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Abstract

We present statistical analyses of the most extreme wave, crest and trough heights occurring

during 793 h of surface elevation measurements collected during 14 severe storms in the North Sea.

This data contains 104 freak waves. It is shown that the statistics of the extremes of crest and trough

heights depends strongly on the significant wave height. Fitted statistical models are provided and a

procedure presented whereby one may calculate good estimates of the probability distributions,

densities, return periods and other statistics of the extremes of crest and trough heights as functions

of significant wave height.
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1. Introduction

The most extreme waves in any sea state are of great interest to the oceanographic

community. It is these waves that are responsible for the most extreme loadings on ocean

vessels and offshore structures. It is important, therefore, that, during the design process,

navel architects and engineers use statistical models of the relative occurrence of these

potentially dangerous events that are as accurate as possible given the current state of

knowledge of these phenomena. This paper provides statistical models for the relative
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occurrence of the most extreme wave, crest and trough heights measured during severe

storm conditions in deep water.

The term ‘freak wave’ is frequently used in the literature and is commonly defined as a

wave for which the crest-to-trough wave height is more than twice the value of the

significant wave height of the wave record from which it is measured. Thus, a wave is a

freak wave if H�O2H�
1=3, where H* is the zero-crossing wave height and H�

1=3 is the

significant wave height (which is defined as the mean of the highest third of the waves in

the record). Note that dimensional height measures are denoted with a superscripted

asterisk (*) to differentiate them from dimensionless height measures which are introduced

later and denoted without a superscripted asterisk.

In this study, we examine 795 h of wave records measured during periods of severe

storms in the North Sea. This data sample, which is described in detail in Section 2,

contains some 354,000 individual waves and 104 freak waves.

The common expectation is that the Rayleigh distribution over-predicts the probability

of occurrence of large waves (but not necessarily freak waves) when compared with

models fitted to field data (Mori et al., 2002; Nerzic and Prevosto, 1997; Massel, 1996;

Tayfun, 1990, 1981a,b; Krogstad, 1985; Forristall, 1978; Haring et al., 1976). Two recent

studies Mori et al. (2002) and Yasuda and Mori (1997), however, suggest that the Rayleigh

distribution tends to under-predict the probability of occurrence of freak waves, but

detailed statistical models are not given. In a previous paper by the author (Stansell, 2004),

it was shown (using data which is identical to that used in this study) that, the probability

of occurrence of freak waves was severely under-predicted by the Rayleigh distribution. It

was shown that the Rayleigh distribution over-predicted the return period of the most

extreme freak wave in the data by about 300 times when compared to the fitted model.

The same is not true for the probability of occurrence of the largest crest heights as these are

expected to be under-predicted by the Rayleigh distribution (Mori et al., 2002; Al-Humoud

et al., 2002; Nerzic and Prevosto, 1997). This is confirmed and quantified by the results in this

study. To the author’s knowledge, a study of the statistics of extreme troughs heights

measured from field data has not been published in the literature. As expected from

consideration of the high degree of non-linearity of extreme waves, we find that the Rayleigh

distribution considerably under-predicts the probability of occurrence of the extreme crest

heights, but only slightly over-predicts the probability of occurrence extreme trough heights.

A versatile statistical model, particularly suited to modelling the extremes of distributions, is

fitted to the empirical wave, crest and trough height data in the tails of these distributions and

the fitted parameters are given. From these models, one can estimate probability densities,

extreme value densities and return periods for these extremes.
2. The data

The data used in this study are the same as that used and described in Stansell (2004)

The raw data were collected from three Thorn EMI infra-red laser altimeters sampling at

5 Hz and mounted on three of the corners of the North Alwyn fixed steel-jacket oil and gas

platform. The Alwyn North field, operated by TotalFinaElf, is situated in the northern

North Sea about 100 miles east of the Shetland Islands (60848.5 0 North and 1844.17 0 East)
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in a water depth of approximately 130 m. There are two jacket platforms in close

proximity connected by a walkway. The field processing platform, NAA, is the site of all

the sensor and data logging equipment. The logging system is configured so that each

sensor takes five measurement of the sea surface elevation every second. These are

recorded for a duration of 20 min after which the significant wave height for this period,

H�
m0

, is calculated as four times the square root of the variance of the 20-min record. If H�
m0

is greater than 3 m, all three 20-min sea surface records are saved to optical disk ready for

detailed analysis. We define a storm as the period between the start of the first record and

the end of the last, of a continues sequence of 20-min records each satisfying H�
m0

T3 m.

