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a b s t r a c t

The increase of model resolution naturally leads to the representation of a wider energy spectrum. As a

result, in recent years, the understanding of oceanic submesoscale dynamics has significantly improved.

However, dissipation in submesoscale models remains dominated by numerical constraints rather than

physical ones. Effective resolution is limited by the numerical dissipation range, which is a function of

the model numerical filters (assuming that dispersive numerical modes are efficiently removed). We

present a Baroclinic jet test case set in a zonally reentrant channel that provides a controllable test of

a model capacity at resolving submesoscale dynamics. We compare simulations from two models, ROMS

and NEMO, at different mesh sizes (from 20 to 2 km). Through a spectral decomposition of kinetic energy

and its budget terms, we identify the characteristics of numerical dissipation and effective resolution. It

shows that numerical dissipation appears in different parts of a model, especially in spatial advection-

diffusion schemes for momentum equations (KE dissipation) and tracer equations (APE dissipation) and

in the time stepping algorithms. Effective resolution, defined by scale-selective dissipation, is inadequate

to qualify traditional ocean models with low-order spatial and temporal filters, even at high grid resolu-

tion. High-order methods are better suited to the concept and probably unavoidable. Fourth-order filters

are suited only for grid resolutions less than a few kilometers and momentum advection schemes of

even higher-order may be justified. The upgrade of time stepping algorithms (from filtered Leapfrog), a

cumbersome task in a model, appears critical from our results, not just as a matter of model solution

quality but also of computational efficiency (extended stability range of predictor-corrector schemes). Ef-

fective resolution is also shaken by the need for non scale-selective barotropic mode filters and requires

carefully addressing the issue of mode splitting errors. Possibly the most surprising result is that subme-

soscale energy production is largely affected by spurious diapycnal mixing (APE dissipation). This result

justifies renewed efforts in reducing tracer mixing errors and poses again the question of how much

vertical diffusion is at work in the real ocean.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The mesoscale ocean dynamics have been intensively studied

with both observations and numerical models. Recently, the in-

crease of numerical resolution has naturally led to the represen-

tation of a wider energy spectrum in numerical solutions (Klein

et al., 2008; Capet et al., 2008b). The increase of resolution to-

ward the kilometer scale also leads to flatter kinetic energy (KE)
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pectra near the surface than those expected from interior quasi-

eostrophic (QG) mesoscale dynamics with KE injection being initi-

ted by mesoscale straining and reinforced by submesoscale turbu-

ence. Advection then plays an important role by fluxing KE energy

pward from mesoscale to large scale (inverse cascade) and down-

ard to submesoscale (forward cascade). Consequently, part of the

inetic energy released from available potential energy (APE) leaks

oward smaller scales, en route to dissipation (Molemaker et al.,

010).

The forward cascade at submesoscale implies that numerical

losure (dissipation needed to remove numerical dispersive modes)

an be made more consistent with physical closure. Nevertheless,

issipation in submesoscale models remains dominated by numer-

cal constraints rather than physical ones. Model convergence at
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Table 1

Summary of algorithmic choices used for the various simulations presented in the

paper. Acronyms are: LF = Leapfrog, HARM = Harmonic averaging, FCT = Flux

Corrected Transport, FB = Forward Backward, AM3 = 3rd-order Adams-Moulton,

Gen. = Generalized, RA = Robert–Asselin time filter.

ROMS-AGRIF NEMO

Target applications Regional/mesoscale Global/climate

Horizontal grid C C

Vertical coordinate Generalized σ Partial steps

Vertical advection

Momentum 4th-order compact 2nd-order centered w/FCT

Tracers 4th-order centered w/HARM 2nd-order centered w/FCT

Horizontal advection

Momentum 3rd-order upwind Split 3rd-order upwind

Tracers 3rd-order upwind Split 3rd-order upwind

2D/3D coupling

Free-surface Split-explicit Split-explicit

Temporal averaging Power-law filter over 3
2
�t Flat averaging over 2�t

Time stepping

Internal waves LF-AM3 w/FB feedback LF w/RA

3D momenta/tracers LF-AM3 LF w/RA

Barotropic mode Gen. FB LF w/RA
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ubmesoscale is controlled by numerical dissipation, which over-

owers submesoscale energy production and transfer. A miscon-

eption in submesoscale ocean modeling would be to consider that

here is an intrinsic value of grid spacing that any model can use to

esolve the submesoscale range (1 km or 2 km is often assumed).

irst, there is a strong latitudinal influence on the meso- and

ubmesoscale ranges of the spectral energy cascade (Marchesiello

t al., 2011). Second, a notion of effective resolution is needed as

n indicator of the numerical dissipation range.

The concept of effective resolution is attached to that of dis-

retization error. It is known for decades that different methods

ffect differently the quality of a numerical solution when using

omputational grids with the same resolution. Accuracy estimation

n idealized problems is usually based on truncation error analy-

is using Taylor series expansion while dissipation and dispersion

roperties can be estimated from Fourier analysis (linear disper-

ion relation analysis). Traditionally also, pseudo-spectral models

re used as calibration to assess finite difference methods (e.g.,

rszag, 1971). The effective resolution can then be defined as the

aximum wavenumber at which simulated waves do not deviate

rom some ideal solution by some prescribed relative error margin

e.g., Kent et al., 2014).

In complex oceanic and atmospheric dynamical problems, ideal

olutions are difficult to find and other benchmarks must be pro-

osed. The idea of relying on the statistical spectral characteristics

f the atmospheric circulation was proposed by Skamarock (2004).

n this case, a robust −5/3 slope of kinetic energy wavenumber

pectrum is observed in the mesoscale atmospheric range, which

erves as reference to the numerical model. A similarly robust sta-

istical equilibrium is now shown to exist in many parts of the sur-

ace ocean, with a −2 spectral slope1 in the submesoscale range,

eflecting the ubiquity of surface fronts and submesoscale turbu-

ence (Blumen, 1978; Capet et al., 2008a; 2008d; Roullet et al.,

012; and Callies and Ferrari, 2013, for a review). Effective res-

lution can then be defined as the dissipation wavelength below

hich the model kinetic energy departs from the assumed regime.

his dissipation range is a function of the model’s numerical filters.

nherited from the concept of scale-selective dissipation in turbu-

ent studies (Frisch et al., 2008), it is generally believed that hyper-

iffusion operators only affect the smallest scales of the spectrum,

eading to an exponential decrease of kinetic energy within a finite

issipation range. We will show that this is not always true and,

onsequently, the concept of effective resolution must be taken

ith caution in oceanic and atmospheric modeling.

In this study, we assume that numerical closure is satisfied, i.e.,

here is enough numerical dissipation to remove numerical dis-

ersive modes. Linear analyses show that numerical errors can be

eparated into two main classes, dissipative or dispersive, accord-

ng to the properties of their leading term. Upwind-biased advec-

ion schemes are an example of methods that can easily be made

ominantly dissipative (Shchepetkin and McWilliams, 1998; Webb

t al., 1998). We will restrict ourselves to this class of methods so

hat the comparison between model and theoretical energy spectra

s unbiased by the production of spurious energy.

Baroclinic jets have been idealized at various occasions (e.g.,

cWilliams and Chow, 1981) to study the generation of baroclinic

nstability and associated mesoscale and submesoscale dynamics.

ere, we use a zonally reentrant channel where the density field

s relaxed to a state that ensures distinct interior and surface insta-
1 Frontogenesis driven by Surface-QG dynamics lead to a k−5/3 kinetic energy

pectrum in the submesoscale range (Blumen, 1978; Capet et al., 2008a). In Primi-

ive Equations, supporting ageostrophic advection and surface instabilities, a slightly

teeper ∼ k−2 spectrum is obtained (Roullet et al., 2012; Callies and Ferrari, 2013).

oyd (1992) also noted that a k−2 spectrum is a random discontinuity spectrum, i.e.,

t may express geometrical besides dynamical properties of a frontogenetic flow.
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ilities. It provides a controllable test to identify the model’s effec-

ive resolution of submesoscale dynamics. Our method of identify-

ng the characteristics of turbulence cascade, numerical dissipation

nd effective resolution mostly relies on spectral decomposition of

he energy balance, following Capet et al. (2008d) and Marchesiello

t al. (2011). This method is described in Section 2, along with

presentation of the numerical models, their discretization tech-

iques and the Baroclinic jet test case. Before analyzing the ef-

ect of numerical dissipation on effective resolution, we briefly

eport on the submesoscale activity generated in the test case

Section 3). Numerical dissipation is present in various parts of an

cean model and are addressed here in separate sections: spatial

dvection-diffusion schemes for momentum equations (KE dissipa-

ion; Section 4) and density equation (APE dissipation; Section 5),

ime stepping schemes (also for momentum and density) and time

lters for 2D/3D mode coupling (Section 6).

