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[1] In the present paper, a composite stochastic model is formulated and validated,
resolving the state-by-state, seasonal and interannual variabilities of HS. The model is a
combination of two cyclostationary random processes modeling the variability of
mean monthly values and mean monthly standard deviations, respectively, and of a
stationary random process modeling the residual, state-by-state, variability. In this way, the
time series of significant wave height is given the structure of a multiple-scale
composite stochastic process. The present model is a generalization of the nonstationary
stochastic modeling introduced by the authors in previous works.
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multiple scales, combining various sources of data, J. Geophys. Res., 111, C10001, doi:10.1029/2005JC003020.

1. Introduction

[2] It is well known that long-term time series of signif-
icant wave height exhibit a number of features, namely
random variability, serial correlation, seasonal periodicity
and, possibly, a long-term climatic trend, evolving in
different time scales. The first two authors have established
a nonstationary modeling in a series of works [Athanassoulis
and Stefanakos, 1995, 1998; Stefanakos, 1999; Stefanakos
and Athanassoulis, 2001, 2003; Stefanakos and Belibassakis,
2005], according to which a many-year long time series of
significant wave height is modeled as a cyclostationary
stochastic process with yearly periodically varying mean
value and standard deviation. A multiyear long-term trend
can also be included in the model, if the data show that
such a trend is present [see, e.g., Athanassoulis and
Stefanakos, 1995; WASA Group, 1998; Carter, 1999;
Marshall et al., 2001] (and references cited therein). In
the present work, we shall disregard this question, since the
data we have at our disposal are not long enough to resolve
this feature.
[3] Last decades, measurements from satellite altimeters

have made available a large amount of wave data with a
worldwide coverage. These data sets have been used for
various sea wave applications, such as extreme value
calculations [Charriez et al., 1992; Barstow and Krogstad,
1993; Cooper and Forristall, 1997; Panchang et al., 1999],
wave climate studies [Tournadre and Ezraty, 1990; Tournadre,
1993; Carter et al., 1995], etc.
[4] Further exploitation of satellite data can be accom-

modated by combining them with other sources of data

(e.g., buoy measurements) to provide wave information for
climatological and/or operational purposes. The present
authors have developed a methodology for integrating wave
data from different sources, combining especially long-term
satellite altimeter data with a restricted amount of buoy
measurements [Athanassoulis et al., 2003]. This methodol-
ogy exploits the nonstationary modeling of the HS time
series [Athanassoulis and Stefanakos, 1995], permitting to
distinguish between the state-by-state (hourly) scale and the
seasonal scale and, thus, to associate the hourly scale with
the buoy measurements, and the seasonal scale with the
satellite measurements. In this way, different features can be
estimated by means of different type of data.
[5] The purpose of the present work is twofold. First, to

further assess (using a number of long-term data sets from
the Atlantic and the Pacific Ocean) the existing evidence
that seasonal patterns of wave climate can be estimated
equally well by means of either buoy or satellite data.
Secondly, to stochastically model these seasonal patterns,
i.e., the time series of monthly mean values and monthly
mean standard deviations. These time series are given the
structure of cyclostationary processes, independent from the
stationary one used to model the hourly variability. In this
way, a multiple-scale composite stochastic process is
obtained providing an enhanced modeling of long-term
time series of significant wave height. This model can be
exploited for blending (integrating) available data from
different sources, estimating different-scale features by
using data from different sources. For example, already
available satellite data can be integrated with a short (thus
affordable and feasible) period of in situ buoy measure-
ments, to obtain an artifact of a long-term measured time
series. This kind of data is highly desirable for a number of
important applications such as, e.g., coastal morphodynam-
ics (sediment transport, beach erosion), coastal work plan-
ning, direct numerical simulation of nonlinear long-term
responses of offshore structures, prediction of long-term
extremes, down-time analysis etc.
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[6] The structure of this paper is as follows. First, the
stochastic modeling of Athanassoulis and Stefanakos
[1995] is briefly presented and reformulated in accordance
with the needs of the present work. Then, various statistics
are introduced, defined by means of either time series of
buoy measurements or space-time series of satellite data,
associated with a given site. Systematic comparisons of the
various statistics based on the two data sources are then
presented, revealing which ones are interchangeable in the
description of the seasonal patterns. After this assessment,
the two time series of mean monthly values and mean
monthly standard deviations are modeled as cyclostationary
processes. Because of the established interchangeability of

