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It has been demonstrated by the studies of Stokes (1847) and Levi-
Civita (1925) that surface waves of finite height which are rrotational
and periodic can exist in a liquid under the influence of gravity.
Furthermore, it was pointed out by Stokes that such waves produce
a transport of mass in the direction of propagation and hence possess
a certain horizontal momentum relative to the undisturbed water at
oreat depths. The present purpose of the writer 1s to show that there
exists a simple relationship between the momentum and the kinetic
energy in such wave motion. An equation of gimilar form was first
derived by Levi-Civita (1924) using a different approach, but, so far
as the writer is aware, no oceanographic applications of it have been
made.! It is possible that the relationship may be of significance in
the study of wave growth due to wind action.

The theory for waves of finite amplitude, developed by the writers
mentioned above, indicates that the waves are symmetrical about the
crests and troughs, not only at the surface but also at greater depths,
although there 1s a rapid diminution of the amplitude downward.
This circumstance implies that there is no variation of phase of the
waves with depth. Also the theory indicates that the speed of propa-
gation ig constant, and that the waves travel without alteration of
their form at the surface or below. The fluid motions are assumed to
take place without any viscosity being present, and relative to a non-
rotating coordinate system, so that the treatment does not include the
effects of Coriolis forces. Since there are no motions or variations in
the motions in the direction parallel to the crests of the waves, 1t
suffices to consider a vertical section across the crests as shown sche-
matically in Fig. 35. The problem may thus be considered as one in
two-dimensional motion.

We shall suppose that the actual waves are propagated from left to
right in the figure, but in order to treat the problem as one in steady-
state motion we shall suppose that a constant translation from right

1 A somewhat similar relationship was derived by Rayleigh (1914) for the case of
long waves by approximate methods.
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Figure 35. Schematic cross section of a wave normal to the wave cresis.

to left, equal to the wave speed ¢, has been added to the actual motions.
This artifice does not alter the fundamental properties of the dynamic
system and produces greater simplicity in the picture of the motions.
The vertical coordinate z is counted positive upward and has its
origin in the undisturbed free surface of the water. The horizontal
coordinate z is counted positive to the right and has its origin at a
crest. The free surface Z is a streamline in the steady-state motion.
Other streamlines similar to Z, but with progressively smaller ampli-
tudes, lie below Z, but these are not shown in the diagram. The hori-
zontal line 2 = — D is assumed to be located at a sufficiently great
depth where the wave disturbance is no longer of sensible intensity.

Since the motion is irrotational, it follows that we may introduce a
velocity potential ¢ such that

ad a

U=—— ; w=— -, (1)
9z 9z

Here U is the particle veloeity in the p-direction, and w is the particle
velocity in the z-direction, in the steady-state motion. If drawn in the
diagram, lines along which ¢ is constant would constitute a set of
curves orthogonal to the streamlines, and hence it follows that ¢ has a
constant value at the verticals x = 0 and z = L (where L is the wave
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length). The velocity potential is indeterminate to the extent of an
arbitrary additive constant so that we may choose ¢ to be zero at v =
0. At thedepthz = — D the motion of the fluid is a simple horizontal
translation at the rate ¢, so that here U = — ¢. Integration of the
first equation in (1) thus gives the value for ¢ at z = L to be cl.

By the use of Green’s theorem it can be shown that the velocity
potential cbeys the following equation in a simply-connected space
(see Lamb, 1932):
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In this equation ds is an element of surface area of the volume con-
sidered, and d¢/dn is the derivative along the inward normal to this
area. In our application of this relatzonshlp ad/dy =0, and the
volume integral becomes an area integral, since we are concemed with
a section of unit thickness. The right-hand member of (2) becomes a

line integral. Choosing the region bounded by the verticals z = 0 and
x = [, the free surface Z and the line z = — D,"the only nonvanish-
ing contribution to the right-hand member of (2) results from the
mtegration along the vertical at z = L, because ¢ = 0 at ¢ = 0 and

dd/dn = O along the free surface and the line (streamline) z = — D,
Since dp/dn = 4 Upatz = L, we get
' L z z,
/f(U"—!—w)cZ.od@~—~chULd¢ (3}
-D

after substitution from (1) in the left-hand member (71 is the value of
Z at z = [). The integral on the right of (3) is simply the volume
transport between the two streamlines considered, and hence we may
replace 1t by a similar integral at an arbitrary vertical so that

z
f UL dz = f Udz = constant . (4)
~D

Introducing the horizontal velocity component u, which is present
in the actual wave motion, and which is related to U by the equation

