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Abstract

Ocean data assimilation brings together observations with known dynamics
encapsulated in a circulation model to describe the time-varying ocean cir-
culation. Its applications are manifold, ranging from marine and ecosystem
forecasting to climate prediction and studies of the carbon cycle. Here, we
address only climate applications, which range from improving our under-
standing of ocean circulation to estimating initial or boundary conditions
and model parameters for ocean and climate forecasts. Because of differ-
ences in underlying methodologies, data assimilation products must be used
judiciously and selected according to the specific purpose, as not all related
inferences would be equally reliable. Further advances are expected from
improved models and methods for estimating and representing error in-
formation in data assimilation systems. Ultimately, data assimilation into
coupled climate system components is needed to support ocean and climate
services. However, maintaining the infrastructure and expertise for sustained
data assimilation remains challenging.
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1. INTRODUCTION

Ocean data assimilation (ODA) encompasses a broad set of mathematical and computational tools
aimed at providing the best possible descriptions of the time-varying ocean circulation. It thereby
supports studies of ocean dynamics, in particular for estimating unobservable quantities. The
results are used to describe the impact of the changing ocean circulation on various quantities of
societal relevance, such as the interaction of the ocean with its ecosystems, its biogeochemistry,
the marine (sea ice) or marine-terminating cryosphere, and the coupled climate system as a whole.
One strand of ODA activities is to produce useful descriptions of the ocean’s flow field as the
basis for deriving products in the context of ocean services. Ultimately, ODA aims to improve the
skill of climate predictions by providing accurate descriptions of the present climate state as initial
conditions for coupled climate models in support of climate services.

Although the terms ODA and ocean state estimation (OSE) are often used synonymously,
they are in fact different inverse approaches to an ocean synthesis, describing the time-varying
ocean circulation based on all available observations and the underlying dynamics as embedded in
circulation models. The term data assimilation (DA) was coined initially in the field of numerical
weather prediction, where it referred to the technique of creating initial conditions for atmospheric
models designed to forecast over timescales of hours to a few days, thereby emphasizing the
instantaneous state of the atmosphere. [Bouttier & Courtier (1999) summarized the comprehensive
mathematical expositions of the original DA approaches.] These approaches were later adopted by
the oceanographic and seasonal forecast communities for the purposes of producing nowcasts and
initializing ocean and seasonal forecasts (e.g., Anderson et al. 1996, Talagrand 1997). By contrast,
from the beginning of the World Ocean Circulation Experiment (WOCE), OSE was intended
to bring all ocean surface (including satellite data) and subsurface observations into a dynamically
consistent description of the past and recent time-varying ocean circulation for the purpose of
studying ocean dynamics and variability as well as global-scale and regional energy, heat, and water
budgets (Munk & Wunsch 1982). By definition, OSE therefore focuses on the evolving state of
the ocean and on long timescales.

The first box inverse applications in oceanography were introduced during the 1970s (see
Wunsch 1978) to describe the steady ocean circulation using different hydrographic databases
(Macdonald 1998, Ganachaud & Wunsch 2003). At around the same time, however, it became
clear that any ocean synthesis effort must address the ocean circulation as a time-varying
problem. This insight fostered the development of modern DA methods, which began in the late
1980s (Bennett 1992, Anderson et al. 1996, Malanotte-Rizzoli 1996, Wunsch 1996). Important
milestones during this evolution included the development of inverse methods that can be applied
to ocean circulation models using supercomputers. The steps encompassed making filter-based
approaches (see below) technically feasible and developing smoother-based approaches, such as
those that employed adjoint representations of modern primitive-equation models (e.g., Thacker
& Long 1988). Applications of the adjoint technique to complex models were made possible by
the development of automatic differentiation techniques and software tools (Giering & Kaminski
1998) and their pilot application to ocean problems (Marotzke et al. 1999). This approach required
establishing a computer infrastructure suitable for solving large nonlinear optimization problems.

Traditionally, ODA is associated with filters, whereas OSE typically uses smoothers. Today,
both approaches have evolved into mature fields, comparable in sophistication and usage to
atmospheric reanalysis, i.e., a repetition of the operational analysis system of a numerical weather
forecast center over a historic period using exactly the same model setup (the term reanalysis
in the ocean is often used synonymously with the term synthesis). Their difference in intention
has largely diminished, with both now aiming to support climate-oriented ocean synthesis. In
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particular, both approaches are used today to initialize climate forecasts and remain concerned
with improving ocean and climate models, providing uncertainty estimates, and helping to
improve the ocean observing system. To deal with all these requirements properly, ultimately
DA will need to target the coupled atmosphere-ocean (and marine cryosphere) climate system
and the coupled physical-biological-biogeochemical ocean so that it can be used to support
both climate and ocean services. However, significant improvements are needed before the full
potential of DA can be reached and the goals of ocean synthesis in general can be accomplished.

This article provides a critical review of the status of ODA in support of climate applications and
lays out the developments necessary to reach its full potential for oceanography and climate science
at large. We review the strengths and weaknesses of various ODA approaches, provide examples of
ongoing applications, and summarize the role that ODA plays not only in analyzing the ocean but
also in initializing coupled models, with an emphasis on climate applications. We then identify
the improvements required to move toward ocean and climate information systems in support
of many applications. We do not discuss short-term predictions and operational oceanography
in detail. Reviews of marine forecasting applications (both global and regional) were provided
recently by Edwards et al. (2014) and Martin et al. (2015). Relevant reviews of ocean assimilation
in the context of operational oceanography and ocean state estimation have also been published
by Schiller et al. (2013) and Wunsch & Heimbach (2013).

2. ASSIMILATION FRAMEWORK

ODA and OSE are general frameworks for finding the solution to ocean inverse problems by
converting information available in ocean observations into estimates of the ocean state, including
uncertain physical parameters such as surface forcing, mixing, and viscosity coefficients that are
not directly observable and therefore are not well determined from observations alone. In practical
terms, this entails bringing an ocean circulation model into consistency with the observed ocean
state (within the error bars of both). The basic ingredients for such an approach are (a) a model that
is being constrained by (b) quality-controlled data, (c) error information about both the model and
data, (d ) a methodology by which data and model results are fused, and (e) a method to estimate
uncertainty information about the estimated state.

2.1. Models and Data

In the following, we first define a model in the context of data assimilation and then describe data
issues.