. Methods

In this section, we first describe the Regional Oceanic Mod-

ling System (ROMS), which is used in following sections to

tudy the effect of advection-diffusion schemes for momentum

Section 4) and density (Section 5). We also introduce the Nucleus

or European Modeling of the Ocean (NEMO), which is compared

ith ROMS in Section 6 to discuss the effect of time discretiza-

ion methods. The test case setup and diagnostics tools are also

resented in this section.

.1. ROMS

ROMS (Shchepetkin and McWilliams, 2005) is a regional model

esigned for simulating high resolution offshore and nearshore dy-

amics. ROMS is used here in its AGRIF version (see Shchepetkin

nd McWilliams, 2009, for a comprehensive comparison of var-

ous ROMS kernels). The different algorithmic choices relevant

or the current study are summarized in Table 1. ROMS is a

plit-explicit, free-surface and terrain-following vertical coordi-

ate oceanic model discretized on a C-grid. The time-stepping al-

orithm is third-order accurate for the integration of advective

erms and second-order accurate for internal gravity waves. It is

Leapfrog Adams-Moulton predictor-corrector scheme (LF-AM3)

omplemented with a forward-backward feedback to extend the

ange of stability for internal gravity waves. The barotropic mode

s integrated with a generalized forward-backward (FB) scheme
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(AB3-AM4: a three-time Adams-Bashforth-like step for free-surface

and a four-time Adams–Moulton-like step for velocities), which is

third-order accurate. Advective terms for tracers and momentum in

the horizontal are discretized using third-order upwind horizontal

advection schemes (referred to as UP3). Alternatively for tracers,

a better control of diapycnal mixing errors is provided by the Ro-

tated Split UP3 (RSUP3) scheme (Marchesiello et al., 2009; Lemarié

et al., 2012) and will be tested here. RSUP3 takes advantage of the

natural split of upwind schemes into purely advective and diffu-

sive parts (Webb et al., 1998; Holland et al., 1998) and rotates the

latter in the isopycnal direction. For the same argument of mini-

mizing spurious diapycnal mixing, vertical advection is discretized

with high-order schemes.

2.2. NEMO

NEMO (Madec, 2008) is a state-of-the-art global model widely

used in the climate community. NEMO is discretized on a C-grid

with a leapfrog (LF) temporal scheme combined with a modified

Robert-Asselin (RA) time filtering (Leclair and Madec, 2009) to

control a spurious computational mode. Initially built with low-

order discretization based on energy and enstrophy conservation

principles, NEMO now offers several options for the numerical

treatment of advective terms and barotropic/baroclinic mode split-

ting2. The choices for the present study are presented in Table 1.

Horizontal advection is formally discretized as in ROMS, but as

the leapfrog scheme is unstable for diffusive terms, the upwind

scheme is implemented with the splitting method of Webb et al.

(1998) and Holland et al. (1998): centered advection is integrated

with leapfrog and diffusion with a Euler forward scheme over 2�t

(�t is model time step). The resulting scheme is referred to as

split UP3 (SUP3). Vertical advection for tracers and momentum is

done with a simple second-order discretization combined with a

one-dimensional Flux Corrected Transport algorithm (FCT, Zalesak,

1979) to prevent numerical oscillations3. Finally, the barotropic

mode is integrated as the baroclinic mode with the leapfrog time-

stepping.

2.3. Stability ranges and computational cost

Stability constraints for ROMS and NEMO are given in Lemarié

et al. (2015). For the numerical choices presented in Table 1, the

Courant-Friedrichs-Lewy (CFL) stability constraints are respectively

αroms
adv

= 1.004 and αnemo
adv

= 0.50 for advection and αroms
igw

= 0.80

and αnemo
igw

= 0.46 for internal gravity wave propagation5 (with

the RA filter parameter ν = 0.1). For the external (barotropic)
2 The most standard option to handle the barotropic mode in NEMO makes use

of a filtered free-surface scheme: an explicit filter, which has the form of an extra

term in the barotropic momentum equation, is applied to slow down gravity waves

while attempting to preserve slower external modes.
3 To avoid numerical instability, the first-order upstream scheme providing the

monotone low-order flux in the FCT procedure is advanced using a forward Euler

scheme over 2�t; the high-order scheme can be safely used with Leapfrog (e.g.

Madec, 2008, Section 5.1.3).
4 The reduction in stability range of LF-AM3 combined with UP3 vs. C4 advection

can be mitigated by using C4 during predictor and UP3 during corrector (standard

choice in ROMS-AGRIF). This leads to an improvement of αroms
adv

by about 15% (from

0.86 to 1.00) without causing any adverse effects. In the split RSUP3 scheme, C4 is

applied during both predictor and corrector steps and diffusion is applied separately

using a Euler forward step (e.g., Marchesiello et al., 2009). In this case, αroms
adv

is

slightly increased to 1.02.
5 In global applications, NEMO generally applies a procedure consisting of time-

averaging the pressure gradient (Brown and Campana, 1978) to increase its permis-

sible time step, provided that stability is limited by internal gravity waves. If this

technique is useful to reduce computational costs in climate studies, it is probably

inappropriate for submesoscale simulations because: (i) the method is less efficient

as advection becomes more limiting for stability (e.g., strong vertical advection in

the presence of steep topography in so-called “hot spots”; Lemarié et al., 2015); and
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ode, αroms
ext = 1.8 and αnemo

ext = 1. The difference in stability

onstraints explain the difference in time-step limitation between

OMS and NEMO (Table 1). These numbers emphasize that high-

rder numerical schemes do not necessarily come at a higher com-

utational cost because of their larger stability range.

To be more specific, we benchmarked6 ROMS and NEMO on

he Baroclinic jet test case (described in the next section). With

he present choice of numerical methods, ROMS is systematically

bout twice faster than NEMO in completing the simulation, de-

pite extra-cost of a two-stage time stepping. This number may be

urprising but can be understood in the light of algorithmic argu-

ents and code profiling. First, the extended range of stability of

he predictor-corrector method for the internal mode largely com-

ensates for added computation. LF forces the computation of dif-

usive terms at a different time level than purely advective terms

nd requires a costly split of UP3 (the extra biharmonic terms for

omentum components and density doubles UP3 cost). In addi-

ion, even though LF-AM3 requires two evaluations of the right

and side at each time step, costly terms like vertical and lateral

iffusion are computed only once. Then, the generalized FB exter-

al mode time stepping doubles the LF range at no extra cost: the

ast mode, which represents about 25% of the total cost, is twice

heaper with the generalized FB. Finally, the fast mode filtering,

equired in the 2D/3D coupling procedure (see Section 6.3), is 50%

heaper in ROMS because of its power-law distribution that needs

shorter time integration window than the more traditional flat-

eight filter.

.4. The Baroclinic jet test case

A semi-idealized configuration in a periodic channel is set up

o generate two dominant mechanisms of upper ocean turbulence:

i) surface density stirring by mesoscale eddies and (ii) fine scale

nstabilities directly energizing the submesoscale range. A particu-

ar example of the latter is the Charney instability (Charney, 1947)

hose relevance to the ocean is discussed in Capet et al. (2014).

he baroclinic jet configuration used in this study is derived from

hat of Klein et al. (2008) and Roullet et al. (2012). The setup

onsists of a flat reentrant channel of 500 km by 2000 km by

000 m, centered around 30 deg of latitude on a β-plane (the Cori-

lis frequency is 1.10−4 s−1 at the center, β = 1.6 10−11 m−1 s−1).

astern/western boundary conditions are periodic while north-

rn/southern conditions are closed. The model active tracer is po-

ential density. The initial density field is constructed with interior

nd surface meridional density gradients (Fig. 1 and Appendix A

or details) and associated geostrophic currents that are linearly

nstable to both interior baroclinic and Charney instability modes.

linear stability analysis provides the exponential growth rate of

nstable modes as a function of wavenumber (Fig. 2). The two

ost unstable modes are clearly distinct in length scales on ei-

her side of the Rossby deformation radius (∼30 km in the cen-

er ± 5 km from south to north). The interior geostrophic insta-

ility thus injects energy at mesoscale and Charney instability at

ubmesoscale.

