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Abstract

Williams and Squire (Williams, T.D., Squire, V.A., in press. The effect of submergence on wave scattering across a transition between
two floating flexible plates. Wave Motion) present a mathematical theory that properly incorporates freeboard and draft, i.e. submer-
gence, in a description of how ocean surface waves propagate across an abrupt change of properties in a continuous sea-ice cover. Typ-
ically the abrupt feature is an ice floe of different thickness from the surrounding plate, a trapped iceberg, a pressure ridge, or an open or
refrozen lead. Here, we investigate how the assimilation of this floe submergence into theory alters the transmission of the wave trains,
allowing the approximation and consequent limitations inherent in the majority of previous models that apply the under-ice boundary
conditions at the mean open water surface to be assessed. This is done for isolated features and, using the wide-spacing approximation,
for heterogeneous ice sheets made up of many such irregularities drawn from appropriate probability density distributions. It is found
that the contribution associated with the underwater draft of ice floes is modest and can invariably be neglected, aside from at short
periods and in heavily deformed sea-ice. While its amassed effect across the many irregular features that habitually characterize sea-
ice will be significant, it is offset because of the tendency of ice covers to discourage the passage of short wavelengths preferentially
by creating a background wave spectrum composed only of long period wave energy in the ice interior. More general geophysical impli-
cations are discussed, particularly in relation to global climate change and the value of ice-covered regions as a proxy for observing a
warmer Earth.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Ocean surface waves typically encounter many localized
abrupt changes of thickness in the course of their passage
through the continuous sea-ice of the Arctic or winter
Southern Ocean, where they are often called flexural-grav-
ity waves because of the restoring forces involved. Open or
refrozen leads and polynyas, pressure ridges and dissimilar
ice floes are commonplace and trapped icebergs or ice
islands are also occasionally met. At each transition an
impedance change occurs, resulting in partial reflection
and altered wave dispersion for the transmitted portion
of the wave train. Evans and Davies (1968) and Fox and
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Squire (1990, 1994), for example, model how waves first
pass from open water into the sea-ice plate. Barrett and
Squire (1996), Squire and Dixon (2000, 2001a) and Wil-
liams and Squire (2002) consider wave propagation across
one or more cracks. Squire and Dixon (2001b) and Wil-
liams and Squire (2004a) deal with what happens when
waves meet an iceberg, a lead or a pressure ridge, amongst
other physical configurations. The integrated effect of com-
ing upon many heterogeneities over large distances is a
gradual evolution of the wave spectrum towards longer
period energy and the removal of short period waves
(Squire et al., 1995). Concomitantly, when of sufficient
intensity, the waves can act to fracture the sea-ice plate
leading to an altered floe size distribution and changes to
compaction when currents and winds are active. This
potentially has an important impact on regional climate
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Fig. 1. A plane flexural-gravity wave arrives from the LH sea-ice plate of
thickness h0 at a central plate x 2 R1 of thickness h1. (Coordinate axes are
displaced to the right to avoid clutter.) Here it is partially reflected and
partially transmitted into the RH plate, also of thickness h0. Each plate is
modelled as an Euler–Bernoulli thin plate, with its underside at
rj ¼ qjhj=q. The incident wave is incident at an angle h from normal
incidence and the sea floor is at z ¼ H .
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because sea-ice affects the way the atmosphere couples to
the ocean. Taken in the context of global warming it is also
of immediate topical significance, as temporal adjustments
in pack ice serve as a proxy of climate change (Rothrock
et al., 1999; Wadhams and Davis, 2000; Comiso, 2002).

A stream of theoretical papers relating to wave propaga-
tion in sea-ice fields has been published since the Squire
et al. (1995) review (see Squire, 2007), modelling both the
continuous sea-ice representative of the central Arctic
Ocean and the more broken-up pack ice of the marginal
ice zones. Much of this work is heavily mathematical, uti-
lizing methods from complex variable theory such as the
Wiener–Hopf method and residue calculus, Green’s func-
tions, integral equations, and variational calculus (in addi-
tion to those above, see e.g. Balmforth and Craster, 1999;
Chakrabarti, 2000; Chou, 1998; Chung and Fox, 2002;
Chung and Linton, 2005; Evans and Porter, 2003; Kohout
and Meylan, 2006; Linton and Chung, 2003; Manam et al.,
2006; Marchenko, 1997; Meylan and Squire, 1996; Meylan
et al., 1997; Peter et al., 2006; Porter and Porter, 2004;
Sahoo et al., 2001; Tkacheva, 2001, 2002, 2004; Williams,
2005; Williams and Squire, 2004b, 2006, 2007).

A common thread in nearly all the published theoretical
work on the topic is the neglect of any draft variation asso-
ciated with changes of thickness or property, so that the
under-ice boundary condition is always applied at the
mean open water surface. This assumption is justified by
asserting that flexural-gravity wavelengths are typically
an order of magnitude or more greater than the ice thick-
ness so that effects due to the draft of floes or abrupt
changes of thickness caused by refrozen leads or pressure
ridges can be disregarded. While plausible, the assumption
is untested and, for large pressure ridges especially, it is
likely to be a source of error. This deficiency was recog-
nized by Bennetts et al. (2007), who use a variational
approach invoking the Rayleigh–Ritz method to incorpo-
rate smooth spatial changes in the submergence of contin-
uous sea-ice, building on the work of Porter and Porter
(2004). Moreover, by replacing an essential continuity con-
dition in the Porter and Porter paper with a functional that
ensures coupling of the fluid motion between the free sur-
face and ice covered states, Bennetts et al. are able to deal
with abrupt changes and, in particular, partial ice covers as
well.