In this study, we analyse data collected over the full durations of 14 separate severe

storm periods. The storms are of varying bandwidth, but all are essentially uni-modal

wind-driven seas without significant swell. To ensure the cleanest data, for each storm, we

only use data from the altimeter which is upwind of the platform.

The raw data were stored as 2381 20-min records of surface elevation measurements.

Note that all wave records are wholly unfiltered: not being smoothed by any means other

than that arising from the finite sampling rate, 5 Hz, of the measurement instruments. This

rate of sampling is sufficiently high to yield an accurate representation of the sea surface

(see Stansell et al. (2002) for a discussion of the effect of sampling rate on the distribution

of sampled wave heights). In a preliminary analysis of these individual 20-min records, the

mean surface elevation was subtracted from each elevation measurement to give a wave

record in units of metres, and denoted by h, which had a mean elevation of zero. From each

h(ti) (excluding those for which jh(ti)j!0.01 m), the time of each zero-crossing was

estimated by a linear interpolation from its positive and negative bracketing points by

tðh Z 0Þ Z ti K
hðtiÞdt

hðtiC1ÞKhðtiÞ
;

where ti is the time of the ith measurement, and dtZtiC1Kti is the sampling period (equal

to 0.2 s). From the set of zero-crossing times, all zero down-crossing waves were identified

in these records. The crest and trough heights for each wave were calculated by H�
c Z

maxðhðtiÞÞ and H�
t ZKminðhðtiÞÞ, where ti ranges over those values of time which lie

between the zero down-crossing times of the wave. The wave height is given by

H�ZH�
c CH�

t . The value of H�
1=3 is then calculated for each 20-min wave record as the

mean of the highest third of the wave heights, H*, in that record. A more detailed summary

of the data from these storms is given in Table 1.

Fig. 1 shows the most extreme wave height ðH�=H�
1=3 Z3:19Þ, which is also the most

extreme crest height ðH�
c =H

�
1=3Z2:46Þ, and Fig. 2 shows the most extreme trough height

ðH�
t =H

�
1=3Z1:42Þ.
3. Statistical analysis

3.1. Non-dimensionalising wave, crest and trough heights

Throughout this study, we compare distributions fitted to measured data with the

predictions of the Rayleigh distribution, and so it is convenient to work in dimensionless



Table 1

Summary statistics for the data used in this study

Storm ID No. of

20-min

records

No. of waves

for which

H�OH�
1=3

No. of

freak

waves

Max

(H*) (m)

Max

ðH�=H�
1=3Þ

Max

ðH�
c =H

�
1=3Þ

Max

ðH�
t =H

�
1=3Þ

23 177 3459 6 21.94 2.08 1.42 1.04

25 111 2295 2 15.88 2.59 1.46 1.12

26 159 3675 4 9.11 2.15 1.40 1.14

27 139 2776 1 15.05 2.40 1.56 1.1

28 144 2986 6 19.51 2.38 2.03 1.09

29 89 1764 12 20.27 2.30 1.86 0.999

90 293 6006 20 23.85 2.65 2.11 1.06

124 173 2975 0 21.14 1.97 1.33 0.994

127 99 1837 2 16.91 2.08 1.36 1.08

132 285 5831 14 13.15 2.3 1.47 1.06

146 91 2023 4 9.15 2.46 1.42 1.42

149 390 6911 25 24.19 2.50 1.87 1.08

172 158 3079 8 21.32 3.19 2.46 1.06

195 73 1347 0 18.72 1.95 1.22 0.973

Combined 2381 46,964 104 24.19 3.19 2.46 1.42
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units. Following Stansell (2004), we define the dimensionless wave height by

H Z
H�

H�
1=3

: (1)

Thus, a freak wave is defined as a wave for which HO2. When cast in these dimensionless

units the Rayleigh distribution becomes

FRðHÞ Z 1 Kexp K
H2

a

� �
; (2)

and the probability density is given by

fRðHÞ Z
2H

a
exp K

H2

a

� �
; (3)

where the value1 aZ0.498926 gives H1/3Z1.

