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a b s t r a c t

An approximate steady solution of the wave-modified Ekman current is presented for gradually varying

eddy viscosity by using the WKB method with the variation of parameters technique. The parameters

involved in the solution can be determined by the two-dimensional wavenumber spectrum of ocean

waves, wind speed, the Coriolis parameter and the densities of air and water. The solution reduces to

the exact solution when the eddy viscosity is taken as a constant. As illustrative examples, for a fully

developed wind-generated sea with different wind speeds and a few proposed gradually varying eddy

viscosities, the current profiles calculated from the approximate solutions are compared with those of

the exact solutions or numerical ones by using the Donelan and Pierson wavenumber spectrum, the

WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted

to currents. It is shown that the approximate solution presented has an elegant form and yet would be

valid for any given gradually varying eddy viscosity. The applicability of the solution method to the real

ocean is discussed following the comparisons with published observational data and with the results

from a large eddy simulation of the Ekman layer.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The effects of wind-driven surface gravity waves on ocean
surface currents have been recognized to play a crucial role for
scientific and engineering applications. For example, they are
important in the interpretation of satellite images and the impact
of surface currents on satellite-derived wind estimates (Quilfen
et al., 2001; Kelly et al., 2001), the correction of biases in radar-
derived surface currents (Chapron et al., 2005), sea ice drift (Tang
and Gui, 1996), various biological processes such as the drift of
fish eggs and larvae (Brickman and Frank, 2000; Reiss et al., 2000),
environmental loading on offshore structures (Farmer et al.,
1995), the dispersion and drift of oil and other pollutants
(Leibovich, 1997a, 1997b; Morinta et al., 1997), hurricane inten-
sities (Emanuel, 1999; Andreas and Emanuel, 2001) and climate
(Tang et al., 2002).
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Waves grow and evolve in space and time, interacting with
ocean currents and reflecting the structure and development of
the wind stress fields that generate them. As they experience
wave breaking and dissipation, momentum passes from waves
into ocean currents. Using irrotational theory for wave growth
and wave breaking, Weber (1983), Weber and Melsom (1993) and
Melsom (1996) investigated the conversion of the wave pseudo-
momentum to momentum of the mean Eulerian current from
wave dissipation caused by the eddy viscosity. Jenkins (1986,
1987a, 1987b, 1989) developed the corresponding formulation
based on an ocean spectral wave model. Perrie et al. (2003) and
Tang et al. (2007) coupled the formulation of Jenkins (1987a,
1987b, 1989) to an ocean model to investigate the impact of
waves on surface currents. They showed that the wave effect
could increase the surface current by as much as 40%.

Recent studies show that the influence of the surface wave
motion via the Stokes drift and mixing is fundamental to under-
standing the observed Ekman current profiles (Lewis and Belcher,
2004; Polton et al., 2005; Rascle et al., 2006), although real Ekman
currents are the products of a host of interrelated factors,
including wind stress, surface wave motion, surface heating and
so on. Following the approach of Jenkins (1987a, 1987b, 1989)
and Perrie et al. (2003), Song (2009) presented the steady analytic
solutions for modified Ekman equations including random surface
wave effects when the eddy viscosity coefficient is, respectively,
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taken as depth-independent and proportional to depth. The effects
of random waves on the classical Ekman current are then studied by
comparing the solutions including waves to those with no waves. In
this paper, an approximate solution of the model used by Song
(2009) is presented for gradually varying eddy viscosities using the
WKB method, and this WKB solution is studied and compared with
the exact and numerical solutions of the model for a few proposed
eddy viscosities. Possible applications of the solution method to the
real ocean are discussed.
2. Basic equations and boundary conditions

When the effects of random surface waves are considered, the
steady wind-driven Ekman horizontal current satisfy the follow-
ing modified Ekman equation (Jenkins, 1989; Rascle et al., 2006;
Tang et al., 2007; Song, 2009)

AvðzÞ
@2UWEðzÞ

@2z
þ
@AvðzÞ

@z

@UWEðzÞ

@z

� �
�ifUWEðzÞ ¼ ifUsðzÞþTwdsðzÞ, ð1Þ

where UWE¼uWEþ ivWE is the complex horizontal velocity in the x–y

plane, i¼
ffiffiffiffiffiffiffi
�1
p

, f is the Coriolis parameter. The horizontal coordinate
axes are fixed on the still water level with z¼0, the z-axis is along
the vertical direction with positive direction upwards, Av(z) is the
vertical eddy viscosity coefficient, Us¼usþ ivs is the complex Stokes
drift, and Twds is the wave-induced momentum transfer from waves
to the mean flow due to dissipation of wave energy. The velocity
uWE¼(uWE,vWE) discussed here is the quasi-Eulerian current, which
is equal to the Lagrangian mean current minus the Stokes drift and
can be understood as the Eulerian-mean current as stated by Jenkins
(1987a; 1989) and Perrie et al. (2003).

