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Abstract. The most popular methods of simulating time series for wave

heights and other meteorological and oceanic variables are based on the use

of autoregressive models and the transformation of variables to make them

normal and stationary. Generally, when these models are used, attention is

centred on their capacity to represent the autocorrelation of the series.

In this article, a simulation model is proposed that is based on the follow-

ing: (i) a non-stationary parametric mixture model for the marginal distri-

bution of the variable, that combines a log-normal distribution for main-mass

regime and generalised Pareto distributions for upper and lower tail regimes,

and (ii) the use of copulas to model the time dependency of the variable. The

model has been evaluated by comparing the original series and the simulated

series in terms of the autocorrelation function, the mean, the annual max-

ima and peaks-over-threshold regimes, and the persistences regime. It has

also been compared to an ARMA model and found to yield more satisfac-

tory results.
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1. Introduction

The verification of coastal and harbour structures may require the use of Level III

verification methods. These methods are usually complex and require the use of numerical

simulation techniques (e.g., Monte Carlo techniques) [Losada, 2002].

In coastal engineering, the main variables to be simulated are sea-state variables such

as significant wave height, wind, and sea level, which characterise the sea state in a time

domain in which processes are assumed to be stationary. For this purpose, generally speak-

ing, the duration should not exceed O(1hr). This research focuses on the evolutionary

behaviour of the sea-state variables, i.e., on long-term analysis.

From a physical point of view, the temporal evolution of sea-state variables is condi-

tioned by phenomena operating on different time scales.

Processes with a time scale of O(day)-O(weeks), such as synoptic phenomena and the

cycles of spring and neap tides, produce dependence among the variables that originate

and autocorrelation in each variable. The clearest example related to sea states is the

passage of a storm. The storm will generate wind speeds and wave heights that are larger

than average, and therefore, it is expected that these variables will be correlated during

a storm. At the same time, the evolution of these variables (and others) over time is

determined by the intensity and path of the storm, so there are physical reasons to expect

that these variables will present significant autocorrelation within the time scale of the

storm.

O(year) scale processes, such as seasons, produce variations in the intensity and fre-

quency of the O(day)-O(week) scale phenomena and thus cause temporal variations in
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sea-state variables. In the same way, O(>year) scale processes, such as interannual vari-

ability, influence the characteristics of each year (e.g., they create drier or wetter years

and years with more or less wave action) and also produce temporal variations in sea-state

variables.

Regarding the statistical tools used in the long-term analysis of sea-state variables, it

is important to note that such studies can be univariate or multivariate, may or may not

include auto-correlation, and can be stationary or non-stationary. Table 1 summarises the

characteristics of a study: whether the variables are dependent on other variables (i.e.,

whether they are correlated with other variables), whether the variables are self-dependent

(i.e., exhibit autocorrelation or time dependence), or whether they are dependent on time

(i.e., whether their distribution is non-stationary). The long-term (climate) behaviour

of sea-state variables includes such characteristics and, consequently, should be studied

using non-stationary multivariate models that represent the time dependence (or auto-

correlation) of the variables.

In figure 1, various physical phenomena evolving in different time scales are associated

with statistical models that have been used in this study to appropriately model the

sea-state variables for these time scales.

The maximum time scale that the simulation must take into account to be applied to

engineering is the period used to verify the system. This period is generally the useful life

of the system, which is 10-50 years, although it can be a shorter duration when the aim

is to verify construction processes or evaluate other short-term phenomena.

D R A F T June 22, 2011, 2:58pm D R A F T



SOLARI & LOSADA: NON-STATIONARY WAVE HEIGHT SIMULATION X - 5

With regard to the simulation of times series for significant wave heights (Hs or Hm0),

there are currently two lines of research: one that focuses on simulating storms and

another that simulates complete series of values.

The method most widely used to simulate storms involves developing joint or condi-

tioned distributions for the random variables of storm occurrence, intensity, and duration.

Based on these distributions, new time series are simulated assuming a standard shape

for the storm.

In general, storm occurrence is modelled using a Poisson distribution and storm in-

tensity using a generalised Pareto distribution (GPD). It is common to condition the

duration of a storm to its intensity. Some examples of this type of approximation are

presented in DeMichele et al. [2007]; Payo et al. [2008]; Callaghan et al. [2008]. Although

stationary functions are generally used for this purpose, non-stationary functions can also

be employed, such as those proposed in Luceño et al. [2006]; Méndez et al. [2006, 2008];

Izaguirre et al. [2010]. A less frequent alternative in storm simulation is to assume that it

is a Markov process and to use a multivariate distribution of extremes to model the time

dependence of the variable while the storm lasts [Coles , 2001, chap. 8]. This technique is

used in Smith et al. [1997]; Fawcett and Walshaw [2006]; Ribatet et al. [2009].

Monbet et al. [2007] review simulation methods for complete time series applied to

wind and waves. The methods currently used can be classified as parametric and non-

parametric.

The Translated Gaussian Process (TGP) method [Walton and Borgman, 1990; Borgman

and Scheffner , 1991; Scheffner and Borgman, 1992] is the most widely used non-

parametric method. This method uses the spectrum of the normalised variable. According
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to Monbet et al. [2007], non-parametric methods such as those based on resampling (called

resampling methods) are less frequently used and are not discussed in this article.