buoy and satellite statistics in the seasonal scale, the
parameters of the above models can be estimated either
from buoy measurements or from satellite data. A compos-
ite stochastic model is then obtained, integrating the three
separate models, and giving a stochastic description of both
hourly variability and second periodicity. Finally, a general
discussion and some conclusions concerning the extent of
applicability and the necessary precautions in using the
present approach are presented.
[7] The data used in the present work come from two

sources. First, long-term time series of significant wave
height from buoy measurements; see Figure 1 and Table 1.
Buoy data are either freely available in the Internet through
the site of the National Data Buoy Center, National Oceanic
and Atmospheric Administration (NDBC/NOAA) or have
kindly been provided by J. Gagnon, Marine Environmental
Data Service (MEDS). Second, long-term space-time series
of significant wave height from various altimeters around
the buoy locations. Satellite data come from the archive of
Fugro OCEANOR and has been extracted using its ad-
vanced software tool WWA. Note that the NDBC/NOAA
buoys are some of the several buoys used in deriving the
calibration procedure applied to satellite altimeter data sets
[see, e.g., Krogstad and Barstow, 1999]. In the first phase,
altimeter data used have (at least partial) overlapping in time
with buoy measurements; namely Geosat and Topex altim-
eters (Geosat: 11.1986–12.1989 and Topex: 9.1992–
12.1998). In a second phase, data from all available altim-
eter have been processed and compared with buoy data. In
Table 2, a complete list of satellite data is given.

2. Modeling and Analysis of a-Hourly
Long-Term Time Series

[8] The terminology ‘‘a-hourly’’ time series is used
in order to denote any time series of measurements with
time step Dt = a hours. Usually, spectra or spectral
parameters are recorded (or calculated) every 1, 3, 6 or
12 hours, thus a = 1, 3, 6, 12. However, any value 1 � a �
12 is possible.
[9] Let us denote by X(ti), i = 1, 2,. . ., I, the a-hourly

many-year long time series of significant wave height HS(t)
or an appropriate transform of it . Usually, the
shifted logarithms of HS(t) are considered, i.e., X(t) =
[log HS(t) + c], where c is a small positive constant between
0.2 m and 1 m. The constant c is introduced in order to avoid
zeros and minimize the skewness of the probability distri-
bution of X(t). The log-transformed data are often approx-
imately Gaussian, which greatly facilitates the analysis and
the simulation procedure. According to the modeling intro-
duced by Athanassoulis and Stefanakos [1995], such a time
series X(t) admits to the following decomposition:

X tð Þ ¼ X tr tð Þ þ m tð Þ þ s tð ÞW tð Þ; ð1Þ

where X tr(t) is any possible long-term (climatic) trend, m(t)
and s(t) are deterministic periodic functions with period of
one year, and W(t) is a zero-mean, stationary, stochastic
process. The functions m(t) and s(t) are called seasonal
mean value and seasonal standard deviation, respectively,
and are used to describe the exhibited seasonal patterns. In
the sequel, we shall consider that X tr(t) = X = const and this