Initial zonal velocities are in geostrophic balance with the

onally invariant density field. The level of no motion is set at

he bottom, which specifies the total transport (barotropic flow).
ii) the method sets the advection Courant number closer to its limit, which has a

egrading effect on accuracy (see Section 6).
6 Benchmarking was performed on a linux cluster (Bull computer, Intel MPI, Pro-

essors Sandy Bridge-EP E5-2670 at 2.6 GHz, 16 cores per nodes). Both codes were

ompiled with “ifort -O3 -xHost -r8 -fno-alias”; the last option is to improve vec-

orization with pointers in NEMO. Our results were robust for all resolutions and

ith various choices of compiler options and parallelization. I/O operations were

xcluded from the computation and code profiling was performed to make sure

hat code performances were not accidentally spoiled by a “ballast” piece.
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Fig. 1. Initial conditions for the Baroclinic jet test case: meridional and vertical sec-

tion of density (kg/m3; gray) and zonal velocity (cm/s; isocontours).

Fig. 2. Exponential growth rate of an infinitesimal perturbation of the baroclinic

jet as a function of its wavenumber. Maxima are shown with a plus sign (+) for

the two most unstable modes, corresponding to the interior baroclinic instability

(for length-scales longer than the Rossby deformation radius) and Charney insta-

bility (for shorter scales). The black line is obtained for the baroclinic jet used as

ROMS initial state (which is also the restoring state). The gray line is computed us-

ing a 20-year mean of ROMS high-resolution solutions rather than its initial state.

The inset shows modulus profiles of eigenvectors of the two most unstable modes,

plotted between −2000 depth and the surface. Note the surface trapping of Charney

instability (dashed lines: black/gray for initial/mean state).
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he jet destabilization is triggered by a very small random density

erturbation. Quasi-equilibrium is then maintained by using a re-

axation of the zonally averaged velocity and density fields to a ba-

ic state that corresponds to the unperturbed initial state. Density

elaxation supplies the available potential energy reservoir of the

olution, while flow relaxation maintains the zonal transport. In

he relaxation procedure, the zonal mean state is recomputed only

very ten time steps to limit computational cost but the restoring

orce is applied at every step to each variable φ:

(x, y, z, t) ← φ(x, y, z, t) + �t

τ
[φ0

x
(y, z) − φ

x
(y, z, t)] (1)

here φ
x

represents the zonal mean value, φ0 the initial field and

a restoring time scale set at 50 days. τ was chosen so that the

estoring force can maintain the zonal flow structure without af-

ecting the mesoscale and submesoscale dynamics arising from it.

he stability analysis performed with the initial conditions was re-

eated with ROMS mean state from a 20-year high-resolution sim-

lation (Fig. 2). It confirms that the mesoscale instability and fine-
cale Charney modes are preserved by the restoring force (note

owever the reduction of maximum growth rates due to eddy ad-

ustment of the initial flow).

Bottom friction follows a linear relation with coefficient r =
.10−3 m/s. The vertical diffusion for density and momentum use a

ichardson formulation with minimum coefficients KT = 10−5 m2/s

nd KV = 10−4 m2/s respectively.

The test case was run for 20 years at four different horizontal

esolutions: 20 km, 10 km, 5 km and 2 km, the vertical resolution

s respectively 40, 60, 80 and 100 levels, with refinement in the top

00 meters of the domain (at 2 km resolution, vertical grid spacing

anges from 3 m near the surface to 200 m near the bottom). The

atio �t
�x

is held constant to maintain a uniform Courant number

hroughout the resolutions. At 2 km resolution, ROMS baroclinic

ime step is 320 s, giving a Courant number for internal waves

bout 10% lower than the maximum value αroms
igw

= 0.8. In NEMO,

he time step is 180 s, consistent with its lower stability range

ince αnemo
igw

= 0.46.

.5. Diagnostics: spectral KE budget

The horizontal Kinetic Energy balance for the primitive equa-

ions is:

1

2

∂u2
h

∂t
= −uh · (uh.∇h)uh − uh · w

∂uh

∂z

− 1

ρ0

uh · ∇h p + uh · Dh + uh · ∂KV
∂uh

∂z

∂z
(2)

he rhs terms, respectively, are horizontal and vertical advective

nergy flux divergences, horizontal pressure work, horizontal mix-

ng implying energy dissipation (left unspecified for now), and ver-

ical mixing.

Following Capet et al. (2008d) and Marchesiello et al. (2011),

e perform a spectral decomposition of Eq. (2) with respect to

orizontal wavenumber. Averaging in time over the 20-year simu-

ation, and in the vertical between a level z0 and the free surface ξ
ives:

= 1

ξ − z0

∫ ξ

z0

× �e

⎡⎢⎢⎣−û∗
h. ̂(uh.∇)uh︸ ︷︷ ︸

AH

− û∗
h.

̂

w
∂uh

∂z︸ ︷︷ ︸
AV

− 1

ρ0

û∗
h · ∇̂h p︸ ︷︷ ︸
PH

+ û∗
h · D̂h︸ ︷︷ ︸

DH

+ û∗
h ·

̂

∂KV
∂uh

∂z

∂z︸ ︷︷ ︸
DV

⎤⎥⎥⎦
(3)

is the time tendency term supposed small over 20 years. The hat ˆ

otation represents the Fourier transform of a variable,the caret

its conjugate, �e the real part of the complex number and the

verbar an average in time. Dropping the integral notation for sim-

licity and rewriting the horizontal pressure work as the sum of

D pressure work and KE injection (i.e., buoyancy flux, with buoy-

ncy b = − gρ
ρ0

, supporting conversion from potential to kinetic en-

rgy), the spectral KE budget is expressed as:

(k) = AH(k) + AV (k) + DH(k) + DV (k) + P(k) + I(k) (4)

, D, P, and I are respectively the horizontal/vertical advection,

orizontal/vertical subgrid-scale mixing, pressure and injection

erms:

(k) = AH(k) + AV (k) = �e

[
−û∗

h
. ̂(uh.∇)uh − û∗

h
.
̂
w

∂uh

∂z

]
(5)

H(k) = AUP3
H − AH (6)
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Fig. 3. Near surface relative vorticity (s−1) for ROMS (top) and NEMO (bottom) at 20 km, 10 km, 5 km and 2 km resolution (from left to right). Note that only half of the

meridional domain is presented (from 500 to 1500 km).
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DV (k) = �e

⎡⎣ û∗
h
.

̂
∂KV

∂uh

∂z

∂z

⎤⎦ (7)

P(k) = �e

[
−1

ρ0

û∗.∇̂p

]
(8)

I(k) = �e[ŵ∗b̂] (9)

PH(k) = P(k) + I(k) (10)

As noted above, the third-order upwind momentum advection

scheme can be split into a non-dissipative, fourth-order, centered

scheme and biharmonic dissipation term with velocity-dependent

hyperviscosity. Therefore, the lateral mixing term DH is the differ-

ence between advection terms AUP3
H

and AH, computed respectively

by the upwind and centered discretization schemes.

The advection term accounts for both spectral energy transfer

and energy flux through the domain. The integrated lateral flux

cancels out in a periodic channel and the vertical flux is small.

Therefore, the advection term essentially produces spectral trans-

fers of energy across scales. The energy transfer rate in k space (or

spectral energy flux), �(k), can be computed as the integral in k

of the advection term, assuming the flux vanishes at the highest

wavenumber kmax (Capet et al., 2008d):

�(k) =
∫ kmax

k

A dk (11)

3. Preliminary description of submesoscale dynamics

To assess the capacity of current numerical methods to model

baroclinic instabilities and associated submesoscale structures, we

first look at ROMS solutions: horizontal and vertical dynamical

fields, kinetic energy spectra and sources of KE in spectral space.
.1. Horizontal structure

The upper panel of Fig. 3 represents a snapshot of ROMS surface

orticity at the four different resolutions. Increasing resolution in

he model naturally leads to a broader range of scales being repre-

ented. Mesoscale structures are apparent at low resolution (20 km

nd 10 km) with differences in the size of fronts. As the resolution

s increased, frontogenesis is more active and submesoscale struc-

ures more apparent with peak vorticity in the vicinity of fronts. At

he highest resolution (2 km), turbulence is more fully developed.

umerous small scale eddies and meanders appear, which split,

reak or distort fronts and sometimes merge into larger eddies.

.2. Vertical structure

The vertical profiles of Eddy Kinetic Energy (EKE; Fig. 4), show

hat energy increases steadily from 1500 to 500 m depth and

hen exponentially toward the surface. Finer resolution produces

arger EKE, especially above 200 m depth where mean currents

re strongest and the influence of the surface mode should be

mportant.