The most frequently used parametric methods are based on autoregressive models.

Studies employing such methods include Guedes Soares and Ferreira [1996]; Guedes Soares

et al. [1996]; Scotto and Guedes Soares [2000]; Stefanakos [1999]; Stefanakos and Athanas-

soulis [2001]; Cai et al. [2007] for univariate series; for multivariate series, relevant studies

include Guedes Soares and Cunha [2000]; Stefanakos and Athanassoulis [2003]; Stefanakos

and Belibassakis [2005]; Cai et al. [2008]. As in the TGP, before autoregressive models can

be used, the series must be normalised. For this purpose, non-stationary models of the

mean and the standard deviation, like those proposed by Athanassoulis and Stefanakos

[1995]; Stefanakos [1999]; Stefanakos et al. [2006], are used.

The current methods present the following limitations:

(a) Methods of normalising variables are either stationary [e.g. Cai et al., 2007, 2008] or

non-stationary. However, they focus on the centre of the data distribution, generally

using the non-stationary mean and standard deviation for normalisation [e.g. Guedes

Soares et al., 1996; Athanassoulis and Stefanakos , 1995].

(b) Parametric time dependence models are linear [e.g Guedes Soares et al., 1996], piece-

wise linear [e.g. Scotto and Guedes Soares , 2000], or non-linear but are limited to the

extremes [e.g. Smith et al., 1997].

(c) Generally speaking, the simulation is only evaluated using the mean, the standard

deviation and the autocorrelation.

This article proposes a simulation method for non-stationary univariate series with

time dependence. This method involves the use of a non-stationary parametric mixture
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distribution to model the univariate distribution of the variable and of copulas to model

their time dependence.

The rest of this paper is structured in three sections and seven annexes. In Section

2, the proposed model is presented together with the procedure for simulating new time

series. In Section 3, the model parameters are fitted to a data series of significant wave

heights, new series are simulated and the results obtained are discussed. Finally, in Section

4, the conclusions are summarised. The derivation of the equations associated with the

presented model is illustrated in the appendices at the end of the paper, along with a list

of the abbreviations used throughout the paper (Appendix G).

2. Methodology

The non-stationary model (Section 2.1) includes variations of the order of months to

years. Because it is a mixture distribution, it can be used to model both medium and

extreme generation processes; i.e. this distribution is able to accurately model medium

(or main-mass) states and extreme (or tails) states. The time dependence model (Section

2.2) models processes whose time scale is composed of various states. Because it is copula-

based, this model makes it possible to use various non-linear dependence structures that

can be either symmetrical or asymmetrical.

This section also describes the method used to simulate new data series (Section 2.3)

and the structure of the ARMA models (Section 2.4), which are used to compare the

results obtained with those obtained using the copula-based time-dependence model.

2.1. Non-stationary distribution function

Solari and Losada [2011a, b] present a mixture model
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f(x) =


fm(x)Fc(u1) x < u1

fc(x) u1 ≤ x ≤ u2

fM(x) (1− Fc(u2)) x > u2

(1)

where Fc is the log-normal distribution (LN), Fm is the GPD of minima, and FM is the

GPD of maxima. When continuity is imposed to the probability density function and the

lower bound of the GPD has a value of zero, the GPD distributions are

fm(x|x < u1) =
1

σ1

(
1− ξ1

σ1

(x− u1)

)− 1
ξ1

−1

ξ1 ̸= 0 (2a)

fM(x|x > u2) =
1

σ2

(
1 +

ξ2
σ2

(x− u2)

)− 1
ξ2

−1

ξ2 ̸= 0 (2)

with

σ1 = −ξ1u1 ξ1 = − Fc(u1)

u1fc(u1)
σ2 =

1− Fc(u2)

fc(u2)
(3)

This model is similar to that proposed by Cai et al. [2007] for ARMA models with the

exception that in (1), the continuity of the probability density function is assured by the

conditions presented in (3). Furthermore, Cai et al. [2007] do not provide a method of

threshold estimation, whereas Solari and Losada [2011a, b] show that the threshold can

be estimated simultaneously with the other parameters.

The five parameters of the model are (µLN , σLN , ξ2, u1, u2). To represent annual

variations or those of a shorter duration, the parameters (µLN , σLN , ξ2) are approximated

using a Fourier series whose main time period is the year:

θ(t) = θa0 +
N∑
k=1

(θak cos(2πkt) + θbk sin(2πkt)) (4)
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where t is the time measured in years [see e.g. Coles , 2001; Méndez et al., 2006].

The parameters u1 and u2 are replaced by Z1 and Z2, using Fc(u1) = Φ(Z1) and

Fc(u2) = Φ(Z2), where Φ is the standard normal distribution and Z1 and Z2 are stationary

parameters. However, because the parameters µLN and σLN of the central distribution Fc

are non-stationary, the thresholds u1 and u2 are non-stationary as well.

The distribution parameters are derived using maximum likelihood estimation, minimis-

ing the negative log-likelihood function (NLLF) after the redistribution of the data [Solari

and Losada, 2011a]. Redistribution involves taking the original data, truncated with pre-

cision 0.1m, and distributing them uniformly at symmetrical intervals (X−0.05, X+0.05).

