinct diffractors, corresponding roughly to the three peaks on the upward slope of the seafloor (Fig. 10). These diffractions are less 
distinct at low angles. At low angles in both the forward and backward directions the duration, or time spread, of the reverberation increases considerably. 

tion from the seafloor back to the source location. In this 

view, all we need is a single monostatic backscatter coeffi- 
cient for the seafloor interaction. However reciprocity in 
acoustics works point-to-point not point-to-array. For a nu- 
merical demonstration of this fact see Figs. 14(a) and 16(a) 
in Stephen et al. (1985). If the beam is generated by an array, 
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FIG. 13. The scatterin• function for the very rough seafloor model is re- 
markably flat. The effect of the rough seafloor is to take energy out of the 
specular direction and distribute it more or less uniformly across a range of 
angles. The backscattered energy (per unit area) increases significantly at 
low angles. 

the transmission loss on the return path is not the same as on 
the outgoing path. 

Problems like these are prompting investigators to con- 
sider full-wave or total-field solutions to seafloor- 

reverberation problems (E Tappert, personal communica- 
tion). High returns from a given spot on the seafloor, in either 
a continuous wave or a broadband sense, may occur because 
of anomalies in the insonification pattern rather than because 
of features of the seafloor itself. Because of the complexity 
of the insonification pattern, it may be unreasonable to sepa- 
rate the propagation from the scattering using an angle- 
dependent function of any kind (based on plane waves, 
beams, etc.). A study should be carried out to evaluate the 
efficacy of an angle-dependent approach in the full field con- 
text. 

B. Potential applications of the numerical scattering 
chamber 

An important issue in seafloor scattering is the trade-off 
between deterministic and statistical representations of the 
seafloor geology (topography, volume heterogeneities, geoa- 
coustic parameters, etc.) and the acoustic field. We need 
guidelines on how to separate the two effects. The numerical 
scattering chamber can be used to address a number of ques- 
tions regarding this issue. 

Dougherty and Stephen (1988) statistically chose the 
elastic parameters of the seafloor but generated the synthetics 
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in a deterministic fashion. The coda and coherence of the 

acoustic field were represented by rms signal levels and co- 
variance. Even if the geology of the seafloor were known 
deterministically at all scales, at some scale it would be rea- 
sonable to interpret the acoustic field stochastically. The scat- 
tered field from a number of seafloor models with the same 

statistical properties could be computed to confirm that the 
statistical properties of the acoustic field do not vary. Differ- 
ent stochastic representations of the seafloor (Gaussian, self- 
similar, etc.) could be treated to see how the statistics of the 
acoustic field varies. 

At some fine scale, aspects of the geology will only be 
known stochastically. For example, volume heterogeneities 
could be represented by the mean and standard deviation of 
the geoacoustic properties of the sediments and crust. Given 
a stochastic representation of the geology, how can we create 
a stochastic representation of the acoustic field? 

Other issues that can be addressed by applications of the 
numerical scattering chamber include (a) scattering from fac- 
ets with a range of shapes, (b) scattering from canonical 
seafloors, (c) interface versus volume scattering in both sedi- 
ment and basement, (d) interpolation methods, (e) bathymet- 
ric resolution requirements, (f) effects of intrinsic attenua- 
tion, (g) effects of sediment cover, (h) effects of shear 
properties in both sediments and basement, (i) 2-D versus 
3-D scattering, (j) identification of scattering mechanisms, 
and (k) distinguishing scattering effects for swept frequency 
versus pulse sources. These issues will be covered in future 
papers. 

v. CONCLUSIONS 

Many problems in bottom-interacting ocean acoustics 
require a knowledge of the scattered field from a rough, lat- 
erally heterogeneous seafloor. Recent studies (Dougherty and 
Stephen, 1988; Dougherty and Stephen, 1991; Kuperman 
and Schmidt, 1989; Levander etal., 1993; Orcutt etal., 
1993; Stephen, 1993) have shown that the physics of seafloor 
scattering can be quite complex with energy converting from 
compressional waves in the water to shear and interface 
waves at the seafloor and then reradiating as compressional 
waves back into the water. To investigate the physical 
mechanisms of scattering further and to quantify the magni- 
tude, time spread, and angle spread of the scattered field we 
have developed a numerical scattering chamber based on the 
finite-difference solution to the two-way elastic (anelastic) 
wave equation. 