Figure 1. Examined sites in the (a) Atlantic Ocean and
(b) Pacific Ocean.
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constant will be incorporated into m(t). Let it be noted that,
the whole methodology presented herein can be equally
well applied to the case where a climatic trend X tr(t) is
present, if the data (from the same or other sources) permits
us to identify such a trend.
[10] Thus, in the present work, decomposition (1) will be

rewritten as

X tð Þ ¼ m tð Þ þ s tð ÞW tð Þ: ð2Þ

[11] The principal aim of the present work is to examine
if and how it is possible: (1) to assess the methodology of
obtaining reasonable estimates of m(t) and s(t) by means of
satellite data, and (2) to model m(t) and s(t) as two
cyclostationary processes, with similar structure as process
modeled by equation (2), and then embed them in model
(2).
[12] The time series X(t) is usually reindexed, in order to

properly treat variability at different time scales, by using
the double Buys-Ballot index (j, tk), where j is the year
index and tk ranges within the annual time [Athanassoulis
and Stefanakos, 1995]. In the present work, a triple index of
similar philosophy, introduced by Athanassoulis et al.
[2003] and denoted by (j, m, tk), will be used. The first
component j is again the year index. The second component
m is a month index, ranging through the set of integers {1,
2,. . ., M = 12}. The third component tk represents the
monthly time, the index k ranging through the set of integers
{1, 2,. . ., Km}, where Km is the number of a-hourly
observations within the m-th month. Clearly, the meaning
of the symbol tk in the triple index (j, m, tk) used herewith,
is different from the meaning of the same symbol in the
double index (j, tk), used in previous studies [Athanassoulis
and Stefanakos, 1995; Stefanakos and Athanassoulis,
2001].
[13] According to the new, three-index notation, the time

series X(ti) is reindexed as follows:

X j;m; tkð Þ; j ¼ 1; 2; . . . ; J ;f
m ¼ 1; 2; . . . ;M ; k ¼ 1; 2; . . . ;Kmg: ð3Þ

[14] The three indices (j, m, tk) represent three different
time scales, making it possible to explicitly define statistics

with respect to each one of them, separately. In the follow-
ing sections, use will be made of the subscripts 1, 2, 3 to
denote various statistics (mean value and standard devia-
tion) with respect to the corresponding (first, second, third)
index. In order to clarify the structure of this notation, we
present a number of examples, some of which will also be
used in the sequel:

M1 m; tkð Þ ¼ 1

J

XJ
j¼1

X j;m; tkð Þ; ð4aÞ

S1 m; tkð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ
j¼1

X j;m; tkð Þ �M1 m; tkð Þ½ 
2
vuut ; ð4bÞ

M3 j;mð Þ ¼ 1

Km

XKm

k¼1

X j;m; tkð Þ; ð4cÞ

S3 j;mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Km

XKm

k¼1

X j;m; tkð Þ �M3 j;mð Þ½ 
2
vuut : ð4dÞ

Table 1. Metadata Information (Identification Code, Location, Depth and Period) of Buoy Measurements Used

Identification Code Source Lat, �N Long, �W Depth, m Period

Atlantic Ocean
41001 NDBC/NOAA 34.68 72.64 4389 1978–1998
41002 NDBC/NOAA 32.28 75.20 3786 1978–1998
44003 NDBC/NOAA 40.80 68.50 N/A 1979–1984
C44137 MEDS 41.32 61.35 4500 1988–1997
C44138 MEDS 44.25 53.62 1500 1988–1997
C44141 MEDS 42.12 56.13 4500 1990–1997

Pacific Ocean
46003 NDBC/NOAA 51.85 155.92 4709 1978–1998
46004 NDBC/NOAA 51.00 136.00 N/A 1978–1988
46006 NDBC/NOAA 40.84 137.49 4023 1977–1998
51002 NDBC/NOAA 17.19 157.83 5002 1992–1998
51003 NDBC/NOAA 19.40 160.81 4883 1992–1998
51004 NDBC/NOAA 17.44 152.52 5304 1992–1998

Table 2. Metadata Information (Altimeter Name, Duration and

Period) of Satellite Measurements Used

Altimeter Duration, years Period

First Phase
Geosat 3 1986.11.09–1989.09.26
Topex 6.5 1992.09.26–1998.12.29

Second Phase
Topex-all 10 1992.09.26–2002.08.09
Geosat-Follow On 6 2000.01.08–2005.12.07
Jason 3.5 2002.01.15–2005.09.12
Topex2 3 2002.09.26–2005.09.10
Envisat 3 2002.10.04–2005.09.15
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[15] Similarly, by successively taking mean values with
respect to two indices, we can also define two-index
statistics. For example:

M13 mð Þ ¼ 1

Km

XKm

k¼1

1

J

XJ
j¼1

X j;m; tkð Þ ¼ M31 mð Þ: ð4eÞ

[16] In the next sections, we formulate appropriate esti-
mates of seasonal patterns m(t) and s(t), based on the
above presented statistics.