2.1.1. Models. In the context of ODA, a model can be any mathematical description of an ocean
parameter (or variable in the widest sense) that is being estimated through the DA approach. Such
a description can be a simple statistical or dynamical relationship between the parameter of interest
and observables. However, almost all present-day physical applications resort to comprehensive
general circulation models (GCMs) of the ocean or the fully coupled climate system. Griffies &
Adcroft (2008) have reviewed ocean model formulations, and the remaining model deficiencies
can be summarized as follows (e.g., Griffies et al. 2001): missing physics not embedded in the
underlying equations, structural errors in the formulation of numerical algorithms, unresolved
sub-grid-scale physical processes and uncertainties in their parameterization, and uncertain model
parameters (e.g., mixing and diffusion). Uncertainties also arise from inaccurate initial or boundary
conditions, the latter of which include surface forcing fields and interactions with the ocean floor
and the terrestrial hydrology. A specific goal of state estimation is to improve those uncertain model
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parameters, either individually or in combination. However, depending on the approach, success
may be limited, and large uncertainties in the estimation remain that are not always easy to quantify.

2.1.2. Data. ODA fundamentally depends on the availability of quality-controlled observations
provided by an ocean or climate observing system. Through the experience gained during WOCE
and subsequent efforts such as OceanObs’99 (Smith & Koblinsky 2001) and OceanObs’09 (Hall
et al. 2010), the ocean observing system has evolved into a multitude of in situ and satellite-
based measurement platforms, communication components, and data analysis centers. Satellite
observations, in particular altimetry, scatterometry, and passive microwave radiometry, have
proven indispensable for observing ocean variability (Fu & Cazenave 2001). The Argo network
(Roemmich et al. 2001) enables continuous monitoring of the temperature and salinity of the
upper ocean on basin scales down to 2,000-m depths. Merging satellite observations, other ocean
observations, and an ocean circulation model into a description of the ocean flow field through
DA is important to maximizing the use of existing observations for oceanography and climate
studies and should be considered part of a complete observing strategy, equivalent to the one
used in numerical weather prediction.

Substantial and often unknown uncertainties remain in existing observations, with the expend-
able bathythermograph (XBT) fall-rate errors being but one prominent example (Abraham et al.
2013). Uncertainties in surface fluxes are usually unknown, and continued data reanalysis and
quality-control efforts must be part of any sustained ocean and climate observing efforts. In ad-
dition, significant gaps remain in the ocean observing system, such as the lack of large-scale and
sustained observations in the deep ocean below 2,000 m and observations of currents. Evaluating
past climate variability and change from an observing system and forcing fields that have changed
markedly in quality and quantity over time remains a major challenge; ODA efforts can support
this process and can also be a valuable tool for optimizing the future ocean observing system.

2.2. Methodologies and Approaches

Most ODA approaches are variants of the classical least squares method of combining models
with data, assuming that errors are Gaussian. The best solutions ideally encompass dynamically
consistent state fields, uncertain model parameters such as mixing coefficients and sub-grid-scale
closure, and error estimates of these fields and parameters. The resulting states, along with the
inferred uncertain parameters, minimize an objective function, J, measuring the weighted squared
norm of the vector of differences between observations and their model equivalents. The term
observations is used here in a general sense and includes prior estimates of the adjustable fields
or parameters as well as the ocean observations proper. The weighting matrix is defined as an
estimate of the inverse of the error covariance matrix of the observations.

Major differences remain in the underlying assimilation schemes, which range from simple
but computationally efficient [e.g., optimal interpolation (OI)] to rigorous but computationally
intensive [e.g., Kalman filters (KFs), four-dimensional variational assimilation (4D-VAR), adjoint
approaches, and other smoothers]. Applied DA schemes (e.g., Wunsch 1996) vary in the way the
individual DA components are defined and in the extent to which the optimum values of J are
subjected to additional conditions. This concerns, for example, the details of how DA schemes
assimilate available observations, whether a solution to a constrained or unconstrained optimiza-
tion problem is sought, and the level of accuracy with which prior error estimates of observations
and the model dynamics are described.

As a result of model structural errors, obtaining realistic and dynamically consistent solu-
tions with reliable and formal error information is not yet possible. Different DA methodologies
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Figure 1
Schematic of the differences between filters and smoothers in producing an estimated state.

make different compromises between the fidelity and range of temporal and spatial scales to be
represented and the degree of dynamical consistency sought in the solution. Understanding the
substantial difference in the resulting solutions (Figure 1) is essential for their appropriate use.
As can be inferred from the figure and described in more detail below, DA usually minimizes (in a
least square sense) the prediction error, whereas SE minimizes an error over the entire time (see
also Sorensen 1970). In the following, we describe two types of approaches typical for ODA and
OSE: filters and smoothers.

2.2.1. Filters. Filter approaches sequentially estimate the ocean state at discrete points in time
(so-called analysis steps) by merging present observations with the model forecast (or background)
state, which, as a result of previous assimilation cycles, implicitly contains information from past
observations. The introduction of the analysis increment that corrects the model state may violate
conservation principles (as embedded in the first principles of the ocean circulation) and often may
introduce discontinuities in the time evolution of the model trajectory. The use of incremental
analysis updating (Bloom et al. 1996) can remedy discontinuities to some extent by transforming
the increment into a forcing that distributes the correction over a particular period; the corrections
remain dynamically unbalanced, however. Nevertheless, the resulting fields are consistent with
the prescribed model forecast and data error covariances at this moment, and applications (e.g.,
for skillful forecasting) usually justify this approach. Approaches used in oceanography encompass
three major avenues: OI, three-dimensional variational assimilation (3D-VAR), and various forms
of the KF (Kalman 1960); the first two approaches can be shown to be approximations of the latter.

OI is the simplest form of an optimal least squares estimator (e.g., Gandin 1963). For each ob-
servation, a correction of the model by observations is defined based on the difference between the
observation and the corresponding model simulation (referred to as the innovation). Interpolated
values are then calculated from a linear combination of the innovations weighted by the inverse
of the sum of the estimated observation error variance and the background error variance at ob-
servation points. OI provides an optimal instantaneous estimate for a particular set of constant
weights; however, the OI solution is suboptimal over the entire measurement period because a
time dimension is absent from the problem it solves (e.g., Fukumori 2002).

The KF, which is likewise a minimum variance estimator developed for solving prediction prob-
lems, has the advantage that it evolves the model state error covariance matrix in time according to
the underlying dynamics of the numerical model and the assumed error covariance matrix of the nu-
merical model. In practice, propagating the model state error covariance matrix is associated with a
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large computational burden, which makes the complete KF unfeasible for assimilating observations
into full ocean GCMs. Several approximations of the KF have been devised; among these is the
so-called partitioned KF, which solves the larger estimation problem by partitioning it into a series
of smaller calculations (Fukumori 2002), thereby limiting errors to small correlation distances and
their regional approximations. An extended KF (Gelb 1974) can be applied to weakly nonlinear
problems under the tangent-linear approximation but still suffers from excessive computational
costs. For stronger nonlinear problems, Evensen (1994) proposed a different extension of the KF,
called the ensemble KF (EnKF), to estimate the model forecast error covariance matrix by means
of a limited number of Monte Carlo simulations from a set of parallel analyses. In contrast to other
realizations of the linear KF, the EnKF is suitable for high-resolution global eddy-permitting DA.