The surface boundary condition for the modified Ekman
current is

Av
@UWE

@z
¼

ta

rw

�
tin

rw

, z¼ 0, ð2Þ

where rw is the water density, tin is the reduction of wind stress
due to wave generations, ta¼taxþ itay is the complex wind stress,
computed from surface wind field U10 at 10 m height,

sa ¼ ðtx,tyÞ ¼ raCd9U109U10, ð3Þ

ra is the air density, and Cd is the air-sea drag coefficient, which is
related to U10 by the following relation (Wu, 1982):

Cd ¼ ð0:8þ0:065U10Þ � 10�3: ð4Þ

The lower boundary condition is taken as

UWE-0, ðz-�1Þ: ð5Þ

tin and Twds can be estimated by the source terms from a
directional spectral wave prediction model that act to transfer
momentum from the wave field to the current as follows (Jenkins,
1989, also see Tang et al., 2007):

tin ¼ tinxþ itiny ¼ rw

Z o
k

� �
KSinðk,yÞdkdy, ð6Þ

Twds ¼ Twdsxþ iTwdsy ¼ 2

Z
oKe2kzSdsðk,yÞdkdy, ð7Þ

where o is the angular frequency in rad/s, k is the moduli of the
horizontal wavenumber vector k¼ ðkx,kyÞ ¼ ðkcosy,ksinyÞ, their
relationship is given by the dispersion relation o2

¼gk, y is the
angle between the wave vector and the x-axis, K¼kxþ iky, Sin(k,y)
is the wind input energy to waves, Sds(k,y) is the wave energy lost
by wave dissipation mechanisms as represented in third-genera-
tion WAM-type models (Hasselmann et al., 1988; Komen et al.,
1994).
Stokes drift us may be expressed as (Kenyon, 1969; Huang,
1971)

us ¼ 2

Z
oke2kzEðk,yÞdkdy, ð8Þ

where E(k,y) is the directional wavenumber spectrum of surface
waves.
3. Approximate solutions

Eq. (1) is a linear inhomogeneous ordinary differential equa-
tion with variable coefficients if the eddy viscosity Av(z) is
specified. Thus, it can then be solved by ordinary differential
equation methods. Following Berger and Grisogono (1998), study-
ing the Ekman atmospheric boundary layer, an approximate
solution to the inhomogeneous problem (1) can be found with
the variation of parameters technique, provided that an approx-
imate solution to the homogeneous problem of (1) exists. If two
independent approximate solutions to homogeneous problem of
Eq. (1) are given by F1(z) and F2(z), the general solution of Eq. (1)
is given by

UWEðzÞ ¼ ½ĉ1F1ðzÞþ ĉ2F2ðzÞ�þ½c1ðzÞF1ðzÞþc2ðzÞF2ðzÞ�, ð9Þ

where ĉ1 and ĉ2 are constants, ĉ1F1ðzÞþ ĉ2F2ðzÞ represents the
complementary solution, and c1(z)F1(z)þc2(z)F2(z) is the parti-
cular solution with

c1ðzÞ ¼ �

Z z

0

F2ðz
0ÞZðz0Þ

Fðz0Þ
dz0, ð10Þ

c2ðzÞ ¼

Z z

0

F1ðz
0ÞZðz0Þ

Fðz0Þ
dz0, ð11Þ

where

Fðz0Þ ¼ Avðz
0Þ F1ðz

0ÞF02ðz
0Þ�F01ðz

0ÞF2ðz
0Þ

� �
, ð12Þ

and Zðz0Þ ¼ ifUsðz0ÞþTwdsðz
0Þ is the inhomogeneous part of Eq. (1).

To find the homogeneous solutions F1(z) and F2(z), following
Grisogono (1995) in a study of the atmospheric Ekman layer, the
WKB method is applied. The first and third terms in the left of Eq.
(1) represent the control behavior, which is the basis of the WKB
analysis, while the second term is identified with the modifica-
tions due to departures of Av from constant. The WKB expansion
for UWE can be expressed in the form

UWEpexpfðS0þS1eþS2e2þ � � �Þ=eg: ð13Þ

The WKB approach can provide a good approximate solution,
so long as the properties of the medium vary at least slightly
slower than the calculated quantities.

Substituting Eq. (13) into Eq. (l), we obtain a set of equations in
terms of powers of a presumably small parameter e (e has been
introduced on account of the above-mentioned balance between
the terms and at a later stage it will be equated to unity).