The variability of vertical velocity (wRMS =
√

w′2) shows a

teady increase with resolution from 20 km to 5 km with a maxi-

um around 1000 m depth; then at 2 km resolution this increase

s more intense and a second peak of wRMS appears near the sur-

ace, consistent with stronger vorticity fronts and submesoscale

ddies. There is no sign of resolution convergence on wRMS, even

t mid-depth. According to Klein et al. (2008), the large increase of

variance between 5 km and 2 km resolution is due to frontal dy-

amics (frontogenesis and Charney instability) that affect the ver-

ical velocity field over the whole water column.

The average profiles of buoyancy flux w′b′ allows a clearer dis-

inction between instability processes. This term represents the
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Fig. 4. ROMS vertical profiles of 20-year mean eddy kinetic energy EKE (m2/s2), RMS vertical velocity wRMS =
√

w′2 (m2/s2) and eddy buoyancy flux w′b′ (m2/s3) at 20 km,

10 km, 5 km and 2 km resolution.
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Fig. 5. ROMS near surface KE Injection spectra (m3/s3) at 20 km, 10 km, 5 km and

2 km resolution.
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onversion of available potential energy (APE) into kinetic energy,

.e., EKE production by baroclinic instability. A maximum is reached

t each resolution around 1000 m depth (where the interior poten-

ial vorticity gradient changes sign) and corresponds to mesoscale

roduction from interior baroclinic instability. Few differences ap-

ear at mid-depth between all simulations, which suggest that

esoscale KE input is well represented at all resolutions. The near

urface is different: starting from 5 km resolution and most notice-

bly at 2 km the profiles show a large redistribution of w′b′ from

he subsurface (around 500 m) to the near surface. Resolution con-

ergence thus seems to be reached for mesoscale processes asso-

iated with the interior baroclinic instability, but frontal processes

ave only kicked in at the highest model resolution. Anticipating

n the remainder of the study we mention that the strong reso-

ution sensitivity of the upper ocean dynamics around �x = 2 km

s inherently linked to the effect dissipation has on key subme-

oscale structures. In this submesoscale permitting regime we ex-

ect strong sensitivites to the numerical methods.

.3. KE injection

The spectral budget presented in Eq. (4) is now used to evalu-

te the source and sink terms contribution to the near surface ki-

etic energy balance (z0 = 10 m). If advection and pressure terms

re important at large scale (not shown here), injection and dis-

ipation become major players at submesoscale and represent the

ain source and sink of kinetic energy.

The near surface injection of energy in k space is presented

n Fig. 5. We see a main peak at mesoscale and for the highest

esolutions (5 km and 2 km) a secondary peak arising at subme-

oscale. The limited amount of mesoscale events even in 20 years

f simulation limits the statistical reliability of the mesoscale peak

nd therefore the comparison between simulations. However, dif-

erences in submesoscale KE injection values are statistically ro-

ust as submesoscale events are an order of magnitude more nu-

erous (this was confirmed by estimation of confidence intervals;

ot shown). Their change with resolution shows a regime transi-
ion from coarse resolution to 5 km and finer where submesoscale

njection arises. The extended range of submesoscale energy pro-

uction at 2 km resolution is explained by the emergence of sub-

esoscale instabilities (and associated frontogenesis) in addition to

esoscale driven frontogenesis (Capet et al., 2008c).

. KE dissipation: spatial filters

In this section, we first proceed to a linear analysis of the third-

rder upwind advection scheme (UP3), then use it to interpret the

E and KE dissipation spectra obtained from the Baroclinic test

ase.

.1. Linear analysis of hyper-dissipation

For simplicity, we consider the one-dimensional advection

quation with constant velocity c discretized on a grid with
0



42 Y. Soufflet et al. / Ocean Modelling 98 (2016) 36–50

Fig. 6. Normalized damping factor and group velocity as a function of wavenumber

(bottom) and wavelength (top) in units of �x for the first (UP1) and third-order

(UP3) upwind advection schemes.
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regular mesh size �x. If we note ui the approximation of u at lo-

cation i�x, the UP3 scheme can be written:

c0
∂ui

∂x

∣∣∣∣
UP3

= c0

12�x

[
(−ui+2 + 8ui+1 − 8ui−1 + ui−2)

+ |c0|
c0

(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)

]
. (12)

The third-order upwind scheme in Eq. (12) corresponds to the sum

of a fourth-order centered approximation and a filter with coef-

ficient −|c0|�x
12 or equivalently a biharmonic operator with hyper-

diffusivity ν4 = −|c0|�x3

12 scaling with local velocity and mesh size.

The biharmonic diffusion term provides the leading order trunca-

tion error as shown by a Taylor expansion for �x → 0 that gives

the modified equation:

∂u

∂t
+ c0

∂u

∂x

∣∣∣∣
UP3

= ∂u

∂t
+ c0

∂u

∂x

+ |c0|�x3

12

∂4u

∂x4
− c0�x4

30

∂5u

∂x5
+ O(�x5)︸ ︷︷ ︸

truncation error

.

If we note ω the frequency and k the wavenumber in x-direction,

a Fourier transform on the discretized equation provides the dis-

persion relation:

ω(k) = c0

3�x

{
8 sin k�x − sin 2k�x

2
− i

|c0|
c0

(1 − cos k�x)2

}
(13)

≈ k c0

[
1 − (k�x)

4

30

]
− ik|c0| (k�x)3

12
for well resolved waves

(14)

The real part of ω represents the dispersive error of UP3, which is

identical to that of a fourth-order centered scheme. The imaginary

part of ω is the damping factor indicating the amplitude error, i.e.,

the dissipation needed to control numerical dispersion. Although

we have not seen it done before in the literature, we found that

the damping factor 
(ω) can be expressed in terms of group ve-

locity error. The exact group velocity for the advection equation is

c0 while the numerical group velocity cg for the fourth-order cen-

tered scheme is:

cg = d�(ω)

dk
= c0

(
4

3
cos k�x − 1

3
cos 2k�x

)
. (15)

Combining Eqs. (14) and (15), it can easily be shown that 
(ω) is

a linear function of the group speed error, i.e., a measure of the

dispersive error:


(ω) = −2

[
c0 − cg(k)

(n + 1)�x

]
, (16)

n is the order of the scheme (n=3 for UP3). In Appendix B, we

show that this relation holds for any linear upwind advection

scheme, i.e., for any odd value of n. Eq. (16) simply states that up-

wind schemes are naturally designed to effectively damp their dis-

persive error at each wavenumber k (that of the centered scheme

of order n + 1). This is illustrated in Fig. 6 showing the normal-

ized damping factor and group velocity curves as a function of

wavenumber and wavelength in units of �x. The figure also clearly

shows that damping in the third-order scheme is small only for

scales larger than 10�x (50�x for the first-order scheme). Finally,

note that for well resolved waves:
(ω) ≈ −|c0|�x3

12
k4 = ν4k4 (17)

herefore, hyper-dissipation is expected to follow a k4 relationship

or scales larger than the grid scale, which is the expected behav-

or of the non-discretized biharmonic operator in k space. Near the

rid size, the variation with k slows down (see Fig. 6) due to nu-

erical approximations. In the case of the full model equations,

he model kinetic energy is no longer constant in k space and dis-

ipation ν4k4E(k) becomes dependent on the spectral kinetic en-

rgy distribution E(k).

.2. KE spectrum

The surface kinetic energy spectra at different resolution are

hown in Fig. 7 in log scale. They are calculated from 5-day in-

tantaneous output, integrated over the first 10 m depth and av-

raged over the 20-year simulation. The largest scale (and lowest

avenumber) represented in the spectra is half the domain width

250 km). At this scale all resolutions agree on the level of kinetic

nergy, although the log scale masks some random differences due,

n part at least, to insufficient sampling of the mesoscale events.

he smallest length scale represented in the spectra is 2�x, a

unction of grid resolution. At submesoscale, the density of ki-

etic energy is very sensitive to resolution and increases with it.

t 2 km resolution, the spectrum rolls off as k−2, i.e., with a gen-

le slope that reflects the ubiquity of surface fronts generated by

esoscale stirring and submesoscale turbulence (e.g., Callies and

errari, 2013). At this resolution (and to a lesser extent at 5 km),

he dissipation range (exponential tail of the spectra) seems clearly

eparated from the submesoscale range (the center part of the

pectra). The scale separating the two regimes is the effective reso-

ution of the model according to Skamarock (2004). Here, effective

esolution is only clearly defined for the 2 km resolution model

nd is around 20 km, i.e., 10�x. The 5 km resolution simulation

s a transitional case that will be useful in our sensitivity tests

or emphasizing numerical effects on the submesoscale range. For

oarser resolutions, KE spectra have no distinct slopes for the sub-

esoscale and dissipation ranges that can help identify their effec-

ive resolution.
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Fig. 7. Top panel: ROMS near surface KE spectra (m3/s2) at 20 km, 10 km, 5 km

and 2 km resolution, averaged over 20 years of simulation. Bottom panel: asso-

ciated near surface KE dissipation spectra (m2/s3). In dotted lines, reconstructed