3. Modeling and Analysis of Monthly Mean
Values

3.1. Buoy Measurements

[17] It is a straightforward matter to define the time
series of monthly mean values (MMV) of X(ti). In fact,
equation (4c) defines this time series by averaging a-hourly
observations over each month. In Figure 2, the MMV time
series, obtained from the a-hourly time series mentioned in
Table 1, is presented as solid circles. AveragingM3(j, m) over
all the examined years, we obtain the overall MMV (per
month):

~M3 mð Þ ¼ 1

J

XJ
j¼1

M3 j;mð Þ ¼ M31 mð Þ ¼ M13 mð Þ: ð5aÞ

[18] The time series of monthly standard deviations
(MSD) of X(ti) is defined by means of the equation (4d).
See also Figure 2, where it is shown as a sequence of open
circles. Averaging S3(j, m) over all the examined years, we
obtain the overall MSD (per month):

~S3 mð Þ ¼ 1

J

XJ
j¼1

S3 j;mð Þ: ð5bÞ

[19] It should be noted that ~S3(m) is not the standard
deviation of the time series M3(j, m). The selection of ~S3(m)
as the representative quantity for the variability of MMV
M3(j, m) about the overall MMV ~M3(m) has been dictated
by the data analysis. Indeed, after extensive numerical
experimentation it was found that it is exactly this quantity,
i.e. ~S3(m), that can be related with (estimated by) an
appropriately defined quantity obtained from satellite altim-
eter measurements; see next section. Further, in a subse-
quent section, an attempt will be made for the stochastic
modeling of monthly series M3(j, m) and S3(j, m) of
equations (4c)–(4d).

3.2. Satellite Measurements

[20] Let us now turn our attention to satellite altimeter
measurements of HS, obtained along specific (satellite
dependent) ground tracks. Clearly, successive satellite
observations are not referred to the same point in the sea.
Thus, satellite wave data do not have the structure of a time
series. If, however, we assume that the wave field is
spatially homogeneous for an area SA, surrounding a spe-
cific site of interest A, then we can associate to this site all
satellite observations within the area SA [Tournadre and
Ezraty, 1990; Panchang et al., 1999]. Of course, the extent

and the shape of the area SA are satellite dependent
(sufficient data), and site dependent (local meteorological
conditions).
[21] Then, the set of the observations (population) can be

given the structure of a three-index data set [Athanassoulis
et al., 2003]:

X sat j;m;c‘ð Þ; j ¼ 1; 2; . . . ; J ;f
m ¼ 1; 2; . . . ;M ; ‘ ¼ 1; 2; . . . ; Lmg; ð6Þ

where again j is the year index, m is the month index, and c‘

is just a monthly counter, i.e., an index counting the number
of observations within the area SA, during the month m of
the year j. Clearly, for given values of j and m, the
individual values X(j, m, tk), k = 1, 2,. . ., Km, and Xsat(j, m,
c‘), ‘ = 1, 2,. . ., Lm, are not directly comparable.
[22] Despite the structural differences between the data

sets X(j, m, tk) and Xsat(j, m, c‘), it can be expected that
appropriate statistics of X(j, m, tk) can be approximated by
analogous statistics of Xsat(j, m, c‘), provided that the sea
area SA has been chosen appropriately. This expectation is
based on the following assumptions concerning the time-
space field of significant wave height HS(t,~r), where t is
time and ~r is the horizontal position of the measurement
point: (1) Observations X(j, m, tk) and Xsat(j, m, c‘) are
considered as two different samples from the same field
HS(t,~r). (2) HS(t,~r = const) is (approximately) stationary
within each month. (Of course, in finer scales, short-
duration energetic events (e.g., frontal passages) may occur
that do not comply with the stationarity assumption. These
events, which should be modeled by using different (finer
scale) stochastic processes, will be not considered here.)
(3) HS(t = const,~r) is (approximately) homogeneous within
the area SA. (4) A dispersion relation holds for the wave
field HS(t,~r) [Tournadre, 1993, section 5.3].
[23] Some results concerning the correspondence of tem-