Williams and Squire (in press) do the same for abrupt
changes in ice type by use of Green’s functions, which
has the advantage that the multi-mode expansions utilized
by Bennetts et al. (2007) are accommodated automatically.
The method employed builds on some of the Green’s func-
tion work reported earlier in the Introduction, notably
Squire and Dixon (2001b), and on Meylan (1993) where
the related problem of a floating compliant raft subjected
to open water waves is considered including a discussion
of nonzero Archimedean draft. Although any depth is
achievable, the Williams and Squire model is especially use-
ful in deep water for features such as leads (open or refro-
zen), juxtaposed ice floes of different thickness, or where an
iceberg becomes entrapped in surrounding sea-ice. Pressure
ridges can also be modelled, despite the limited and some-
what physically unrealistic ridge profile configuration
allowed (see Fig. 1). The feature, which is modelled as an
Euler–Bernoulli thin plate like the sea-ice that encircles it,
can be frozen to the adjacent sea-ice plate or free to move
independently of it. This is important as both situations
occur in nature, depending on whether freezing is occurring
and on how long the arrangement has been in place under
steady state conditions. When the feature is unattached to
the ice around it, it will be in hydrostatic equilibrium but
this will not necessarily be the case when it is welded. We
have confidence in the Williams and Squire (in press) model
because the mathematics is validated in a number of ways,
e.g. using energy conservation, by reducing the surround-
ing plates to zero thickness so that they are effectively open
water, and by comparison with zero-draft theories. Results
in the current paper that demonstrate convergence to sim-
pler analyses also help to corroborate the theory.

The use of a thin plate is justified by Fox and Squire
(1991), who use a more sophisticated thick plate model
due to Mindlin (1951) that includes the effects of rotatory
inertia and transverse shear to demonstrate that thin plate
theory produces excellent results except at the very shortest
wavelengths or for inordinately thick ice, e.g. for ice shelves
as opposed to sea-ice. Their conclusion, which is in accord
with Mindlin (1951), is that the plate thickness must be
more than one tenth of the wavelength for substantial dif-
ferences to occur between the two methods. Regardless, in
typical sea-ice such discrepancies only occur at extremely
short periods, where waves will be totally reflected from
any feature in the ice that they encounter. Accordingly,
we rest content that the thin plate model is effective for
the problem being studied.

While the context of this paper is geophysical, a comple-
mentary corpus of work exists in the marine engineering
literature concerned with how an isolated body or a
finite number of bodies in an otherwise unbounded fluid
reacts to an ocean wave train. Textbooks by Newman
(1977), Sarpkaya and Isaacson (1981) and Linton and
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McIver (2001) each provide a comprehensive description of
the field. In many cases, floating bodies are taken to be
rigid – as opposed to flexible, but the effect of draft is cor-
rectly incorporated. The hydroelastic approach herein is
less common but some cognate studies do exist that either

– extend into hydroelasticity applications the conven-
tional methods of seakeeping analyses that separate
the problem into its diffraction and radiation compo-
nents (see Newman, 1994) and use a linear superposition
of the dry modes of the floating structure formulated in
terms of principal coordinates associated with those
modes (Bishop and Price, 1979; Bishop et al., 1986), or

– utlilize so-called direct methods (Eatock Taylor, 2003,
2007) that relate primarily to the behaviour of a solitary
pontoon-type VLFS (very large floating structure) such
as a floating airport, mobile offshore base or compliant
breakwater subjected to waves in an ocean of infinite
expanse (see e.g. Meylan, 1993; Wu et al., 1995; Andria-
nov and Hermans, 2005; Hermans, 2007).

These works differ from the arguably mathematically
more demanding situation described in Williams and
Squire (in press) and applied in the current paper, where
the ocean surface is not free (see Fig. 1), notwithstanding
the mathematical link observed above to Meylan (1993).

In Section 2, a brief commentary on the model is pro-
vided for thoroughness; the interested reader is referred
to Williams and Squire (in press) for the complete mathe-
matical development. Some results for isolated features
and combinations of features are given in Section 3, fol-
lowed by a discussion of the geophysical implications in
Section 4.

2. The model

2.1. Problem

Fig. 1 shows the configuration being modelled. A plane
flexural-gravity wave travels from the left into a plate of dif-
ferent thickness, where it is partially reflected and partially
transmitted into the right hand region. Properties are desig-
nated using the subscript j ¼ 0 in the outer regions
(x 2 R0 : �1 < x < 0; l < x <1) and j ¼ 1 for the cen-
tral plate (x 2 R1 : 0 6 x 6 l), so the flexural rigidities and
drafts of each plate are, for example, Dj ¼ Ejh

3
j=12ð1� m2

j Þ
and rj ¼ qjhj=q, where Ej, mj and qj are the Young’s mod-
ulus, Poisson’s ratio and density of the plate in the jth
region, while q is the (constant) water density. The lower
surfaces of each plate are located at z ¼ rj.