Several variants and extensions followed to deal with large dimensions. Among them, the sin-
gular evolutive extended Kalman (SEEK) filter and its interpolated variant, the singular evolutive
interpolated Kalman (SEIK) filter developed by Pham et al. (1998), use empirical orthogonal
functions to reduce the rank of the covariance matrix. To overcome problems associated with
using small sample sizes in ensemble methods and the undesirable impact of the analysis step on
the properties of the ensemble, Anderson (2001) proposed the ensemble adjustment KF, which
is based on the ensemble transformation (Bishop & Toth 1999) and does not require adding
perturbations to the observations.

3D-VAR is a maximum likelihood estimator that treats the elements in J independently in time
and seeks an approximate solution through iterative minimization (e.g., Derber & Rosati 1989,
Courtier et al. 1998). Its implementation requires the existence of the adjoint of the observation
operators, not of the full GCM. In contrast to a normal sequential approach, 3D-VAR eliminates
the need to split the analysis domain into subsections (so-called data selection, a source of noise
in OI-type analyses) and provides a more general framework for including complex (including
nonlinear) constraints in the cost function, such as nonlinear observation operators, dynamical
balance constraints, and physically motivated conservation relationships (Ricci et al. 2005, Weaver
et al. 2005). It allows for full-rank, nondiagonal formulations of the background error covariance
matrix (Weaver & Courtier 2001).

2.2.2. Smoothers. Smoother-based approaches use observations from the future and the past to
constrain the ocean circulation in a retrospective analysis. They differ from filter-based methods in
that they estimate an ocean state not by changing the prognostic model state at analysis times but
rather by changing model-independent parameters (as opposed to elements of the prognostic state)
such that the simulated state best matches, to within uncertainty measures, the observed ocean
state over an extended time period (years to several decades). The solution thereby obeys the ocean
dynamics as embedded in the underlying GCM, is dynamically self-consistent, and guarantees the
conservation of heat, freshwater, and momentum over the estimation period. Estimation efforts
are typically targeted at reconstructions and descriptions of the time-varying ocean circulation.

The development of two major smoother approaches was essential for making OSE practical:
the optimal Rauch-Tung-Striebel (Rauch et al. 1965) smoother and the adjoint method. These
methods have different algorithmic properties but are equivalent, at least for linear systems, as
long as they make the same assumptions about the data and model dynamic constraint errors (e.g.,
Bennett 2002, Lee et al. 2009; comprehensive mathematical expositions of the original smoother
formulations are provided by Bouttier & Courtier 1999 and Wunsch 1996). 4D-VAR is a variant
of the adjoint method that is applied over shorter time windows and offers substantial benefits
over 3D-VAR (e.g., Weaver et al. 2003).

The optimal Rauch-Tung-Striebel smoother is a minimum variance estimator and thus re-
cursive algorithm that seeks estimates of the state vector and associated uncertainty at each
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point in time based on all observations from both the past and the future (e.g., Cohn &
Dinovitzer 1994). The use of observations from the future leads to uncertainties that are smaller
than those associated with filtered results (e.g., Fukumori 2002). This approach is complementary
to the KF in that it acts to smooth the filtered results by estimating model parameters required to
reduce the temporal discontinuities that result from the sequential input of data.

By contrast, the whole-domain adjoint or Lagrange multiplier approach, which originated
from Pontryagin’s minimum principle, estimates the ocean state in an iterative way by changing
model parameters, using observations that are distributed in time (e.g., Sasaki 1970, Talagrant
& Courtier 1987, Thacker & Long 1988). This method is based on the assumption that model
equations are correct (sometimes referred to as strong-constraint formalism). It can deal with
weakly nonlinear problems but might fail for turbulent (i.e., highly nonlinear) systems (Tanguay
et al. 1995).

Bennett (1985) revised the 4D-VAR approach by introducing a weak-constraint formalism that
allows departures from model dynamics while obtaining an objective state estimate. The so-called
representer method, which is one algorithm for solving the weakly constrained 4D-VAR problem,
seeks the solution in the observation space (e.g., Bennett 2002). However, for large observational
data sets, it can represent an even larger computational demand above the already computationally
demanding strong-constraint adjoint formulation. Hybrid ensemble-variational methods have
been devised that aim to combine the strengths of variational and ensemble methods in sequential
DA (Hamill & Snyder 2000). Variational methods have algorithmic advantages for solving the
analysis problem and for including complex analytical constraints, whereas the sequential ensemble
methods provide an appropriate statistical mechanism for generating flow-dependent estimates of
the background error covariances.

3. STATUS OF OCEAN DATA ASSIMILATION

3.1. Existing Ocean Syntheses

The first pilot large-scale attempts to use OSE to estimate time-varying ocean states took place
in the 1990s (Fukumori et al. 1993, Stammer et al. 1997), which was also when the first multiyear
ODA products in support of seasonal forecasts were created (Derber & Rosati 1989, Ji et al.
1995). Since then, expanding technical capabilities have led to a demand for more sophistication,
leading to higher spatial resolution and longer estimation periods but also to more complex
applications, including biogeochemical investigations. Today, several global synthesis systems
exist that are being used across several research and operational institutions to support a variety
of applications. Table 1 summarizes these existing global ODA and OSE efforts, which differ in
their goals and assimilation methods, data used, formulation of constraints, model numerics and
resolution, surface boundary conditions (forcing), uncertainty estimates, and assimilation window
size. Short-term operational ocean analysis involves timescales of days to weeks, requires high
spatial resolution, and is produced in quasi-real time; climate-oriented state estimation involves
monthly to decadal timescales. By contrast, initialization of monthly and seasonal forecasts involves
long timescales but has the operational constraint of prompt real-time delivery.