KE dissipation spectra from the theoretical damping factor: D0
H = 
(ω)E(k) =

− |c0 |
3�x (1 − cos k�x)

2
E(k) ∼ ν4k4E(k), to be compared with the original term DH;

c0 is taken here as the model mean velocity. Note that the approximation D0
H ∼

ν4k4E(k) gives a result (not shown) close to the non-approximated relation for well-

resolved waves, i.e., at scales larger than 3�x.
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.3. KE dissipation

Fig. 7 (bottom panel) shows that the spectral dissipation term

H follows a bell-shaped function. At 2 km resolution, the bell-

hape is well defined and dissipation is confined to wavelength

etween the grid size and less than 30 km. This allows the sub-

esoscale range to develop at scales larger than about 20 km (i.e.,

0�x), as seen previously. However, at lower resolution, a second

eak builds up at larger scale and becomes dominant at 10 and

0 km resolutions. This is in obvious disagreement with the 10�x

elation and the notion of effective resolution. At low resolution,

issipation affects the entire range of scale and reaches its maxi-

um at large scale, which is generally unexpected.

To understand this behavior we can use the previous analysis

f one-dimensional linear advection (Section 4.1). Spectral dissipa-

ion DH = 
(ω)E(k) ∼ ν4k4E(k). If kinetic energy E(k) is considered

onstant, DH evolves as k4 (away from the grid scale) and Fig. 6

hows that it appears strong only for scales smaller than 10�x,

onsistent with the 2 km solution. However if E(k) is variable in

, DH depends explicitely on the energy spectrum slope. If it is

teeper than −4, i.e., the submesoscale range is not properly repre-
ented, dissipation tends to increase at large scale as in the coarse

esolution ROMS solutions. To test our analysis, we reconstructed

he dissipation term as ν4k4E(k) in Fig. 7 (dotted lines in bottom

anel). The good match with the original term validates our scaling

rguments based on the simplified advection equation.

Obviously, the concept of effective resolution is inappropriate

n the low resolution cases as no part of the spectrum is safe from

umerical dissipation. This is even worse if Laplacian instead of

iharmonic diffusion is used since even a k−2 distribution for E(k)

oes not prevent dissipation from increasing at large scale (as con-

rmed by experiments that are not shown here). On the contrary,

his analysis argues in favor of hyperdiffusivity of higher order than

ourth order, consistent with findings from Large Eddy Simulation

tudies (Frisch et al., 2008).

. APE dissipation: spurious diapycnal mixing

Both vertical and horizontal advection schemes are subjected

o spurious diapycnal mixing (Griffies et al., 2000; Marchesiello

t al., 2009). Their effect, sometimes called Veronis effect, is to dif-

use water masses and density slopes and lower the reservoir of

otential energy available for ocean dynamics. In ROMS, spurious

iapycnal mixing is essentially linked to lateral tracer advection.

o circumvent this problem, a rotated isopycnal hyperdiffusion

perator called RSUP3 (Marchesiello et al., 2009; Lemarié et al.,

012) was designed to take advantage of the split UP3 algorithm

Eq. (12)).

The impact of isopycnal diffusion is clearly visible on the KE

pectrum (Fig. 8). The energy at large scale is similar to the stan-

ard solution (UP3 scheme), but at small scale the spectrum shows

considerable increase (a factor 3 is shown in the lower panel of

ig. 8). The dissipation range seems to recede and leave a well-

efined submesoscale range of slope close to −2, indicating an ef-

ective resolution more comparable to the 2 km solution (Fig. 7).

The KE increase can be associated with an increase in energy

njection. Fig. 10 shows that submesoscale KE injection is extended

o near the finest scale of the RSUP3 solution. The vertical profile

f injection (Fig. 9) is close to that of the 2 km solution (Fig. 4),

ith large w′b′ subsurface signal. The reduction of spurious diapyc-

al mixing clearly boosts the source of submesoscale energy. Iden-

ically, the mean wRMS vertical profile of the solution with isopy-

nal diffusion (left panel of Fig. 9) shows an increase in surface

ynamics that can only be observed at the highest resolution of

he reference simulations (Fig. 4). Limiting diapycnal diffusion re-

ults in sharper fronts and more intense surface currents.

It is generally assumed that eddy-resolving models would not

equire a particular treatment of the Veronis effect since lateral

umerical diffusion (whether explicit or implicit) would be small

nough. This argument has been opposed by Roberts and Marshall

1998), who show that spurious diapycnal mixing scales with both

he lateral diffusion coefficient and vorticity gradients. Since vor-

icity gradients cascade to smaller scales, a decrease of the dif-

usion coefficient with increased resolution does not guaranty a

ecrease of spurious diapycnal mixing in the mesoscale and sub-

esoscale ranges. In addition to this dynamical argument by

oberts and Marshall (1998), we note that the numerical diapy-

nal diffusivity AD does not decrease rapidly with resolution. AD

cales as AUP3
H

S2 (Redi, 1982), with S the isopycnal slope of order

.01, and AUP3
H

≈ ν4/L2 ≈ 1
12U�x3/L2 (U is a velocity scale of or-

er 0.1 m/s and L a mixing length scale of order 10�x). We find

hat AD becomes small (compared with diapycnal mixing from mi-

roscale processes: Kρ ∼ 10−5m2/s) only when the grid resolution

s finer than 100 m. Therefore, advection schemes using either im-

licit diffusion for damping dispersive errors or flux correction for

reserving monotonicity must be handled with care, even in the

ddy-resolving regime. Their effect is to suppress submesoscale KE
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Fig. 8. Sensitivity of surface KE spectra to spurious diapycnal mixing in ROMS at 5 km resolution. Top panel: solutions with rotated isopycnal hyperdiffusion operator RSUP3

(plain line), standard UP3 advection scheme (dotted line). Bottom panel: ratio of the two spectra in linear scale (RSUP3/UP3) showing a ratio much greater than unity over

the submesoscale and dissipation ranges.

Fig. 9. 20-year mean vertical profiles of RMS vertical velocity
√

w′2 (m2/s2) and eddy buoyancy flux w′b′ (m2/s3) at 5 km resolution: solutions with rotated isopycnal

hyperdiffusion operator RSUP3 (plain line) and standard UP3 advection scheme (dotted line).
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injection as the supply of APE needed to sustain frontal processes

can be rapidly drained by diapycnal diffusion.

6. KE dissipation: temporal filters

When better accuracy is desired for a model, developers gen-

erally address the problem of spatial discretization. Temporal dis-

cretization is harder to improve as it imposes thorough restruc-

turing of the model kernel. The question is: how important is

temporal discretization to model accuracy and how do temporal

filters work? A comparison of models is a difficult task as so many

parameters can potentially impact on the solution. Nevertheless,

the intercomparison is useful to give a realistic measure of the

model sensitivity to numerical choices. For this exercise, the con-

figurations of ROMS and NEMO are taken as close as possible. The

same horizontal and vertical grids and same spatial discretization
or momentum and tracer advection are used. The largest differ-

nces come from the temporal filters.

.1. Model intercomparison

Fig. 3 presents a comparison of surface vorticity in ROMS and

EMO for different resolutions. The color bar is fixed for all plots

o the difference of color intensity does reflect a difference of vor-

icity amplitude. The two models have a generally comparable be-

avior and resolution sensitivity. They have similar mesoscale ac-

ivity with vorticity fronts sharpening at finer resolution. However,

OMS shows slightly sharper vorticity fronts at each resolution.

t 2 km resolution, numerous submesoscale eddies are apparent

n ROMS that are fewer in NEMO. This is particularly true in the

orthern part of the domain where the deformation radius is lower

∼25k m at the northern boundary compared with ∼35 km at the



Y. Soufflet et al. / Ocean Modelling 98 (2016) 36–50 45

Fig. 10. Sensitivity of surface injection spectra to spurious diapycnal mixing in

ROMS at 5 km resolution. Solutions with rotated isopycnal hyperdiffusion RSUP3

(plain line) and standard UP3 advection scheme (dotted line).

