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ABSTRACT

A solution is presented to the problem of a two-layer rectangular basin subject to a suddenly applied,
uniform wind stress; Coriolis effects are ignored. The solution is obtained for the case in which the time
scales of internal wave motion, wave decay and entrainment are widely separated; in this range the
entrainment across the interface is a perturbation on the mean motions.

The solution includes an oscillatory initial response, followed by wave decay and a steady-state inter-
face setup with baroclinic circulation, all superimposed on a slow deepening of the top layer by en-
trainment. The entrainment in turn affects the frequency of interfacial waves as the mixed layer deepens—
the deepening alters top and bottom layer thickness and the density jump between them. For the range of
mixed-layer Richardson number considered, entrainment is energized by wind stirring at the water
surface, which does work at a rate proportional to u»®.

1. Introduction

This paper presents an analytical solution to the
initial value problem of a two-layer rectangular basin
subject to a suddenly applied uniform wind stress.
The solution considers entrainment at the base of the
mixed layer (the top layer in this case) as well as the
interfacial waves and circulation caused by the wind
stress, but is valid only for the case in which en-
trainment acts as a small perturbation on the baro-
clinic motions.

The physical parameters which determine the
solution include the wind stress 7, = pous?, where
ux is shear velocity and p, is the density of water;
top and bottom layer depths h, and h,, respec-
tively; basin depth A and length L; and the density
jump Ap between top and bottom layers. Spigel
and Imberger (1979, hereafter referred to as SI)
have developed time scales for many of the proc-
esses relevant to wind mixing in lakes. They found
that the overall dynamics of a wind event could
be predicted by considering the ratio of a mixed-
layer Richardson number, Ri = g'h,/us? (where g’
= Apgl/p,) to the basin aspect ratios L/k, and h,/H.
In particular, for Ri > (L%/4h,®)(H/h,), stratification
is so strong that mixed-layer deepening can be ef-
fectively ignored in determining the response to
wind. Application of the wind stress causes the
interface between upper and lower layers to oscillate
about an equilibrium setup position with period
T, = 2L/Kg'h,h,/H)%. The oscillations decay in a
time we shall call 7,4, leaving a steady state setup
.of the interface and a wind-driven circulation in the
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top layer. For this case, the time for a turbulent
front to reach the interface from the water surface
is longer than the time T,/4 for the interface to
first reach the setup position. Heaps and Rams-
bottom (1966) have obtained a complete solution for
a variable wind stress, but neglect mixed-layer deep-
ening, for the initial value problem considered here.

For Ri < (L%4h,%)(H/h,) the effects of wind-in-
duced entrainment at the base of the mixed layer
cannot be ignored. To account for these effects we
will use a one-dimensional (in the vertical) integral
entrainment model which is a synthesis of those
presented by Niiler (1975) and Zeman and Tennekes
(1977). The model is described in a review article
by Sherman et al. (1978), and is derived by inte-
grating the one-dimensional turbulent kinetic energy
(TKE) budget over the mixed layer. The model
incorporates the effects of heat exchange with
the atmosphere, though we will restrict our-
selves here to the mechanical effects of the
wind. In the model, the mixed layer is assumed
to move as a slab with velocity AU relative to
the hypolimnion, bounded by shear zones at the
mixed-layer base and at the water surface. The
rate at which the wind does work in producing
TKE in the surface waters is 7ou,, where u, is the
surface drift velocity. Based on Bye’s (1965) and
Wu’s (1975) work showing the resemblance of
velocity profiles in the very surface waters to that
of an equilibrium flat plate turbulent boundary layer,
we assume U, = ux, so the rate of TKE production
in the surface waters is proportional to pous3.
However, TKE is also produced by the interaction
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FiG. 1. Conceptual sketch of interface displacement ; at the downwind end of a
rectangular basin of length L as a function of time, following the switching on of a
uniform wind stress at time t = 0. The long time scale T, is the time for the
mixed layer to deepen to the bottom; superimposed on the slow deepening
are internal waves of period T;, which decay with an e-folding time T,4, with

T, <T;<T,.

of Reynolds stresses with velocity shear in the large-
scale mean motions, both within and at the base
of the mixed layer. The velocity scale for this
production is AU rather than ux, and the rate of
TKE production for entrainment is proportional to
poAU%u,, where u, is the one-dimensional entrain-
ment velocity. Controversy exists over which of the
above two mechanisms—stirring in the surface
waters or shear production within and at the base
of the mixed layer—dominate mixed-layer deepen-
ing. The model described by Sherman et al. (1978)
incorporates both mechanisms and may be written as