The finite-difference method provides the capability to 
study full wave effects at the seafloor in range-dependent 
environments. The approach is particularly useful for pulse 
sources, for strong backscattering, and for studies of the re- 
sponse at and below the seafloor. Calculations are carried out 
in the time domain and solutions for a given source pulse are 
obtained directly. [The method can also obtain a continuous- 
wave solution simply by using a continuous-wave source and 
running the computations until steady state is reached (e.g., 
Stephen, 1990).] Solutions are obtained for both forward- 
scattering and backscattering including conversions to shear 
and interface waves. Multiple interactions between scatterers 
are also completely included. Since the finite-difference 

method treats the whole model as a discrete grid, vertical and 
horizontal displacements (or velocities or accelerations) at 
the seafloor and within the bottom are obtained at the same 

time as the pressure field in the water. Insight into multipath- 
ing and bottom and sub-bottom scattering is obtained di- 
rectly. 

At a very rough, basaltic seafloor, conversion of energy 
from compressional waves in the water to shear and interface 
waves at the seafloor is an important physical mechanism for 
generating strong backscatter. Specular reflection from steep 
cliffs is not necessary to create strong backscatter. An unsedi- 
mented rough basalt has stronger backscatter at low grazing 
angles than at near normal angles. The duration, or rever- 
beration, of the scattered field is also significantly greater at 
low angles. For the example of a rough seafloor considered 
in this paper, the backscatter cross section for a beam inci- 
dent at 15 ø grazing angle is 18.5 dB in the monostatic direc- 
tion. This is about 6 dB greater than the scattering cross 
section directly upward (a grazing angle of 90 ø) for the same 
incident beam. 

Representing the backscattered field by a single, angle- 
dependent coefficient is an oversimplification. Coherence of 
the scattered field before stacking and the time spread of the 
stacked (or beamformed) field are significant issues. In a 
strong scattering environment an angle-dependent separation 
of the wave field may not be valid and a full-field approach 
may be necessary. 
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APPENDIX: ENERGY DENSITIES AND INTENSITIES 
FOR ACOUSTIC AND ELASTIC WAVES 

The mathematical treatment of sound propagation in flu- 
ids and solids is represented by the acoustic and elastic wave 
equations, respectively. However, even though the physics of 
acoustic propagation in compressible, nonviscous fluids is 
included in the elastic wave equation, the traditional deriva- 
tions of the two equations are quite different. For most 
acoustic and seismic applications this distinction is irrel- 
evant, but for seafloor-interaction problems, where acoustic 
and elastic effects are coupled, it is important to reconcile the 
two approaches. In this appendix, we present the concepts of 
energy density and intensity for both acoustic and elastic 
fields and show that they are consistent. The output of the 
numerical scattering chamber is given in terms of energy 
density and intensity for some applications and it is worth- 
while to clearly state how these are defined so that results 
can be integrated and/or compared with other methods. 

The energy density w is the amount of energy in a wave 
at a given position and time and it is the sum of the kinetic 
and potential energy. For an acoustic wave the energy den- 
sity Wac is (Morse and Feshbach, 1953, p. 309) 

W•c= «pv2 + ( 1/2pc2)p 2, (A1) 
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where p and c are the density and sound speed of the me- 
dium, respectively, v is the magnitude of the field (or par- 
ticle) velocity, and p is excess pressure. For elastic waves the 
energy density we• is (Morse and Feshbach, 1953, p. 150) 

I (o•S) 2 i 
where s is particle displacement, 57 is the stress dyadic, and 
• is the strain dyadic. 

