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ABSTRACT

This report reviews the methods available for calculating the interaction
of waves with a vertically varying current which is steady and uniform in the
horizontal plane. These methods are assessed in the light of experimental
evidence on wave-current interactions and recommendations are made for further

research in this area.
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1. Introduction

This report arises out of an earlier study (Carter et. al. 1985) which
reviewed methods of estimating wave parameters for engineering applications.
Chapter 5 of that study was concerned with wave kinematics and discussed, among
other problems, wave-current interactions. One particular aspect of
wave-current interactions will be considered in detail in this report; that of
the interaction of waves with a current which is steady and uniform in the
horizontal plane but varies with depth. This is a problem of some importance
for the design of offshore structures where the combined effects of extreme
currents and waves need to be understood.

Beiboer (1984) has discussed wave-current interactions in relation to
engineering design applications. He too has noted the need for a better
understanding of wave-current interactions for design purposes. He also notes
the need for a better statistical description of the joint probability of
occurrence of extreme waves and cufrents, but this aspect of the problem will
not be pursued here. His paper discusses some of the problems involved in
combining waves and currents to obtain the kinematics of the flow; necessary
for the calculation of the forces acting on a structure. We will not repeat
his discussion here but refer the reader to his paper.

The aim of this report is to outline the methods that exist for
calculating the interactions of waves with a current that varies only with
depth. The methods available will be assessed in the light of such
experimental evidence that exists at present and some of the outstanding
theoretical and practical Adifficulties that exist in applying the methods will

be highlighted. On the basis of this review of our present understanding



suggestions for further research in this area will be given.

As this report deals with only a small area of the subject of
wave-current interactions we will mention here some references which may fill
in details and give further information on this topic. Reviews of work on
wave—current interactions have been made by Peregrine (1976) and Peregrine &
Jonsson (1983). Peregrine, Jonsson & Galvin (1983) give an annotated
bibliography of papers on wave-current interactions. Dalrymple (1973)
describes various methods for calculating wave-current interaction and gives
more details than it 1is possible to do here. For background reading in
relation to wave kinematics Carter et. al. (1985) may be consulted and in

relation to wave forces Sarpkaya & Isaacson (1981).



2. Basic assumptions and equations

Before discussing the various methods for calculating wave-current
interactions for waves on a depth varying current, we will outline the
assumptions and equations that underlie all the methods. It is assumed that we
are considering the motion of an inviscid, incompressible fluid (water) under
the action of gravity. The velocity field w = (u, v, w) at any point

(x,j,zvb) then satisfies the momentum equation

qu :
X P

and the continuity equation

V.u =0 (2)

where is the density of the fluid

/o
P is the pressure
9 is the acceleration due to gravity
E_ is a unit vector in the =z -direction (vertically upwards, see
figure 1).
In addition to the above equations it is necessary to specify the

boundary conditions on the fluid domain. ©On any rigid boundary (such as the

sea bed - asssuming that it is impermeable) the normal velocity is zero

&
P
i

o (3)

where n is the unit normal to the boundary. At the free surface, neglecting
the effects of surface tension, the pressure P must be constant and equal to

the atmospheric pressure which can be taken to be zero




p= 0. (4)

In addition, if the free surface is given by

then

::)_'Zl. fua_ll *V—D—n = W (5)
ot 2 93 '

This is the kinematic boundary condition which states that no fluid can cross
the boundary.

In what follows it will be assumed (unless otherwise stated) that the
waves are monochromatic (hence periodic), steady and propagate in the
% -direction only on water of uniform or infinite depth. These assumptions
allow considerable simplification of the problem. Furthermore if the current

is at an angle © to the waves
Uiz) = (We)eos &, Ulz) &9, O)

the problem need only be solved for the case

A (zJ - &L&(?J cof © , O, o )
as the momentum equations in the > and Z directions, the continuity
eguation and the boundary conditions remain unchanged. This reduces the
problem from three to two dimensions ( % and 2 ). The motion in the

y -direction can be found from the 9 -momentum equation once the



two-dimensional solution is known (see Benny, 1966). Therefore we will

restrict our attention to two-dimensional problems {(in % - 2 coordinates).