It was shown by Stansell (2004) that the distribution of H is, to a good approximation,

independent of H�
1=3 for the full range 2:5!H�

1=3!12:6 of the data. This allowed

the grouping together of all dimensionless wave height data to give a single statistical

sample, and therefore circumvented problems associated with the non-stationarity of H*.
1 The parameter a is obtained by solution of
ÐN

a ln 3 HfRðH; aÞZ 1
3

which gives

a Z 4ð3
ffiffiffi
p

p
ðerfð

ffiffiffiffiffiffiffiffi
ln 3

p
ÞK1ÞK2

ffiffiffiffiffiffiffiffi
ln 3

p
ÞK2:



Fig. 1. The most extreme freak wave, which is also the most extreme wave crest, shown in context of the 20-min

record, and in detail. This wave is from Storm 172 and has H�
c Z13:90 m, H�

t Z4:14 m, H�
1=3 Z5:65 m, giving

H*Z18.04 m, H�=H�
1=3 Z3:19 and H�

c =H
�
1=3 Z2:46. The zero-crossing period is 9.8 s.
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Unfortunately this is not the case for the crest and trough heights. Performing a similar

scaling for the crest and trough heights according to

Hc Z
H�

c

H�
1=3

; (4)

Ht Z
H�

t

H�
1=3

; (5)

shows the dimensionless crest and trough heights, Hc and Ht, have a far weaker

dependency than H�
c and H�

t on H�
1=3, but, unlike H, the dependency of Hc and Ht is

considered strong enough to warrant their subgrouping based on associated values of H�
1=3.

This is demonstrated graphically as follows.

The data are sorted into 20 equally sized groups according to their values of H�
1=3 For

each of these groups Fig. 3 shows sets of probability quantiles for the dimensional

variables H*, H�
c and H�

t compared with those for the dimensionless variables H, Hc and



Fig. 2. The most extreme wave trough shown in context of the 20-min record, and in detail. This wave is from

Storm 146 and has H�
c Z13:92 m, H�

t Z5:38 m and H�
1=3 Z3:79 m, giving H*Z9.31 m and H�

t =H
�
1=3 Z1:42. The

zero-crossing period is 10.11 s.
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Ht. These quantiles correspond to the nine probability levels pZ{0.1, 0.3, 0.5, 0.7, 0.8, 0.9,

0.95, 0.99, 0.999}. For each probability level the quantiles are connected across groups to

obtain a series of probability contours. Also shown are connecting lines given by a locfit

local regression2 with the 95% confidence bands. In each case, strong dependency of the

dimensional variables is observed, and a week dependency of the non-dimensionalised

variables. The variation of H over the full range of 2:5!H�
1=3 !12:6 is about 10%, and

Stansell (2004) judged that this variation was sufficiently small to avoid the need to group

the data based on values of H�
1=3. The plots in Fig. 3 show that the variations in both Hc and

Ht are larger. The variation in the pZ0.999 probability contour for Hc against H�
1=3 is about

42% over the full range H�
1=3, and that for Ht is about 24%. It is judged here, therefore, that
2 This is a non-parametric local regression procedure called locfit (Loader, 1999). For each value of a predictor

variable, x, locfit estimates the response variable, y, as yZf(x)C3, where f(x) is a non-parametric function

obtained by a local regression for those observations in the neighbourhood of x, and 3 is a residual random

variable. One advantage of using a non-parametric regression is that it is not required to specify, a priori, the

functional form of f(x). In particular, the locfit algorithm is very flexible, making it ideal for modelling complex

processes for which no theoretical models exist.