B(CmPus® + (Aplpo)ghy)dh jdt = (Cyn®2)us®
1 2 3

+ (Cg/D)AUh,/dt — )
4

Here Ap is the density jump at the base of the
mixed layer and dh,/dt = u,, the one-dimensional
deepening rate. Cx, 1, Cr and Cg are O(1) coef-
ficients measuring the efficiencies of the various
processes involved in entrainment; their values as
determined by experiment are fully discussed by

Sherman et al. (1978) and Fischer et al. (1979). The -

left-hand side of (1) gives the rate at which energy
must be supplied for entrainment to proceed, while
the right-hand side gives the rate at which energy is
made available. Term 1 accounts for the rate of
change of TKE in the water column, and shows
that some energy is required for entrainment by a
turbulent front even in homogeneous fiuid. Term 1
has relatively little importance in lakes, where it is
usually dominated by the buoyancy term 2. Terms
3 and 4 give energy available from stirring and shear
production, respectively. A, accounts for losses of
TKE from the mixed layer via generation of internal
waves in the hypolimnion; parameterization of this
term is discussed by Sherman et al. (1978) and the
reader may also refer to Thorpe (1973). A, is not
thought to be of primary importance in describing
mixed layers in lakes, and in the present study we

neglect losses due to A; by assuming that there
is no stratification in the hypolimnion.

Using (1), SI investigated the circumstances
under which either internal shear production or sur-
face stirring dominates mixed-layer deepening in
lakes. They found that, for a two-layer basin with
mixed-layer Richardson number in the range

(L12h(Hihy)'? < Ri < (L%4h2)(HIhy), (2)

that shear production has negligible effect on en-
trainment, which is energized by surface stirring
of the wind. [A short argument to this end, utilizing
the estimate from Heaps and Ramsbottom (1966)
for the maximum value of AU as u«*T;/4h,, is pre-
sented in Section 2b.] For the range of Ri given by
(2), entrainment acts as a small perturbation on the
mean motions, on a longer time scale than either
the wave period T; or the decay time T,. Fig. 1
depicts qualitatively the behavior to be expected
for interface displacement at the end of the basin.
The oscillations and setup described earlier are
superimposed on a slow deepening process ener-
gized by the stirring effects of the wind. The en-
trainment time T, for the interface to erode to the
bottom of the basin is much longer than either
T; or T4; this wide separation of time scales per-
mits an analytical solution to be obtained, valid for
the range of Ri given by (2).

As stratification becomes weaker, Ri < (L/2k,)
x (H/hy)'?, the effects of entrainment and inter-
facial instability dominate the response. Shear
production within and at the base of the mixed layer
is the most important energy source for mixed-
layer deepening, which proceeds at a much faster
rate than for (2). Displacements of the interface
can be large—on the order of the basin depth—
and the linearizing assumptions we shall employ
here break down. The solution presented here is
also restricted to cases for which the earth’s rota-
tion is not important, i.e., for T; < T, where Tq
= 7(Q sing)™! is the inertial period, ¢ is latitude
and () is the angular velocity of the earth’s rotation.
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FiG. 2. Two-layer rectangular basin—definition sketch.

2. Equations and scales

Fig. 2 illustrates the two-layer rectangular basin
and associated terminology. The z axis has origin
at the undisturbed water surface and is positive
downward, z = {, and z = {, being the coordinates
of the free surface and interface, respectively. Sub-
scripts 1 and 2 denote the top and bottom layer,
-respectively, while the overbar denotes an average
over basin length; thus, &, h, are average top and
bottom layer thicknesses. {;, is the displacement of
the interface from the horizontal. Hence, A, = A,
+ {1, — &, where h,(x,t) is top-layer thickness.
Water particle velocities in top and bottom layers
are w; = (uy,wy), Wy = (#5,w,), where u,, w, and
u,, wy are x, z components. Velocities in the x di-
rection are decomposed as u, = U, + u,", u, = U,
+ u,’, where U,, U, are velocities averaged over
layer thicknesses and give net longitudinal transport
at any section, and u,’, u,’ are the residual circula-
tion velocities in top and bottom layers.

Terms vy, and v, denote the velocities of the
interface and free surface, respectively, while ny,
and n, are unit vectors normal to the interface and
free surface. We assume that the free surface is a
material surface, always made up of the same water
particles, so that

(€))

i.e., velocities of the free surface itself and of water
particles on the free surface are identical.