poral and spatial scales of HS(t,~r) have been presented by
Monaldo [1988, 1990], Tournadre [1993], and Krogstad
and Barstow [1999].
[24] The triple-index notation greatly facilitates the defi-

nition of various statistics on Xsat(j, m, c‘), and the
comparison with analogous statistics on X(j, m, tk). We
present below some definitions of monthly mean values
(MMV) and monthly standard deviations (MSD) related
with Xsat(j, m, c‘):

Msat
3 j;mð Þ ¼ 1

Lm

XLm
‘¼1

X j;m;c‘ð Þ; ð7aÞ

Ssat3 j;mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Lm

XLm
‘¼1

X j;m;c‘ð Þ �M3 j;mð Þ½ 
2
vuut ; ð7bÞ

~Msat
3 mð Þ ¼ 1

J

XJ
j¼1

Msat
3 j;mð Þ; ð8aÞ

~Ssat3 mð Þ ¼ 1

J

XJ
j¼1

Ssat3 j;mð Þ: ð8bÞ
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[25] Definitions (7a)–(7b) and (8a)–(8b) correspond to
(4c)–(4d) and (5a)–(5b), respectively.
[26] Clearly, M3

sat(j, m) and S3
sat(j, m) are monthly time

series generated by spatial/time averaging over the area SA.
In Figure 2, these time series, calculated from Geosat
(1986–1989) and Topex (1992–1997) altimeter data are
shown with solid line for M3

sat(j, m) and with dashed line for
S3
sat(j, m). For comparison purposes, M3(j, m) and S3(j, m),
based on buoy measurements are plotted as solid and open
circles, respectively. As can be seen from Figure 2, the
agreement between satellite monthly values and buoy
monthly values is very satisfactory.
[27] It should also be stressed that, concerning the over-

lapping between the period of in situ measurements and the
period of the satellite measurements (Geosat: 11.1986–
12.1989 and Topex: 9.1992–12.1998), there are four cases:
(1) buoy period completely overlaps with satellite (buoys:
41001, 41002, 46003, 46006), (2) buoy period partially
overlaps with satellite (buoys: C44137, C44138), (3) buoy
period overlaps only with Geosat (buoys: 44003, 46004),

and (4) buoy period overlaps only with Topex (buoys:
C44141, 51002, 51003, 51004), see also Table 1.
[28] From the analysis above, it seems reasonable to

consider M3
sat(j, m) and S3

sat(j, m) as substitutes for M3(j, m)
and S3(j, m). However for our study the weaker assumption
that the monthly time series M3

sat(j, m) and S3
sat(j, m) are

statistically equivalent with the monthly time series M3(j, m)
and S3(j, m), is sufficient.

4. Mean Seasonal Patterns

[29] The mean values (over a number of years) ~M3(m)
and ~S3(m) are defined as the mean seasonal patterns (at a
given site in the sea). Based on the assumption of statistical
periodicity of the wave climate, we expect that ~M3

sat(m) �
~M3(m) and ~S3

sat(m) � ~S3(m). The couples ( ~M3(m), ~M3
sat(m))

and (~S3(m), ~S3
sat(m)) are shown in Figure 3 by a solid (buoy)

and a dashed (altimeter) line. The agreement between
~M3(m) and ~M3

sat(m) is, in general, very good, except for
some (localized in time) discrepancies that might be (partly)