Based on selected examples, the following sections review the status of ocean synthesis sep-
arately for climate and (operational) high-resolution applications. The results of various ocean
synthesis efforts can differ substantially because of the specific underlying models and assimilation
approaches used by each, and analyzing them indiscriminately might be misleading, as not all
related inferences would be equally reliable for the purpose.
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3.2. Climate Applications

Historically, ocean observations are very sparse, making it difficult to extract climate signals in the
ocean from the limited observations extending more than a few years into the past. This problem
is exacerbated for studies that began several decades ago, before the altimeter and Argo era. Much
of the ongoing use of ocean syntheses for climate science is therefore devoted to a quantitative
understanding of ocean variability (especially regionally) and its associated uncertainties. Examples
include studies of sea level variability and change (e.g., Stammer et al. 2002, 2004; Wunsch et al.
2007; Carton & Giese 2008; Köhl & Stammer 2008; Balmaseda et al. 2013a; Piecuch & Ponte
2014; Storto et al. 2015), water masses (e.g., Fukumori et al. 2004; Wang et al. 2004; Masuda
et al. 2006; Toyoda et al. 2011, 2015; Speer & Forget 2013), mixed-layer heat balance (e.g., Kim
et al. 2007, Halkides & Lee 2009, Buckley et al. 2015), and changes in ocean heat content (OHC)
(Carton & Santorelli 2008, Balmaseda et al. 2013b, Wunsch & Heimbach 2014).

OHC and sea level are important indicators of climate change, and there is hope that ocean
syntheses produce simultaneous analyses of both quantities. It appears that the estimation of the
global OHC benefits from the combination of observations and models via dynamical constraints
provided by the DA system. The results have shown more obvious variations in OHC related to
the El Niño–Southern Oscillation (ENSO) than are present in observation-only syntheses, which
holds especially before the Argo period. Recent comparisons of ocean reanalyses (Balmaseda et al.
2015, Palmer et al. 2015) suggested that although the upper-ocean heat content is relatively
well constrained in the recent period, substantial uncertainty remains in existing estimates of
the vertical penetration of heat especially prior to the pre-Argo period. As shown in Figure 2,
the OHC increase is not monotonic and smooth but rather shows significant variation on all
timescales. We expect similar variability to exist in future OHC changes (and in all other climate
variables, for that matter). The figure also shows that during the spin-up phase (a few years), all
ocean syntheses should be treated with great caution or not used at all.

Although global indicators of climate change in the ocean are important, regional changes
are usually of the largest consequence, and therefore these changes are of major interest. In this
context, ocean syntheses can provide valuable estimates of climate-relevant indices or quantities
not easily assessable from data alone. A quantity of considerable concern is regional sea level and
its variability, which integrates many individual aspects of the ocean state and the climate system
at large. Changes in sea level can potentially have a substantial impact on society; understanding
ongoing and past changes as well as their regional character is therefore of specific importance.
Storto et al. (2015) compared linear trends in steric height over the period 1993–2010 from
different ocean syntheses and found that large variations exist among individual products on
the regional scale, largely arising from uncertainties in the deep ocean and discrepancies in the
halosteric component.

The Atlantic meridional overturning circulation (AMOC), a measure of zonally and vertically
integrated poleward volume transports, is another important climate index because it is associated
with poleward heat and freshwater transports that play an important role in the coupled climate
system (Wunsch & Heimbach 2006, Cunningham et al. 2007). Major challenges remain in the use
of ocean syntheses for accurate inferences of the AMOC. Karspeck et al. (2015) investigated the
variability and trends in several multidecadal ocean synthesis products. As an example, Figure 3a
documents the diversity of the solutions in terms of the 1960–2007 time-mean AMOC stream
function in depth/latitude space. The structural AMOC features are broadly similar, with net
northward flow above a depth of approximately 1,000 m and southward flow below this level.
However, all products except GECCO2 have more than one distinct positive maximum at different
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Figure 2
Estimated ocean heat content (OHC) from several ocean syntheses at different depth ranges: (a) 0–300 m, (b) 0–700 m, (c) 0–1,500 m,
and (d ) 0–4,000 m. For an explanation of the synthesis products, see Table 1. Figure provided by Matthew Palmer and modified with
permission from Balmaseda et al. (2015).

latitudes, with DEPRESYS, SODA, and MOVE-CORE showing localized circulations near the
equator. Even though all reanalysis products were constrained by roughly the same in situ data
sets, there are substantial differences in the strength and meridional structures, with some showing
opposite trends over significant periods. Figure 3b compares time series of the AMOC anomaly at
1,000-m depth at 45◦N and 26.5◦N. Visual inspection suggests very little agreement in the year-
to-year changes and trends in the synthesis set, implying that even in relatively well-observed
areas like the North Atlantic, the different ocean syntheses fail to provide a consistent estimate
of AMOC variability, but instead might be strongly influenced by the assimilation approaches
and/or the underlying models, including differences in forcing.

Using various ocean syntheses, Toyoda et al. (2015) investigated seasonal-to-decadal variations
of mixed-layer depth in the Pacific. The authors found two coherent dominant modes of variability,
one related to changes in the Pacific Decadal Oscillation and one suggesting the existence of a
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Figure 3
(a) Time-mean Atlantic meridional overturning circulation (AMOC) stream functions from 1960 to 2007 in depth/latitude space for a
set of ocean syntheses. Positive and negative contours indicate clockwise and counterclockwise circulations, respectively. The bold lines
are the zero contours, and the contour interval is 2 sverdrups (Sv). (b) Time series of the AMOC anomaly at 1,000-m depth at 45◦N
(top) and 26.5◦N (bottom) for the same set of ocean syntheses. The time mean has been removed from each time series. The key shows
the means (in sverdrups) at 45◦N and 26.5◦N, respectively, in parentheses. Time series from RAPID are included for comparison.
Additional abbreviation: NA, not applicable. Modified with permission from Karspeck et al. (2015).

coupled mode between mixed-layer-induced anomalies in sea surface temperature (SST) and
variations in atmospheric sea level pressure related to the West Pacific Index. Taking advantage
of the property conservation of state estimates, Buckley et al. (2015) attributed SST and upper-
ocean heat content changes in ocean syntheses to local buoyancy as opposed to wind forcing and to
processes involving ocean dynamics (advection as opposed to sub-grid-scale mixing). The transient
nature of the ocean circulation and its long-term memory also imply that vertical exchanges
with the ocean interior, whose proper accounting requires closed property budgets, may play an
important role in near-surface thermal property changes (Liang et al. 2015).
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3.3. Dealing with Uncertainties

In practice, computing uncertainty estimates for ocean syntheses remains challenging because
of the large dimension of the state vector in ODA. The theoretical estimate of the posterior or
analysis error covariance matrix can be used to quantify uncertainty. In the KF, the solution al-
gorithm requires the analysis error covariance matrix; in the adjoint method, the inverse of the
Hessian matrix (the inverse of the matrix of second derivatives of the cost function) approximates
the analysis error covariance matrix but is not directly computed as part of the solution algo-
rithm. Nevertheless, useful information about the Hessian matrix can be diagnosed, albeit at a
computational cost. For example, the eigenpairs associated with the extreme eigenvalues provide
information about the combinations of parameters that are best and least well determined by
the observations. The use of Hessian information to infer posterior error covariances is being
explored within limited-domain GCM applications (e.g., Sapsis & Lermusiaux 2009, Moore et al.
2011, Kalmikov & Heimbach 2014). In most cases, however, strict use of the theory has been
limited to applications that estimate only a few parameters or those in which a limited number of
observations effectively constrain the problem.