Fig. 3. Probability contours (with 95% confidence bands) showing the dependency of dimensional and

dimensionless of crest and trough height on H�
1=3.
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the variation in Hc and Ht is large enough to warrant grouping these data based on values

of H�
1=3.

In the following, we partition the data into five groups based on the values of H�
1=3.

Within each group the variables Hc and Ht are assumed to be sufficiently stationary to



Fig. 4. Histogram of H�
1=3 in our data.
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apply statistical analyses which require this condition. A parallel analysis is carried out for

grouped values of H for completeness. The advantage of using suitably non-

dimensionalised measures of the data is that it greatly increases the size of the statistical

samples in each group and therefore reduces any statistical errors. A histogram of the

values of H�
1=3 from the 20-min records of our data is show in Fig. 4. The mean of H�

1=3 from

all the data is �H�
1=3Z5:53.
3.2. Distributions of largest waves, crests and troughs

Asymptotic theory (Embrechts et al., 1997; Coles, 2001) suggests that for large enough

threshold, u, the distribution function of a stationary random variable X is approximated by

a generalised Pareto distribution (GPD). This has the distribution function

FxmsðxÞ Z 1 K �FxmsðxÞ (6)

where the complementary distribution function is given by

�FxmsðxÞ Z
1 C xðxKmÞ

s

� �K1=x
if xs0;

exp K
x Km

s

� �
if x Z 0;

8<
: (7)

and where

xRm if xR0; m%x%m Ks=x if x!0:

Here x, m and sO0 are, respectively, shape, location and scale parameters for the GPD.

(Note in particular that �FxmsðxÞ is continuous in x at xZ0.)
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In order to estimate the distribution of the largest observations of X, the following GPD

model for the tail of the distribution is fitted

PrðXOxÞ Z �FxmsðxÞ; (8)

valid for all x greater than or equal to some appropriately chosen threshold u.

Elementary calculation shows that

PrðXOu CxjXOuÞ Z
�Fxmsðu CxÞ

�FxmsðuÞ
; (9)

PrðXOu CxjXOuÞ Z �Fx0 ~sðxÞ; (10)

where for both xZ0 and xs0

~s Z s Cxðu KmÞ: (11)

Thus, for sufficiently large u, asymptotic theory (Embrechts et al., 1997; Coles, 2001)

suggests that the distribution function of the excess xZ(XKu) is approximated by a GPD

parameterised by x, which is threshold independent, and ~s, which is threshold dependent.

The parameters x and ~s were determined by maximum likelihood estimation based on all

values of X greater than u. We recorded whether or not X exceeded the threshold u and, if

so, the value of its excess xZ(XKu). The values of the excesses are sufficient for the

estimation of x and ~s.

The values of the original (threshold independent) parameters m and s may now be

recovered. Letting p denote the probability that X is greater than u, one can write, under the

model (8)

p Z PrðXOuÞ Z �FxmsðuÞ: (12)

The number of observations exceeding u is sufficient for the estimation of p, and m and s

may then be recovered via the relations (7), (11) and (12). Thus, for all x

s Z ~spx; (13)

m Z u C
~s

x
ðpx K1Þ; (14)

and, in particular, for xZ0

s Z ~s; (15)

m Z u C ~s ln p: (16)

Analysis of the grouped data in this study suggests that there is insufficient data in each

group for a GPD to convincingly represent the asymptotic limit of the distributions.

Thus, we have chosen to avoid estimating an appropriate value for the threshold, and

instead we fitted the GPD model (8), with X equal to one of the dimensionless variables

H, Hc or Ht, to the 100 most extreme observations in each data group. It is important to

note that, assuming convergence has not been reached, the fitted GPD models should

not be extrapolated beyond the largest measured observation used in the fit. In this



Fig. 5. Fitted shape parameter, x, for the GPD models of H, Hc and Ht as functions of H�
1=3 over the five data

groups.
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case, the interpretation of the results should be that the family of GPDs is a sufficiently

large and flexible class for the purpose of interpolating the distributions of the data we

have.