Conditions at the interface are slightly more
complicated. The velocity of the interface in the
ny, direction is (Stoker, 1957, p. 11)

Vint ‘Diny = gzt({zzz + 1)‘U2

= (Lioe + M) (Les? + 172,

Vorlyg = Wy'Ny at z = {,,

(4a)

aul (')ul

ou,
—_—t U — W, — =

ot ox 0z Po

1 9p, +_l_(6711'.r

where subscripts x, ¢ denote differentiation. The
normal velocity of the interface is thus due to mo-
tion {5, about a horizontal level z = h; as well as to
an overall thickening dh,/dt of the top layer by en-
trainment of fluid from the bottom layer. Because of
entrainment, the interface cannot be a material sur-
face—entrainment can only occur if there is a rela-
tive velocity between water particles at the interface
and the interface itself. If the fluid is incompressible
and volume flux is conserved across the interface,
then

(@* = vip) (i) = (U = Vi) ' (—Nyny) = Uey, (4b)
where superscript +, — denote fluid properties just
above and below the interface. (U™ — vyy)  (—nypy,) is
then the velocity of water particles in the bottom
layer relative to the interface in the —ny, direction,
out of the bottom layer and into the top layer. This
defines the entrainment velocity u., normal to the
interface, which must equal the relative normal
velocity of water particles just above the interface.
These considerations are taken into account when
formulating boundary conditions at the interface.

a. Equations of motion

In order to subtract out the effects of hydrostatic
pressure, pressures in the top and bottom layers are
decomposed as
(5a)

P = p18z + py,

Pz = p2gz — (p2 — p)ghs + Py’ +ps'. (5b)
Then the momentum equations for the top and bot-

tom layers are, to the Boussinesq approximation,

+ ale.z') , (62)

ox Po ox 0z
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1 op, 178 or
M, - _ 1 D1 + _( Tixz + 12z ) ) (6b)
ot Oox 9z pPo 0z Po\ Ox 0z
Our e W% _ i(apl 4 9P ) + i(afzm + GTZZJ,-) ’ (6¢)
ot ox 0z po\ Ox ox po\ Ox 0z
oW, +w2%+u2 oW, =_i(3171 + 9p, )_'_i(a’fuz + 67222). (6d)
ot ox ox Po\ 0z 0z po\ Ox 0z
Here 7,, represents stress in the x direction on a “Ni(7t — 77) = (ut — u7) polten, (11a)
plane whose normal is in the +z direction. The equa- .
tions of continuity for the top and bottom layers are which may be expanded as
Ou, dw, —boo(Thy = TZe) (T8 — 722)
R (72) = —* = u)poue, (11b)
2{4_2 + ow, =0 (Tb) _C21'(7;z - T7) — (7:2 - Tz) . i
ox 8z = ~(wt — w7 )pout,. (llc)

We can use (3) and (4) as boundary conditions
to integrate the equations of motion over the layer
depths. Expanding (3) and (4b) yields expressions
for vertical velocities at the free surface and
interface:

The above equations show that a stress discon-
tinuity must occur if there are both entrainment and
a velocity jump across the interface.

We assume that at the free surface the wind stress
7o acts parallel to the free surface and is con-

wy =8y +u b, at z={, (8a) tinuous across the free surface. Pressure is taken as
uniformly zero along the free surface; pressure is
+ = o 12 { 1
W= by U hr — Uen(1 + £ z=1¢ (8b)  assumed continuous across the interface.
T = Lo ULy — el + L) " 8c)  Withthe above boundary conditions the equations

where +, — denote properties just above and below
the interface. We also specify zero velocity normal

of continuity may be integrated over the thickness
of each layer to give

to the bottom and side walls, i.e., hy + (Uihy), = u,, (12a)
w,=10 at z=H, (9a) hye + (Ushy), = —u,. (12b)
u, =u,=U,=U,=0 at x=0,L. (9b) Averaging these equations over the length of the

We define basin gives
Uy = Uen(l + 2)V2, (10) dh,/dt = ia,, dh,/dt = —i,. 13)

where u, may be interpreted as volume flux across
the interface per unit of horizontally projected area
of interface. To see this, consider path length ds
along the interface z = {,; then

ds® = dx* + dz® = dx*{1 + (dz/dx)?} = dx*(1 + {5,2),
SO UedXx = Ugnds.

The simultaneous occurrence of entrainment and
a velocity discontinuity at the interface influences
the proper formulation of shear stress at the inter-
face. If v*, 7~ are stress tensors just above and
below the interface, then (Slattery, 1972, p. 40)

A useful form of the continuity equations may be
obtained by making use of (13) and recalling that
hy=hy + & — Grand hy = hy — Gy

(L2 = 8)e + [U(Gi2 — &)1 + El Uyp=u,—i., (l4a)
Giot + (Ugliz)z — ﬁzUzr = U, — . (14b)

In this form it is easier to isolate the behavior of
the baroclinic mode, for which interface displace-
ments {;, are much larger than those of the free
surface ;.