Using ensembles of reanalyses from the same system (Balmaseda et al. 2013a) or multiple sys-
tems (Stammer et al. 2010, Karspeck et al. 2015) is another way to assess uncertainty in reanalyses.
The ensemble spread among ocean syntheses is frequently used as a measure of the uncertainty
(e.g., Corre et al. 2012). However, this measure does not quantify whether ocean syntheses have
common biases or other limitations that would give the appearance of artificial consistency. Nev-
ertheless, a recent intercomparison by Balmaseda et al. (2015) has shown that the ensemble mean is
usually a better estimate than any individual ocean reanalysis, although there are exceptions where
a subset of best products is better than the grand ensemble. Their work also identified specific
geographical areas where the uncertainty is large, thus providing a focus for future developments
in the observing system, modeling, or DA method. The global ocean below the top few hundred
meters, the Southern Ocean (Antarctic Circumpolar Current region), coastal areas, and the paths
of western boundary currents stand out as the areas with the largest uncertainty in the density,
temperature, and salinity fields.

3.4. High-Resolution Applications

High-resolution ocean syntheses can provide important first-order insights into basin-scale ocean
current systems (e.g., Maximenko et al. 2008, Divakaran et al. 2010) as well as initial conditions
for short-term, high-resolution ocean forecasting. However, progress has been hindered because
ODA methods fundamentally rely on linearized model dynamics. Techniques such as the EnKF
(Evensen 1994) and approximate adjoint models (Köhl & Willebrand 2002, Hoteit et al. 2005) were
developed to deal with exponential error growth associated with nonlinear dynamics. Besides these
technical and scientific problems, the extra cost involved in performing the assimilation step has
so far limited global ocean syntheses for extended time periods to resolutions of 1/4◦ (Table 1).
Nevertheless, on a regional to basin-wide scale, applications of much higher resolution exist
(Edwards et al. 2014, Martin et al. 2015).

Examples for the European marginal seas, the North Atlantic, and global applications
include MyOcean (http://www.myocean.eu) and the Copernicus program (http://www.
copernicus.eu). Similar projects exist as part of the US Integrated Ocean Observing System and
Australia’s Bluelink analysis and forecasting system (http://wp.csiro.au/bluelink). Within these
projects, national centers have developed high-resolution systems that operate on regional and
global scales and have fostered the development and improvement of operational ocean analysis
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and forecast systems worldwide. Most of these systems assimilate real-time observations, and
more than half provide daily short-term forecasts. By way of example, Figure 4 compares SST
measured by a Moderate Resolution Imaging Spectroradiometer (MODIS) with the results of
a 1/36◦ version of the operational Mercator Ocean analysis and forecast system, demonstrating
the amount of detail current systems resolve. An example of high-resolution state estimates
for climate science is the Southern Ocean State Estimate (Mazloff et al. 2010), with various
applications for the Southern Ocean now being published (http://sose.ucsd.edu).

3.5. Adjoint Sensitivity Studies

Beyond performing state estimation, an adjoint model is valuable for estimating uncertain model
parameters and for performing climate sensitivity studies in order to understand climate dynamics
and optimize the observing system. All of these fundamental applications are based on the fact that
the adjoint model provides an efficient means to compute the derivative of scalar-valued functions
with respect to a large number of parameters. The atmospheric community realized early on (e.g.,
Hall 1986) that this gradient—also called adjoint sensitivity—provides a comprehensive tool to
explore model sensitivities to parameters; however, the ocean modeling community long ignored
adjoint sensitivities. Only in recent years, with the availability of adjoint codes for full realistic
ocean GCMs (e.g., Marotzke et al. 1999), has sensitivity analysis become popular (e.g., Galanti &
Tziperman 2003, Stammer et al. 2008, Masuda et al. 2010).

In contrast to conventional sensitivity calculations via perturbation sensitivities, which infer
how the climate system responds to changes to individual parameters, adjoint sensitivities reveal
how a specific scalar-valued target quantity of interest (e.g., climate index) is affected by many dif-
ferent kinds of model parameters. As an example, the sensitivities calculated in Figure 5 show that
Rossby waves traveling in the baroclinically unstable region of the subtropical gyres are most rele-
vant for affecting the equatorial temperature because perturbations are amplified in these regions.
Fukumori et al. (2007), Czeschel et al. (2010), and Heimbach et al. (2011) further explored the use
of adjoint sensitivities to reconstruct the full circulation using known perturbations (either time
varying or mean) and to explain mechanistic causes in terms of dominant perturbations. Over the
years, the use of adjoint sensitivities to ocean circulation has been extended to ocean biogeochem-
ical processes (Dutkiewicz et al. 2006), coupled ocean–sea ice processes in the Arctic component
(e.g., Kauker et al. 2009), and melt rates in sub-ice-shelf cavities (Heimbach & Losch 2012).

A variant of the sensitivity analysis, the optimal observations defined by Köhl & Stammer (2004),
combines classical and adjoint-derived sensitivities to estimate distributions of observations that
are optimally suited for their use in variational DA. As such, this technique explores the relation of
an event (e.g., anomalous overturning at a certain time and place) to the past and future changes
in the ocean. Köhl (2005) used this technique to describe mechanisms that affect the overturning
variability in the Atlantic.

4. INITIALIZING FORECASTS

An important motivation for ODA has long been to provide initial conditions for seasonal-to-
interannual (SI) forecast systems. SI forecasting is concerned with atmospheric circulation changes
up to a few months ahead of time in response to anomalous boundary forcing, which can signif-
icantly change the probability of occurrence of specific weather patterns (Palmer & Anderson
1994). Although not their initial motivation, climate prediction on seasonal to decadal and longer
timescales has steadily become a central focus of several synthesis efforts, largely fostered by the
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Figure 4
Sea surface temperature (SST) on July 19, 2014, from (a) Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite data (obtained from http://podaac-ftp.jpl.nasa.gov) and (b) the corresponding four-day
forecast from the 1/36◦ Daily Iberian Biscay Irish Physical Bulletin created by Mercator Ocean (obtained
from http://bulletin.mercator-ocean.fr).
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Figure 5
(a) Sensitivity to temperature perturbations at a depth of 200 m four years before the cost function
evaluation, which is the near-surface temperature at 100◦W, 0◦N. Values above 0.005 are shaded with dark
orange, and values below −20.005 are shaded with light orange. The thick blue line denotes the 16.8◦C
isotherm. (b) Schematic of the mechanism for a wave teleconnection from the midlatitude Pacific to the
equator. Midlatitude planetary Rossby waves travel westward at all latitudes and are damped except for those
amplified in baroclinically unstable regions of the subtropics. Modified with permission from Galanti &
Tziperman (2003).