If, as well as a constant fluid density, we assume that the
fluid beneath the plates is inviscid and that flow is irrota-
tional, a potential function Uðx; y; z; tÞ exists such that the
velocity ðu; v;wÞT of a fluid particle is given by rU. Since
the incident wave forcing is periodic in time and the geom-
etry of the problem is shift-invariant in the y direction, U
has the form
Uðx; y; z; tÞ ¼ �Re½i/ðx; zÞeiðay y�xtÞ�; ð1Þ

where if x, h and c0 are the radial frequency, angle of inci-
dence and wave number of the incident wave, ay ¼ c0 sin h.
The �i factor is added for convenience and c0 is related to
x by the dispersion relation for the ice with thickness h0.

After choosing an integer m such that hm ¼ maxfh0; h1g
and non-dimensionalizing all lengths with respect to a nat-
ural length L ¼ ðDm=qx2Þ1=5, and flexural rigidities with
respect to Dm, the system that / must satisfy is

ðr2 � a2
yÞ/ðx; zÞ ¼ 0; ð2aÞ

LjðoxÞvðxÞ þ /ðx; rjÞ ¼ 0 for x 2 Rj; ð2bÞ
/zðx;HÞ ¼ 0; ð2cÞ
/xðxe; zÞ ¼ 0 for z 2 ðr0; r1Þ; ð2dÞ

where xe 2 f0; lg, LjðoxÞ ¼ Djðo2
x � a2

yÞ
2 þ k� rj, k ¼

g=ðLx2Þ, vðxÞ ¼ /zðx; rjÞ for x 2 Rj, and j ¼ 0; 1. The con-
stant g in the parameter k is the acceleration due to gravity,
which is taken to be 9.81 ms�2. Eq. (2b) is the non-dimen-
sional form of the thin plate equation, which requires the
difference between the air and water pressures on the plate
to be balanced by the strain in the plate. Note that the ef-
fect of added mass and added damping is included in (2), as
they enter through the dynamic pressure which includes
hydrostatic effects (Eatock Taylor, 2007). (see Williams
and Squire, in press, for a fuller derivation.)

A flexible central plate must also satisfy some conditions
at its ends xe 2 f0; lg. When it is free to move indepen-
dently of the two outer plates or when h0 ¼ 0, v will satisfy

Dðx�e ÞL�ðoxÞvðx�e Þ ¼ 0; ð3aÞ
Dðx�e ÞLþðoxÞv0ðx�e Þ ¼ 0; ð3bÞ

where DðxÞ ¼ Dj for x 2 Rj and L�ðoxÞ ¼ ðo2
x � a2

yÞ�
ð1� mÞa2

y : If, on the other hand, adjacent plates are frozen
or welded together, v will satisfy

vðx�e Þ ¼ vðxþe Þ; ð4aÞ
v0ðx�e Þ ¼ v0ðxþe Þ; ð4bÞ
Dðx�e ÞL�ðoxÞvðx�e Þ ¼ Dðxþe ÞL�ðoxÞvðxþe Þ; ð4cÞ
Dðx�e ÞLþðoxÞv0ðx�e Þ ¼ Dðxþe ÞLþðoxÞv0ðxþe Þ: ð4dÞ

Conditions (3) and (4) effectively imply that energy is con-
served at each edge, i.e. no translational or rotational work
is done on or by any of the edges. Also note the effect that
differences in the thicknesses on each side of each edge have
on conditions (4c) and (4d) due to the presence of the rigid-
ity terms Dðx�e Þ.

In addition, U must satisfy appropriate radiation condi-
tions that force it to behave like a combination of a unit
incident wave and a reflected wave of amplitude R as
x! �1, and a transmitted wave of amplitude T as
x!1. In terms of /

/ðx; zÞ � ðeia0x þ Re�ia0xÞuðz; c0Þ as x! �1;
T eia0xuðz; c0Þ as x!1;

(
ð5Þ
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where uðz; cÞ ¼ cosh cðz� HÞ= cosh cðr0 � HÞ, c0 is the real
wave number that satisfies the dispersion relation

f0ðcÞ ¼ ðD0c
4 þ k� r0Þc tanh cðH � r0Þ ¼ 0

and a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 � a2
y

q
¼ c0 cos h.

2.2. Solution

When h1 P h0, the following three steps summarize the
method of solution employed:

(1) Green’s theorem is used to derive an integral repre-
sentation of / in terms of its own value and that of
its normal derivative on the surfaces C of the central
plate that are exposed to the underlying fluid. The
Green’s function that we use to do this is presented
below.

(2) The normal derivative of / is eliminated from this
integral representation, allowing us to write the
potential entirely in terms of its own values when
ðx; zÞ 2 C. This is straightforward on the vertical seg-
ments of C but it is slightly more difficult on the hor-
izontal part where we use a variation of the method
of Meylan and Squire (1994) and invoke a second
Green’s function.

(3) A resulting integral equation is solved, incorporating
any necessary edge conditions.

When h1 < h0, we must approximate R and T using the
method described in Section 2.3 (for reasons given by Wil-
liams and Squire, in press).