Figure 2. Time series of monthly mean values (satellite: solid line, buoy: solid circles), and
monthly standard deviations (satellite: dashed line, buoy: open circles). (a) Point 41002, (b) Point
C44138, (c) Point 51003, and (d) Point 46006.
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explained by studying finer-scale meteorological phenomena.
The agreement between ~S3(m) and ~S3

sat(m) is also very
good.
[30] The method of obtaining quantities ~M3

sat(m) and
~S3
sat(m) is further validated by calculating these quantities

based on satellite data not coinciding in time with buoy
measurements; see Table 2. The results of this calculation
are shown in Figure 4 along with the results presented in
Figure 3 for comparison purposes.
[31] In general, the pattern exhibited is impressively good

taking into account the fact that the examined data do not
coincide in time with buoy measurements. Some discrep-
ancies that are present could be partly attributed to local (in
space and time) meteorological phenomena. For example, in
point 41002 the major discrepancies are exhibited in the
month of September, which is the peak period for hurricane
activity in the area; see Table 3. This fact in combination
with the small number of satellite measurements in some
data sets (Jason: 40, Envisat: 17, Topex2: 14) magnifies the

influence of hurricane measurements in the calculation of
mean monthly value of September, resulting in the present
discrepancies.

5. Stochastic Modeling of the Seasonal Patterns

[32] In the present section, the monthly time series M3(j, m)
and M3

sat(j, m), and S3(j, m) and S3
sat(j, m) are given the

structure of cyclostationary processes with yearly periodic
mean value and standard deviation. That is, we assume that

m tð Þ ¼ m1 tð Þ þ s1 tð ÞW1 tð Þ; and ð9aÞ

s tð Þ ¼ m2 tð Þ þ s2 tð ÞW2 tð Þ; ð9bÞ

where mi(t) and si(t) are deterministic periodic functions,
and W1(t) and W2(t) model the residual series. Note that

Figure 3. Seasonal patterns of significant wave height. Comparison of overall monthly mean values
~M3(m) ( ~M3

sat(m)) and overall monthly standard deviations ~S3(m) (~S3
sat(m)) from buoy (solid line) and

satellite (dashed line) measurements. (a) Point 41002, (b) Point C44138, (c) Point 51003, and (d) Point
46006. (Coincident data.)
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mean values m1(t) and m2(t) are estimated by means of
~M3(m) (or ~M3

sat(m)), and ~S3(m) (or ~S3
sat(m)), respectively.

Working similarly, s1(t) and s2(t) are estimated as follows:

sdM3 mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ
j¼1

M3 j;mð Þ � ~M3 mð Þ
� �2

vuut ; ð10aÞ

sdS3 mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ
j¼1

S3 j;mð Þ � ~S3 mð Þ
� �2

vuut ; ð10bÞ

if buoy data are considered, or

sdMsat
3 mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ
j¼1

Msat
3 j;mð Þ � ~Msat

3 mð Þ
� �2

vuut ; ð11aÞ

sdSsat3 mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ
j¼1

Ssat3 j;mð Þ � ~Ssat3 mð Þ
� �2

vuut ; ð11bÞ

if satellite data are used.

Figure 4. Seasonal patterns of significant wave height. Comparison of overall monthly mean values
~M3(m) ( ~M3

sat(m)) and overall monthly standard deviations ~S3(m) (~S3
sat(m)) from buoy (solid line) and

satellite (dashed line) measurements. (a) Point 41002, (b) Point C44138, (c) Point 51003, and (d) Point
46006. (Noncoincident data.)

Table 3. Hurricanes in September Near Point 41002

Altimeter Date, yyyymmdd HS, m Hurricane

Geosat 19890907 5.01 Gabrielle
Topex 19960905 6.08 Fran
Topex-all 19960905 6.30 Fran

19990915 5.14 Floyd
Geosat-Follow On 20050911 5.91 Ophelia
Jason 20020909 5.03 Gustav