World Climate Research Programme and its CLIVAR (Climate and Ocean: Variability, Pre-
dictability, and Change) core project.

4.1. Seasonal-to-Interannual Forecast Applications

Several operational centers worldwide provide seasonal forecasts initialized with ocean and
atmospheric analyses (Balmaseda et al. 2010). The initialization of the ocean subsurface is key
for successful predictions of SST at seasonal timescales. Of special importance is the proper
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representation of tropical SST variations associated with ENSO, which have the potential to
alter the large-scale atmospheric circulation associated with tropical convective cells. Using
information from SST, surface fluxes from atmospheric reanalyses, subsurface temperature and
salinity, and altimeter-derived sea level anomalies is instrumental to initialize the upper-ocean
thermal structure, thereby reducing the large uncertainty (error) resulting from the forcing fluxes
and improving forecast skill (Alves et al. 2004, Balmaseda et al. 2010). SI forecasting systems are
based on coupled atmosphere-ocean GCMs that predict both the surface boundary forcing and
their impact on the atmospheric circulation, and require near-real-time knowledge of the state of
the climate. The chaotic nature of the atmosphere is taken into account by issuing probabilistic
forecasts from an ensemble of coupled integrations. To cope with deficiencies in coupled models,
the forecasts need calibration before the forecast is issued. The calibration is performed by
conducting a series of past seasonal hindcasts starting from synthesis-based initial conditions
for a historical period (a few decades); these hindcasts are also needed for skill assessments. The
realism of their interannual variability determines the forecast quality.

The most common SI initialization strategy is the so-called full-state initialization, where the
DA corrects the ocean model time-mean state as well as the variability. In the presence of model
biases, changes in the observing system can lead to spurious variability in the ocean estimate.
Thus, consistent ocean reanalysis requires an explicit treatment of the model bias during the
initialization procedure (Balmaseda et al. 2007). The model bias estimation obtained during the
initialization procedure could in principle be used to correct model errors during the forecasts.
This is not yet possible when the full initialization is conducted in uncoupled mode, which is
the common practice. The separate initialization of the ocean and atmosphere systems can also
lead to initialization shock during the forecasts. An alternative approach is the so-called anomaly
initialization, first introduced to initialize decadal forecasts (Pierce et al. 2004), in which the
observations are used only to estimate the anomalous state (Smith et al. 2007). This approach
reduces the initialization shock but leads to a biased mean state. Figure 6 shows that although the
initialization shock is larger with the full field initialization (Figure 6a), being far from the real
world is detrimental for the forecast skill (Figure 6b). The best skill is obtained by using empirical
corrections of model error, which reduces the initialization shock and decreases model drift. A
more balanced coupled initialization is presumably desirable but remains challenging.

4.2. Decadal and Long-Term Climate Forecast Systems

Early applications of ocean syntheses in the context of decadal prediction include those by Smith
et al. (2007), Keenlyside et al. (2008), and Pohlmann et al. (2009). The predictive skill of such
a system is usually tested, and initialization techniques are optimized in hindcasts that aim to
successfully predict the past, assuming that forecasts with the same system of the future will be
skillful. This can be misleading because of errors in the climate sensitivity of the model, e.g., in
the case of a major volcanic eruption, when different strategies are required to model the response
(e.g., Driscoll et al. 2012, Zanchettin et al. 2013). Nevertheless, initial decadal prediction efforts in
recent years have shown predictive skill in global average temperature up to a decade in advance
from both initial conditions and the climate change signal related to the known emission of
greenhouse gases.

Today, initialized multimodel ensembles exist that suggest that some aspects of decadal
variability—such as the mid-1970s shift in the Pacific, the mid-1990s shift in the western Pacific,
and the early-2000s hiatus—are better represented by initialized hindcasts than by noninitialized
simulations. Many recent decadal prediction studies find enhanced predictive skill notably in the
North Atlantic region associated with AMOC variability and predictability (Meehl et al. 2014).
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Figure 6
Forecast drift in (a) sea surface temperature and (b) skill in precipitation in the central Pacific from different forecast strategies: full
initialization (orange), anomaly initialization ( yellow), momentum flux correction ( green), and momentum plus heat flux correction
(blue). The momentum flux correction exhibits the best skill. Modified with permission from Magnusson et al. (2013).

However, it remains unclear how errors in the ocean initial state affect the predictive skill of the
forecast and what the impact is of the initialization of different aspects of the climate system,
such as sea ice extent, soil moisture, snow cover, and the state of surface vegetation over land, on
timescales of seasons to a year and longer. A key difference between initialized decadal predictions
and initialized predictions on shorter timescales is the need for observations in the deeper ocean
(below 500 m); even observations below 2,000 m are likely to play a significant role, e.g., in the
prediction of the AMOC (Zanna et al. 2012). The ocean syntheses used to initialize, calibrate,
and verify decadal forecasts should span longer time records (several decades) and should attempt
to initialize the process relevant at decadal timescales; for example, initializing large-scale modes
of decadal variability (such as the Pacific Decadal Oscillation) may be important. This is a real
challenge for current DA systems.

Until fully coupled DA approaches are developed, dynamical forecasting systems will rely on
separate assimilation approaches in the ocean and initialization methods for the coupled system.
In the past, anomaly initialization was therefore more frequently used in decadal forecasts, but
it shows weaker performance than the full initialization that is currently favored, especially on
seasonal timescales. Decadal forecasting is a rapidly evolving field (Meehl et al. 2014) that now
also includes full-field initialization and even flux corrections (Magnusson et al. 2013, Polkova
et al. 2014).