2.2.1. Primary Green’s function

The Green’s function is found using the method of
Evans and Porter (2003), i.e. the Fourier transform of an
analogous system to Eq. (2) is written down, solved and
inverted using Cauchy’s residue theorem to give

Gðx� n; z; fÞ ¼ i
X
c2S0

AðcÞeiajx�njuðz; cÞuðf; cÞ; ð6Þ

where aðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

y

q
, chosen so that Arg½a� 2 ½0; pÞ,

AðcÞ ¼ �K2
0ðcÞc2=aðHðK2

0c
2 � 1Þ þ 5D0c

4 þ k� r0Þ;

and K0ðcÞ ¼L0ðiaÞ.
The set S0 contains the roots of the dispersion relation

f0ðcÞ ¼ 0 with arguments taken from ½0; pÞ. These roots are
distributed throughout the complex plane as shown by Fox
and Squire (1990). As jcj ! 1, the roots c! inp=ðH � r0Þ
for a positive integer n so AðcÞ � �1=inp. Consequently,
the series (6) fails to converge at ðn; fÞ ¼ ðx; zÞ and is slow
to converge when the two points are close together. The sit-
uation with the normal derivative of G is even worse, as it
never converges when x ¼ n. This is alleviated by writing
the series in an alternative absolutely convergent form with
the singularities isolated as explicit logarithmic terms (Wil-
liams and Squire, in press). Alternatively, if the water depth
is large enough and the incoming waves are normally inci-
dent, the infinite depth Green’s function may be used, for
which there is an analytical expression (Meylan and Squire,
1994; Squire and Dixon, 2001b; Williams and Squire, in
press).
2.2.2. Secondary Green’s function

To derive an integral relationship between vðxÞ and
/ðx; r1Þ, a second Green’s function g satisfying

L1ðonÞgðx� nÞ ¼ �dðx� nÞ; ð7Þ

and certain conditions as jx� nj ! 1 is used. By use of
Fourier transforms, g is found to be

gðxÞ ¼ � 1

2p

Z 1

�1

eiajxj

D1c4 þ k� r1

da

¼ �i
X1

n¼0

eiknjxj

4knj2
n

for k 6¼ r1: ð8Þ

In Eq. (8) j4
n ¼ �ðk� r1Þ=D1, Arg½j0� 2 ½0; p=2Þ and

j1 ¼ ij0, and kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

n � a2
y

q
, where Arg½kn� 2 ½0; pÞ for

n ¼ 0; 1. Corresponding expressions when k ¼ r1 are given
by Williams and Squire (in press) but this occurs very
rarely and is in fact dealt with numerically by another
method.
2.2.3. Integral equation

The integral equation

vðxÞ ¼
Z l

0

gðx� nÞ/ðn; r1ÞdnþLT
edgeðoxÞðPþ0 gðxÞ

� P�l gðx� lÞÞ; ð9Þ

where

LedgeðoxÞ ¼ �

LþðoxÞox

L�ðoxÞ
ox

1

0
BBB@

1
CCCA and

P�xe
¼ lim

x!x�e
DðxÞ

1

ox

L�ðoxÞ
LþðoxÞox

0
BBB@

1
CCCAvðxÞ;

is found by multiplying Eq. (2b) by gðx� nÞ and then inte-
grating by parts. Again it is possible that k ¼ r1; here this is
dealt with by solving a slightly amended version of Eq. (7).

This allows us to eliminate v from the following integral
equation, which was obtained by using the primary Green’s
function G:

/ðx; zÞ ¼LT
edgeðoxÞðPþl Gðx� l; z; r0Þ � P�0 Gðx; z; r0ÞÞ

þ eia0xuðz; c0Þ þ
Z l

0

Gðx� n; z; r1ÞvðnÞdn



5 10 15 20
0

0.2

0.4

0.6

0.8

1

Wave period / s

|R
| a

nd
 |T

|

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Wave period / s

|R
| a

nd
 |T

|

Fig. 2. Scattering by a 20 � 2-m-thick floe embedded in 1 m sea-ice
floating on deep water. The solid and dash-dot curves, denoting R and T,
respectively, assimilate the effect of the (Archimedean) draft while the
dashed and dotted curves, again for R and T, are for no submergence. The
curves in part (a) are for the free edge case (3), while those in (b) are for
when the floe is welded to the surrounding ice sheet (4).

V.A. Squire, T.D. Williams / Ocean Modelling 21 (2008) 1–11 5
�
Z l

0

Gfðx� n; z; r1Þ/ðn; r1Þdn

þ
Z r1

r0

Gnðx; z; fÞ/ð0; fÞdf

�
Z r1

r0

Gnðx� l; z; fÞ/ðl; fÞdf: ð10Þ

The P�xe
are unknown constants that are eliminated by

applying the appropriate edge conditions.

2.3. Wide spacing approximation

In Section 3, we will also present some results that arise
from a wide spacing approximation, which is used in two
ways that each follow from the same general formula.
The first way treats the scattering by two features of which
either may be a ridge or a lead, and the second approxi-
mates the scattering by a single lead as we are unable to cal-
culate it exactly when submergence is allowed for (Williams
and Squire, in press). We only show lead results when
h1 ¼ 0, as the wide spacing approximation is accurate even
for extremely small lead widths (Vaughan et al., 2007; Wil-
liams, 2005).