Similarly, the x momentum equations may be inte-
grated over each layer thickness to give

U U 1 (& 1 ! r —

1 ) t _ 1 I _ L ap, dz Tzx Tox + M, , (15a)
ot Ox hl I Po Ox pOhl hl
oU U H ! ! =

2y 2—2=ij —l(a"‘ + 9 )dz+Tg’ T Ma (15b)
ot ox he Po\ Ox Ox Pohs hy
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in which
1 (% 0rys o (&
M, = — —dz - — u,"Yedz — (uiu,, 15
1 00 L ox ox L (u,") (i )u (15¢)
1 (7 0r9ps a (¥
My=— | 22 g — 2| (wy'ydz — (i u,.
= L x % L (u2')dz — (us™)u, (15d)

Here 72,, 7. denote shear stresses at the free sur-
face and the bottom; and 73,, 7, are stresses just
above and below the interface. Notice that the ex-
plicit effects of entrainment have all but vanished
from the momentum equations, being confined to the
product of «, with the residual circulation velocities
u,',u,'; as we shall see, this represents a higher order
effect for both the motion and entrainment.

b. Scaling

In order to scale the equations we must assume
that the vertical length scales are approximated by
h, ~ h, ~ H, the total depth, which is a constant.

We assume that the short time scale is that for in-
ternal waves, which we. approximate as T, = L/
(go'H)'?, go' = Apog/p, giving the initial density
jump. We thus effectively exclude consideration of
the barotropic response, which occurs on a much
faster time scale, L/(gH)"2, almost instantaneously
so far as the baroclinic response is concerned. We
introduce an overall Richardson number, Ri, = g,'H/
u+%, which is of the same order as the mixed layer
Richardson number, Ri = g’h,/us?. From (2), the
solution we seek is thus valid for the range

O(L/H) < Riy < O(L/H)?). (16)

The following scales are based on the work of SI:

Length x ~ L, z~H, h, ~H, hy, ~H
Time t ~ Ty ~ LIgyH)"? ~ L/(uxRip)"?
Velocity Uy ~uy ~ Uy ~ Uy ~ AU (=U, ~ Uy) ~ us*To/H = u+L/(HRiyV?) o
wy, ~ wy ~ u H/L, u, ~uy' ~ ux. (17)
Displqcement L~ Lus?/gH ~ (A po/po)(LIRiy)
L2 ~ Lus?lgy'H ~ L/Ri,
Pressure Di'lpo ~ g8 ~ go'L/Ri,
P2'lpo ~ &o'liz ~ go'L/Rio
Stresses To ~ Tz ~ Thy ~ Pold*®

~ Tez ™ (H/L)P0“*2

Tex

7 ~ 17 ~ poteAU ~ polux/Rig)[ Lux/(HRiy ?)].

In the scaling for interfacial stresses we have
assumed that entrainment scales as u, ~ ux/Ri. This
is based on the entrainment model (1), which may
be solved for «,:

uolux = Cyn[Ri(1 + Cm?/Ri — CsAU?%g’hy)]7. (18)

Using the scales introduced above we can estimate
the magnitude of the shear production term in (18)
as AU?(g'h,) ~ [L/(HRiy)]* < 1 for Ri, given by
(16). To lowest order, then (18) simplifies to

ufux = Cgn’/Ri 19

for the range of interest. This is the deepening

law proposed by Kraus and Turner (1967). The scale
for entrainment is thus_ue ~ ux/Ri,.

3. The lowest order solution

Substituting the scales into the equations for z
momentum (an asterisk denotes dimensionless vari-
able) gives

H 2 6"‘)1* H awl* awl*
(%5 e 55 4o )
L or* LRi, ax* az*
14 H\2 * 7. %
- _ p1 + (_) (aT.rz + T2z ) , (203)
oz* L ax* oz*
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(2)2 ow,* + H (uz* ow,* g awz*)
L or* LRi, ox* az*
_ _(apl'* .\ apz'*)
az* az*

2 * *
+ (E) (—_a"“ 4 O’ ) . (20b)
L ox* az*
Since we are interested only in the lowest order
solution and will carry our expansion no farther than
O(H/L), we will neglect at the outset terms smaller
than O(H/L). Keeping in mind that Ri, > L/H, Eqs.
(20a,b) give adp,'*/dz* = Op,'*/0z* = 0, i.e., pres-
sures are a function of x only. From the definitions
of p,’, py’, and the dynamic free-surface condition
that pressures be constant (zero) along the free
surface, we have p," = —pg¢, for all z. Similarly,
requiring continuity of pressure across the interface
gives p,' = —Apgl;, for all z. Thus, pressures are
hydrostatic for the scaling we have adopted, and
pressure gradients arise only because of departures
of the free surface and interface from the horizontal.
The integrated equations (15a,b) for x momentum
then become, in dimensionless terms and neglecting
terms smaller than Q(H/L):