The values of the thresholds and fitted parameters are given in Table A1 of

Appendix A.3 For comparison and in the same appendix, Table A2 shows the fitted

parameters for the case that all the data was grouped into one statistical sample. In

these tables, �H�
1=3 denotes the mean of H�

1=3 calculated over the data group. Figs. B1 and B2

in Appendix B show quantile–quantile plots of the empirical and fitted distributions for

X above the thresholds, u, for the fitted parameters given in Tables A1 and A2,

respectively.

Fig. 5 shows plots of the shape parameter, x for the GPD fits of H, Hc and Ht as

functions of �H�
1=3 over the five data groups, along with error bars which extend to plus
3 The S-Plus code from Coles (2001) was used to obtain these fits.
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and minus twice the standard errors on the fitted values. Also shown is a locfit local

regression of x against �H�
1=3 with 95% confidence bands. Notice that the standard errors

on x are about the same magnitude as the values of x themselves. This fact, together

with the plots in Fig. 5, presents no convincing evidence that xs0 for any of the fits of

grouped data. Indeed, it may be argued that choosing xZ0 in all instances is as well-

founded as using the values fitted, although in the following analysis the actual fitted

values are used.

Fig. 6 shows plots of location parameter or threshold, u, and fitted scale parameter, ~s,

for the GPD fits of H, Hc and Ht as functions of �H�
1=3 over the five data groups. Also shown

is a locfit local regressions of u and ~s and against �H�
1=3 with 95% confidence bands. As

expected, we see that u for the GPD models of H is approximately constant, while that for

Hc increases, and that for Ht decreases, with increasing �H�
1=3. We also see that ~s increase

for the models of both H and Hc with increasing �H�
1=3, but decrease for those of Ht.
3.3. Comparison of fitted GPD with Rayleigh distributions

We now examine the differences between the predictions of the Rayleigh probability

density function and those of the GPD. The GPD densities are defined by fxms(x)Z
dFxms(x)/dx, and can be written in terms of the threshold independent parameters as

fxmsðxÞ Z

1

s
1 C

xðx KmÞ

s

� �Kð1CxÞ=x

if xs0;

1

s
exp K

x Km

s

� �
if x Z 0;

8>><
>>:

(17)

or, in terms of the threshold dependent parameters, as

fx0 ~sðxÞ Z

p

~s
1 Cxx ~sð ÞKð1CxÞ=x if xs0;

p

~s
exp Kx ~sð Þ if x Z 0:

8<
: (18)

The distribution of the largest value that is expected to occur in a certain number, n, of

observations is called the extreme value distribution. The extreme value distribution is

given in terms of the parent distribution, F(x), by G(x; n)ZPr(Xn!x)ZFn(x) and the

corresponding extreme value density is given by g(x; n)ZdFn(x)/dxZn f(x)FnK1(x). If the

tail of the parent distribution is Rayleigh distributed then the density function for

the extreme value obtained from n measurements (that is, n waves) is given by

gRðx; nÞ Z nfRðxÞF
nK1
R ðxÞ; (19)

where FR(x) and fR(x) are given by Eqs. (2) and (3). If the tail of the distribution is a GPD

then the density function for the extreme value is given by

gxmsðx; nÞ Z nfxmsðxÞF
nK1
xms ðxÞ; (20)

where Fxms(x) and fxms(x) are given by Eqs. (6), (7) and (17).

Fig. 7 shows plots of the Rayleigh density compared with the fitted GPD models for

each of the five data groups and each of the variables XZ{H, Hc, Ht}, and also for the case



Fig. 6. Fitted location parameter or threshold, u, and scale parameter, ~s, for the GPD models of H, Hc and Ht as

functions of H�
1=3 over the five data groups.
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that all the data are grouped together. The GPD models are plotted only within the range of

the data to which the model was fitted. In this way, no extrapolation is made.