Let the first scatterer (which may be a ridge, lead or an
abrupt jump in ice thickness like the edge of a lead) have
reflection and transmission coefficients R0 and T 0 and have
its left hand limit located at x ¼ 0. Also let the second scat-
terer have reflection and transmission coefficients R1 and T 1

and have its left hand limit at x ¼ d. The ice to the right
and left of the two scatterers is taken to have thickness
h0, while the ice bounded between them is taken to have
thickness h2. This ice will have corresponding real wave
number c2, which satisfies the dispersion relation

f2ðcÞ ¼ ðD2c
4 þ k� r2Þc tanh cðH � r2Þ ¼ 0;

where D2 ¼ ðh2=hmÞ3, r2 ¼ rmðh2=hmÞ and the subscript m

relates to maxfh0; h2g in the manner of Section 2.1.
Assuming that any evanescent waves that are produced

by the first scatterer have decayed to insignificance by the
time they reach the second, the two objects combined will
have scattering coefficients

R ¼ R0 þ
R1T 0

�T 0e2ia2d

1� �R0R1e2ia2d
; ð11aÞ

T ¼ T 0T 1eiða2�a0Þd

1� �R0R1e2ia2d
; ð11bÞ

where a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

2 � a2
y

q
, �R0 ¼ �R�0T 0=T �0 and �T 0 ¼ ð1� jR0j2Þ

=T �0 are the scattering coefficients corresponding to a wave
arriving at the first scatterer from the right as opposed to
the left. Eq. (11) were originally derived by Kreisel (1949).

To approximate the scattering by a pair of features
(ridges/leads) from (11), we set h2 ¼ h0 (making a2 ¼ a0)
and take the first scatterer to be the left hand feature and
the second one to be the right hand one. On the other hand,
to approximate the scattering by a single lead then we set
h2 ¼ h1 and a2 ¼ a1. In this case, R0 and T 0 correspond
to the scattering of a wave travelling beneath a sheet of
ice with thickness h0 by an abrupt transition into ice of
thickness h1, while R1 ¼ �R0 and T 1 ¼ �T 0. These coefficients
are approximated as described by Williams and Squire (in
press).

In Section 3, we seek to estimate the scattering by a field
consisting of many (50–1000) features. Although Eq. (11)
can easily be extended iteratively to any number of fea-
tures, we would like to eliminate its dependence on the sep-
arations of adjacent features (through the parameter d).
Consequently, following Williams and Squire (2004a) we
note that jT j2, as given by (11), is periodic in d and average
over one period to give

1

2p

Z 2p

0

jT j2 dt ¼ jT 0T 1j2

1� jR0R1j2
; ð12Þ

where t ¼ 2a2d. Because the denominator is usually quite
close to 1, we may neglect it to obtain the so-called serial
approximation

jT j ¼ jT 0T 1j: ð13Þ
This was shown by Williams and Squire (2004a) to approx-
imate the median value of jT j well, and we confirm this in
Section 3. It is noteworthy that by taking the logarithm of
jT j2 before averaging, Berry and Klein (1997) obtained the
formula (13) without making any further approximations.

3. Results

Throughout this section, we use the following physical
parameters for the sea-ice and the water beneath:
Ej ¼ 5 GPa, mj ¼ 0:3, q ¼ 1025 kg m�3, qj ¼ 0:9q. The var-
ious curves of Figs. 2 and 3 provide a comparison between
no submergence and the case where the draft of the sea-ice
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Fig. 3. As for Fig. 2 for a 20 m by 5-m-thick ice floe.
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Fig. 4. The reflection coefficient R for a 2-m-thick ice floe floating on
infinitely deep water between two semi-infinite 1 m thick sea-ice sheets,
when submergence is allowed for (solid curves) and when it is not (dashed
curves). The frozen edge conditions are applied and the floe widths used in
each plot are (a) 10 m, (b) 20 m, (c) 50 m and (d) 100 m. (After Williams
and Squire, in press.)
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is treated properly. Each figure shows how an ice floe of
20 m width and a thickness different from the surrounding
1-m-thick ice sheet affects the passage of a flexural-gravity
wave train. Both the reflection coefficient and the transmis-
sion coefficient are plotted, with parts (a) illustrating what
happens when the edges of the ice floe are free, i.e. satisfy
equation (3), and parts (b) designating a floe that is welded
or frozen at its ends to the surrounding sheet, i.e. satisfies
Eq. (4). It is evident that the frozen edge conditions on
the right produce the simpler results and these will be dis-
cussed first.

In Fig. 2, the entrapped ice floe is 2 m thick, so there is a
step of 0.1 m in freeboard and 0.9 m in draft associated
with the floe. This produces a small increase in the reflec-
tion at all periods considered in part (b) and the removal
of the zero at about 13.1 s in the no-submergence case
where perfect transmission is predicted. Instead the jRj
curve monotonically decreases from a little above 0.4 at
2 s period to become negligible at long periods. The differ-
ence between the solid and the dashed curves is small but
conspicuous (ca. 7%). However, in plotting the reflection
coefficient we are exaggerating the effect, as we are actually
most interested in how transmission is altered by the inclu-
sion of draft when compared to the no-submergence solu-
tion because we are normally working out how much
wave energy reaches the ice interior after it has passed
through a number of obstacles. Since jRj2 þ jT j2 ¼ 1; differ-
ences between jT j with draft included (dash-dot curve) and
draft omitted (dotted curve) are actually only ca. 1% for
periods less than 10 s and jT j 	 1 with < 0:2% variation
for longer waves.

In Fig. 3, the ice floe is 5 m thick, so the freeboard step is
0.4 m and the discontinuity in draft is 3.6 m at each edge of
the entrapped 20-m-wide ice floe. Such dimensions would
be considered typical of a fairly substantial pressure ridge,
although the rectangular sectional shape is too simplistic of
course. (Note, however, that in Fig. 4 of Williams and
Squire (2004a) and the related discussion, different pressure
ridge shapes are shown to produce near identical results
when correctly associated.) As expected, Fig. 3b is a more
extreme version of Fig. 2b; again the no-submergence zero
associated with perfect transmission is removed when draft
is included and the solid curve sits a little above the dashed
one. In this case, the difference at periods less than about
10 s is more significant for both jRj (ca. 11%) and jT j (ca.
5%) because of the considerable draft involved, but again
effectively jT j ¼ 1 for both curves above 10 s period where
the curves are only ca. 1% apart at worst.