As analyzed by Grisogono (1995), the validity of the WKB
method requires that the variable eddy viscosity does not vary too
quickly with depth, Av and f do not change their signs and that:

9Snþ1ðzÞ9
9SnðzÞ9

oo1, n¼ 0, 1, 2,. . ., ð14Þ

over the intervals. Also, if SN is the last term used in the series,

9SNþ1ðzÞ9oo1: ð15Þ

The first two terms of the expansion are sufficient to give a
meaningful, yet simple solution. Solving for S0 and S1 yields

S0 ¼ 7ð1þ iÞ

ffiffiffi
f

2

r Z z

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
Avðz0Þ

p dz0, ð16Þ
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and

S1 ¼
1

4
ln

Avð0Þ

AvðzÞ

	 

: ð17Þ

So we have two approximate homogeneous solutions of Eq. (1)

F1ðzÞ ¼ BðzÞexpðDðzÞÞ, ð18Þ

F2ðzÞ ¼ BðzÞexpð�DðzÞÞ, ð19Þ

where

BðzÞ ¼
Avð0Þ

AvðzÞ

	 
1=4

, DðzÞ ¼ ð1þ iÞ

ffiffiffi
f

2

r Z z

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
Avðz0Þ

p dz0: ð20Þ

The functions c1(z) and c2(z) can be expressed as

c1ðzÞ ¼
1�i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fAvð0Þ

p Z z

0
Bðz0Þ½ifUsðz

0ÞþTwdsðz
0Þ�expð�Dðz0ÞÞdz0, ð21Þ

c2ðzÞ ¼�
1�i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fAvð0Þ

p Z z

0
Bðz0Þ½ifUsðz

0ÞþTwdsðz
0Þ�expðDðz0ÞÞdz0: ð22Þ

Using the boundary conditions (2), (5), and Eqs. (18)–(22), the
constant ĉ1 and ĉ2 in Eq. (9) can be determined as follows:

ĉ1 ¼
F0F2ð�1Þ�F02ð0ÞF1

F01ð0ÞF2ð�1Þ�F02ð0ÞF1ð�1Þ
, ð23Þ

ĉ2 ¼
F1F01ð0Þ�F0F1ð�1Þ

F01ð0ÞF2ð�1Þ�F02ð0ÞF1ð�1Þ
, ð24Þ

where

F0 ¼
ta�tin

Avð0Þrw

, ð25Þ

F1 ¼�c1ð�1ÞF1ð�1Þ�c2ð�1ÞF2ð�1Þ, ð26Þ

and primes denote z-derivatives.
4. Solution for a kind of depth-dependent eddy viscosity

As noted by Jenkins (1989), the Ekman surface current is
directed at 451 to the right of the wind direction in the northern
hemisphere if the eddy viscosity is assumed to be constant, which
is inconsistent with the field observations of surface drift current,
reviewed by Huang (1979). In fact, there are several approaches to
estimate the vertical eddy viscosity Av. Many measurements have
been made to determine its value, and different parameteriza-
tions have been proposed. A collection of values and functional
forms can be found in Huang (1979) and Santiago-Mandujano and
Firing (1990).

Although atmospheric turbulent boundary layers basically
obey logarithmic velocity profiles, corresponding to a linear
increase in eddy viscosity with height, it is very difficult to
establish the presence of a log profile in a turbulent oceanic
boundary layer because of surface waves and wave breaking.
McWilliams et al. (1997) and Zikanov et al. (2003) computed the
eddy viscosity by using large eddy simulations of the ocean mixed
layer, and demonstrated that it follows a convex shape. Madsen
(1977) examined the problem by assuming that the eddy viscos-
ity increases linearly with depth throughout the mixed layer.
Witten and Thomas (1976) used a vertical eddy viscosity that
decreases exponentially with depth in the study of wind-driven
currents in shallow water. In this paper, we assume that the eddy
viscosity can be expressed as follows:

AvðzÞ ¼ Avð0Þð1�dzÞexpðazÞ, ð27Þ

where, Av(0) is the surface eddy viscosity, d and a are positive
constants. It is noted that this kind of the eddy viscosity (27) is
the generalization of many previously used ones stated as
follows:

Substituting this form (27) into Eqs. (18)–(20), (23) and (24),
we have

BðzÞ ¼ ð1�dzÞ�1=4exp �
a
4

z
� �

, ð28Þ

DðzÞ ¼ ð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

2Avð0Þ

s Z z

0
ð1�dz0Þ�1=2exp �

a
2

z0
� �

dz0, ð29Þ

F1ð�1Þ¼ 0, F01ð0Þ ¼
1

4
ðd�aÞþð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

2Avð0Þ

s
, ð30Þ

F02ð0Þ ¼
1

4
ðd�aÞ�ð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

2Avð0Þ

s
, ð31Þ

ĉ1 ¼
F0þF02ð0Þc2ð�1Þ

F01ð0Þ
, ĉ2 ¼�c2ð�1Þ, ð32Þ

and the WKB approximate solution can be calculated by Eqs. (9),
(18), (19), (21), (22) and (28)–(32).