U * N L . OU*
ar*  HRi, ax*
_ on* +i( L -
ax*  h*\ HRi®
H a Lo (H
—Tg;-——-j u{*zdz*), (21a)
L ax* ) m
oU,* N L' U aU,*
at*  HRi, Ax*
_r bt 1, L,
i ax* kY HRig? "t
H o [
——————J ué*’dz*). (21b)
L ox* J,m

The integrated equations for conservation of mass,
in dimensionless form to O(H/L), are

A
a(cm* - Lo g)
Po
or*
A
I aUl*(Cm* - 2k Q*)
+ . Po
HRi, ax
- aUl* _ ue* - ﬁe*
+ h,* prra R (22a)
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9L:* + L oU,*(p*
oar* HRi, ox*
ue* - ﬁe*
Ri01/2
We also have the compatibility relations h, = h,

+ {2 — ¢ and hy = hy — {5, which are nondimen-
sionalized as

(22b)

_ L Ap
hy* = hy* + « — 2P rx), (23a
> =h HRio(cu Ly, ) (23a)
hy* = hy* — —— L%, (23b)
HRi,

Keeping in mind that Ri, > L/H we see that en-
trainment enters the equations directly only as a
higher order term. We therefore need only include
the lowest order effects in the entrainment model.
From (23a) it can be seen that #,* = A,* to lowest
order; we can thus invoke the one-dimensional con-
servation of mass condition for a two-layer system,
Aph, = constant. This implies that Ri = constant as
the mixed layer deepens. Hence, to lowest order,
the entrainment model (19) simplifies to

u.ux = Cgn®/Ri = constant. (24)

The problem is simplified tremendously, since now
u, = i1, to lowest order, and entrainment enters the
equations only through the slow variation in 4, and
h, given by (13), i.e.,
dh *ldt* = —dhy*ldt* = il *, (25a)
where
e = L/[THRi®*?)]. (25b)

This immediately suggests the introduction of two
time scales, a slow one for entrainment

£ = et* (26a)
and a fast time scale for the wave motion
m=f(&le, (26b)

where f is an unknown function of &, to be deter-
mined in the course of analysis (see Nayfeh, 1973,
pp. 282-284). If f (¢) = &, for example, then u = ¢*.
We have chosen the above form for u so that deriva-
tives with respect to the fast time will be O(1), as
will be seen below. Derivatives with respect to di-
mensionless time * must now be expanded as

o _ 0 0t 0 dpoE__0 K3

— T —— —_ 4+ f R
o o Tomarar ‘ot o

where 9¢/0t* = eand a prime denotes differentiation
with respect to ¢. We thus have the following set
of equations, correct to O(H/L) for O(L/H) < Ri,
< O((L/H)®), O((H/L)'?) < € < O((H/L)?):
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Continuity f/ i‘(élz* _ APO CI*) + 6_6—(CIZ* _ APO Cl*)
o Po ¢ Po
o 0 Apo - ol *
+ eRi, V2 U.* * B + h.* 1
0 ax*l 1 (§12 S G )] hy pye (27a)
8L:0* 802" e QU™ - OUL*
f/ + € + €eRi,112 —hx = =
ou ° ox* ox* (270)
U.* U,* *
Momentum f' 6 LI U, + €Rig2U,* U,
ou o¢ ox*
8L ewr - H 9§ (wH
= + —— T%Y2 %
ot hy* L ox* L,,, (™Y dz*.  (283)
oU,* aU,* U,*
f, 2 + € 2 + ERiollez* a 2
ou a ax*
aL,* 0sp* T — €Tt H o [t
- + + _2 9 "*)247%  (28b
ax* ax* hz* L ax jzz/H (u2 ) b4 ( )
Entrainment dh,*/d¢ = —dh,*/d¢ = u,*. ‘ 29
together with the compatibility relations (23a,b).
If we consider € an expansion parameter, we can , 000y ¢ Uy
expand all variables in a series, as f e 1O 7o 0, Gle)
U*=Uyp + €Uy + . . .. (30 P 81209 i U 0 0 31d)
For example, if we assume A p/p, and H/L are small, o o '

of O(e), we can write down the O(e®) problem at
once, as

These are similar to the linearized equations solved
by Heaps and Ramsbottom (1966), but now &,, &, are
functions of the slow time variable £, as is the un-