The parameters are estimated by progressively increasing the order of approximation

of the Fourier series. The parameters obtained for order n (θa 0, θa 1, θb 1,. . .,θan, θb n) are

the first approximation used to estimate those in order n + 1, with zero used as the first

approximation of the new parameters (θan+1 , θb n+1) = (0, 0).

To evaluate the significance of the improvement in fit obtained when the order of

the Fourier series is increased, the Bayesian Information Criterion BIC = −2 log(L) +

log(Nd)p is used [see e.g. Fan and Yao, 2005] where L is the likelihood function, Nd is the

number of available observations, and p is the number of model parameters.

Interannual variation (i.e., long-term cycles of over a year) and variation due to covari-

ables (e.g., climatic indices) are incorporated in the distribution function in a manner

similar to the way in which seasonal variation is incorporated [see e.g. Coles , 2001; Iza-

guirre et al., 2010]. For parameter θ, a series of covariables Ci(t), and interannual variation

of period Tj,
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θ =θa0 +

Nk∑
k=1

(θak cos(2πkt) + θbk sin(2πkt))+

Nj∑
j=1

(θaj cos(2πt/Tj) + θbj sin(2πt/Tj)) +

Ni∑
i=1

f(Cj(t), t)

where long-term trends and other non-cyclic components are included as particular cases

of the functions f(Cj(t), t) in which there is no dependence on any covariable.

Once these parameters are estimated, the accumulated probability function for the time

period (t, t+ T ) is calculated as

P (H ≤ H∗) =
1

T

∫ t+T

t

P (H ≤ H∗|t)dt (5)

where P (H ≤ H∗|t) is the non-stationary LN-GPD model (1) (NS-LN-GPD):

P (xt|t) =
Fm(xt|t)Φ(Z1) xt < u1(t)

Fc(xt|t) u1(t) ≤ xt ≤ u2(t)

Φ(Z2) + FM(xt|t) (1− Φ(Z2)) xt > u2(t)

(6)

Goodness-of-fit is evaluated using PP and QQ graphs constructed by standardising the

variable xt following the procedure described in Appendix A.

2.2. Temporal dependence

The NS-LN-GPD model (6) can be used to transform the non-stationary series of signifi-

cant wave heights {Hs(t)} into the uniformly distributed stationary series {P (t)} ∼ U(0, 1)

using P (t) = Prob[H ≤ Hs(t) | t]. Next, copula theory is used to model the joint distri-

bution of k successive states (Pt, Pt−1, ..., Pt−k+1). For an introduction to copula theory,

see Joe [1997]; Nelsen [2006]; Salvadori et al. [2007]. The use of copulas to model Markov

D R A F T June 22, 2011, 2:58pm D R A F T



SOLARI & LOSADA: NON-STATIONARY WAVE HEIGHT SIMULATION X - 11

chains is demonstrated in Abegaz and Naik-Nimbalkar [2008a, b]. Stefanakos [1999]; Seri-

naldi and Grimaldi [2007]; DeMichele et al. [2007]; Nai et al. [2004]; de Waal et al. [2007]

apply copula theory to marine climate and other met-ocean variables.

First, the time dependence between two consecutive states is studied. The joint proba-

bility Prob(Pt, Pt−1) is represented by copula C12 such that

C12(u, v) = Prob[Pt ≤ u, Pt−1 ≤ v] (7)

On this basis, the conditioned probability function is obtained. This function defines

the distribution of Pt given Pt−1 (or vice versa) and thus defines the first-order Markov

process:

C1|2(u, v) = Prob[Pt ≤ u |Pt−1 = v] =
∂C12

∂v
(u, v) (8)

To define a model of a higher order than 1, a copula construction process is used [Joe,

1997, chap. 4.5].

Given copula C1...k (which defines the joint probability of k successive states)

and, consequently, given the Markov model of order k − 1, variables F1|2...k =

Prob[Pt|Pt−1, . . . , Pt−k+1] and Fk+1|2...k = Prob[Pt−k|Pt−1, . . . , Pt−k+1] are constructed.

The dependence between two variables is measured using Kendall’s τk or Spearman’s

ρs statistic (see Appendix C). If this dependence is significant, then there is a relation-

ship of dependence between Pt and Pt−k that cannot be explained by the Markov model

of order k − 1. In this case, it is necessary to construct a k-order Markov model. This

can be accomplished using copula C1...k+1
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C1...k+1(u1, ..., uk+1)

= Prob[Pt ≤ u1, ..., Pt−k ≤ uk+1]

=

∫ u2

−∞
...

∫ uk

−∞
C1k+1(F1|2...k, Fk+1|2...k)

C2...k(dx2, ..., dxk) (9)

where C1k+1 is a bivariate copula fit to the variables F1|2...k and Fk+1|2...k. This procedure

is repeated until the value of k at which the dependence between variables F1|2...k and

Fk+1|2...k is not significant.

The procedure described is used to define multivariate copulas (i.e., those higher than

the second order) based on a set of bivariate (i.e., second-order) copulas. Appendix D

describes how this procedure is used to construct copula C1234, which defines a third-order

Markov process.