Fig. 11. 20-year mean vertical profiles of eddy buoyancy flux w′b′ (m2/s3) for ROMS

(solid lines) and NEMO (dashed lines) at 20 km, 10 km, 5 km and 2 km resolution.
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Fig. 12. Near surface KE spectra (m3/s2) for ROMS (solid lines) and NEMO (dashed

lines) at 20 km, 10 km, 5 km and 2 km resolution.
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7 The RA filter is known to accelerate high wavenumbers in addition to already

present acceleration due to unfiltered Leapfrog itself (Durran, 1991). This may be

partially compensated by the combination of second-order centered spatial schemes

at maximum stable Courant number. However, the cancellation of dispersive errors

is lost when Leapfrog is used in combination with a high-order spatial scheme. In

any case, realistic applications of ocean modeling have a large range of Courant

numbers that undermines the practical utility of LF-RA.
8 A Laplacian rather than traditional Robert-Asselin filter is used here for sim-

plicity. The two have similar dissipative properties (Marsaleix et al., 2012), and our

conclusions are not affected by this choice.
outhern boundary), requiring a higher accuracy there for frontal

rocesses to develop.

Fig. 11 shows together the dynamical profiles of ROMS and

EMO. Confidence intervals were computed (not shown) and the

ifferences observed here are significant. The most important dif-

erence is observed in the conversion of energy near the surface

t 5 km resolution. At this resolution, ROMS starts showing large

mount of surface KE injection associated with submesoscale ac-

ivity. NEMO, on the other hand, needs higher resolution and only

ets a substantial increase of KE injection at 2 km resolution.

The kinetic energy spectrum is consistent with this analysis

howing that the dissipation range in NEMO starts at lower k

Fig. 12). In the submesoscale range, at high resolution, ROMS and

EMO show a ∼−2 power law, which drops when entering the

issipation range (around the 20 km scale ∼10�x for ROMS and

lightly larger scale for NEMO).

.2. The Robert-Asselin filter

Several tests were performed to investigate the cause of dif-

erences in energy spectra between the two models. Because long

ntegration time is necessary for differences to be statistically re-

iable, we concentrate on the 5 km resolution solutions, which
arginally represent submesoscale dynamics and thus present the

argest differences between models. A noticeable difference be-

ween the two numerical models of interest is the time-stepping

lgorithm. Like the vast majority of oceanic climate models, NEMO

s discretized using a leapfrog scheme while ROMS uses the third-

rder predictor-corrector LF-AM3 scheme. The reader is referred to

emarié et al. (2015) for a detailed comparison between of the two

ethods in terms of stability, accuracy and robustness (summa-

ized in Section 2). Robustness is defined here as the preservation

f scheme performances as the Courant number αadv = u�t/�x

aries across its range of stability. A weakness of both LF and LF-

M3 is the presence of a 2�t computational mode (it only appears

n LF-AM3 when combined with the advection scheme, not in the

emi-discrete form; Lemarié et al., 2015). However, this mode in

F-AM3 is not generally harmful because it is efficiently damped by

he implicit high-order dissipation of the scheme. The problem is

ore acute for LF that leaves the computational mode undamped,

ven for well-resolved scales. As a consequence, a low-order tem-

oral filter must be added. Historically, the preferred choice is the

obert–Asselin (RA) filter.

The RA filter has several known drawbacks (e.g., Durran, 1991;

010): reduction of the stability range, additional dispersive errors7

nd damping of the physical mode. In order to assess the extra-

issipation associated with this family of filters let us consider

gain the one-dimensional advection equation semi-discretized in

ime using a leapfrog scheme combined with a temporal filter8

ith coefficient γ :

un+1 − un−1

2�t
+
[
γ�t

2

](
un − 2un−1 + un−2

�t2

)
+ c0

∂un

∂t
= 0. (18)

common value for the dimensionless filter coefficient γ in real-

stic applications is γ ≈ 0.1. The truncation error E associated with

ime discretization of Eq. (18) is:

= γ�t ∂2u
2

+ (1 + 3γ )�t2 ∂3u
3

+ O(�t3),
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Fig. 13. Sensitivity of surface KE spectrum to the Asselin coefficient at 5 km resolution in NEMO. Top panel: solutions for the standard coefficient value of 0.1 (plain line)

and the reduced value of 0.05 (dotted line). Bottom panel: ratio of the two spectra in linear scale showing higher energy levels over a wide range of scales when a reduced

filter coefficient is used (ratio < 1).

Fig. 14. Sensitivity of surface injection spectra to the Asselin filter coefficient in

NEMO at 5 km resolution. In plain line the standard value of 0.1 is used. In dotted

line this value is reduced to 0.05.
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showing that the filtered LF is degraded to first-order accuracy. Us-

ing again the linear advection equation, we can express the tem-

poral derivatives in terms of spatial derivatives:

E = c2
0γ�t

2

∂2u

∂x2
+ O(�t2) = γαadv AUP1

H

∂2u

∂x2
+ O(�t2). (19)

AUP1
H

= c0�x/2 is the implicit diffusivity of a first-order upwind

scheme, i.e., a measure of strong numerical damping. The time fil-

ter is thus equivalent to a spatial Laplacian diffusion with coeffi-

cient γαadv AUP1
H

where the filter’s damping effect is modulated by

the γαadv product. This analysis is strictly valid for the advection

equation, not for the full set of equations solved by a numerical

model, but we expect general conclusions to hold.

We conducted some tests on the Asselin coefficient with NEMO

on the Baroclinic jet test case. In Fig. 13, an Asselin coefficient

of 0.05 instead of 0.1 (standard value) gives a KE spectrum with

slightly higher energy at all k (recall from the previous section that

a Laplacian diffusion operator affects the whole spectrum). If this

result was expected, the impact is however moderate. The reason

is that in the Baroclinic jet test case the stability limit is given by

internal gravity waves, not advection, because there is no surface

forcing. The advection Courant number remains quite small at ∼0.1,

which yields an equivalent horizontal diffusivity of 10−2AUP1
H

, i.e.,

around 10 m2/s at 5 km resolution.

A partner study by Jouanno et al. (2015) shows results consis-

tent with our interpretation. In their configuration of a baroclinic

jet forced with high-frequency winds of extra-tropical storms, in-

tense inertial waves are excited with Courant numbers closer to 1.

In their case, the Asselin filter has a significant effect and is re-

sponsible for 20% of KE dissipation when �t is near the stabil-

ity limit. These results also underline the drawback of methods

for increasing the permissible time stepping associated with inter-

nal gravity waves — this is commonly done in global applications

through time-averaging of the pressure gradient as in Brown and

Campana (1978) — as they lead to increasing the advection Courant

number. An important property of a time stepping scheme is thus

its robustness with respect to the Courant number (Lemarié et al.,

2015). The Leapfrog scheme is a counter-example of that.

In addition to its effect on KE dissipation, the time filter also

affects KE injection through diapycnal diffusion. The linear analysis

above is also valid for tracers. A small amount of lateral density

diffusion can translate into large amounts of diapycnal diffusion
ear density slopes (Section 5). Fig. 14 shows that the run with

reduced filter coefficient gets substantially stronger KE injection

t small scale. It suggests lesser diapycnal diffusion, preserving APE

nd its conversion to KE, as for the isopycnal diffusion operator in

ection 5.

.3. The 2D/3D coupling filter

Another notable difference in the models comes from the treat-

ent of the fast barotropic mode. Most ocean models use a split-

xplicit, free-surface paradigm, where short time steps are used

o advance the surface elevation and barotropic momentum, and

larger time step is used for temperature, salinity, and baroclinic

omentum. Barotropic variables are advanced with a vertical inte-

ration of 3D momentum equations; the result is filtered across

he baroclinic time step to avoid aliasing and is then fed back

o the 3D momentum calculation. This is the barotropic/baroclinic

r 2D/3D coupling (Shchepetkin and McWilliams, 2005). Split-

ing errors can be introduced in the coupling process that can

ffect model stability. A known cause for splitting errors is the

purious vertical shear introduced with Boussinesq approximation
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Fig. 15. Sensitivity of surface KE spectra to the 2D/3D coupling filter in ROMS at 5 km resolution. Top panel: solutions with standard power-law filter (plain line) and

flat-weight averaging (dotted line). Bottom panel: ratio of the two spectra in linear scale.
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hen computing the pressure gradient acceleration (Higdon and

e Szoeke, 1997; Shchepetkin and McWilliams, 2011). In ROMS,

pressure gradient correction in the barotropic mode can effi-

iently remove this error and allow less dissipative filtering of

he barotropic mode: currently, a second-order accurate power-

aw filter (Shchepetkin and McWilliams, 2005) rather than the

ore traditional first-order flat-weight averaging operator (used in

EMO as in many other ocean general circulation models). An-

ther source of splitting error is due to the fact that the true

arotropic mode (given by an eigenmode decomposition) is depth-

ependent. Because its vertical variations are small, approximation

f the barotropic mode as the depth-integrated flow is justified

Dukowicz, 2006). However, it is a source of numerical instability

f undamped9 (Demange et al., 2014). Whether for aliasing or split-

ing issues, some form of filter of the barotropic mode is needed

ut its effect on realistic physical solutions is unknown (in ideal

ases, see the analysis of barotropic waves response to time differ-

ncing in Dukowicz and Smith, 1994).