3. Waves on a uniform current

The simplest situation to consider in wave-current interactions is the
case of waves on a uniform current WI(z2) = &L_ . The primary effect of a
uniform current is to change the frequency of the waves due to a Doppler
shift. Thus if the radian frequency of the waves in a frame of reference
moving with the current speed is O and they have wavenumber kR then their

frequency & in a fixed frame of reference 1is given by

W= o + kb\.o (6)

If W, is positive (wave and current travel in the same direction) then the
frequency of the waves is increased over that which they would possess in still
water. If A, is negative (waves and current travel in opposite directions)
then the frequency is reduced. For sufficiently high opposing currents the
waves cannot propagate against the current. As, for practical purposes, the
currents are small compared to the phase speed of the waves the reader is
referred to the review of Peregrine (1976) for a discussion of this point.

In the case of a uniform current it is clear that any solution for waves
on still water may be combined with the current by the simple addition of the
uniform velocity to the wave solution. However, in the fixed frame of
reference allowance has to be made for the change in wave frequency given by
(6). If this Doppler shift in frequency is not correctly taken into acount
errors can result in the interpretation of experimental results (see Peregrine,

1976} .



The simplification of the problem assuming a uniform current is not
always possible. If waves propagate from a region of no current to one with
uniform current then account has to be taken of changes in the wave amplitude
and wavenumber. As we are concerned with vertical rather than horizontal
variations in the current this aspect of the problem will not be discussed
here. See Carter et. al. (1985), Peregrine (1976) and Peregrine & Jonsson

(1983) for further details.




4, Small amplitude waves

Having considered the simple case of a uniform current the next
simplification to consider is that of small amplitude waves. Under the
assumption of small amplitude the waves can be regarded as a perturbation of
the current and this allows the equations of motion to be 1linearised by
neglecting terms which contain the square and higher powers of the wave
amplitude.

Following Thomas (1981) we may write

’\I(x,e) = qcu:(kx—w('j 7

W (2,€) = Uz + w(®) cos (B -wkE)

W Lu’z’ €)= w(z) g,m(kx —wb) (8)

nd Prlx,2,6) = —f92 + P cos kn-wtk) . (o,

Here the subscript T has been used to denote the total fluid velocity and
pressure. U(L) is the depth varying current and the perturbation due to the
waves is assumed to be sinusoidal. Substitution into the momentum and
continuity equations (1) and (2) and linearisation leads to the following

relationships



w= R y!
£ = p W= (w-oJw'
P [w (w-e)w'] (10)
E = k (,L*-“Q)W
P
where g djdz. and ¢ = UJ/h. is the phase speed of the waves. These

equations can now be combined to yield a single equation for the function VJ(ZJ

S T O
U—-c

(11)

This is the “inviscid Orr-Sommerfeld equation" or "Rayleigh equation" of
hydrodynamic stability theory (Drazin & Reid, 1981). Once a solution to this
equation has been found (10) allows the functions w(=) and PCZ) to be

determined.
In addition to (11) it is necessary to specify boundary conditions for
the function W(2j . At the free surface linearisation allows these to be

applied at the mean level 2 = 0, thus the dynamic boundary condition (4)

gives

z | [
(Ll- ¢) w = [;3 + LUT'C) Lk:] w on 2 = 0O
(12)
while the kinematic boundary condition (5) gives

w = a [w-BW on 2=D. (13)

The bottom boundary condition (3) becomes




(14)
Clearly equation (11) does not possess a simple analytic solution for an

arbitrary current profile LX(;J but analytic solutions exist for the linear

profile

W(i=z) = U, + 5, =

(15)

for which

|

Wzl = o (w-kU.) suh k(=rh Joak RA (16)

This gives the following dispersion relationship for waves on a linear shear

flow
2 S k <
o~ kW) = C gk = (o-krU) 5T ouh(kh) (17)
For no current ( U, = T. = 0) this reduces to the 1linear dispersion
relationship for waves on water of depth , while for a current with no shear

( B« = 0) it reduces to the Doppler shifted linear dispersion relationship for
waves on a uniform current (see previous section). Note that T, is the
vorticity of the flow, which is constant. This solution was originally given
by Thompson (1949).

Thompson (1949) also suggested how more complex profiles Uin could be

approximated by a piecewise 1linear profile with appropriate matching



conditions on W(2) at the "joins" in the profile. The appropriate conditions

(Peregrine, 1976) are that normal velocity and pressure
] 1
w/(h-¢) ond (UW=e) w!— U w

be continuous across the "join". For the case of a particular bilinear profile
Thompson (1949) gives results for water of finite depth while Taylor (1955)
gives results for water of infinite depth. Dalrymple (1973) has given results
for the most general form of the bilinear profile. The resulting dispersion
relationships are considerably more complicated than (17) and will not be given
here.