An alternative procedure that has not been implemented in this study involves using the

autocorrelation function of the variable xt to set the order of the process k as the maximum

time lag for which the autocorrelation is significant. Then, the copula construction method

described above can be used to construct the multivariate copula C1...k.

2.2.1. Copulas families used

This research tested different copula families for the data used. The families selected

were those that had the best goodness-of-fit based on the value of their likelihood functions

and based on a visual evaluation. The two copula families used in this study were an

asymmetric version of the Gumbel-Hougaard family and the Fréchet family (Appendix

E). A list of copula families, their characteristics, and the different ways to fit them to
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the data can be found in Joe [1997]; Nelsen [2006]; Salvadori et al. [2007]; Jaworski et al.

[2010]. For a summary of methods and goodness-of-fit tests, see Genest and Favre [2007]

and references therein.

2.3. Simulation methodology

The simulation process consists of two parts. First, the time-dependence model of

copulas (9) is used to obtain the series of probabilities {Pt}; then, the non-stationary model

(1) is used to transform the probabilities into wave heights. To simulate the realisation

Pt of the Markov process of order k− 1, once the previous realisations Pt−1 to Pt−k+1 are

known, ut ∼ U(0, 1) is simulated and Pt obtained, resolving the following equation

ut =
∂C1...k

∂u2 . . . ∂uk

(Pt, . . . , Pt−k+1)

=
∂C1k

∂Fk|2...k−1

(
F1|2...k−1(Pt, . . . , Pt−k+2),

Fk|2...k−1(Pt−1, . . . , Pt−k+1)
) (10)

where C1k is the bivariate copula fit to F1|2...k−1 and Fk|2...k−1 to construct C1...k

and where F1|2...k−1 and Fk|2...k−1 are calculated using the set of bivariate copulas

C1k−1, C1k−2, . . . , C12.

When this procedure is used, it is not necessary to use (9) to perform the simulations

because (10) can be resolved using the bivariate copulas. To obtain Pt, equation (10) can

be numerically solved using the bisection method. The simulation process for a third-order

Markov model is described in Appendix F.

2.4. ARMA models

An ARMA(p,q) model is given by
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Zt = ϕ1Zt−1 + . . .+ ϕpZt−p + εt + θ1εt−1 + . . .+ θqεt−q (11)

where ϕ and θ are the coefficients of the autoregressive component and of the moving

average, respectively, and εt stands for the independent, identically distributed realisations

with a null mean and variance σ2
ε (a normal distribution is generally assumed). The AR(p)

model corresponds to the ARMA(p,0) case.

To estimate the parameters of the ARMA model, the probability series {Pt}, obtained

using the NS-LN-GPD model (6), is transformed into a series {Zt} via the inverse of the

standard normal distribution. Once {Zt} has been obtained, the parameters ϕ, θ and σ2
ε

can be estimated using maximum likelihood estimation.

Once the model (11) is fitted, white noise is generated with variance σ2
ε , and a new series

{Zt} is simulated using parameters ϕ and θ. After the series {Zt} has been simulated, it

is transformed into {Pt} using a standard normal distribution and afterwards into {Hs}

using the inverse of the NS-LN-GPD model (6).

3. Application

The research study described in this article used a series of 36, 496 data records of

spectral significant wave height from 13 years and 3 months of sea states with a duration

of 3 hours (although there were some gaps in the record). The data were obtained using

the WAM numerical model, provided by Puertos del Estado, Spain (www.puertos.es),

corresponding to WANA point number 1054046 (36.5◦N, 6.5◦W, Gulf of Cádiz, Spain).

This is the same data series used by Solari and Losada [2011b].
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3.1. Non-stationary seasonal distribution

In this section, the NS-LN-GPD parameters are estimated. A non-stationary LN dis-

tribution (NS-LN) is also fitted (corresponding to the NS-LN-GPD with Z1 and Z2 pa-

rameters approaching infinity) for use in testing the goodness of fit obtained using the

NS-LN-GPD model.

In the first instance, the parameters are only allowed to have seasonal variations (i.e.,

variation of periods less than or equal to a year (4)); interannual variation, covariables

and trends were not considered.

Fourier series are evaluated (4) with a maximum order of approximation n between 1

and 12. The order 1 represents annual variation, 2 represents semiannual variation, and

so on. For each fit distribution, the BIC is estimated.

The models are identified using three digits [a b c]; a is the order of approximation of

the Fourier series used for µLN , b is the order of approximation of the series used for

σLN , and c is the order of approximation of the series used for ξ2. When a maximum

approximation n is allowed, a, b, c ≤ n should hold. The total number of parameters of

the model [a b c] is 2(a + b + c) + 5; i.e., there are 2a + 1 parameters to be used in the

Fourier series representation of µLN , 2b + 1 parameters to be used in the Fourier series

representation of σLN , 2c + 1 parameters to be used in the Fourier series representation

of ξ2, and the two stationary parameters Z1 and Z2.