To contribute on the subject, we tested the flat-weight against

ower-law averaging procedure in ROMS. Fig. 15 shows a signifi-

ant increase of dissipation with the flat filter (the log scale may

e misleading as it tends to conceal some of the differences but

bserve the ratio of energy spectra in the lower panel). Interest-

ngly, this effect appears over a large range of scales but the small-

st. The barotropic mode is strong at mesoscale and large scale

hile small scales are more surface trapped and weakly contribute

o the depth-average energy. Therefore, barotropic mode filters do

ot affect effective resolution as a scale-selective dissipation mech-

nism (as assumed in Skamarock, 2004), but have a more diffuse

mpact across the spectrum that can only be reduced through bet-

er control of splitting errors (Shchepetkin and McWilliams, 2005;

emange et al., 2014).

Note that implicit time-stepping of the 2D mode is an al-

ernative to the time splitting approach. It avoids aliasing and

plitting errors as baroclinic and barotropic modes are advanced

ith the same time step. However, they have drawbacks in terms

f accuracy (large dispersive or diffusive errors with large time

teps; Dukowicz and Smith, 1994) and performance on parallel

omputers, especially at high resolution (problem- and machine-
9 Topography complicates further the internal-external mode decomposition but

his is not relevant for the present study

t

a

m

ependent solver optimization is then needed to overcome poor

calability). Most current ocean models use a time splitting

pproach.

. Conclusion

The increase of model resolution naturally leads to the repre-

entation of a wider energy spectrum. As a result, in recent years,

he understanding of oceanic submesoscale dynamics has signifi-

antly improved. However, dissipation in submesoscale models re-

ains dominated by numerical constraints rather than physical

nes. Effective resolution has been defined by the numerical dissi-

ation range, which is a function of a model’s numerical filters. We

resent a baroclinic jet test case, which provides a controllable test

f a model capacity at resolving submesoscale dynamics. We com-

are analyses performed on simulations from two models, ROMS

nd NEMO, at different mesh sizes (from 20 to 2 km). Through a

pectral decomposition of kinetic energy and its budget terms, we

dentify the characteristics of numerical dissipation and effective

esolution.

We show that numerical dissipation appears in different parts

f a model, especially in spatial advection-diffusion schemes for

omentum equations (KE dissipation) and tracer equations (APE

issipation) and in the time stepping algorithms. Dissipation does

ot always decay at large scale and we conclude that the def-

nition of effective resolution is not always meaningful, depend-

ng on mesh size and numerical methods. Our results argue in fa-

or of high-order filters (higher than fourth order) for the dissi-

ation range to be always restricted to small scales. For example,

sixth-order spectral dissipation D(k) = ν6k6E(k) would remain

decreasing function of wavelength even for steep energy slopes

nd thus insure a more restricted dissipation range. To avoid dis-

ersive errors, advection schemes must be consistent with the dis-

ipation operator and be of higher order as well. We show from a

inear analysis that upwind schemes present an optimal combina-

ion of advection/diffusion because, for any odd-order of accuracy,

heir damping factor is always proportional to dispersive errors (at

ny wavenumber).

Changes in spatial schemes must also be consistent with the

emporal scheme. The combination of low-order temporal schemes

nd high-order spatial schemes generally show poor perfor-

ances for dispersion/diffusion properties and for robustness with
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respect to the Courant number (Durran, 1991; Shchepetkin and

McWilliams, 1998; 2009; Lemarié et al., 2015). The latter property

is particularly relevant to ocean modeling. Any scheme can always

be made to work its best in a particular range of resolution, but re-

alistic applications have a large range of Courant number. We show

that a Laplacian time filter (equivalently, the Asselin filter), often

used with the Leapfrog scheme, is equivalent to a spatial Laplacian

filter with coefficient depending on the advection Courant number.

If the Courant number is far from its maximum value allowed for

stability, then the equivalent diffusion coefficient is small. In this

sense, the Baroclinic jet test case is permissive.

Besides the internal mode filter, we show that another source of

dissipation is the barotropic mode time filter that is required for

mode coupling in split-explicit ocean models. Contrarily to other

spatial and temporal filters in the model, this one is not even

scale-selective by construction as it affects barotropic waves with

large spatial scales. Therefore, it does not fit in the common con-

cept of effective resolution (Skamarock, 2004). Yet, higher-order fil-

ters or diffusive barotropic time stepping schemes can be used that

reduce their impact on the KE spectrum but only at the condition

of a better control of splitting errors. Demange et al. (2014) show

that there is room for improvement there.

It is generally assumed that eddy-resolving models have only

small spurious diapycnal mixing (Veronis effect) associated with

numerical necessities. This argument has been opposed by Roberts

and Marshall (1998) on the basis of dynamic arguments linking

spurious mixing and direct cascading of vorticity gradients. Our

results agree with that, showing kinetic energy spectrum to be

very sensitivity to mixing orientation at submesoscale. The effect

of spurious diapycnal mixing is to suppress submesoscale KE in-

jection by draining the supply of APE, which is needed to sustain

frontal processes. It argues in favor of third-order rotated diffusion

schemes such as RSUP3 (Marchesiello et al., 2009) or much higher-

order advection/diffusion methods. In some additional experiments

(not shown), the use of fifth-order upwind or fifth-order Weighted

Essentially Non-Oscillatory scheme (Jiang and Shu, 1996) did not

reduce diapycnal mixing as much as RSUP3. Other tests pointed

to vertical density advection as a potential source of diapycnal

mixing. Specifically, NEMO’s flux correction to second-order cen-

tered advection (C2-FCT) produced some spurious mixing, albeit to

a more limited extent than geopotential diffusion. This error ex-

plained part of the differences between ROMS and NEMO besides

temporal filters. Nonlinear (non-oscillatory) advection schemes are

thus not immune to diapycnal mixing errors.

Finally, efficiency of numerical methods should be assessed

with respect to their computational cost. A generic estimation by

Sanderson (1998) suggests that low-order differencing is a costly

choice to achieve a given accuracy and that differencing order must

roughly equal model dimension (4 here) to ensure that grid refine-

ment reduces truncation error faster than computational cost in-

creases. There are several critical assumptions in this estimation.

In our experiments (Section 2.3), the predictor-corrector time inte-

gration scheme in ROMS is systematically faster than the Leapfrog

scheme in NEMO, despite extra-cost of a two-stage time stepping.

This result can be largely explained by the extended range of sta-

bility for both the fast and slow modes. Therefore, adding complex-

ity to the temporal schemes can be beneficial rather than detri-

mental to computational costs, making high-order methods at even

higher advantage than assumed from simple scaling arguments.

The upgrade of time stepping algorithms in ocean models, central

piece of the computational kernel, can be a cumbersome task but

appears critical from our results, not just as a matter of model so-

lution quality but also of computational efficiency.

To conclude, our results indicate that effective resolution, de-

fined by scale-selective dissipation, is inadequate to qualify gen-

eral circulation ocean models with low-order spatial and temporal
lters, even at high grid resolution. High-order methods are bet-

er suited to the concept and probably unavoidable. Fourth-order

lters are suited only for grid resolutions less than a few kilo-

eters and momentum advection schemes of even higher-order

hould provide more robustness in confining the dissipation range.

ffective resolution is also shaken by the need for non scale-

elective barotropic mode filters. But, the most surprising effect

ame from APE dissipation through spurious diapycnal mixing at

ubmesoscale, which poses again the longstanding question of pre-

isely how much vertical diffusion is at work in the real ocean.
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ppendix A. Initialization of the Baroclinic jet test case

The initial density field is constructed with dense and light den-

ity profiles in the northern and southern regions, ρN(z) and ρS(z),

hich are defined as follows:

• a distorted hyperbolic tangent density profile to produce the in-

terior meridional density gradient (and interior baroclinic insta-

bility) but with no contribution to the surface meridional den-

sity gradient;
• a hyperbolic tangent density profile for the southern region

only, which has its inflection point close to the surface; this is

responsible for surface meridional density gradients generating

the Charney instability;
• a small depth-independent background stratification that ap-

plies equally to the northern and southern profiles and guar-

antees static stability.