In Figs. 2a and 3a, the same comparison is done when
the ends of the captured ice floe are free to move relative
to the ice sheet and thus satisfy equation (3). Here the
curves are much more complicated and both sets, i.e. sub-
mergence-free and submergence-included, have consider-
able fine structure associated with periods at which
reflection is zero and transmission is perfect; the thicker
case of Fig. 3a being a more extreme version of Fig. 2a.
The inclusion of draft also causes local maxima and min-
ima in jRj to move period and a suggestion of a reduction
in the number of periods at which perfect transmission
occurs. While the amplifying effect of using jRj is dimin-
ished in the plots of jT j, as discussed previously, there is
still considerable fine structure evident in the jT j curves
at wave periods less than about 10 s, shown dash-dot (draft
included) and dotted (no-submergence). Above 10 s for
both the 2 m and 5 m ice floes cases, the curves converge
rapidly to yield jT j ¼ 1.

Fig. 4, reproduced from Williams and Squire (in press)
and included here because it sets a context for the subse-
quent discussion, shows the effect of floe width, in this case
for a 2-m-thick ice floe embedded in a 1-m-thick sea-ice
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Fig. 5. The median wide-spacing (solid) and serial (dashed) approxima-
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sheet. In each case the curves track one another well but
note that their propinquity deteriorates at larger periods
as the floe width is increased, i.e. in the sequence
Fig. 4a–d. Recalling again the exaggerating effect of plot-
ting jRj as opposed to jT j, for the configurations shown
the respective curves are pleasingly close being no more
than about a few percent different throughout.

Although very long periods have not been included in
Fig. 4 because the correspondence of the curves makes it
impractical, observations suggest that well into the Arctic
Ocean the ambient background swell is quite long (Hun-
kins, 1962). Furthermore, as one of the reviewers of the
current paper points out, even though transmission may
be very close to 100%, small relative changes in jT j could
be important, especially when integrated over a large num-
ber of features. Reassuringly, Table 1 confirms that the val-
ues of jT j with and without submergence included are
extremely close. The same effect seen in Fig. 4 is apparent,
namely that broader features tend to emphasize differences,
but the departure remains negligible and is certainly well
within measurement error. It follows from these compari-
sons that the effect of draft on jT j can be omitted to a good
level of approximation—at least for thickness changes that
are not too large and flexural-gravity waves typical of the
ice-interior. Nonetheless, the accumulative effect of many
irregular features could potentially deviate from that pre-
dicted by the no-submergence model when wave periods
are modest, so this is now considered.

In Fig. 5, where the submergence (a) and no-submer-
gence (b) cases are compared for 100 randomly defined
ridges, we move a little closer to such a real ice field using
statistical distributions provided by Wadhams (1988). Sail
heights are drawn from an exponential distribution, sail
widths follow by specifying a particular ridge geometry
and ridge separations are chosen from a log-normal distri-
bution. Both the wide spacing approximation developed in
Section 2.3 and a serial approximation that neglects all but
the principal transmitted wave train are plotted, with a 90%
confidence interval shown dotted in each case. For both
approximations but especially noticeable at longer periods,
it is evident that the effect of including ridge drafts is to
slightly increase the reflection coefficient by a few percent.
Having said this the confidence interval band for the wide
spacing approximation is broad and suggests the difference
Table 1
Difference between the magnitude of the transmission coefficient jT j with and w
of 10, 20, 50 and 100 m

10 m 20 m

30 s 3:4092� 10�8 1:4542� 10�

35 s 1:5213� 10�8 8:1493� 10�

40 s 7:7826� 10�9 5:2407� 10�

45 s 4:3479� 10�9 3:6698� 10�

50 s 2:5803� 10�9 2:7209� 10�

75 s 2:8615� 10�10 9:4926� 10�

100 s 1:5991� 10�11 4:6535� 10�

The table extends Fig. 4 to selected long periods.
is not always statistically significant. The median wide-
spacing results normally fall inside the confidence interval
of the serial approximation and so for simplicity subse-
quent results are presented using the latter.

In all cases the jRj curve drops monotonically from its
value at low periods to become very small above about
10 s, but the cases representing the serial approximation
(dashed) are much less noisy than those for the wide spac-
ing approximation proper (solid) because in the former
case reverberation of waves between ridges in the medium
does not occur. In interpreting Fig. 5 the relationship
jRj2 þ jT j2 ¼ 1 must also be kept in mind as before, since
this will tend to suppress differences between an ice sheet
where draft is correctly included and one where it is absent.