4.1. Case 1, eddy viscosity is independent of water depth

If Av is depth-independent, which corresponds to the case of
d¼a¼0 in Eq. (27), we have

BðzÞ ¼ 1, DðzÞ ¼ ð1þ iÞ

ffiffiffiffiffiffiffiffi
f

2Av

s
z� jz, ð33Þ

F1ðzÞ ¼ ejz, F2ðzÞ ¼ e�jz, ð34Þ

c1ðzÞ ¼
1

2jAv

Z z

0
ifUsðz

0ÞþTwdsðz
0Þ

� �
e�jz0dz0, ð35Þ

c2ðzÞ ¼ �
1

2jAv

Z z

0
ifUsðz

0ÞþTwdsðz
0Þ

� �
ejz0dz0, ð36Þ

ĉ1 ¼
ta�tin

Avjrw

�
1

2jAv

Z 0

�1

ifUsðz
0ÞþTwdsðz

0Þ
� �

ejz0dz0, ð37Þ

ĉ2 ¼�
1

2jAv

Z 0

�1

ifUsðz
0ÞþTwdsðz

0Þ
� �

ejz0dz0, ð38Þ

and the solution (9) reduces to

UWE1ðzÞ ¼
ta�tin

Avjrw

�
1

jAv

Z 0

�1

½ifUsðz
0ÞþTwdsðz

0Þ�coshðjz0Þdz0
" #

ejz

þ
1

jAv

Z z

�1

½ifUsðz
0ÞþTwdsðz

0Þ�sinh jðz�z0Þ½ �dz0: ð39Þ

It is noted that the solution (39) is exactly the same as the
analytical solution presented by Song (2009). Thus, the approx-
imate solution obtained here includes the exact solution for
depth-independent eddy viscosity as a special example.

4.2. Case 2, eddy viscosity increasing linearly with depth

Taking a¼0 in Eq. (27), we have

Av ¼ Avð0Þð1þdzþ Þ, ð40Þ

where zþ¼–z40. The exact solution of Eqs. (1)–(5) for the eddy
viscosity (40) is presented by (A.6) in Appendix A. If we take
Av(0)¼ku*z0S and d¼1/z0S with z0S as the sea surface roughness
length scale, k¼0.4 is von Karmen’s constant, and u*¼(9sa9/rw)1/2

is the oceanic friction velocity associated with the magnitude of
the surface stress, then the eddy viscosity relation (40) is the
same as that used by Lewis and Belcher (2004) and Song (2009).
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Substituting this form (40) of Av into Eqs. (18)–(26), we have

Bð�zþ Þ ¼ ð1þdzþ Þ
�1=4, Dð�zþ Þ ¼ ð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffi
2f

Avð0Þ

s
1

d
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þdzþ

p� �
,

ð41Þ

F1ðzÞ �F1ð�zþ Þ ¼ Bð�zþ Þe
Dð�zþ Þ,

F2ðzÞ �F2ð�zþ Þ ¼ Bð�zþ Þe
�Dð�zþ Þ, ð42Þ

c1ðzÞ ¼ �
1�i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fAvð0Þ

p Z zþ

0
Bð�z0þ Þ½ifUsð�z0þ ÞþTwdsð�z0þ Þ�e

�Dð�z0þ Þdz0þ ,

ð43Þ

c2ðzÞ ¼
1�i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fAvð0Þ

p Z zþ

0
Bð�z0þ Þ½ifUsð�z0þ ÞþTwdsð�z0þ Þ�e

Dð�z0þ Þdz0þ ,

ð44Þ

ĉ1 ¼
ta�tin

Avð0Þrw

�ĉ2
d
4
�ð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

2Avð0Þ

s" #( )
d
4
þð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

2Avð0Þ

s" #�1

,

ð45Þ

ĉ2 ¼�
1�i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fAvð0Þ

p Z þ1
0

Bð�z0þ Þ½ifUsð�z0þ ÞþTwdsð�z0þ Þ�e
Dð�z0þ Þdz0þ ,

ð46Þ

The solution of Eq. (9) reduces to

UWE2 ¼�
ð1�iÞBð�zþ Þffiffiffiffiffiffiffiffiffiffi

2fAv

p
ð0Þ

Z zþ

0
Bð�z0þ Þ½ifUsð�z0þ ÞþTwdsð�z0þ Þ�

�sinh½Dð�zþ Þ�Dð�z0þ Þ�dz0þ þ ĉ1Bð�zþ Þe
Dð�zþ Þ

þ ĉ2Bð�zþ Þe
�Dð�zþ Þ: ð47Þ

To compare the approximation solution (47) with the corre-
sponding exact solution (A.6), we calculated the solution by
taking ra¼1.2 kg m�3, rw¼1025 kg m�3, f ¼ 10�4 s�1 for a fully
developed wind-generated sea described by the wavenumber
spectrum of Donelan and Pierson (1987),