For arbitrary \1(1) Burns (1953) considered the case of long waves
{ R-> 0), while Dalrymple (1973) gives results for short waves ( R-> o0 ) using
the WKB approximation. If the waves are stationary, ( ¢ = 0) Lighthill (1953),
Fredsoe (1974), Peregrine & Smith (1975) and Peregrine (1976) give results for
a variety of profiles (A(z) . As these various special cases are not of great
significance oceanographically they will not be discussed further here.

More importantly we note that (11) can be solved numerically for an
arbitrary given profile W(z) and wavenumber Kk to obtain the combined
wave-current interaction. Fenton (1973) gives a method that is applicable when
U&q is specified analytically, while Thomas (1981) describes a method that can
be used when \lcﬁ) is specified at a number of points over the water depth, for
example from measurements. Shemdin (1972) and Plant & Wright (1980) have
solved the equation to consider the effect of wind drift on the phase speed of
the waves.

Problems arise in the solution of (11) if at some level in the flow

2.==2¥’a critical layer occurs with




(W(z)— ) =0

Under oceanographic conditions the phase speed of the dominant waves is
generally greater than the current speed so that this problem will not arise.
Methods of dealing with it when it does occur are discussed by Peregrine (1976)

and, in the context of hydrodynamic stability theory, by Drazin & Reid (1981).



S, Finite amplitude waves

It is clear that the methods discussed in the previous section will be
inadequate to model the interaction of large (finite) amplitude waves with a
current, as they essentialy treat the waves as a small perturbation of that
current. Here we will describe some methods that are applicable to finite
amplitude waves on a vertically varying current.

Peregrine (1976) discusses various special solutions for waves on
currents, such as Gerstner's rotational waves and the highest wave on a current
with uniform vorticity (that is, one with a linear profile). He also discusses
the effect of finite amplitude waves on the mean level and mass flux (Stokes
drift), which are important for waves on water of finite depth. We will not
pursue these issues here, more details may be found in his paper.

The first approach that can be used to study finite amplitude waves on a
current is to use a Stokes type expansion in powers of some small parameter
(for example, wave steepness). The linear theory of the previous section
provides the first order solution to the problem and successive approximations
may, in principle, be calculated (Dalyrymple, 1973; van Ninh, 1984). However,
as analytic solutions exist in the linear case only for a very restricted class
of profiles U&z), higher order analytic approximations cannot be calculated for
a general b\hy . Results have been given by various authors for linear and
bilinear profiles (Tsao, 1959; Brevik, 1978; Brink-Kjaer & Jonsson, 1975).
These solutions are only to second or third order of the small parameter, for
even in these "simple" cases the expansion procedure rapidly becomes very
complicated.

Peregrine (1976) gives the following results for waves on deep water with

Wlz) given by (15) with W, =0,



eyl = a cos (Rx-wt) + Lotk (1+281 L4 car 20k -0t (18)

where S=5% /W
and the dispersion relationship is

W= 3k - Low

(19)

The usual second order Stokes solution is obtained by setting 3;==o ( $=0),
We note that for 3; > 0 the waves are peakier at the crest and flatter at the
trough than the corresponding waves with no current, while for 3% < 0 the

waves are more nearly sinusoidal. In fact, for

S = —2+4J2

the second order term in (18) vanishes identically and the profile is
sinusoidal to second order. Figure 2 illustrates these effects schematically
(see Peregrine, 1976, for more details).

In order to obtain higher order solutions it is helpful to recast the
equations of motion in stream function form. In a frame of reference moving
with the wave, at the phase speed © , the motion is steady and the stream

function  YP(x;2) is defined by

'lP'z = UL?—) + u(_)(_/'zj —C

(20)

V)L - - WL’L/.Z/

so that the continuity equation is automatically satisfied. Prom (20) and the

momentum equations it can be shown (Dalrymple, 1973) that



- 21 =

U = € (v

(21)

which expresses the fact that for an inviscid, incompressible fluid the
vorticity is constant along a streamline (- V%qr being the vorticity). The
boundary conditions can also be expressed in terms of the stream function
(see Dalrymple, 1973).

For general QQWV) equation (21) cannot be solved easily, however for the
linear profile (15) Lk}ﬂ = - S, (constant) and results can be obtained by an
extension of Dean's stream function (Dalrymple, 1973, 1974a). For a piecewise
linear profile £f1t) is constant over each section of the profile and again a
stream function approach can be employed to solve the problem (see Dalrymple
1974b, for the bilinear case). Results can also be obtained for
‘G("V) =X b}‘r , which lead to exponential or sinusoidal profile W (=)
(Dalrymple & Cox, 1976), but these do not allow the exact current profile to be
specified in advance (it is found as part of the solution procedure).
Dalrymple's (1973, 1974a, 1974b) results show that considerably different fluid
velocities can occur for waves of the same height and period depending on
whether a zero, linear or bilinear current is present.