20050914 5.40 Ophelia
Topex2 20030917 10.02 Isabel

20050910 5.63 Ophelia
Envisat 20030917 6.25 Isabel

20040920 5.77 Jeanne
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[33] It should be noted here that the processes
appearing in equations (9a)–(9b) are being evolved on
monthly time scales, while the stationary process W(t),
appearing in equations (1)–(2), evolves on an a-hourly
time scale.
[34] Thus, the processes m(t), s(t), W1(t) and W2(t) can

be considered independent from W(t).
[35] In order to check the validity of the models (9), the

autocorrelation coefficient function (acf) of the residual
series W1(t) and W2(t) have been computed and examined.
In Figure 5, the acf’s of W1(t) for four sites are shown.
One can observe that acf’s become approximately zero
from the first lag. The same holds true for the acf’s of
W2(t). That is, residual series W1(t) and W2(t) can be
considered uncorrelated.
[36] In order to study the nearness of the probability

distribution of the residual values coming from the buoy
and the satellite measurements, we have plotted the quan-
tiles of the empirical distribution based on the buoy data
against the corresponding quantiles based on the satellite
data; see Figure 6. This is a version of the well-known QQ

plot [Wilk and Gnanadesikan, 1968]. The results are very
near to the straight line, which means that the data from the
two sources can be considered to belong to the same
population.
[37] Another application of the QQ plot is shown in

Figure 7. In this figure, the quantiles of the empirical
distributions coming from buoy and satellite data for the
series W1(t) are compared with the quantiles of the stan-
dardized normal distribution N(0,1). Again, results are very
near to the straight line, i.e. we can say that the data from
both sources belong to the normal distribution with zero
mean and standard deviation unity. The same result holds
true for W2(t). Results for all points mentioned in Table 1
are available from the authors upon request.

6. Multiple-Scale Stochastic Model

[38] By combining equations (2) and (9a)– (9b), we
obtain the following composite stochastic process:

X t; bm;bs; g
� 	

¼ Xm t; bm

� 	
þ Xs t;bsð Þ W t; gð Þ; ð12Þ

Figure 5. Autocorrelation coefficient function of W1(t) for the points 41002, C44138, 51003, and
46006. Solid line: buoy data, dashed line: altimeter data.
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where Xm(t; bm) and Xs(t; bs) are cyclostationary random
processes of the form

Xm t;bm

� 	
¼ m1 tð Þ þ s1 tð ÞW1 t; bm

� 	
; ð13Þ

Xs t; bsð Þ ¼ m2 tð Þ þ s2 tð ÞW2 t;bsð Þ; ð14Þ

modeling the variability of mean monthly values and mean
monthly standard deviations, respectively, and W(t; g) is a
stationary random process modeling the residual, state-by-
state, variability (bm, bs, g are appropriate stochastic
arguments).
[39] In this way, the time series of significant wave height

is given the structure of a multiple-scale compound sto-
chastic process. Model (12) is a generalization of the
nonstationary stochastic model introduced by Athanassoulis
and Stefanakos [1995].
[40] The parameters of both processes Xm(t; bm) and Xs(t;

bs) are obtained equally well by means of either buoy or

satellite measurements, whereas the parameters of process
W(t; g) are estimated using only buoy measurements.
[41] Thus, if, for example, a restricted amount of buoy

data (say, one year) is available, and several years of
satellite altimeter measurements, model (12) can be used
to derive a many-year long time series by simulation, which
combines all the basic statistical structure of the wave data.
The whole methodology can be considered as an efficient
way of blending (integrating) already available satellite data
with a short (thus affordable and feasible) period of in situ
measurements, to obtain an artifact of a long-term measured
time series.
[42] If we compare equation (12) with equation (2), we

see that the new feature introduced in the new modeling is
an additional sampling variability of purely random nature.
These random variabilities permit us to represent more
accurately (realistically) the slowly varying (monthly) mean
values. Also, the compound model (12)–(14) is expected to
be more appropriate for simulation purposes.