oU d e P .
f! L 'c“:’ - = -(31a) known function f(£). In order to solve the lowest
o ox hyo order problem we need to determine f. To do this
oU at P L% we must go to the next higher order, even though
[0 - 5ROy Lo + 2% (31b) We need not solve the higher order problem com-
o Ox* ox* hao pletely. The O(e') problem is
£ U, _ 98,y + 7'_23:(0) _ U, — Rig"2U 0, U ) _ 9 J%Z“” Ul dx (32a)
o ax*  hy d¢ ' ax* ax* ’
U,y 810 08201 1 » .
’ = + + — THa) — Taoe — ThoRIY?
f om o a hz(m i P Tzx(0) T2z(0) Li200)
1
- W _ gigny,,, a0 | Teo 9 j uhoidz, (32b)
ox* hiy ox* Py
f 881201) + Ry 0U,) - L1200 — Ri,"2 U ili20 , (32¢)
o ox* 0¢ ax*
R U
f 88i0) — Py U, - _ 9,20 — Ri,"? U0 l120) ) (32d)
o ax* o0& ax*

We notice that the left-hand sides of the O(e') Of(e') equations, however, contain terms which do

equations are identical in form to the left-hand sides

not appear in the form of the lower order equations.

of the O(e®) equations. The right-hand sides of the Nonlinear combinations of O(e”) terms occur.
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Derivatives of O(e®) terms with respect to the slow
time variable ¢ appear as well, for the first time
at O(e!). As will be seen below, it is these terms
which determine the form of f (¢) for the lower order
solution. For the moment we treatf’ as a parameter
in (31a)=(31d) and solve the O(e”) problem.

For the remainder of the paper we drop the low-
est order subscript (0) and the superscript asterisk
for dimensionless variables except where ambiguity
is possible.

Subtracting (31d) from (31¢) and integrating from
x=0to 1, with U, =U, =0 at x =0, 1, gives
conservation of mass for the baroclinic mode as

ﬁl Ul = _Flg U2. (33)

The transports are equal and opposite in the top and
bottom layers. Because of our choice of scales for
¢{; and {;,, the free surface coordinate {; has vanished
from the continuity equations [(31c) and (31d)]
indicating that so far as continuity is concerned
the free surface is flat. However, the scales for the
pressure are the same for the free surface as for the
interface so that dynamically the effects of free-
surface displacements are as important as those of
the interface. Thus ; appears in the momentum
equations (31a,b). We can eliminate both ¢, and U,
from the momentum equations by subtracting (31b)
from (31a) and by making use of the relation for
conservation of mass (33) to get

fT_ aUl + ang - —_721- _ T_fz i (34)
h2 a” 6x hl h2

Recalling that the stress at the free surface in the
+x direction is equal to 7, = pux?, the wind stress,
we have —10, = 7/pux® = 1. In addition, we can
parameterize 7., the bottom boundary stress, by
equating the decay of internal wave energy to the
work done by the bottom stress in the boundary
layer at the bottom of the basin. In physical vari-
ables, the energy E in the wave field is proportional
to E ~ po(U,2hy + Uh,)L ~ pyUjsth, HLIR, [see
Eq. (33)]. The work W done by the stresses in the
boundary layer over one wave period is proportional
to W ~ 72, U,LT;. Equating W to the loss in wave
energy dE over one period yields an estimate for the
fraction of wave energy dissipated per wave period as

dE/E ~ —Tngi/pOUIH ~ Zad, (35)
where o4 is a decay modulus, assumed constant
(see Keulegan, 1959). As Keulegan (1959) points out,
and as confirmed by the solution derived here, the
decay modulus o4 has a physical significance related
to the e-folding decay time 7', for wave amplitude or
particle velocity, given by a4 = T/T;. The decay
modulus may be thought of as the ratio between
the time scales of wave period and wave decay,
so that for periodic response we must have o4 < 1.

ROBERT H. SPIGEL

151

Assuming 4T, ~ T; (this will be exactly true for
hy = hy = H/2), we let 78, = azpoUHI2T,. In di-
mensionless form,

ik = agU,*2. (36)

Relating wave decay to dissipation in the bottom
boundary layer thus leads to a linear bottom stress law.

Substituting for 7%, 7, in (34) gives the mo-
mentum equation as

ff-aUl“' =T . (37)

Egs. (37) and (31c) now form a set of two equa-
tions in the two unknowns U,, {,,. Eliminating
{12 by cross differentiation gives

62U1 g 6U1 _ il];lg 62U1
ou? 2f' du f'? ox?

This is a linear wave equation with damping.

To obtain initial conditions for U, we require that
u = 0att =0, and assume that the motion starts
from rest: U, = {, = 0 at w = 0. Using these con-
ditions to evaluate (37) at 4 = 0 gives the second
initial condition for U,, (8U,/8u)|uz0 = ho/(hof").
If we assume a solution of the form

0 _ 1

= 0.