Eðk,yÞ ¼
0:00162� U10

k2:5g0:5
exp �

g2

k2ð1:2U10Þ
4

 !
1:7G

�m k

kp

	 

sech2 m k

kp

	 

y

� �
ð0oko1,�poyopÞ, ð48Þ

where y is the wave direction relative to the wind (the direction
of wind is assumed to be along the x-axis) and

G¼ exp �1:22
1:2U10k0:5

g0:5
�1

� �2
( )

, ð49Þ

m k

kp

	 

¼

1:24 0ok=kpo0:31

2:61ðk=kpÞ
0:65 0:31ok=kpo0:9

2:28ðkp=kÞ0:65 0:9ok=kpo10

:

8>><
>>: ð50Þ

The peak of the spectrum is given by

kp ¼
g

ð1:2U10Þ
2
: ð51Þ

Sin is specified by Hasselmann et al. (1988) in the WAM wave
model formulation for wind input energy to waves:

Sinðk,yÞ ¼ bEðk,yÞ, ð52Þ

where

b¼max 0,0:25
ra

rw

28
ua
�

C
cosy�1

	 
� �
o, ð53Þ

in which ua
� ¼

ffiffiffiffiffi
Cd

p
U10j j is the air friction velocity, and the phase

velocity is given by C¼o/k. The dissipation source function is
taken as follows (Hasselmann et al., 1988; Komen et al., 1994):

Sdsðk,yÞ ¼ �2:25/oSð/kS2m0Þ
2 k

/kS
þ

k

/kS

	 
2
 !

Eðk,yÞ, ð54Þ

where

m0 ¼

ZZ
Eðk,yÞdkdy, ð55Þ

/oS¼ m0
�1

ZZ
Eðk,yÞo�1dkdy

� ��1

, ð56Þ

/kS¼ m0
�1

ZZ
Eðk,yÞk�1=2dkdy

� ��2

: ð57Þ

Various calculations were done for different wind speeds and

different values of d, and the results show that the agreement
between the WKB approximate solution and the exact solution
(results of the numerical and the exact solutions are indistinguish-

able) is excellent if the parameter d is small enough. The disparity

increases with increase in d. For example, Fig. 1 shows the approx-
imation solution (47), the exact solutions (A.6) and the numerical

solutions from (C.4) for wind speed U10¼10 m/s, d¼1/de, d¼2/de and

d¼3/de. Here, Av(0)¼ku*z0S, as Mellor and Blumberg (2004) sug-

gested, z0S is taken as z0S ¼ 665ð1:2=
ffiffiffiffiffi
Cd

p
Þ
1:5
ðu2
�=gÞ, z and velocities

(uWE2 or vWE2) are nondimensionalized, respectively, by de and u*, and

de ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Avð0Þ=9f 9Þ

q
can be viewed as the depth of the Ekman layer.

4.3. Case 3, eddy viscosity decreasing exponentially with depth

Taking d¼0 in Eq. (27), we have

Av ¼ Avð0Þe
az: ð58Þ

The exact solution of Eqs. (1)–(5) for the eddy viscosity (58) is
presented by (B.7) in Appendix B. Substituting this form (58) of Av

into Eqs. (18)–(26), we have
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z
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ĉ1 ¼
ðta�tinÞ

Avð0Þrw

�
a
4
þð1þ iÞy0

h i�1

�
aþ4ð1þ iÞy0

a�4ð1þ iÞy0

_c2, ð62Þ
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where y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf=2Avð0ÞÞ

p
.

The solution of Eq. (9) reduces to
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ð64Þ

As in case 2, the comparisons of the WKB approximate solution
(64) with the exact solution (B.7) presented in the Appendix B as
well as the numerical solution are made by using the Donelan and
Pierson (1987) wavenumber spectrum, the WAM wave model
formulation for wind input energy to waves, and wave energy
dissipation converted to currents. The results show that the
agreement between the WKB approximate solution uWE3 and
the exact solution (results of the numerical and the exact solu-
tions are indistinguishable) is excellent for any given wind speed
if the parameter a is small enough. The disparity increases with
increase in a. For example, Fig. 2 shows the comparison results for
U10¼10 m/s with a¼0.1/de, a¼0.7/de and a¼1.2/de.