For a plane wave propagating in the x direction in a 
homogeneous medium, the acoustic energy density reduces 
to (Morse and Feshbach, 1953, pp. 311-312 with some al- 
gebraic manipulation) 

Wac = p[g'(x - ct)] 2, (A3) 

where g(x-ct) is the velocity potential and ig'(x-ct) is 
the particle velocity. (The unit vectors in the Cartesian direc- 
tions x, y, and z are i, j, and k.) In a homogeneous elastic 
medium the solution to the wave equation separates into 
compressional (longitudinal) and shear (transverse) parts. 
For a plane wave propagating in the x direction, the com- 
pressional and shear energy densities are (Morse and Fesh- 
bach, 1953, p. 150) 

Woorap = ()k q- 2tx)[f"(x - Cct) ] 2, 

Wshear = •[F"(x - cst)] 2, 

where h and p• are Lam6 parameters (/z is the shear modu- 
lus), the scalar displacement potential is f(x-Cct), and the 
vector displacement potential is A=jF(x-cd). The com- 
pressional and shear wave speeds are 

cc: x/(X + 2tx)/p, cs: x/Ix/p. (A5) 

The particle velocities corresponding to the compressional 
and shear waves are -iccf"(x- cd) and -k%F"(x- %0, 
respectively. If the shear modulus vanishes, no shear waves 
are supported, k reduces to the bulk modulus, and the com- 
pressional wave speed reduces to the acoustic wave speed. In 
this case, g'(x-cct)=-c•f"(x-cd) and the compres- 
sional energy density reduces to the acoustic energy density. 

It is often convenient to express the compressional and 
shear energy density in terms of the divergence and curl of 
the displacement field (e.g., Dougherty and Stephen, 1988). 
[(Aki and Richards, 1980), pp. 64-77) discuss the separation 
of the elastic wave equation into two wave equations in 
terms of the compressional and shear potentials.] For com- 
pressional waves, the scalar displacement potential •b by 
definition satisfies the relation u=Vqb. It also satisfies the 
wave equation (Morse and Feshbach, 1953, p. 142) 

øq2{b 2 2 
t½t2 =c•V •b, (A6) 

which has a solution (as assumed above) of qb=f(X-Cct ). 
By substituting the solution f into the left-hand side and 
expanding the right-hand side, we have 

f"(x-cct)= V.V c)= V.u. (A7) 

Similarly for shear waves the vector displacement potential 
A satisfies u=VxA and the wave equation (Morse and 
Feshbach, 1953, p. 143) 

,92A 

c)t2 : -- Cs2V X V xA= cs2V2A, (A8) 
where we have used the identity 

V xV xA= V(V .A)- V2A (A9) 

and the property of A, by definition, that V.A=0. The vector 
wave equation has the solution (as assumed above) of 
A=jF(x- Cst ) and 

F"(x- Cst ) = V xu. (A10) 

The compressional and shear energy densities can then be 
expressed as 

Wcomp: (h q- 2/x)[V .u] 2, Wshear:/x[V xu] 2. (All) 
Field intensity is the same as the density of energy flow 

(Morse and Feshbach, 1953, p. 320), the flux rate of energy 
(Aki and Richards, 1980, p. 127), or the transmitted power 
per unit area (Morse and Feshbach, 1953, p. 151). The acous- 
tic field intensity Sac is (Morse and Feshbach, 1953, pp. 312 
and 343) 

Sac:pv, (A12) 

where p is excess pressure and v is the field (or particle) 
velocity. The elastic field intensity Sel is (Morse and Fesh- 
bach, 1953, pp. 151 and 345) 

c)s 

Sol = - • ."2, (A13) 
where 3s/dt is the particle velocity and "2 is the stress dyadic. 
In a homogeneous, isotropic, elastic medium there are two 
field intensities corresponding to compressional (longitudi- 
nal) and shear (transverse) waves, Scomp and Sshca r- 

In a compressible, nonviscous fluid the field variable is 
velocity potential (½), the field (or particle) velocity is V&, 
and the pressure is -p(c)$/c)t) (Morse and Feshbach, 1953, p. 
343). The velocity potential satisfies the scalar wave equa- 
tion, which has a solution of the form g(x-ct) for a plane 
wave propagating in the x direction. The corresponding 
acoustic field intensity is 

Sac = ipcac[g' ] 2 = i(p2/pCac) (A14) 

and the elastic field intensities [using solutions for the dis- 
placement and shear potentials of f(x- ct) and iF(x- ct), 
respectively] are 