Figure 2 shows the value of the BIC, depending on the total number of parameters

when maximum approximations are permitted of order n = 4, 6, 9. For each number,

only the minimum BIC model is included. The minimum BIC models are identified for

each n–order maximum approximation. Although each curve has a relative minimum, the
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minimum decreases as the maximum allowed order n increases. This finding implies that

to use the BIC as a selection criterion for the model, one must first define the maximum

allowed order of approximation n.

In this study, the minimum variation period for the parameters has been limited to 3

months. (The maximum allowed order of approximation n is limited to 4.) The minimum

BIC model in this case is [4 2 2]: i.e., a Fourier series of order 4 for µLN and of order 2

for σLN and ξ2. Figure 3 shows the annual temporal evolution of parameters µLN , σLN

and ξ2 from model NS-LN-GPD [4 2 2]. As can be observed, the principal component

is the annual period, and the other components provide non-negligible corrections of a

lesser order. The only exception is parameter ξ2, for which the semi-annual component is

of the same order of magnitude as the annual one. The fit of the [4 2 2] model obtained

using the NS-LN-GPD parameters is compared with that of the model obtained using the

NS-LN (also using n = 4). Tables 2 and 3 show the estimated NS-LN-GPD and NS-LN

parameters, respectively.

Figure 4 shows the quantiles corresponding to the empirical accumulated probability

values and those obtained when the NS-LN and NS-LN-GPD models are used. The

empirical quantiles have been obtained using a moving window of one month. Generally

speaking, the quantiles calculated using the NS-LN-GPD distribution coincide with the

empirical quantiles. As compared with the NS-LN model, the NS-LN-GPD model exhibits

superior fit at the tails.

Figure 5 (the top graph) shows the annual CDF on log-normal paper. As can be

observed, the NS-LN-GPD model exhibits a better fit at the tails than the NS-LN model.
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Figure 5 (the bottom graph) shows the annual PDF. The NS-LN-GPD model fits the

mode better than the NS-LN model.

Finally, Figure 6 shows the Q-Q and P-P graphs for the two models. These graphs

confirm the goodness-of-fit obtained using the NS-LN-GPD model.

3.2. Interannual variations

The purpose here is to show how the proposed model can include the interannual vari-

ations observed in the series and examine how these interannual variations affect the

simulation of new series. The physical basis of the observed interannual variations is not

under study here. Moreover, the observed trends are assumed to be cyclical so that the

mean value of the long-term simulations is not affected. This also makes it easier to

compare the original and simulated series.

It is not our aim to perform an in-depth analysis of the interannual variation in the

data series being used; this would mean studying covariables of interest such as the NAO

and considering long-term trends and climate cycles, which require longer series than the

one available as well as series of covariables [see e.g. Ruggiero et al., 2010; Izaguirre et al.,

2010].

When the moving average of the data is displayed on a graph (Figure 7), two trends

are observed: (i) a cyclical component with a period of approximately 5 years and (ii) a

decreasing trend. To analyse both, the following cyclical components are included in the

mean:
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µLN,anual = ai1 cos(2πt/5) + bi1 sin(2πt/5) (12)

+ai2 cos(2πt/26) + bi2 sin(2πt/26)

This is an ad hoc model for long-term trends that assumes that the downward trend in

the 13 years of data is part of a 26-year pattern of cyclical variation.

These four parameters and the other parameters of the model are estimated using

maximum likelihood estimation with n = 4 as the maximum order of approximation for

the Fourier series and using the BIC to select the model. The model obtained in this case

is [4 2 2 2], where the first three numbers refer to the order of approximation of µLN ,

σLN and ξ2 and the last refers to the two interannual cyclical components included in µLN

(12).

Figure 7 shows the moving average of the logarithm of the data obtained using a moving

window of 90 days and the mean of NS-LN-GPD model [4 2 2 2]. As can be observed,

the µLN parameter with interannual variation adequately captures the trend in the mean

of the logarithm of the data.

Model [4 2 2 2] exhibits a goodness of fit similar to that of model [4 2 2] (as given in

Figures 5 and 6 and therefore not shown here).

3.3. Time Dependency. Copulas

To fit the time dependency, different copula families can be tested. In this study, the

families with the best fit are selected based on the log-likelihood function (LLF) and a

visual evaluation. The following paragraphs describe the data fitting processes, which are

conducted based on the probability series {Pt} obtained using NS-LN-GPD model [4 2
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2 2]. Figure 8 shows the mean and standard deviation of Pt as well as their smoothed

values on an annual scale. As can be observed, the series may be treated as stationary.

The asymmetric Gumbel-Hougaard copula (E1) provides a good fit for the time-

dependence between Pt and Pt−1. The parameters estimated for this copula are θ = 5.462,

θ1 = 0.994 and θ2 = 0.969. This shows that Pt and Pt−1 are significantly dependent on

each other (high θ) and that the distribution is slightly asymmetrical (θ1 ≈ θ2).

Figure 9 depicts the empirical function C(Pt, Pt−1) and that obtained using the asym-

metric Gumbel-Hougaard function. It is clear that the modelled and empirical iso-

probability curves overlap, except around Pt ≈ Pt−1 ≈ 0.1− 0.4, where the data reflect a

more marked dependence than that exhibited by the model. In general, the fit is good.