4.4. Case 4, eddy viscosity having a mid-layer peak

If (qAv(z)/qz)¼0 at z¼zm for Eq. (27), then a¼(d/1�dzm) and
Eq. (27) reduces to

AvðzÞ ¼ Avð0Þð1�dzÞexpðdz=ð1�dzmÞÞ: ð65Þ

For this case, the eddy viscosity profile has a mid-layer peak at
z¼zm, it is similar to that shown by O’Brien (1970) or those
presented by McWilliams et al. (1997) and Zikanov et al. (2003)
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Fig. 2. The dimensionless velocities uWE3/u* (left) and vWE3/u* (right) calculated

from approximation solution (64) (dash-dotted lines), the exact solution (B.7)

(solid lines) and the numerical solution (C.4) (dotted lines) for wind speed

U10¼10 m/s with a¼0.1/de (black lines), a¼0.7/de (red lines) and a¼1.2/de (blue
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using large eddy simulations. This form of eddy viscosity (65) has
been used by Tan (2001) in studying atmospheric Ekman
boundary layer.

Substituting this form (65) of Av into Eqs. (18)–(26), we have

BðzÞ ¼ ð1�dzÞ�1=4exp �
d

4ð1�dzmÞ
z

	 

, ð66Þ

DðzÞ ¼ ð1þ iÞ
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2Avð0Þ

s Z z

0
ð1�dz0Þ�1=2exp �

d
2ð1�dzmÞ

z0
	 


dz0: ð67Þ

and the corresponding WKB approximate solution for this case
can be calculated by Eqs. (9), (18), (19), (66), (67) and (21)–(26).

Similarly, the comparisons of the WKB approximate solutions
with the numerical solution are made for this case of the
eddy viscosity. Figs. 3 and 4 show the comparison results for
U10¼10 m/s with different values of zm and d. It is also noted that
the agreement between the WKB approximate solution and the
numerical solution is excellent for a given U10 and zm if the
parameter d is small enough. The disparity will increase with
increase in d.
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To illustrate the dependence of the solution on the vertical
eddy viscosity coefficient Av(z), Fig. 6 shows the dimensionless
velocities uWE/u* and vWE/u* calculated from the numerical solu-
tion (C.4) for wind speed U10¼10 m/s with the five kinds of eddy
viscosity coefficients given in Fig. 5. It can be noted that the
current profiles obviously depend on the form of the vertical eddy
viscosity coefficient.
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Fig. 7. (a) Comparison of the eddy viscosity ~Avð~zÞ of Eq. (68) (solid line) with that

(dotted line) obtained by Zikanov et al. (2003) and (b) comparisons of the

horizontal velocities u/u* and v/u* calculated by the WKB approximate solution

(blue lines) with the corresponding results (red lines) of Zikanov et al. (2003). The

horizontal velocities u/u* and v/u* are plotted by the solid and dotted lines,

respectively. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
5. Conclusions and discussions

An approximate steady solution is obtained using the WKB
method with the variation of parameters technique for wave-
modified Ekman equations when the eddy viscosity coefficient is
gradually varying with depth. The solution presented depends on
the two-dimensional wave-number spectrum of ocean waves,
wind speed, the Coriolis parameter and the densities of air and
water, and it reduces to the exact solution presented by Song
(2009) if the eddy viscosity coefficient is taken as a constant. As
illustrative examples, we considered a fully developed wind-
generated sea with different wind speeds and a kind of gradually
varying eddy viscosity. Wave-modified current profiles were
calculated and compared with those of the exact solution and
numerical solution by using the Donelan and Pierson (1987)
wavenumber spectrum, the WAM wave model formulation for
wind input energy to waves, and wave energy dissipation con-
verted to currents. A satisfactory agreement between the WKB
solution and both the exact solution and the numerical solution
were found. The WKB solution that has been derived for the
Ekman layer could be employed in theoretical analysis, or for a
fast estimation of the Ekman layer profiles in applied research
when a near-neutral stratification is encountered. The main
conclusion of our research is that: the WKB method is a powerful
and elegant singular perturbation method, which can be applied
to find an approximate solution of the wave-modified Ekman
current. Illustrative examples for a fully developed sea show that
the Ekman layer currents are significantly influenced by the
surface waves and the vertical variation of the eddy viscosity.