Understanding which perturbations have the largest impact on uncertainty growth in chosen
forecast norms or indices, and therefore understanding limits to predictability, has become a
well-developed branch of numerical weather prediction (e.g., Buizza & Palmer 1995). The use
of singular vectors, which characterize optimal perturbation and error growth and which can
be computed using an adjoint model, has been adopted by the oceanographic community for
ENSO prediction studies (e.g., Penland & Sardeshmukh 1995). Zanna et al. (2011) showed that
predictability studies using optimal perturbation techniques reveal ocean dynamical mechanisms
that can limit predictability horizons of climate indices such as the AMOC (Figure 7). The
important implications for prediction are that (a) ensemble generation mechanisms need to include
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Figure 7
Latitude-depth section of time-mean Atlantic meridional overturning circulation (AMOC) anomalies at (a) t = 2 months, (b) t =
7.5 years, and (c) t = 20 years. The results represent normalized anomalies obtained from an idealized Atlantic-like rectangular basin
model. Modified with permission from Zanna et al. (2011).

perturbations of the initial state of the ocean (not just the atmosphere) and (b) ocean observations
that reach significant depths are needed in order to constrain prediction models.

5. OUTLOOK: THE WAY FORWARD

With an ever-increasing diversity and heterogeneity of ocean observations, increasingly including
biogeochemical and biological parameters, we expect that over the next decade, ocean synthesis will
become an essential part of the infrastructure of ocean and climate service activities and will provide
ocean information on a regular basis for many applications. In particular, we envision that ocean
syntheses will be used increasingly by other disciplines, e.g., in carbon or nutrient cycle studies
or to investigate the dependence of biodiversity on the physical climate state. Further increasing
the value of ocean synthesis products for all of these applications will require characterizing the
uncertainties in each product, improving the products by including better or more observations
as constraints, improving the models, and advancing assimilation approaches.

We further expect ODA to become an integral part of a seamless climate prediction system
that includes seasonal, interannual, and decadal timescales, allowing investigation of multiscale
interactions. The best forecasts will likely be produced by coupled models that are directly con-
strained by climate data [i.e., coupled data assimilation (CDA)]. Ultimately, every ocean or coupled
synthesis should be accompanied by formal uncertainty measures provided on a geographic grid
for any estimated parameter. All of these aspects are cutting-edge research topics that we cannot
address in detail owing to space limitations, but we provide some brief thoughts below.

5.1. Improved Uncertainty Measures

Given the large remaining differences between individual ocean syntheses, one important step
forward will be to provide ensemble mean estimates and their uncertainties, akin to what is now
common practice in numerical weather prediction. However, in the absence of formal posterior
error covariance information accompanying the solutions, understanding the mutual consistency
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among the products and with observations remains difficult. Several steps are involved, most
of which are not included in existing measures. Much effort is required to compute realistic
uncertainty measures for any practical problem, which involves the specification of prior error
information as well as the computation of the a posteriori error covariance for any solution.

In a first step, suitable specification of error covariances (data, background, and model error) is
essential to obtain sensible solutions (Fukumori 2002). In reality, several large-scale applications
so far resort to simplified expressions of the error covariance operators (e.g., Forget & Wunsch
2007, Ponte et al. 2007). Weaver et al. (2005) implemented a balance operator for large-scale global
ODA, which they used to implicitly specify the multivariate component of the background error
covariances. The basic technique employs a transformation from the model space, where variables
are highly correlated, to a control space, where variables can be considered to be approximately
uncorrelated. Balance operators need to be regularly reassessed in response to changes in model
resolution and complexity. System bias is another serious obstacle to the reliable representation
of climate variability, especially in the realistic case of a time-dependent observing system (e.g.,
Segschneider et al. 2000). To help suppress artificial variability in the analyses, Balmaseda et al.
(2007) implemented a generalized algorithm to treat bias in sequential DA.

Any ocean state estimate should also be associated with an estimate of its error covariance
matrix. However, the computation of what amounts to a very-high-dimensional (typically on
the order of 109 × 109 or higher) covariance matrix is impractical. Approximate approaches or
projection methods onto low-dimensional (scalar) climate indices or quantities of interest are
required; existing approximations inferring leading eigenvectors of the posterior error covariance
matrix are a promising approach for capturing at least the dominant uncertainty structures
(Moore et al. 2011, Kalmikov & Heimbach 2014). In connection with singular vector approaches,
these methods could also reveal what observations (types and spatial distribution) would have the
most impact on estimation and forecasting.

5.2. Coupled Data Assimilation

Coupled data assimilation can have various degrees of complexity. Common practice now is to
use coupled ocean–sea ice models; less developed is the use of full Earth system models.

5.2.1. Coupled ocean–sea ice estimates. The polar regions have received heightened attention
in the last decade, in particular the rapid decline in Arctic sea ice cover since the late 1970s
(e.g., Meier et al. 2014) and the polar amplification of near-surface temperature changes. The
difficulty in determining the ocean’s role in these processes is exacerbated by the extreme lack of
quasi-continuous observations, in particular of hydrographic changes in the high Arctic and of
ice thicknesses that are thought to carry some memory of climate variability. Sea ice models used
for assimilation need to produce skillful simulations of thermodynamic and dynamic processes of
ice growth, evolution, and melt; sea ice modeling is a rapidly evolving field (e.g., Feltham 2008,
Hunke et al. 2010).

Several sea ice DA systems are now available. Sequential systems have been initially targeted
at assimilating remotely sensed sea ice concentrations and velocities (e.g., Bertino & Lisaeter
2008, Caya et al. 2010). Adjoint-based coupled ocean–sea ice assimilation has produced initial
one-year ocean–sea ice state estimates in a regional domain of the Labrador Sea and Baffin Bay
(Fenty & Heimbach 2013a). The dynamical consistency of the state estimates, in turn, has enabled a
detailed analysis of what sets maximum winter sea ice extent in that region, the crucial role of ocean
dynamics in setting this extent, and the implications for seasonal ice extent predictability (Fenty &
Heimbach 2013b). The coupled estimation system is currently being extended to develop a decadal
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state estimate for the Arctic/North Atlantic domain. Hybrid systems are also being explored with
filter and smoother approaches interlaced for the sea ice and ocean, respectively (Panteleev et al.
2010).

5.2.2. Coupled Earth system estimates. Performing initialization in uncoupled mode, as is
common practice in most existing climate forecast efforts, leads to initialization shock in the
coupled system, which potentially reduces the forecast skill. This suggests that CDA efforts in
Earth system models will lead to improved use of ocean information for coupled forecasts ranging
from near-term to seasonal and decadal timescales. Coupled Earth system models link modules
of the ocean, atmosphere, sea ice, land surface, global carbon cycle and chemistry, and aerosols to
simulate changes in the Earth’s climate systems.

Some pilot applications of CDA already exist (e.g., Zhang et al. 2007, Sugiura et al. 2008, Fujii
et al. 2009, Laloyaux et al. 2015), and several others are spinning up (e.g., Blessing et al. 2014). As an
example, Zhang et al. (2007) have applied an EnKF approach to an atmosphere-ocean CDA system
with a fully coupled GCM using a super-parallelization technique for ensemble integrations. In
perfect model experiments, the assimilation successfully reconstructs the twentieth-century OHC
variability and trends in most locations.