The need to group the Hc and Ht data is confirmed in these plots as the order of

the fitted GPD models agrees with the expected order based on the order of the means



Fig. 7. Probability densities predicted from the Rayleigh distribution and those obtained from the fitted GPD

models for the 100 most extreme wave, crest and trough heights measured from grouped and ungrouped data.

P. Stansell / Ocean Engineering 32 (2005) 1015–1036 1027
of H�
1=3 in these groups. For example, bin 5 of Hc contains the data with the highest

mean value of H�
1=3 and the GPD fitted to these data give the largest predicted density

of large values of Hc; also the bins with the lowest values of the mean of H�
1=3 are

bins 1 and 2 and the fits to these data give the lowest predicted densities for large

values of Hc. The expected bin order, from the lowest to highest probability, is also

shown in the fitted GPDs for Ht. That grouping is not required for the H data is

supported by the observation that the spread in the fitted GPDs is small, and the order

from highest to lowest probability is not observed. (Although it does appear that the

Rayleigh distribution over-predicts the probability of occurrence of the most extreme

values of H in the three data groups with lowest H�
1=3, and it under-predicts the

probability of occurrence of the most extreme values of H in the two data groups

with largest H�
1=3).

Fig. 8 shows comparisons of the predictions of Eqs. (19) and (20) with nZ70,000,

which is approximately equal to one fifth of the total number of waves in our data



Fig. 8. Comparisons of extreme value densities predicted from the Rayleigh distribution and those obtained from

the fitted GPD models for the 100 most extreme wave, crest and trough heights measured from grouped and

ungrouped data.
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sample. Also shown are plots of extreme value densities obtained from fitted GPDs

for the case, with nZ350,000, that all the data were grouped together. Any errors in

the fitted GPDs are magnified in the corresponding extreme value densities. Even so,

from the plots of the extreme value densities for Hc in Fig. 8 we see that the fitted

bin order from the lowest to highest probability is 2, 1, 3, 5, 4 instead of the expected

bin order of 1, 2, 3, 4, 5 (based on the position of the mode of the distribution). Also,

the plot for bin 5 appears erroneous as it has too sharp a cut-off in the upper limit of

the data. For the case of Ht the order of the fitted bins is as expected except for bins

3 and 4 being exchanged. From the plots of the extreme value densities for H, we see

that the fitted group (or bin) order from the lowest to highest probability is 4, 5, 1, 3

and 2, which, as before, shows no strong ordering dependent on the mean values of

H�
1=3 associated with the data groups.

The last plot in Fig. 8, which shows the fits obtained when all the data are grouped

together, strongly supports the expectation that the extreme value density for trough



Fig. 9. Comparisons of return periods predicted from the Rayleigh distribution and those obtained from the fitted

GPD models for the 100 most extreme wave, crest and trough heights measured from grouped and ungrouped

data.
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heights is over-predicted, and that for crest heights is under-predicted, by the Rayleigh

density. It also shows that the extreme value density for wave heights is under-predicted by

the Rayleigh density. The degree of these over and under predictions is quantified by the

parameters fitted to the GPD models and given in Tables A1 and A2.

Fig. 9 shows the return periods (in units of the number of waves and defined by

1/(1KF(H))) predicted form the Rayleigh model compared with those from the GPDs

models fitted to the data. The graphs for the fitted GPDs are plotted only over the range of

the data to which the models were fitted so that no extrapolation is made.

Table 2 presents the ratios of return periods predicted from the Raleigh distribution

and the fitted GPD models. Values are presented for the minimum freak wave

heights and for the most extreme wave, crest and trough heights observed in our data.