Randomly selected ridges and leads are both included in
Fig. 6 in the arbitrarily chosen ratio 50:50, where the general
shape of the solid (draft included) and dashed (no-submer-
gence) curves is the same. Ridges are chosen as in Fig. 5,
while lead widths and separations are respectively drawn
ithout draft included for wave periods in the range 30–100 s and floe widths

50 m 100 m

7 6:7436� 10�7 2:2878� 10�6

8 3:6076� 10�7 1:1695� 10�6

8 2:2320� 10�7 6:9713� 10�7

8 1:5105� 10�7 4:5551� 10�7

8 1:0871� 10�7 3:1716� 10�7

9 3:4488� 10�8 8:8698� 10�8

9 1:6158� 10�8 3:8632� 10�8
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Fig. 6. The serial approximation used to compare a heterogeneous ice
sheet composed of (a) 50, (b) 100, (c) 500 and (d) 1000 ridges and leads
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(c) 500 and (d) 1000 features. Solid curves show what happens when draft
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from a power law distribution and an exponential one. As
usual, dashed curves denote no submergence and solid
curves properly include the draft. The curves are separated
slightly in parts (a–d) and, in fact, cross over when the num-
ber of features is not large, i.e. in Fig. 6a–c, at an interme-
diate period of ca. 10 s and at a much longer period. (The
curves actually also cross in Fig. 6d but this occurs where
jRj 	 1 effectively.) This is due to the presence of the leads,
which tend to have a significantly greater impact on the
waves than do ridges—presumably because they are associ-
ated with free edge conditions (3) rather than welded edge
conditions (4). An equivalent plot to Fig. 6 with leads alone
shows basically the same shape, while that for ridges alone
has no cross overs. Interestingly, when a semi-infinite sheet
is modelled, i.e. open water for �1 < x < 0 and sea-ice for
0 6 x <1, the same cross over occurs (see Fig. 8 of Wil-
liams and Squire, in press). Reasons for the cross over are
subtle—as wavelength is altered by including draft,
although it is clear that at short periods the inclusion of
draft will offer an effective barrier to wavelengths not too
much greater than the submergence, while at very long peri-
ods the waves will not tend to see the difference for the rel-
atively small draft involved. The behaviour in between was
not anticipated by the authors.

The cross overs are certainly interesting but recall that
the number of features in Fig. 6a–c is quite small; for the
1000 ridges and leads appearing in Fig. 6d the behaviour
is much simpler. Essentially, because the cross overs occur
when jRj 	 1 and as jRj ! 0, the inclusion of draft always
effectively causes increased reflection and, accordingly, less
transmission. Draft effects are apparently quite significant
at intermediate periods, even with the effect of the relation-
ship jRj2 þ jT j2 ¼ 1, which tends to diminish their contribu-
tion to the forward propagating wave train. However,
recalling that only very long waves can penetrate and sur-
vive in the deep Arctic Ocean interior and noting that the
two curves become less easily discriminated above ca.
20 s period, the inclusion of draft in mathematical models
may be geophysically extraneous in this setting. This con-
firms our hunch about the importance of draft to jRj and
jT j at longer periods, which was discussed earlier in relation
to an extrapolation of Fig. 4. Because the volatility associ-
ated with the multiple reflections that occur in the precise
and wide spacing approximation is removed in the serial
approximation, the confidence interval is narrow and the
distinction between the curves is meaningful.
4. Geophysical implications

The primary geophysical aim of this paper has been to
establish whether the correct inclusion of draft is important
in calculating the progression of waves though isolated
abrupt features such as ridges and leads in a continuous
ice cover, and across an ice field composed of many such
features. To do this we have focused upon R, the reflection
coefficient, recognizing that effects on T, the transition
coefficient, are suppressed through the relationship
jRj2 þ jT j2 ¼ 1 and that plots of jT j tend to smear out
detail. Before summarizing the results in terms of their geo-
physical implications, however, we present a plot arising
from Fig. 6 that shows how a Pierson–Moskowitz wave
spectrum (Pierson and Moskowitz, 1964) would change
after progressing through 50, 100, 500 or 1000 ridges and
leads. Alternatively Fig. 7 may be perceived as showing
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how the spectrum evolves as it penetrates further into an
ice cover, i.e. fetch and quantity of features are inter-
changeable, and we have deliberately plotted the ordinate
spectral density function axis logarithmically to emphasize
this interpretation rather than allowing each part to be
rescaled. Granting this means that the usual shape of the
Pierson–Moskowitz spectrum is less familiar, we feel it
improves the interpretation. Note that the energy density
is also plotted against wave period as opposed to fre-
quency. This is to avoid the compression that occurs at
longer periods with the latter mode of plotting and for
compatibility with the earlier figures. Despite previous
papers by the authors having investigated how wave spec-
tra proceed through ice fields, e.g. Williams and Squire
(2004b), because of the geophysical value of such informa-
tion to the processes by which ice fields change and its
importance to ships and marine structures such as hydro-
carbon rigs in ice infested waters, no prior analysis has
been done that includes Archimedean draft for the hydro-
elastic ice floes present.

At all penetrations quite large differences are evident
between the ice covers with draft included and those with-
out when the wave period is less than about 12 s or so. Yet
it is not simply a case of saying that the inclusion of draft
causes greater attenuation, as the cross overs discussed in
relation to Fig. 6 begin to play a role. For example, after
50 features in Fig. 7a greater attenuation of the incoming
spectrum is predicted when submergence is omitted than
when it is included because the Pierson–Moskowitz spec-
trum has most of its energy occurring between about 5
and 10 s. The same behaviour is evident in Fig. 7b, but in
Fig. 7c for 500 features, a distinct cross over appears at
ca. 10 s that separates similar behaviour at low periods
from a range of periods where including draft causes more
energy to be removed from the passing waves. This pattern
continues for Fig. 7d, where 1000 features have affected the
spectrum. Here, the no-submergence spectrum (dashed) is
actually significantly larger above 10 s than the case with
draft included (solid)—up to ca. three times the energy den-
sity, although the logarithmic plot does not accentuate this
especially well.