(38)

U, = Y A(,8) sinnmx,
n=1

then the boundary conditions are satisfied and the
problem may be readily solved to give the solu-
tion for U;:

o 4h
Ul = ?-
n=1 n'n'f hl
n odd
—ay . .
X exp (z},— p,) sinyu sinnmx, (39)
where

(n2w?h,hy — o ?/16)12
f’ '
The solution for {;; may now be found by integrating
the expression for continuity (31c) to get
Jo

bl & e

a1 yR*m?
n odd
Qq .
X cosnrrx(y cosyu + E; sm'yy)] . 41

y(§) = (40)

—ay
Af'

In a similar fashion {; may be determined from (31a)
together with the conservation of volume condition
[ L udx = 0, and U, may be determined from (33).
We are still left with the problem of determining
f(§), and thus u and y. As we mentioned earlier,
(32a)—-(32d) for the O(e') problem have O(€°) terms
on the right-hand side, including some containing
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derivatives of Uy, etc, with respect to £ Now all
these O(e®) terms act as nonhomogeneous terms in
the equations for the O(e!) terms; if they were not
there, the O(e!) equations would be identical to
those of O(e®). Following Nayfeh (1973, pp. 280-
284), we now argue as follows. The homogeneous
solutions to (32) [i.e., the solutions of the equations
without the O(€®) terms on the right-hand side]
will contain terms exp(—agu/4f’) X cosyu,
exp(—agu/4f"') sinyu since the form of the homoge-
neous equations is exactly that of the O(e®) equa-
tions. The nonhomogeneous terms, however, also
contain terms which are proportional to these
homogeneous solutions. This gives rise to particular
solutions with terms like u? exp(—agyu/4f’) cosypu,
etc. In order for the perturbation expansion to be
valid, the ratio of O(e') terms to O(e’) terms must
remain small for large time, u; we must therefore
eliminate the u® terms. We note that among the
nonhomogeneous terms, those with derivatives with
respect to ¢ will give rise to the offending terms
multiplied by the coefficient y'. Since the homogene-
ous terms give rise to terms with coefficients £’ and
v, but not y’, the only way to suppress these terms
is to require that y' = 0. Other conditions will be
required as well to solve the O(e!) problem, but
for the O(€®) problem it is sufficient to set y' = 0.

If ¥’ = 0, then Nayfeh (1973, p. 278) points out
that y = 1 without loss of generality, and from the
expression (40) for vy we have

¢ o o\ V2
F® = J (wemhihs — ) Ty, @)
0 16
where Y is a dummy variable. Recalling that ¢ = et*,
this satisfies the requirement that 4 = f/e = 0 when

= 0. Using the expressions for ¢ = et* and u
= fle, we can write (42) in terms of u and ¢* as

1% o az
w(t*) = J (nzwzhlhz - -lg)dT*,

0

(43)

with T* a dummy variable, and the dependence
of hy,, h, on t* is given by the entramment law
(29) together with (26a).

The solution is summarized in terms of physical
variables below; the conversion is rather tedious
but straightforward. To lowest. order, in terms of
physical variables,

ux? > 4h,
U =—T —
' H ’ n§1 n’ml’hl
n odd
X exp(— ———) sing sin —— , (44a)
h
v, = - 2 (44b)
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okl

4

+ > ——~exp<—
n=1 n27T2
n odd

nwx _ o .
X cos T(-cos¢ 20 sm(j))] , (44¢)

C__ApL[(x_l)
' oo RI\L 2

+ ? 4h, exp(— Egjé)

¥

20 ! 1/2 ! 1/2 t
————"“’g"H) dr = 8" Itpdt (44e)
16 L

1/2

nzﬂzg,h1h2 _ ad2

44f
H 16 (441)

b = o) et
The solution represents standing waves which de-
cay with time, leaving zero mean velocity and a
steady state setup in both top and bottom layers.
Both damping and entrainment affect the frequency
of the oscillations, the frequency changing slowly
as the mixed layer deepens and hence h,, h, and
g’ change. The time variable does not appear simply
as an argument of the harmonic sine and cosine
functions, but must be evaluated via an mtegral
which accounts for changes in A,, kA, and g’ with
entrainment. After the wave motion has decayed,
the interface remains tilted with slope {3, = Ri™L.
Since Ri is constant to this approximation, the angle
of tilt does not change as the interface continues
to deepen slowly according to dh,/dt = CxnPuxRi™".
The solution reduces to that obtamed by Heaps and
Ramsbottom (1966) for the baroclinic mode for hy,
h, and g’ constant.