We then estimated the dependence between Pt and Pt−2, which was not explained by

C(Pt, Pt−1). For this purpose, the C12 copula was used to estimate F1|2 and F3|2. The

dependence between F1|2 and F3|2 is significant (τk = −0.133 and ρs = −0.192), and thus,

the trivariate copula C123 was constructed.

To obtain the trivariate copula (D2), the bivariate copula C13(F1|2, F3|2) was fitted. In

this case, a good fit was obtained using the Fréchet family. The parameters were fitted

using (E8) and assuming that α = 0. A good fit was obtained, although there was some

asymmetry in the data that was not captured by the copula.

The copula C123 was used to estimate F1|23 and F4|23. The dependence between these

variables was found to be τk = −1.4 × 10−3 and ρs = −1.3 × 10−4. Consequently, the

variables F1|23 and F4|23 can be regarded as independent.

Table 4 summarises the parameters of the copulas fitted using the probability series {Pt}

obtained with the NS-LN-GPD [4 2 2] and [4 2 2 2] models (i.e., the seasonal model (SM)
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and interannual model (IM)). For the SM, the influence of considering the C14 copula was

not found to be very significant.

3.4. Time dependency. ARMA models

High-order AR(p) and ARMA(p,q) models were estimated to compare the results ob-

tained. An optimal number of parameters was not selected; rather a sufficiently high

number (p = q = 23) was used to take advantage of the capacities of these models. We

decided to work with ARMA models because they provided slightly better results than

the AR models.

3.5. Simulation

A simulation was conducted of 500 years of significant wave height Hs with each of

the models fitted to the data: (a) the SM and the dependence model based on copulas

(SM-C); (b) the IM and the dependence model based on copulas (IM-C); (c) the SM and

the ARMA(23,23) model (SM-A); and (d) the IM and the ARMA(23,23) model (IM-A).

Figure 10 shows a five-year data series and another five-year series simulated using the

IM-C model. The next step was to evaluate the results obtained using the different models,

differentiating between the medium or main-mass regime and the extreme or upper-tail

regime.

3.5.1. Medium or main-mass regime

The medium regime obtained using the four simulated series are very similar. In fact, it

is practically impossible to differentiate between the four series in the PDF and CDF plots.

Therefore, Figure 11 presents the results only for model SM-C. By comparing Figure 11

with Figure 5 , it is clear that the distribution of the simulated data series (Figure 11)
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is equal to the theoretical distribution (Figure 5). This finding is because the simulated

series is very long (500 years).

Table 5 shows the values of the statistics derived from the first four moments of the

distribution: mean, variance, skewness, and kurtosis. As can be observed, all of the models

properly represent the mean and the variance. Regarding skewness and kurtosis, the best

approximations were obtained using the SM-C and SM-A models. The IM-C and IM-A

models yielded overestimated figures for kurtosis, particularly when the ARMA model

was used for time dependence.

Figure 12 shows the autocorrelation function (ACF) for the data and the four simulated

series. For a time lag of less than three days, the SM-C and IM-C models fit the data better

than the SM-A and IM-A models. In contrast, for longer time-lags, the SM-A and IM-A

models provide a better fit. The main reason for this is that the ARMA model is a 23rd-

order model, whereas the copula-based models correspond to second-order and third-order

Markov models for the IM-C and SM-C, respectively. When third-order ARMA models

are used (as indicated by the red dashed line referred to as IM-ARMA (3,3) in Figure 12),

the long-term fit of the ACF is equivalent to that obtained using copula-based models,

whereas the short-term fit is roughly the same as that obtained using a 23rd-order ARMA

model.

Figure 13 shows the PDF of the persistences over thresholds (0.5m, 1.0m, 1.5m, 2.0m,

2.5m, 3.0m). In many cases, there are discrepancies between the persistence regimes for

the original and simulated data series. For a threshold of 0.5m, the simulated series

show a lower than observed frequency of persistence of short duration (6 hours); i.e.,

the simulations overestimate persistence over 0.5m. For thresholds greater than 2m, the
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simulations (particularly those obtained using ARMA-based models) show a higher than

observed frequency of persistence of short duration (6 hours); i.e., both the copula-based

and the ARMA models underestimate persistence, but the extent of the underestimation

by the ARMA model is greater. Nevertheless, for thresholds greater than 1.5m, the series

obtained using the copula-based models (SM-C and IM-C) show a better fit with regard to

the persistence than that obtained using the ARMA model. In contrast, for the thresholds

0.5m and 1m, the data series simulated using the ARMA model exhibits a better fit with

regard to the persistence than the series simulated using the copula model.

3.5.2. Extreme or upper-tail regime

This study has analysed two aspects of the extreme regime: (i) annual maxima and (ii)

storms and peaks over the threshold (POT regime).

Annual maxima

Figure 14 shows the annual maxima of the empirical data and of the simulated series for

different return periods. Wide dispersion can be observed for high return periods: e.g.,

for 50-year return period, the values of obtained from the simulated series are between

7.5m for the model SM-C and more than 10m for the model IM-A. Generally speaking,

the ARMA model has overestimated the annual maxima, whereas the data obtained via

the copula-based model are underestimates. Nevertheless, the series simulated using the

IM-C model appropriately fit the empirical regime of annual maxima.