One of the difficulties in solving finite amplitude wave problems is that
the position of the free surface is unknown and this leads to difficulties in
applying the boundary conditions at the free surface. In order to solve
equation (21) for more general values of 'pcﬂj Dalrymple (1973, 1977)
transforms the equation by interchanging the dependent and independent

variables ‘(F and Z , thus
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zZ=2(xv) (22)

This allows (21) to be written as

- 3
Z‘sz xx 2 Zy 2 Ty T (H— 7-:;) Ty = 2oy {’(W’) .
(23)

Although this equation is more complicated than (21) it is valid over a known
(rectangular) region in % - %f space (rather than an unknown region in X - 2-
space) as the stream function 1f is constant on both the free surface and the
bottom. This enables the equation to be solved by a finite difference method
(Dalrymple 1973, 1977). Dalrymple gives results for both 1linear and
one-seventh power law current profiles and finds large differences in the
resulting wave velocities.

A problem that arises with the above formulation is the relationship
between the current profile kktiJ and the function c(ﬁr1. Dalrymple (1973,
1977) specifies Q{FF) and then solves the problem to obtain (XQH « Preferably
one would like to specify (kft) rather than FQW]. Benjamin (1962), in a study
of solitary waves, introduces a new height variable $§ , equal to the value of

Z in the undisturbed flow (current only); thus

= ¥y

(24)

in the undisturbed flow (no * -variation). Equation (21) may now be written as
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(’\L(S) "C) izzzzatg - 2.2g2x2')g§ 1‘(‘-\—’2,‘;)1_“}

+ WGy ?'zf - 2 (I—r z:;)} =0 (25)

where £ GV/ = :';E- Il(S) (26)

Here (L@J appears explicitly, but this equation has only been studied in the
solitary wave case (Benjamin, 1962) and not for periodic waves.

This concludes our survey of methods used to calculate the interaction of
waves with a vertically varying current. We will now discuss the methods in

relation to experimental results on wave-current interactions.
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6. Comparisons with experiment

To determine which of the theoretical methods discussed above can be
applied practically to the calculation of wave-current interactions, and under
what circumstances, requires that theory be compared with experiment. Few such
commparisons exist and, to the author's knowledge, none of these are based on
field data. Such field studies as have been carried out (see, for example,
Lambrakos, 1981; Gonzalez, 1984) assume that the currents are uniform with
depth and vary only in the horizontal plane. As we are concerned with
vertically varying currents, none of these field studies are of help in
assessing the applicability of the theoretical methods discused herein. We are
therefore forced to restrict our attention to a limited number of laboratory
studies which have a bearing on the problem under consideration.

A number of laboratory studies of waves on a vertically varying current
have been carried out. Four of these (Shemdin, 1972; Mizuno & Mitsuyasu, 1973;
Thomas, 1981; Ismail, 1984) have compared measurements with the small
amplitudes theories outlined in section 4. Shemdin (1972) and Muzuno &
Mitsuyasu (1973) compare the measured phase speed of the waves on a wind drift
currrent with those calculated from equation (11). Shemdin (1972) uses a
logarithmic wind drift profile, while Muzuno & Mitsuyasu (1973) use a parabolic
profile fitted to data. In both cases allowance is made for the effect of
airflow by use of Miles (1957) theory. The agreement between theory and
experiment for the phase speed is found to be good. No comparison is made in
either case for the velocities beneath the waves.

Thomas (1981) and Ismail (1984) compare the velocities beneath the waves
with theoretical predictions and find good agreement. Thomas (1981) uses

equation (11) together with the current profile \kt2J measured in the absence
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of waves to obtain theoretical results. Ismail (1984) compares measurements
with results based on theory for linear superposition of waves and current,
waves on a uniform (depth-averaged) current and waves on a linear shear current
(fitted to data). The conclusion to be drawn from these comparisons is that
models that include the effects of shear can accurately reproduce the results
of experimental measurements 1if the waves are of small amplitudes.
Approximating the current profile by a linear profile is better than neglecting
the effect of shear by using a depth-averaged current. Ismail (1984) shows
that linear superposition (simply adding wave and current velocities) can
underpredict the particle velocities in following currents by up to 30% and
overpredict them by up to 10% in opposing currents. Both authors find that a
depth-averaged current (which includes the effect of the Doppler shift - see
section 3) can yield a good approximation if the shear in the current is small.