U=uy—c¢, (5)

we may rewrite (3), after substituting from (4), as follows:
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]fuz—kwg—2cu+6) =—"C-‘5/(u—*c ) dz. (6)

Since the area over which the integration extends is equal to LD
because of the choice of the origin for z, it is possible to simplify (6)
so that we have

L z z
ff (1 4+ w* — 2eu) dzdx + *LD = — chudz + 2L {(Z + D),
0 -D iy
and finally,
L z L z
f f (u? + w?) dedz — 2¢ f f wdzdzr =
i -D i —D z
— chudz +cLZ =K, (7)

-D

where K i3 a quantity which is independent of z. From the last
equality in (7) we obtain by integration over one wave length

L =z
= — f f udzdz . 8
¢ -D -

If K is eliminated from (7) by means of {8) and the resulting equation
multiplied by ¢/2, where p 1s the (uniform) density of the fluid, we
obtain the relationship,

z

u‘l’. + w_.
ff ——— d2dz = —f pudedz . )]
0 /

—oG

In view of the fact that the disturbance in the actual wave disappears
at great depths, it is permissible to extend the integration downward
to — .
"~ This last equation states that the kinelic energy per wove length and
per untt distance along the crests of the waves is equal to one half the wave
speed multiplied by the momentum of the same water mass in the direction
of wave propagation. Once the distribution of the velocity potential
in FFig. 35 has been specified, equation (2) can be applied in the manner
described, not only to the region between the surface and depth D,
but to any region bounded above and below by two streamlines and
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by the two verticals at x = 0 and © = L. We might thus choose two
streamlines, Z; and Z,, which give a region whose area in the figure 1s
numerically equal to L, and thus a volume in the section of unit
thickness equal to L. Tor such a material layer we may then write

L Z

R - dedz (10
ffp xm—iiffpitzx.- )
0

1

Tor the material layer considered, equation (10) states that on the
average the kinetic energy per unit volume is equal to the momentum
per unit volume multiplied by one half of the speed of propagation.”

It is of some interest to compare the value of the momentum given
by equation (9) with the value obtained by Lamb (1932), who used the
second order approximation to the wave solution presented by Stokes
(1847). For this purpose it is necessary to have available an expres-
sion for the kinetic energy. Let us take for this quantity the approxi-
mate value given by the small-amplitude theory, namely, ligoa®L,
where @ is the amplitude and g is the acceleration of gravity. Elimi-
nating the product gL from this expression by means of the relation
that 2%¢? = gL, also given by the small-amplitude theory, and placing
the result into (9), we obtain the expression =pa’c for the momentum
per wave length. This is in agreement with the result obtammed by
Lamb, except that in Lamb’s result o 1s, strictly speaking, not the
amplitude but rather an amplitude parameter which becomes very
nearly equal to the amplitude for waves of small beight. It should be
remarked, however, that both the present method and the method
used by Lamb for obtaining the momentum are approximate [although
relation (9) I1s an exact one).

The extent to which the theoretical results obtained in this paper
are directly applicable to surface waves which actually occur in the
ocean is, of course, an open question. The waves which are found in
nature are irregular in general, and the medium in which they are
found departs considerably in its properties from an ideal flud.
Moreover, the motions take place in a rotating coordinate system so
that it would appear that Coriolis forces are of importance in connec-
tion with the momentum associated with the waves, although such
forces are probably of negligible consequence ag far as the purely
oscillatory components of motion are concerned. Temporarily laying

2 This relationship is analogous to the principle in the electromagnetic theory of
light, which states that in the case of plane waves the energy per unit volume is equal
to the electromagnetic momentum per unit volume multiplied by the speed of propa-
gation (see Page and Adams, 1931).
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aside all such difficulties, it is a matter of at least some academic
interest to seec what use might be made of equation (9) in the study of
the growth of waves due to wind action. The possible utility of the
equation for this problem lies in the fact that, whereas it is a matter of
great difficulty to estimate the energy imparted to the sea surface by
a given wind, estimates of the momentum transfer are more eastly
made.