Additionally, the effect of including interannual variations (via the IM-C and IM-A

models) was to increase the value of Hs for a given return period. This finding occurred

independent of the time-dependence model used.

Storms and peaks over threshold (POT)
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This study focused on the mean number of storms per year, their distribution through-

out an average year, their duration, and the maximum significant wave height reached

during the storm (i.e., the POT regime). Storms were identified following Solari and

Losada [2011b]; the value of the threshold was u = 3.58m, and the minimum time be-

tween the storms was Tmin = 2 days; this minimum time assured that the peaks came

from different storms or independent events. The mean number of storms per year based

on these data was ν = 3.08. The mean numbers of storms based on the simulated series

were νSM−C = 3.15, νIM−C = 3.46, νSM−A = 6.16, and νIM−A = 6.66.

Figure 15 shows the variation in parameter ν throughout the year. The values were

obtained by dividing the year into 24 subsets of 1/2 month each1, calculating the mean

number of storms in each subset, and multiplying them by 24 so that the unit used would

be the number of storms per year. The integral of the curve in the year is the mean number

of storms per year. The results obtained via the SM-C and IM-C models are within the

confidence limits obtained from the original data. In contrast, the results obtained using

the SM-A and IM-A models include a significantly greater number of storms than was

actually recorded, particularly in the winter.

Figure 16 reflects the distribution of storm durations (i.e., persistence exceeding the

threshold u). The results obtained via the SM-C and IM-C models were found to provide

a slightly better fit of the data than the SM-A and IM-A models, although the four

This two-week time scale corresponds to the variation between spring and neap tides. Even though this was not previously considered,

it is another of the variation scales of the system, forced in this case by astronomical phenomena. One might ask if these variations

have any effect on the occurrence or intensity of the storms.
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models tended to overestimate the frequency of short durations (approx. 5 hours), and

underestimate frequency of long durations (approx. 30 hours).

Finally, Figure 17 shows the values of Hs corresponding to different return periods as

obtained from the POT regime. It also displays the fit of the GPD obtained in Solari

and Losada [2011b] for that regime. In this case, the simulated series that best fit the

data is that obtained via the SM-A model. In contrast, the series obtained using the

IM-A model contains significant overestimates and reflects a long-term tendency that is

very different from the tendency indicated by the GPD. On the other hand, although the

IM-C model underestimated the data for return periods of less than 10 years, the series

obtained exhibit a long-term trend that lies within the GPD confidence limits.

3.6. Discussion

With regard to the marginal distribution, all of the simulated series have approximated

the original data quite well. The differences between the models become evident when

the autocorrelation and persistence regimes are analysed. As compared to the ARMA

model, the copula-based time-dependency model provides a better fit to persistence data

for thresholds higher than 1m.

With respect to autocorrelation, it appears that in the long term (with time-lags longer

than 3 days), the high-order autoregressive models (23) provide better fitting data than do

the models based on copulas. However, when low-order autoregressive models (of order 3)

are used, the long-term behaviour of the autocorrelation is similar to that obtained using

copula-based models (which are also low-order models). If only short-term behaviour is

considered (with a time lag of less than 3 days), the copula-based models show a slightly

better fit in terms of autocorrelation than that obtained using autoregressive models.
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For the extreme regime, the IM-C model provided the best fit in every way. The

exception was the POT regime, for which the IM-C model provided the second-best fit.

The analysis of the extreme values in terms of the return period clearly indicated the

effect of including interannual variations in the model. For particular return periods, the

series obtained using the IM model include greater values of Hs than those obtained using

the SM model. The data from the ARMA-based models indicate that there was a much

larger mean number of storms per year than was actually recorded. The data from these

models also underestimate the duration of the storms. In contrast, the results derived

using the copula-based models appropriately fit the recorded data regarding the mean

number of storms per year, their distribution throughout the year and their duration.

Based on these findings, copula-based models can be deemed more suitable for use than

are ARMA-based models given the frequency and persistence of the storms, which are

important parameters to consider when studying systems such as beaches or ports. Even

though the copula-based model yielded simulated series with characteristics that are very

similar to those of the original series, there are certain differences between the series with

regard to the POT regime.

The effect of interannual variability is especially evident in the values for the upper tail

even though it was only included in the parameters for the mean of the distribution. This

is one of the advantages of using an integral model that covers the entire range of values

of the variable. Performing a more in-depth analysis of interannual variation by taking

into account the effect of covariables could improve the results obtained. Furthermore, it

would provide more information regarding the long-term behaviour of the variable.
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4. Conclusions

This article has described a non-stationary univariate model for the long-term distribu-

tion of sea-state variables that is valid for the entire range of values of the variable. The

model includes seasonal variation using a Fourier-series approximation of the parameters

and can also take into account climate cycles, trends, and covariables.

The results of this study indicate that this non-stationary model can be used to trans-

form the original non-stationary variable (Hs(t) in this article) into a stationary one

P (t) = Prob[Hs < Hs(t)|t]. Using this variable (P (t)), it is possible to study the time

dependence or autocorrelation of the original variable (Hs). For this purpose, in this

research, a copula-based model was developed based on the assumption that the process

being examined was a Markov process.