The solutions for U,, U, at mid-basin (x = L/2),
and interface displacement {, = {,, + h, at the lee-
ward end of the basin (x = L) are illustrated in
Fig. 3 for the following initial conditions: A; = 12 m,
hy =38m, g’ = 7.8(1073) ms™%, L = 6600 m, ux®
= 2.5(107*) m? s~2, These values correspond to the
temperature profile of 15 September 1951 for Lake
Windermere given by Heaps and Ramsbottom
(1966); on that day the mixed.layer extended to a
depth of 12 m, overlying a sharp thermocline and a
nearly uniform hypolimnion. From the above values
we calculate T; = 13.7 h, compared with an ob-
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=TT, = 0.25,
Which wag used in evaluating the solution illustrated
in Fig. 3. The Sawtooth character of Fig, 3 is due
the Iinean'zation, and js bart of the Solutiop (see
also Rao, 1967). Within the decay time T, the mixed
layer deepeneq 1.9m and the Wave period length-
ened from 13.8 ¢o 4.1 p is
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that to lowest order vertical velocities are zero, and
the flow locally parallel. Obviously, this is not true
at the end walls, but we neglect this region and
concentrate on the much larger region some dis-
tance from the end walls. In the second place, the
shear at the interface—r}, and 7,,—enters only at
higher order; to O(€°) the shear is zero at the inter-
face. There is thus no way to drive a circulation in
the bottom layer; to O(e°), u,” = 0. Finally, we see
from (31a,b) that on the long time scale the pressure
gradients due to the setup of the free surface and
interface are balanced by the wind stress. In physical
variables, (31a,b) become (to lowest order and for
U, = U, = 0 and hence 72, = 0)

—_ 2
96 _ Zux (45a)
ox gh,
-1
B _ _ (ﬁ) % _ 1 ush
ox p ox Ri

as the full solution predicts; k,, A, are still func-
tions of time.

Within the top layer the same balance must hold
between pressure gradient and shear stress as ex-
pressed by (45a), which applies to the layer as a
whole. Invoking an eddy viscosity as v, = 0.3uxh,,
(see SI), the balance between shear and pressure
gradient is

aL, - 0%,
0=g —— 4+ 0.3uxh 46a
g % *My Y (46a)
or
2,
Fuy, _ _ux (46b)
0z2 0.34,2

with boundary conditions du,/8z = —u+/(0.3h,) at
z = 0 and 6u,/0z = 0 at z = h,. These conditions,
together with the condition that

hy
U1 = J ule = 0,

0

are sufficient to determine «, from (46) as

ux[1/z\* z 1

ul = el - - - = + - .

0.3{2(h1) h, 3]
The profile is thus parabolic, in effect a linear
superposition of Poiseuille flow due to the pressure
gradient of free-surface setup and of Couette flow
due to free-surface shear stress. The velocity jump
at the interface is O(ux), as predicted by SI, and
thus has negligible effect on the shear production
term in the entrainment model. The parabolic shape
arises because of our use of a constant eddy vis-
cosity for the layer. Although I am unaware of any
comparable experimental result, the shape does not
agree particularly well with that of Baines and
Knapp (1965) for wind-driven barotropic circulation

’

47

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLuME 10

in a long rectangular tank. A parabolic velocity
profile has also been derived by Hellstrom (1941)
for the baroclinic circulation.

5. Summary and conclusions

A solution has been obtained for the initial value
problem of a uniform wind stress suddenly applied
to a two-layer rectangular basin. The solution in-
corporates the effects of mixed-layer deepening as
well as the internal seiching and interface setup
accompanying application of the wind stress, and is
valid for the range of Ri given by (1). For this
range of Ri, the solution is consistent with the
scaling that was introduced initially and reinforces
the following conclusions:

1) Interface displacements due to seiching and set-
up are small enough that mixed-layer deepening may
be considered one-dimensional and uniform over the
basin.

2) The energy source for mixed-layer deepening is
stirring by the wind, which does work at the water
surface at a rate proportional to ux®.

3) Shear production at the base of the mixed layer
provides an insignificant amount of energy for the
deepening process, both during the initial response
when internal waves occur, as well as after wave
decay when a baroclinic circulation remains in the
top layer.

The solution breaks down as Ri — L/h, from above.
For these smaller values of Ri, the solution shows
that interface displacements are large, of the order
of the top layer depth itself. The convective terms
in the momentum equations (20a,b) are of the same
order as the local acceleration and pressure terms.
For these reasons the perturbation technique used
to linearize the equation fails. In addition, velocity
shear at the interface is large enough to have an
important effect on the entrainment model, which
can no longer be simplified as in (19).
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