To finish our discussion of Fig. 7 we state the obvious,
namely that ridges and leads influence the passage of flex-
ural-gravity waves as they progress further into sea-ice. The
overall energy in the spectrum is diminished preferentially,
with greater attenuation occurring at low periods than at
long periods, so spectral shape is a function of penetration.
The correct inclusion of draft does alter the degree to which
the spectrum distorts, not because the transmission coeffi-
cients are markedly different in each case but more because
of accumulated contributions from many such differences.
Differences are most pronounced at short periods and, in
fact, because only long wavelengths survive the passage
into the ice interior, the effect of draft is less of an issue
there. Unfortunately, no field data exist that can confirm
the accuracy of Fig. 7 and such an experiment would be
very difficult to do because of the requirement to character-
ize fully and accurately the geometry of every feature
present.

Since large areas of the central Arctic Ocean and the
Southern Ocean away from the continent and Peninsula
are relatively free of massively deformed sea-ice, models
that do not include draft would appear to be satisfactory
in many cases for reproducing how waves travel through
fields of sea-ice as most of the short period wave energy will
have been dissipated en route. Accordingly, current models
that apply the boundary conditions for single features at
the mean water line, e.g. Balmforth and Craster (1999),
Chakrabarti (2000), Squire and Dixon (2000, 2001a,b),
Sahoo et al. (2001), Linton and Chung (2003), Porter and
Porter (2004), Chung and Linton (2005), Manam et al.
(2006) and Williams and Squire (2006, 2007), will provide
a good description of what is actually occurring in nature
and may, with care, potentially be extended to connect
many such features together.

While our goal has been to investigate the effect of draft,
its inclusion has created a much more robust model of con-
tinuous heterogeneous sea-ice, with its many irregularities
correctly incorporated. Bennetts et al. (2007) and Williams
and Squire (in press) have each independently developed
mathematical theory that allows individual features to be
properly represented and, in principle, we may combine
these features to investigate ice fields of considerable extent
and inhomogeneity. We have shown how to do this using
the Williams and Squire work by means of a wide spacing
approximation that neglects the effect of evanescent waves
on adjacent features and a serial approximation that
neglects reverberation. Such models are becoming increas-
ingly important as climate warming begins to be felt, in
terms of both the observed and anticipated increases in
extreme weather events—including storms, and the meta-
morphosis of sea-ice into a physically weaker state that is
more easily destroyed by waves due to warmer tempera-
tures. Storms are likely to be accompanied by intensified
ocean wave activity, which will penetrate further into the
sea-ice veneer from the open sea and will break it up more
readily by a variety of mechanisms including enhanced flex-
ural-gravity-wave-induced stressing. With the ability to
produce plots of spectral evolution such as Fig. 7 for phys-
ically-realistic heterogeneous ice sheets, we are in a position
to compute whether or not sea-ice at any particular loca-
tion will fracture using methods such as those described
by Langhorne et al. (1998, 2001). In this scenario, the wave
energy density at any position in the sea-ice field will be
found, allowing the strain at that location to be compared
with that required for fracture—possibly taking into
account fatigue as described by Langhorne et al. (2001).
By this means, the ice field will gradually evolve to steady
state with no changes of external forcing, recalling that,
as the distribution of floe sizes and thickness changes, so
too will the spatial distribution of the wave energy across
the ice cover. Over and above an increased prevalence of
storms and weaker sea-ice, a warmer Earth will potentially
have further attendant effects. For example, we expect and
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are already observing more open water in the form of leads
and polynyas, e.g. the 100,000 sq km per year ice cover
reduction over the last 10 years in the Arctic, culminating
in 2007 in a 1 million sq km drop and the opening of the
Northwest Passage (Pedersen, 2007) so the overall concen-
tration will be less and ocean waves will penetrate further
into the ice interior. The process we are describing will have
a significant impact as the air/sea-ice/ocean fluxes will alter
markedly as positive feedback leads to continued growth in
the open water fraction present over vast areas of the polar
seas.

A final comment relates to an interesting repercussion
of the current work to the solution of the inverse prob-
lem. That is, can waves be used as a remote sensing agent
to determine the properties of an ice sheet? This idea is
not new and in fact goes back to D. Ye. Kheysin, but
to date it has not been fully tested. Kheysin’s idea, devel-
oped by Nagurny et al. (1994), is to tune quite subtle fea-
tures in the solution of a floating uniform thin elastic
plate to find a mean sheet thickness. While imaginative,
the current authors feel that the efficacy of the thin plate
model is being pushed to extremes by such an approach.
Although a parsimonious theory such as this would be
extremely useful, we prefer the current approach whereby
the sea-ice terrain is modelled to the best of our ability
and the results are then tuned to match observations.
Having said this, both approaches may drive valuable
field programmes that will complement the significant the-
oretical developments that have occurred over the last
decade. While the authors are really just at the start of
using waves in this way, some progress has been made
(Williams, 2005; Vaughan and Squire, 2006; Vaughan
et al., 2007; Vaughan and Squire, 2007) and we expect
to continue to develop these ideas towards a functional
tool that will extract sea-ice properties from remotely
sensed wave information.
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