There appear to be only three attempts (Plant & Wright, 1980; Kemp &
Simons, 1982, 1983) attempts to allow for finite amplitude wave effects in
comparisons between theory and experiment. Plant & Wright (1980) consider
waves on a wind drift current and find that the incorporation of finite
amplitude effects does not improve agreement between theory and measurements
for the phase speed. Their work is similar to that of Shemdin (1972) and
Mizuno & Mitsuyasu (1973).

Kemp & Simons (1982) note that their experimental results for waves on a
following current are consistent with Dalrymple's (1974a) theoretical
predictions that the waves will have sharper crests and flatter troughs.
However, no direct comparison of wave profiles or velocities are made. In a
later paper (Kemp & Simons, 1983) on waves on an opposing current they compare
their results with Brink-Kjaer & Jonsson's (1975) second order theory for waves
on a linear shear current. For the wave profile they find good agreement

(better than for linear wave theory) while for the velocities beneath the waves
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Brink-Kjaer & Jonsson's (1975) theory gives good agreement (better than Stokes
second order theory for no current) except near the bottom where boundary layer
effects become important.

Although other experimental results exist for wave-current interactions
(sarpkaya, 1957; Brevik & BRas, 1979; Brevik, 1980) these authors do not make
any comparisons with the theories discussed in this report. Sarpkaya (1957)
does however show that linear superposition of waves and current is inadequate
to describe his experimental results.

It should be noted that several of the studies (Ismail, 1984; Kemp &
Simons 1982, 1983) show that the presence of waves affects the mean current
profile. This 1is because of the mass transport (Stokes drift) due to the
waves. In a laboratory situation the current profile [ALF) can be determined
by making measurements in the absence of waves. However, observation of the
mean current in the field will contain a contribution from the waves. This
will make any comparison between field data and theory difficult as all the
theoretical methods require as input the current profile ul}ﬂ « In practice an
inverse problem will have to be solved to obtain the current profile (ltﬂ and

the velocities beneath the waves.



7. Discussion and conclusions

This review has shown that, while a number of different methods exist for
calculating wave-current interactions for waves on a vertically varying
current, the question of which is the best method to use in a given case
remains open. For small amplitude waves the theory of section 4 has been found
to give good agreement with laboratory measurements (see section 6). However,
for large amplitude waves the comparisons between theory and experiment do not
allow any definite conclusions to be drawn. Dalrymple's (1973, 1977) numerical
results do suggest that the accurate modelling of current shear is important as
different current profiles with the same total vorticity (a measure of shear,
in this case) can lead to significantly (30%) different velocities beneath the
waves. A further problem in calculating finite amplitude waves or currents is
the correct specification of the <current profile in the numerical
calculations. 1In this respect Benjamin's (1962) formulation would appear to be
better than Dalrymple's (1973, 1977), but it has not, as yet, been employed to
investigate wavetrains (only solitary waves).

Another area in which there is a lack of results 1is that of field
measurement of waves on vertically varying currents. Even if such measurements
existed the difficulties highlighted at the end of section 6 would still make
comparison with theory difficult. Despite this difficulty such comparisons are
necessary if the theories are to be used for practical problems.

From the above it is perhaps possible to draw the following conclusions:

(a) the effect of current shear is important in determining the

kinematics for the waves.

(b) linear superposition of waves and currents is generally inadequate

to describe their interaction. At the very least allowance should



be made for the Doppler shift in wave frequency due to the current.

{c) for small amplitude waves the perturbation theory of section 5 gives
good agreement with laboratory measurements.

(d) for finite amplitude waves further comparisons between theory and
experiment need to be carried out to check the theoretical results.
The correct specification of the current profile in the calculations
needs to be investigated.

(e) there is a need to compare theoretical results and laboratory
measurements with field experiments to verify the practical
applicability of the various theoretical formulations. (In order to
be able to combine the 50 year wave and current with a view to
predicting forces on structure, points {(d) and (e) need to be
pursued).

Finally it is perhaps worth noting that this report has only considered
steady, monochromatic waves on vertically varying currents. Other aspects of
the problem, such as the generation of waves on a vertically varying current
(Kato & Tsuruya, 1978), wave breaking, turbulence (Kitaigorodskii & Lumley,
1983) and the effect of the current on a spectrum have not been considered. We
have also assumed that the current is uni-directional throughout the depth, but
in practice Ekman spiral effects may be important (Weber, 1983), where the
current direction as well as magnitude varies with depth. All these aspects

are also important and deserve further study.
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