Precisely, we have:

N,S(z) = ρmax − Sb(z + h) − 1

2
δρ int

N,S

[
1 + tanh

(
dN,S(z) − zint

N,S

δzN,S

)]
− 1

2 tanh(1)
δρsur f

N,S

[
1 + tanh

(
zsur f − z

zsur f

)]
(A.1)

here:

N,S(z) = zint
N,S +

(
z − zint

N,S

) [
1 + 0.5

(
z − zint

N,S + |z − zint
N,S|

1.3 δzN,S

)2
]0.5

(A.2)

ρ int
N = δρ int

S

[
1 + tanh

(
dS(0) − zint

S

δzS

)]/
×
[

1 + tanh

(
dN(0) − zint

N

δzN

)]
(A.3)

denotes depth, h is the ocean depth (4000 m), ρmax = 27.75

g m−3, Sb = 9.8 10−6 kg m−4, δρ int
N/S

= 1.41/1.4 (guarantees that

he first hyperbolic tangent term in (A.1) does not contribute to

he surface meridional density difference), zint
N/S

= −400/ − 1000,

zN,S = 300/700, δρsur f
N,S

= 0/1.5, zsur f = −300.

The water within 200 km from the northern (resp. southern)

oundary is homogeneous and has its density equal to the dense

resp., light) profile. In the center of the channel, density goes

moothly from light to dense over a length scale Ljet = 1600 km
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nd the frontal zone is concentrated in a ∼1000 km wide central

egion. The connection involves a function Fyz defined as:

yz(y) = 1 if y < 0

yz(y) = 0 if y > π (A.4)

yz(y) = 1.0 − (y − sin(y) ∗ cos(y))/π otherwise

yz resembles a tanh function but it is exactly constant when ap-

roaching the northern and southern walls. y is a transformed co-

rdinate for the meridional direction:

= π · Ly

L jet

[−0.5 : 1/Ny : 0.5] + π/2 (A.5)

The jet destabilization is triggered by a very small random den-

ity perturbation. The perturbation is introduced by adding an x

nd z dependency to the connection between northern and south-

rn profile through modification of the y coordinate: y → y(x, z).

nitial zonal velocities are in geostrophic balance with the resulting

ensity field with the level of no motion set at the bottom.

ppendix B. Analysis of arbitrary-order upwind

dvection schemes

The purpose of this section is to analyze the dissipatively dom-

nant truncation error of odd-ordered advection schemes. We con-

ider the one-dimensional advection equation for a cell-centered

uantity q with constant positive velocity c0 > 0. Let us first intro-

uce a generic linear discretization of successive derivatives based

n a centered formula for even-ordered derivatives and upwind

ormula for odd-ordered derivatives (assuming c0 > 0):

D1 = (qi − qi−1)/�x
D2 = (qi+1 − 2qi + qi−1)/�x
D3 = (qi+1 − 3qi + 3qi−1 − qi−2)/�x

...

Dp =
(

p∑
n=0

(−1)nCn
p qi+m−n

)
/�x,

m = �p/2� = max {q ∈ Z; q ≤ p/2}

(B.1)

here Cn
p is the usual binomial coefficient Cn

p = p!

n!(p − n)!
. It is

traightforward to show that an order p linear advection scheme

an be written as a linear combination of Dn terms:

0

q̃p

i+ 1
2

− q̃p

i− 1
2

�x
= c0

p∑
n=1

γnDn, (B.2)

here q̃
p

i+ 1
2

is the order p interfacial approximation of q. The coef-

cients γ n are chosen based on a Taylor series expansion to reach

he expected order of accuracy. A general formula to obtain the

oefficients γ n is:

1 = 1, γn =
n∏

l=2

(−1)l �l/2�
l

for n ≥ 2, (B.3)

here the notation �l/2� is defined in (B.1). Using equations (B.1,

.2, B.3), linear advection schemes of any order p can be derived.

or example, we recover the first-order upwind scheme for γ1 = 1

nd γn = 0 for n ≥ 2; the third-order upwind scheme for γ1 = 1,

2 = 1/2, γ3 = −1/6 and γn = 0 for n ≥ 4, and so on. these formula

re valid only for c0 > 0; in the case c0 < 0, upwinding for odd-

rdered derivatives in (B.1) must be done in the opposite direction.

After some simple algebra, the Fourier transform of Dn terms

an be obtained in a generic way:
nD̂n =

⎧⎨⎩
γn{2(cos(k�x) − 1)}n/2

/�x, for even n

γn

(
i sin(k�x){2(cos(k�x) − 1)}(n−1)/2

/

�x − D̂n+1/2
)
, for odd n

(B.4)

ith k the wavenumber. Given that γn+1 = γn/2 for odd n, we can

ewrite the formula for γnD̂n as:

nD̂n =

⎧⎪⎨⎪⎩
γn{2(cos(k�x) − 1)}n/2

/�x, for even n

iγn sin(k�x){2(cos(k�x) − 1)}(n−1)/2
/

�x − γn+1D̂n+1, for odd n

(B.5)

rom (B.5) and (B.2) we deduce the general form of the dispersion

elation associated with a linear advection scheme of order p:

(k) = −i

[
c0

p∑
n=1

γnD̂n

]
irst, we note that the imaginary part of ω is straightforward

rom (B.5) since 
(−iγnD̂n) = −γnD̂n for even values of n and

(−iγnD̂n) = γn+1D̂n+1 for odd values of n. By successive elimina-

ion of the γnD̂n terms in the summation between odd and even

alues of n, we simply get:

(ω) = c0

p∑
n=1


(iγnD̂n) =
{

c0γp+1D̂p+1, for odd p

0, for even p
(B.6)

his result states that even-ordered advection schemes are purely

dvective schemes while odd-ordered advection schemes have a

onzero dissipative component. From (B.6), we also remark that

he leading order term in the truncation error of an order p up-

ind scheme is a diffusive operator of order p + 1 with coefficient

0γ p�xp. Since γ2 = 1/2 and γ4 = −1/12 we recover the well-

nown results that dissipation associated with first- and third-

rder upwind schemes is respectively a Laplacian operator with

oefficient c0�x/2 and a biharmonic operator with coefficient

0�x3/12.

Now looking at the group velocity, the exact value for the ad-

ection equation is c0 while the numerical group velocity c
p
g for an

rder p scheme is given by:

p
g = d�(ω)

dk
= c0

p∑
n=1

d�(−iγnD̂n)

dk
.

ecause �(−iγnD̂n) = 0 for even values of n, only odd indices con-

ribute to c
p
g . After some algebra we find:

d�(−iγnD̂n)

dk
= d

dk
(γn sin(k�x){2(cos(k�x) − 1)}(n−1)/2

/�x)

= γn(cos k�x{2(cos(k�x) − 1)}(n−1)/2

− (n − 1) sin
2

k�x{2(cos(k�x) − 1)}(n−3)/2
)

= nγn{2(cos(k�x) − 1)}(n−1)/2

+γn
n + 1

4
{2(cos(k�x) − 1)}(n+1)/2

(B.7)

iven that γn+1 = γn/2 for odd indices, the second term in (B.7) is

quivalent to:

n
n + 1

4
{2(cos(k�x) − 1)}(n+1)/2 = n + 1

2
γn+1D̂n+1�x.

he first term in (B.7) equals 1 for n = 1, and can be generalized

or n > 1 as:

γn{2(cos(k�x) − 1)}(n−1)/2 = −n − 1
γn−1D̂n−1�x
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since γn = − n−1
2n γn−1 for odd indices. As a result, (B.7) becomes:

d�(−iγnD̂n)

dk
=

⎧⎪⎨⎪⎩
1 + γ2D̂2�x, for n = 1

−n − 1

2
γn−1D̂n−1�x

+ n+1
2

γn+1D̂n+1�x, for odd n > 1

(B.8)

Due to the successive cancellation of the n+1
2 γn+1D̂n+1�x terms af-

ter summation, we get:

cp
g = c0

p∑
n=1

d�(−iγnD̂n)

dk
= c0

[
1 + p + 1

2
γp+1D̂p+1�x

]
(B.9)

Combining (B.6) and (B.9), which holds for any arbitrary-order up-

wind linear advection scheme, we can derive a general relationship

between the implicit dissipation of an upwind advection scheme

of order p and dispersion associated with its group velocity error

(c0 − c
p
g ) :


(ω) = −2

[
c0 − cp

g

(p + 1)�x

]
. (B.10)
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