Table 2

Ratios of return periods predicted from the Rayleigh distribution and the fitted GPD models for the minimum

freak wave heights and the most extreme wave, crest and trough heights observed in our data

Variable XZx Ratio of return periods, �FRðxÞ= �FxmsðxÞ

HZ2 0.91

HcZ1 10.0

HtZ1 0.38

HZ3.19 270

HcZ2.46 1.55!1015

HtZ1.42 1.22
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For the minimum freak wave height of HZ2 the return periods from the Rayleigh and

fitted GPD models are about the same; for the minimum freak wave crest height of

HcZ1, the Rayleigh distribution under-predicts the return period when compared with

the fitted GPD model (note that this prediction required extrapolation of the GPD); and,

for the minimum freak wave trough height of HtZ1 the Rayleigh distribution over-

predicts the return period when compared with the fitted GPD model. For the most

extreme freak wave height of HZ3.19, the Rayleigh distribution severely under-

predicts the return period when compared to the fitted GPD model; for the most

extreme wave crest height of HcZ2.46, the Rayleigh model hopelessly under-predicts

the return period when compared with the fitted GPD model; and, for the most extreme

wave trough height of HtZ1.42, the return periods from the Rayleigh and fitted GPD

models are about the same.
4. Discussion

Based on the analysis presented here, it is the author’s opinion that the partitioned data

groups do not contain enough observations for the GPDs to have converged to their

asymptotic forms. If this is correct, the interpretation of the results should be that the

family of GPDs is a sufficiently large and flexible class for the purpose of modelling and

interpolating the distributions of the data we have. It would, therefore, be unwise to

extrapolate the fitted distributions far beyond of the range of the data to which the models

were fitted. Indeed, we believe that at least five times as many observations would be

needed for the fitted GPD models to approach their asymptotic forms. Thus, the GPDs

fitted to the grouped Hc and Ht data have probably not converged, whereas that fitted to the

ungrouped H data may have.

As expected, the fitted GPDs show that the Rayleigh distribution is not suitable for

modelling the probability of occurrence of extremes of Hc or Ht. Adjustments to the

Rayleigh distribution to account for second-order nonlinear corrections given by Tung and

Huang (1985) do not significantly improve the predictions, and indeed, they give worse

predictions than the Rayleigh distribution for large wave troughs.
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It is the considered opinion of the author that an acceptable approach, which may be

used to estimate the density of extreme crest and trough heights as functions of H�
1=3 in

cases where a better or more reliable alternative is unavailable, is as follows:
(1)
 Read off the values of u and ~s from the local regressions presented in Fig. 6.
(2)
 Set xZ0 (in accordance with Fig. 5) and then calculate m and s from Eqs. (15) and

(16) with pZ0.001434 (from Table A1).
(3)
 Use these values of m and s to estimate �F0msðxÞ and f0msðxÞ in the xZ0 expressions

from Eqs. (7) and (17), respectively.
These estimated densities and distributions should not be used below their appropriate

threshold, u. Also, care should be taken when applying them at the high height limits

observed in the data. This is because, as previously stated, we are not confident that the

GPDs have converged to their asymptotic forms. Indeed, although one would always

expect some wander in extremes of qq-plots of the fitted models, the qq-plots in Fig. B1

show, in all but one case, that the models fitted to grouped data are under-predicting the

probability of occurrence of the most extreme values in the data.

Note that, because the locate regressions in Fig 5 and 6 aid in smoothing the noisy

statistical data and uncovering the fundamental relation between the predictor variable,

H�
1=3, and the response variable, Hc or Ht, it is expected that this procedure has the

advantage of providing fitted models with less statistical error (as seen in Figs. 7–9) than

the models based on grouped data alone.
5. Conclusions

GPD models have been fitted to empirical data to give estimates of the probability of

occurrence of the most extreme wave, crest and trough heights in wind-driven, broad-

banded, severe storm seas. Fitted parameter values for these statistical models are

tabulated for the cases of the GPD being fitted to the 100 most extreme observation from

each of five datasets grouped by H�
1=3, and also for the cases that all data were combined

into a single dataset independent of H�
1=3. The fitted GPDs show, as expected, that the

Rayleigh distribution is inadequate for modelling the probability of occurrence of

extremes of Hc or Ht, but, more importantly, they provide actual parametric models which

may be used during the design process to obtain more realistic and accurate predictions of

the extremes of given sea states if a better or more reliable alternative is unavailable. By

the procedure presented in Section 4, one may acquire estimates of the probability

distributions, densities, return periods and other statistics of extremes of crest and trough

heights as functions of significant wave height. These estimates should be used with

caution as it is the author’s opinion that the partitioned data groups for Hc and Ht do not

contain enough observations for the GPDs to have converged to their asymptotic forms.