Tor this purpose let us substitute the approximate values mentioned
above for the energy per wave length and for the wave speed ¢, given
by the small-amplitude theory, into (9). The result may then be
written in the form
gLy

2

goa? = 2 (11)

H

where M is the average wave momentum per unit area of the sea
surface. We shall assume that the wave system considered remains
under the influence of a uniform wind which feeds energy and momen-
tum into it during a given period of time. Since for a given wave
length there is a limit to the amount of energy which can thus be fed
into the waves, beyond which the waves break, it must be agsumed that
such breaking does take place and that longer waves with greater
momentum and energy capacities are continually generated. Ior
this reason it might be expected that the ratio of the amplitude a
to the wave length L should be relatively large. The theoretfical
limiting value for this ratio is about 1/14, but it would be unreasonable
to expect that this value would be reached due to the observed irregu-
larities in the waves and to the presence of waves which have not at-
tained the maximum height. As a more reasonable supposition, let us
take an average value of 1/24, so that we have

a 1 1

— e = e 12
L b 24 (12)
Eliminating the amplitude a from (11) by means of (12) and solving
for L, we obtain
8 AL
L~ 4/ 207 M (13)
Tge’ |

Assuming, for purposes of orientation, that the total momentum
transferred from a steady wind over a period of time ¢ is used in creating
waves on an originally undisturbed sea, we have

M =i, (14)
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Here t is the tangential wind stress and hence is the rate at which
momentum is imparted to the sea. Rossby (1936) has given a rela-
tionship for obtaining the stress ¢ in terms of the wind velocity,

namely
T i WHE, (15)

o* being air density, W, the wind at height h and v, a resistance coeffi-
cient appropriate for the level h. If h is approximately 15 meters, the
value of v, is about 5 X 102 when c.g.s. units are used. According
to this formula a wind of 30 knots should produce & stress of about 7
dynes per square centimeter.?

With such a stress equations (13) and (14) give the result that

waves about 430 meters in length should be generated in 24 hours.
The period of such waves would be about 16.6 seconds.* Since waves
of this magnitude are seldom if ever observed in the generating areas,
even with stronger winds than we have assumed, it seems that some of
the premises made above are not proper.

The effect of the tangential wind stress on the motions of water in
the oceans was treated by Ekman (1905), and the results of his studies
are well known o oceanographers. In the present discussion the
question arises whether the mass transport associated with wave
motion is in some manner an integral part of the drift eurrents in the
theory of Ekman, or whether it is superimposed on the drift currents.
As a third possibility, it may perhaps be that, since the wave transport
is not dependent on the presence of internal viscosity, but is, on the

! Pormula (15) is applicable when the sea surface is hydrodynamically “rough.”
This condition is present with wind velocities above about 10 knots. The derivation
of this equation indicates that © is the total rate of momentum transfer to the sea
surface regardless of the details of the mechanism by means of which this transfer is
effected in the immediate vicinity of the water surface.

4 According to the small-arnplitude theory, there exists an equation relating the
wave period 7' to the wave length L. The wave length may be eliminated from

this equation by means of (13). We thus have T = ?jji, which becomes
q

8 st bl | o . o
T = . If ¢ and b are constant, it follows, with the aid of (14), that ihe
g*p

period T is proportional to the cube roof of the time. Under these eircumstances we
may also obtain by differentiation that