Also using an EnKF, Karspeck et al. (2014) applied CDA to the problem of decadal predictions;
however, the results were mixed, partly because a state estimated with a coupled EnKF remains
dynamically inconsistent with the coupled system if the model parameters are not also improved,
as can be done using a smoother-based approach. This technique was pioneered by Sugiura et al.
(2008), who took up the challenge of developing a sophisticated CDA system with a fully cou-
pled GCM, using the adjoint method to adjust both the oceanic initial conditions and the drag
(coupling) coefficients associated with mass, momentum, and heat exchange at the atmosphere-
ocean interface. Their products thus provide dynamically self-consistent coupled fields that are
suitable for the initial states in SI prediction experiments. One of the most fascinating elements
of their approach is that it filters out chaotic fluctuations that take place on the timescales of
weather modes by operating an averaging procedure in order to highlight the representation and
forecast of SI variations. In comparison with a hindcast using the same model initialized from
ocean-only assimilation, their coupled assimilation demonstrated higher predictive skill, which
directly demonstrates the benefit of coupled assimilation. However, those results might not hold
in general (Laloyaux et al. 2015).

CDA efforts have now been embraced by several operational centers, instigated by the weakly
coupled reanalyses at the National Centers for Environmental Prediction (Saha et al. 2010). For ex-
ample, the European Centre for Medium-Range Weather Forecasts (ECMWF) has implemented
a pilot CDA system for production of coupled reanalyses of the Earth system, known as the Cou-
pled ECMWF Reanalysis (CERA) system (Laloyaux et al. 2015), that is capable of assimilating a
wide variety of atmospheric and oceanic observations and produces analyzed states that are con-
sistent with the coupled model at the atmosphere-ocean interface. Compared with an equivalent
uncoupled system, CERA shows overall consistency, with slightly improved temperature estimates
in the upper ocean and the tropical atmosphere. On a cautionary note, however, a fully coupled
GCM inevitably generates rapidly growing modes, particularly in the atmospheric component,
which makes it difficult to optimize the simulated state of the atmosphere. The actual coupled phe-
nomena are thought to include a controllable dynamical nature in SI processes because they should
contain low-frequency modes generated and controlled by oceanic processes (Palmer et al. 2005).
It is therefore possible that CDA could allow better determination of these modes in the coupled
system. Forecasts from a single forecasting system would still not be reliable enough, and ensemble
generation techniques that sample model uncertainty (multimodel ensemble) are required.
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5.3. Model Improvements

ODA procedures require the best possible model representations to maximize performance. In
turn, state estimation can contribute substantially to improving models and therefore needs to
be tightly coupled to model development and improvement efforts. This holds for CDA as well
as ODA. Several avenues are conceivable for ocean and coupled synthesis efforts aimed at im-
proving ocean and coupled climate models. One is to help improve uncertain model parameters
through parameter estimations. This avenue might turn out to be the most important one for
climate model DA in a coupled context. For example, in ocean-only applications, the estimation
of mixing coefficients was one of the main foci for model improvements (e.g., Ferreira et al. 2005,
Menemenlis et al. 2005, Stammer 2005, Liu et al. 2012). However, although the estimation of
mixing coefficients provided interesting insight into the physical processes, the contribution to
improvement of ocean models remained small [e.g., Liu et al. (2012) found that it contributed
only 10% of the total model-data misfit]. Model tuning is less crucial for ocean models than for
coupled models, where automatic tuning is an active field of research, with the first successful pilot
systems in place (e.g., Annan et al. 2005, Liu et al. 2014).

The alternative approach could be to relate innovations in sequential approaches to model
errors and attempt to correct them. In fact, recent advances in Earth system modeling have
been accompanied by progress in CDA (WMO 2009), which uses observations in more than one
component of a coupled model (e.g., atmosphere and ocean) so that the whole coupled model
is optimized simultaneously and observations in one subcomponent can influence the estimated
state in another component.

Finally, just as ocean models used in climate or Earth system models are improved over time,
so are those used in DA. Improved numerics (e.g., advection schemes), vertical discretization [e.g.,
the z, z∗, and arbitrary Lagrangian Eulerian (ALE) approaches], and representation of kinematic
boundary conditions (nonlinear free surface with real water fluxes, compared with linear free
surface with virtual salt fluxes) are as pertinent as improvements in the DA schemes (e.g., Forget
et al. 2015).

5.4. Closing Remarks

For years to come, it will be essential for the community to recognize the value of ocean synthesis
and to expand the applications of ocean synthesis products for research and information services
alike. Owing to space limitations, in this article we were able to address only a subset of ODA
progress and problems, most of which were related to climate applications. The field of operational
oceanography and the importance of ocean syntheses for other fields (such as the evolution of
the ocean’s ecosystems) and for studies of oceanic tracer constituents (including the transports of
biogeochemical substances in general—e.g., carbon uptake by the ocean—and pollutants in coastal
regions) are topics of equal importance that require separate reviews. Another topic of significant
relevance not addressed here is that of optimizing the ocean observing system. Much more can
be done in this context using ODA, following similar examples in numerical weather prediction.
With fewer observed parameters in the ocean, there is a need for better DA methods to extract
more information from observations. Systems have been tuned to extract information about the
mesoscale or tropical climate variability, but currently they appear to be mutually exclusive. Work
on high-resolution or biological parameters would be more difficult by an order of magnitude.

Problems often overlooked in many fields are those of expertise, continuity, and especially re-
sources required to further develop the fields. The resources required for technical developments
in the various aspects of ODA and OSE in support of ocean syntheses are enormous, and com-
parable to the requirements of atmospheric forecast centers. There is a need for better software
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infrastructure that would provide openly available algorithmic differentiation and other assimila-
tion tools and would allow testing of different options and methods. For instance, more research
is needed on how to combine ensemble and variational methods effectively and how to improve
model bias correction techniques. Furthermore, there is a need to share efficient minimization
algorithms and observation operators to avoid duplicating efforts. In almost all cases, reaching
infrastructure development milestones required close to a decade of sustained consortium efforts
(Stammer et al. 2002). This development has proven to be a large endeavor requiring expertise
in ocean observations, modeling, assimilation, and information technology; to be effective, the
community must sustain such efforts and maintain a long-term perspective.
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Stammer D, Köhl A, Awaji T, Balmaseda M, Behringer D, et al. 2010. Ocean information provided through

ensemble ocean syntheses. See Hall et al. 2010, Vol. 2, chap. 85
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