The estimated distributions therefore represent models fitted to the data, and not the

limiting asymptotic forms of the distributions. It would, therefore, be unwise to extrapolate

the fitted distributions far beyond of the range of the data to which the models were fitted.
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Appendix A. Tables of fitted GPD parameters

Tables A1 and A2 present the parameters values fitted to the GPD models for the 100 most

extreme values of each of $X={H, H_{c},H_{t}}$ when split in to five groups depending on

the values of $H_{1/3}^{*}$, and when all the data is combined into a single data set.
Table A1

Thresholds and fitted parameters for GPDs fitted to the 100 most extreme observations from each of data group

X Bin �H�
1=3 u ~sGSE xGSE p s m

Hc 1 3.55 1.046 0.0959G0.0140 0.1509G0.1070 0.001434 0.0357 0.6477

2 4.23 1.025 0.1200G0.0162 K0.1920G0.0932 " 0.4218 K0.5467

3 5.01 1.065 0.1181G0.0166 0.1225G0.0999 " 0.0530 0.5330

4 6.26 1.089 0.1780G0.0269 0.0888G0.1138 " 0.0995 0.2055

5 8.61 1.214 0.2410G0.0350 K0.2652G0.1085 0.001435 1.3680 K3.0350

Ht 1 3.55 0.902 0.0596G0.0079 0.0511G0.0876 0.001434 0.0426 0.5707

2 4.23 0.873 0.0759G0.0106 K0.2213G0.0997 " 0.3229 K0.2439

3 5.01 0.862 0.0529G0.0078 K0.1040G0.1080 " 0.1045 0.3653

4 6.26 0.847 0.0508G0.0072 K0.0022G0.1006 " 0.0516 0.5118

5 8.61 0.799 0.0426G0.0054 K0.0130G0.0803 0.001435 0.0463 0.5086

H 1 3.55 1.762 0.1240G0.0184 0.0252G0.1098 0.001434 0.1052 1.0130

2 4.23 1.727 0.1334G0.0185 K0.1095G0.0963 " 0.2731 0.4508

3 5.01 1.768 0.1350G0.0182 K0.0349G0.0904 " 0.1696 0.7749

4 6.26 1.776 0.1561G0.0218 0.0930G0.0978 " 0.0850 1.0100

5 8.61 1.801 0.2171G0.0298 K0.1408G0.0952 0.001435 0.5459 K0.5331

For the threshold dependent parameters standard errors are included.

Table A2

Thresholds and fitted parameters for GPDs fitted to the 100 most extreme observations from all data bins

combined

X �H�
1=3 U ~sGSE xGSE p s m

Hc 5.53 1.353 0.160G0.026 0.090G0.127 0.0002869 0.303 K0.745

Ht " 0.951 0.058G0.007 0.009G0.073 " 0.054 0.495

H " 2.006 0.150G0.021 0.050G0.094 " 0.026 1.574

For the threshold dependent parameters standard errors are included.
Appendix B. Quantile–quantile plots

Figs. B1 and B2 show quantile–quantile plots comparing the empirical and fitted

distributions for the 100 most extreme values of each of XZ{H, Hc,Ht} when split in to

five groups depending on the values of H�
1=3 and when all the data is combined into a single

data set. The fitted parameters are given in Tables A1 and A2, respectively.



Fig. B1. Quantile–quantile plots of empirical distributions and GPD fits for grouped dimensionless wave, crest and trough heights.
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Fig. B2. Quantile–quantile plots of empirical distributions and GPD fits for combined dimensionless wave, crest
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and trough heights.
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