Figure 6. QQ plot of the quantiles of the empirical distributions of W1(t) for the points 41002, C44138,
51003, and 46006.
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[43] In order to further demonstrate the advantages of
stochastic modeling (12), an example for the extreme-value
prediction of the wave height will be given. A new
enhanced method for the calculation of return periods of
significant wave height, called MENU method, will be
applied, exploiting the nonstationary modeling (12). For a
description of MENU method; see Stefanakos [1999],
Stefanakos and Athanassoulis [2006], and Stefanakos and
Monbet [2006].
[44] For the application of MENU method, two compo-

nents are required: (1) estimations of the seasonal mean
value and seasonal standard deviation and their derivatives,
and (2) estimations of the parameters of the joint probability
density function of W(t) and W(t + t).
[45] First, estimates of 1 are produced using all available

satellite data mentioned in Table 2, regardless if they
coincide (or not) in time with buoy data. In Figure 8, the
return periods of significant wave height for the point 46006
are shown using all the above mentioned estimates. If
results based on buoy data are considered as the more
reliable, then one can observe how close are the results

Figure 7. QQ plot of the quantiles of the empirical distributions of W1(t) against the quantiles of the
standardized normal N(0, 1) for the points 41002, C44138, 51003, and 46006.

Figure 8. Return periods of significant wave height for the
point 46006.
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based on the various satellite altimeters. For example,
concerning the value of wave height corresponding to return
period 50 years (the so-called 50-year wave height), all
values range from 33.84 m (Buoy) to 27.99 m (Envisat).
That is, the span between the minimum and the maximum
value is only 17% of the maximum value. If, further, the
Envisat estimate is excluded, the minimum value is 30.05 m
(Jason) and the corresponding span is only 11.2% of the
maximum value.
[46] Second, keeping estimates of 1 from only one

altimeter (Topex-all), the estimates of 2 are calculated using
(1) the whole amount of data and (2) shorter five-year long
data sets. The estimated return periods are depicted in
Figure 9, along with the results based on the buoy and the
initial altimeter data. One can observe that shorter time
series (of, say, five years) can equally well be used for
extreme-value calculations. Moreover, the span between the
minimum and the maximum value is less than in the
previous case; namely 6.7% of the maximum value.

7. Conclusions

[47] In the present work, we have established a multiscale
compound stochastic process for modeling the time series of
significant wave height HS; see equation (12). In this model,
different kinds of measurements from different sources,
each one resolving a different time scale, can be used for
the estimation of the parameters of the model.
[48] In the present work we have used buoy measure-

ments for the state-to-state correlation structure, and satellite
altimeter measurements for describing the mean seasonal
pattern and the seasonal variability. The key point is that we
can use the seasonal pattern as obtained from appropriately
defined satellite monthly values, in order to deseasonalise
the buoy measurements. Then, by analysing the deseason-
alised buoy measurements (which can be assumed to be a
stationary stochastic process [see, e.g., Athanassoulis and
Stefanakos, 1995; Athanassoulis et al., 2003], we can
estimate the correlation structure associated with the state-

to-state scale by calculating the corresponding autocorrela-
tion (or spectral density) function.
[49] In applying the model (12) (having determined its

parameters using data from different sources), we should
bear in mind that, in principle, it contains exactly those
characters that have been resolved in the stage of the
analysis procedure. For example, intermediate scale phe-
nomena (e.g., energetic frontal passages) not complying
with the constitutive assumptions of our model are not
included in it. There are, however, various benefits in using
a carefully estimated model like (12), instead of a unique
measured sample. For example, the model is free from gaps
(missing values), it permits the performance of sensitivity
studies either by obtaining a population of realisations (by
using various independent identically distributed (iid) sam-
ples of the generating random sequence) or by varying the
parameters of the model and, also, it gives us the ability to
treat more complex problems by combining the present
model with other ones.
[50] Among various possible generalisations of the model

(12) and its applications, the following seems to be the most
interesting one. The generalisation towards the inclusion of
other phenomena evolving in different time scales. For
example, finer scale phenomena may be modeled by
pulse-like processes [see, e.g., Lopatoukhin et al., 2000,
2001], while longer-scale phenomena might be included by
introducing additional (longer) periods in the cyclostation-
ary model (12).
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