The approximate solution and the method proposed may be
more useful in the real ocean when the eddy viscosity was
determined by fitting the observational data or the numerical
results. Applying the non-dimensional form of the eddy visc-
osity (27) to fit that obtained by Zikanov et al. (2003) for the
flow in the f-plane using the numerical method of large-eddy
simulations (LES) gives

~Avð~zÞ ¼ 0:004½1�64:0327ð~z�1:5Þ�exp½4:0073ð~z�1:5Þ�, ð68Þ

here, both the Cartesian coordinate system and the scales used
in the dimensionless form are taken the same as those of
Zikanov et al. (2003), the fitting method is the least square fit.
~Avð~zÞ ¼ AvðzÞ=ðu�LÞ, ~z ¼ z=L, L¼un/9f9 is used as the length scale,
and the surface friction velocity un is taken as the velocity scale.
Fig. 7(a) shows the comparison of the eddy viscosity (68) (solid
line) with that (dotted line) obtained by Zikanov et al. (2003)
using LES. The mean current profiles (red lines) of Zikanov et al.
(2003) are compared with the WKB approximate solution (blue
lines) in Fig. 7(b). Here and below, the approximate solutions
are calculated as in the Section 4 by assuming a fully developed
sea. The comparisons of Fig. 7(b) show that both u/un (solid
lines) and v/un (dotted lines) calculated by the two methods are
the quite consistent.

Using the Cartesian coordinate system as stated in Section 2,
the dimensional Av(z) corresponding to Eq. (68) can be written as

AvðzÞ ¼ 0:004u2
� ð1�64:0327z9f 9=u�Þexpf4:0073z9f 9=u�g=9f 9: ð69Þ

The horizontal velocities u and v predicted by the WKB approx-
imate solution (solid lines) using the eddy viscosities (69) with un and
f corresponding to the observations of LOTUS and EBC (Price and
Sundermeyer, 1999) are shown in Fig. 8 to compare with the
observation results (stars). The classical Ekman solutions (dotted
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lines) and the solutions (dashed lines) presented by Song (2009) for
eddy viscosity varies linearly with depth are also shown in Fig. 8.
For the LOTUS3 comparison, the solution is obtained by using
U10¼6.8 m/s, f¼8.36�10�5 s�1 and AvðzÞ ¼ 0:0032ð1�0:6528zÞ

expð0:0409zÞ. For the EBC comparison, U10¼7.6 m/s, f¼8.77�
10�5 s�1 and AvðzÞ ¼ 0:004ð1�0:6003zÞexpð0:0376zÞ are used. The
profiles of Fig. 8 show that there are considerable deviations from the
classical Ekman profiles, which Price and Sundermeyer (1999)
attribute to dynamical effects of mixed layer stratification and diurnal
variations in the mixed layer depth. However, the comparisons
between observations and the theoretical predictions as shown in
Fig. 8, demonstrate that both the preferred eddy viscosity and the
inclusion of the Stokes drift, wind input and wave dissipation can
largely reduce these discrepancies.

A complex eddy viscosity possibly can be inferred from
the ratio of the observed turbulent stress and shear due to the
nonparallel shear–stress relation, which may be result from the
time averaging over the cycling of the stratification in response to
diurnal buoyancy fluxes (Price and Sundermeyer, 1999; Lenn and
Chereskin, 2009). It should be noted that the WKB approximate
solution and the method proposed are still valid for such complex
eddy viscosity. Taking the form of Eq. (27) as the complex eddy
viscosity to fit (the least square fit) that presented by Lenn and
Chereskin (2009) gives

AvðzÞ ¼ ð0:0222�0:0534iÞ½1�ð0:1757þ0:1795iÞz�

�exp½ð0:0509þ0:0084iÞz� ð70Þ

Fig. 9(a) shows the comparison of the eddy viscosity (70) with
that presented by Lenn and Chereskin (2009). Fig. 9(b) shows the
comparisons of the horizontal velocities u and v calculated by
the WKB approximate solution with the corresponding results
of Lenn and Chereskin (2009). The approximate solution is
calculated using the wind stress presented by Lenn and
Chereskin (2009) from the wind product of blended QuickSCAT
and NCEP reanalysis winds. The comparisons of Fig. 9(b) show
that both u and v calculated by the WKB approximate solution
using the eddy viscosity (70) are quite in agreement with the
observation of Lenn and Chereskin (2009). To compare the current
profiles obtained using the complex eddy viscosity proposed by
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Lenn and Chereskin (2009) with those estimated by the real one
such as Eq. (69), we also include the WKB approximate solutions
obtained using the eddy viscosity (69) with un¼0.0091 m/s and
f¼�1.2612�10�4 s�1 extracted from the observations of Lenn
and Chereskin (2009) in Fig. 9(b). The current profiles obtained
using the eddy viscosity (69) of Fig. 9(b) show that there are
considerable deviations from those observed by Lenn and
Chereskin (2009), which may be caused by the great difference
between the eddy viscosity (69) and that presented by Lenn and
Chereskin (2009) as shown in Fig. 9(a).