Stomp = i(X + 2kt)Cc[f"] 2 = i( •. + 2/Z)Cc[ V 'U] 2, 
Sshea r = i/Zcs[F"] 2 = i/zcs[ V X u] 2. (A15) 

Again, if the shear modulus vanishes, no shear waves are 
supported, X reduces to the bulk modulus, and the compres- 
sional wave speed reduces to the acoustic wave speed. In this 
case, g'(x-cct)=-c•œ"(x-%t) and the compressional 
field intensity reduces to the acoustic field intensity. In all 
cases, for isotropic media, the field intensity is a vector with 
a magnitude equal to the energy density (w) times the wave 
speed (c) and a direction normal to the wavefront (Morse 
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and Feshbach, 1953, pp. 151 and 312). As defined here the 
field intensity varies with time as the wave passes a given 
point in the medium. 

The expressions for energy density and field intensity 
were derived for plane waves in homogeneous media, but 
both properties are dependent only on the local material pa- 
rameters and require only that the wave be planar in the 
vicinity of the measurement point. It is not unreasonable then 
to apply these expressions to propagation in heterogeneous 
media (Aki and Richards, 1980, p. 127). 

Snapshots of the numerical scattering chamber display 
the compressional and shear "amplitude densities," 
- ,f•+2p.V-u and -x/-fi•Vxu, respectively. For body 
waves in homogeneous or gradually changing material with 
nearly planar wavefronts, the magnitude of the amplitude 
density is the square root of the energy density, and the sign 
information in the waveform is retained. For interface waves 

the amplitude densities are still defined, but compressional 
and shear effects are coupled and the amplitude densities no 
longer have a simple relationship to energy. These are the 
same quantities that were plotted in the snapshots of Dough- 
erty and Stephen (1988). 

In the numerical scattering chamber, time series for re- 
ceivers in the water column and in the elastic bottom record 

the normalized dilatation (d), -(X+23t)?-u, and the nor- 
malized rotation (r), -/zVxu, not to be confused with the 
amplitude density defined above. In a fluid, where the shear 
modulus is zero, the normalized dilatation equals the pres- 
sure. Thus the normalized dilatation and rotation are the 

analogous quantities in a solid to the pressure in a fluid. The 
acoustic field intensity in the fluid and the compressional and 
shear field intensities in the solid are then simply 

p2 d 2 r 2 
Sac=i pea--- • ' Scømp=i pc c ' Sshear=i pc, (AI6) 

Since field intensity is the basis for the determination of 
scattering coefficients, scattering out of the bottom of the 
numerical scattering chamber into the lower homogeneons 
solid can be treated in a fashion analogous to scattering up 
into the water column. 

For many applications only the time average of the mag- 
nitude of the field intensity is of interest. It is assumed that 
the direction of propagation at a given point is constant over 
the time history of the wave and that locally the propagation 
can be treated as a plane wave in homogeneous media. Fol- 
lowing Burdie (1991, p. 30), we refer simply to the intensity 
I: 

l-(ISI)=(w)c. (AI7) 

The intensity of a plane acoustic wave in a homogeneous 
medium with density p and sound speed c is (Burdie, 1991) 

2 
I = Prm•lpc, (A 18) 

where P•s is the root mean square of the pressure time series 
and it is uniform in space. For a spherical wave the intensity 
is 

2 2 
I= ( l/r )(po.•m•/pc), (A19) 

where P0.rm• is the root-mean-square level of the pressure 
time series at unit distance from the source and r is range 
from the source. At large ranges, the spherical wave can be 
considered locally planar and the two expressions for inten- 
sity are equivalent. The intensity level in decibels is 

L = ! 0 1oglo(l/lr•f), (A20) 

where Ire t is a reference intensity. For a pressure pulse in 
water, the reference intensily corresponds to a Prm• of 1/xbar 
and, in cgs units, is 0.667X10 -12 W/cm 2. For wave propa- 
gation in heterogeneous media, we also assume that, over a 
vanishing small volume, the medium is homogeneous and 
the propagation is planar, so that the definition of intensity, 
(1), applies pointwise. 
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