147 1 1dL 2

— ez - an] =

Tdt 3t Ld 3
showing that the percentage rate of increase of the period or wave length is inversely
proportional to the time. Similar equations may be written for the wave speed ¢.
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other hand, subject to the effects of Corlolis forces, a composite solu-
tion to the problem can exist which takes into account these properties
of the wave-transport components of the total motion. Whatever
the answer to this question may be, it seems reasonable to suppose
that not all of the momentum which is imparted to the sea by the wind
stress goes into wave momentum, but that most of it is utilized in the
generation and maintenance of drift currents. It 1s thus not surprising
that the calculation of the magnitude of waves generated by a given
wind on the assumption that all the momentum transferred becomes
wave momentum should give too intense wave action. In order to use
equation (13) for the purpose of securing an estimate of the waves
which are actually generated, it would thus be necessary to have
available a criterion to determine what fraction of the momentum
goes into the wave motion.

Carrying these speculations a step further, it may be that during
the growth of wave motion the fraction of the momentum which is
used in creating waves changes as time progresses. Since the develop-
ment of drift currents is dependent upon the presence of eddy viscosity
in the water, and since this turbulent viscosity is relatively small
during the early stages of the process, it is not unreasonable to suppose
that at the beginning a relatively large part of the momentum received
is utilized in a rapid development of wave motion. On the other hand,
during the later stages of the process the continued presence of break-
ing waves probably brings about a large increase in the turbulent
viscosity which in turn renders possible the existence of well developed
drift currents whose maintenance requires a large part of the momen-
tum received, so that but little remains for a further increase in the
wave action. In the end some sort of steady state would thus be
indicated, in which practically all of the momentum goes into the
maintenance of drift currents and no further growth of the waves takes
place, unless the wind conditions should change. That some such
steady state does finally develop with a constant wind is supported
by the fact that there is normally no progressive change in the wave
regime in the large oceanic regions in the trade-wind belts.

The writer wishes to express hig gratitude to Dr. C.-G. Rossby for
many fruitful discussions of the matters touched upon in this paper,
and to Dr. J. Charney and Mr. D. Fultz for reading the manuseript.

[Note—As this paper is going to press the writer has had opportunity to read a very
interesting article by Sverdrup and Munk (1946) dealing with the subject of wave
generation through wind action. These authors present curves depicting the in-
crease of wave height and wave speed with time for an unlimited fetch under the
influence of a constant wind (fig. 3 in their paper). These curves are derived on
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the basis of energy transfer calculations and have been used in the forecasting of
wave formation for practical purposes.

If we accept these results obtained by Sverdrup and Munk as representing the
actual process of wave generation, casual inspection of the curves shows that in the
earlier stages the wave height increases as the two-thirds power of the time and the
wave speed increases as the one-third power of time. This is in agreement with
the equations contained in the present paper, provided that the parameter b is
constant. Numerical computation shows, moreover, that with b = 24 (steepness
about eight per cent), approzimaltely ten per cent of the momenium recetved by the waler
becomes wave momentum during these early stages.  During the later stages both curves
tend to level off showing that probably a smaller and smaller percentage of the
momentum received is utilized in wave growth.]

SUMMARY

In this paper an integral relationship between the kinetic energy and
horizontal momentum of surface waves i derived by simple methods.
A relation of simiiar form was first derived by T. Levi-Civita who used
a different approach. The equation obtained by the writer states that
the kinetic energy per wave length and per unit distance along the
crests of the waves 1s equal to one half the wave speed multiplied by
the momentum of the same water mass in the direction of wave propa~
gation.

An attempt 18 made to utilize this equation for the study of the
growth of waves due to wind action. The possible utility of the equa-
tion in this problem lies in the fact that, whereas 1t 1s difficult to
estimate the energy imparted to the sea swrface by a given wind,
estimates of the momentum transfer are more easily made. Ior the
cage of an imitially undisturbed ocean of large dimensions, subjected
to a constant and uniform wind, a formula 1s obtained which states
that the wave length should increase as the two-thirds power of the
time. Numerical computations show that the wave lengths thus
obtained are too large. It 1s suggested that the discrepancy may be
due to the fact that a certain fraction of the momentum absorbed by
the water is utilized in the generation and maintenance of drift currents.
Further study may show that it is possible to introduce corrections
for such effects.
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