It is noted that the corresponding solutions can be obtained by
using the wave spectrum from the wave model for a more general
developing sea, although we only illustrate the current profiles for
a fully developed wind-generated sea as examples. Furthermore,
the steady solutions presented in the paper may be extended to
the time-dependent cases using a Laplace transform technique
analogous to that of Lewis and Belcher (2004) in the study of the
effects of the Stokes drift on Ekman current. It is also noted that
we neglected many other contributions to Ekman surface cur-
rents, for example, density stratification, surface heating, buoy-
ancy flux and the horizontal component of the Coriolis frequency.
These effects can be important in certain situations and should be
considered for accurate modeling of surface currents, but are also
beyond the scope of the present study. Especially, as Price,
Sundermeyer (1999) and Rascle (2007) demonstrated, variable
surface buoyancy fluxes and near-surface stratification have a
significant impact on the Ekman layer. It is therefore of obvious
importance to extend the present study to the stratified condi-
tion. Furthermore, the parameterization forms of wave-current
interactions involving Sin and Sds also affected the presented
solutions, which needs further investigated.
Appendix A. Exact solutions for eddy viscosity increasing
linearly with depth

Substituting eddy viscosity (40) into Eqs. (1) and (2), we have
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where UWE2 is the modified complex horizontal velocity corre-
sponding to eddy viscosity (40).

The general solution of (A.1) is

UWE2ð�zþ Þ ¼ B1I0ðZÞþB2K0ðZÞþC0ð�zþ Þ, ðA:3Þ

where B1 and B2 are constants to be determined, Z¼
ð2=dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
, I0 and K0 are the first and the second

kinds of modified Bessel functions, respectively, and C0(�zþ) is a
special solution of (A.1) as follows:
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The boundary condition UWE2-0 as zþ-þN) ; B1¼0,
whilst the surface condition (5) reduces
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Thus, the wave-modified Ekman solution of (A.3) is
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Appendix B. Exact solutions for eddy viscosity decreasing
exponentially with depth

For eddy viscosity (58), the general solution of Eq. (1) is

UWE3ðzÞ ¼ A1xI1ði
1=2xÞþA2xK1ði

1=2xÞþC1ðzÞ, ðB:1Þ

where x¼ ð2=aÞ
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ðf=Avð0ÞÞ

p
e�az=2, A1 and A2 are constants to be

determined, I1 and K1 are the first and the second kinds of
modified Bessel functions of order one, respectively, and C1(z)
is a special solution of Eq. (1) as follows:
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with x0 ¼ ð2=aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf=Avð0ÞÞ

p
e�az0=2.

Using the boundary condition UWE3-0 as z-�N, we have
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whilst the surface condition (2) reduces
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where x0 ¼ i1=2ð2=aÞ
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ðf=Avð0ÞÞ

p
, I0 and K0, respectively, are the first

and the second kinds of modified Bessel functions of zero order.
Thus, the exact solution of Eqs. (1)–(5) for eddy viscosity (58) is

UWE3ðzÞ ¼ A1þC1ðzÞ½ �xI1ði
1=2xÞ
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2rwi1=2fK0ðx0Þ
þC2ðzÞ

� �
xK1ði

1=2xÞ, ðB:7Þ

where A1, C1(z) and C2(z) are, respectively, presented by (B.5),
(B.3) and (B.4).
Appendix C. Numerical solutions for Eqs. (1)–(5)

The discretization form of Eq. (1) is as follows:

Ai
v

Dz2
þ

A0iv
Dz2

	 

Ui�1

WE þ
�2Ai

v�A0iv
Dz2

�if

	 

Ui

WEþ
Ai

v

Dz2
Uiþ1

WE ¼ ifUi
sþTi

wds,

ðC:1Þ

where superscript i represents the depth of zi, Dz¼0.01 m.
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The discretization form for the surface boundary condition is

Avð0Þ

Dz
U1

WE�
Avð0Þ

Dz
U2

WE ¼
ta�tin

rw

,ðz1 ¼ 0Þ, ðC:2Þ

and the corresponding discretization of the lower boundary
condition is taken as

Un
WE ¼ 0,ðzn ¼�1500mÞ ðC:3Þ

Then we can have

B1 C1

A2 B2 C2

Ai Bi Ci

An�1 Bn�1 Cn�1

An Bn

2
6666664

3
7777775
U

U1
WE

U2
WE

Ui
WE

Un�1
WE

Un
WE

2
66666664

3
77777775
¼

D1

D2

Di

Dn�1

Dn

2
6666664

3
7777775

ðC:4Þ

where B1¼(Av(0)/Dz),C1¼�(Av(0)/Dz),D1¼(ta�tin/rw), An¼0,
Bn¼1, Dn¼0; Ai ¼ ðA

i
v=Dz2ÞþðA0iv=Dz2Þ, Bi ¼ ð�2Ai

v�A0iv=Dz2Þ�if ,
Ci ¼ ðA

i
v= Dz2Þ, Di ¼ ifUi

sþTi
wds(i¼2,3, y,n�1). We can use the

matrix chase-after method to solve Eq. (C.4).
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