The application of the models to a data series for hindcast significant wave height

indicated that the simulations obtained via the copula-based time-dependence model were

better than those obtained using an ARMA model. However, some related considerations

require further study. The long-term autocorrelation data generated by the copula-based

models (with time-lags larger than 3 days) is inferior to that obtained using the high-

order ARMA models. The possibility of improving these results by using other families

of copulas should be investigated. It will also be necessary to more rigorously study how

including long-period variation and covariables in the non-stationary model influences the

simulated series.

This study has shown that from an engineering viewpoint, it is not appropriate to

evaluate simulation methods exclusively in terms of the ACF of the simulated series.
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A good ACF fit does not ensure that the model will behave suitably in representing

persistence regimes, storm regimes and annual maxima.

Appendix A: Data standardization

To build the PP and QQ plots of the NS-LN-GPD model, the standardized variable Ze

is used.

Ze =


Z1− Zmin H(t) < u1(t)

ZLN u1(t) ≤ H(t) ≤ u2(t)

Z2 + Zmax H(t) > u2(t)

(A1)

where Z1 and Z2 are the parameters of the model; u1 and u2 are the thresholds calculated

with the model; and ZLN , Zmin and Zmax are calculated as

ZLN =
log(H(t))− µLN(t)

σLN(t)
(A2)

Zmin =
1

ξ1(t)
log

(
1− ξ1(t)

σ1(t)
(H(t)− u1(t))

)
(A3)

Zmax =
1

ξ2(t)
log

(
1 +

ξ2(t)

σ2(t)
(H(t)− u2(t))

)
(A4)

This takes into account that when H(t) has a log-normal distribution, ZLN has a standard

normal distribution; and when H(t) has a GPD distribution of minima (maxima), Zmin

(Zmax) has a unit-parameter exponential distribution.

After calculating the standardized variable Ze this variable was used to calculate em-

pirical probability Pe. The modeled values of Zm quantiles and of probability Pm were

calculated from Ze and Pe as

Zm(Pe) =


Z1 + log(Pe/Φ(Z1)) Pe < Φ(Z1)

Φ−1(Pe) Φ(Z1) ≤ Pe ≤ Φ(Z2)

Z2 − log(1− Pe−Φ(Z2)
1−Φ(Z2)

) Pe > Φ(Z2)

(A5)
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Pm(Ze) =
Φ(Z1) exp(Ze − Z1) Ze < Z1

Φ(Ze) Z1 ≤ Ze ≤ Z2

Φ(Z2) + (1− Φ(Z2))(1− exp(Z2 − Ze)) Ze > Z2

(A6)

Finally, graph QQ was built with (Ze, Zm) and graph PP was built with (Pe, Pm).

Appendix B: Copula definition

A copula is a function C : [0, 1]×[0, 1] → [0, 1] such that for all u, v ∈ [0, 1] , it holds that

C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0 and C(1, v) = v; and for all u1 ≤ u2, v1 ≤ v2 ∈ [0, 1]

it holds that

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

The use of copulas to define multivariate distribution functions is based on the Sklar’s

theorem: when FXY is a two-dimensional distribution function with marginal distribution

functions FX y FY , there is then a copula C such that FXY = Prob[X ≤ x, Y ≤ y] =

C(FX(x), FY (y)).

Appendix C: Measures of association

For a bivariate series (x, y). , the most widely used measurements of association are

Kendall’s τk and Spearman’s ρs [Salvadori et al., 2007]. A sample version of these param-

eters are

τk =
c− d

c+ d
(C1)

ρs = 1− 6
∑n

i=1(Ri − Si)
2

n3 − n
(C2)
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where c (d) are the number of concordant (discordant) pairs (xi, yi) (xj, yj),defined as

(xi − xj)(yi − yj) < 0 (> 0); Ri = Rank(xi); Si = Rank(yi); n is the sample size.

Appendix D: Copula-based second-order and third-order Markov Models

Variables F1|2 and F3|2 are calculated using the bivariate copula C12 that defines the

first-order Markov process:

F1|2(u, v) = Prob[Pt ≤ u |Pt−1 = v] =
∂C12

∂v
(u, v) (D1a)

F3|2(v, w) = Prob[Pt−2 ≤ w |Pt−1 = v] =
∂C23

∂v
(v, w) (D1b)

Where it is assumed that the time-dependence structure is stationary, and thus C12 ≡ C23.

If these variables are dependent on each other (a dependence measured with τk or ρs), a

trivariate copula C123 is then built that contemplates this dependence and which defines

the second-order Markov process

C123(u, v, w) = Prob[Pt ≤ u, Pt+1 ≤ v, Pt+2 ≤ w]

Where marginal distributions C12 and C23 are given by the copula C12 ≡ C23, and where

marginal C13 represents the dependence of Pt and Pt−2 that is not explained by C12. A

copula of this type can be found in [Joe, 1997, chap. 4.5]

C123(u, v, w) =

∫ v

−∞
C13(F1|2(u, x), F3|2(x,w))F2(dx) (D2)

Where C13 is fit based on the sample of F1|2 and F3|2.

Similarly, F1|23 and F4|23 are calculated using C123
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F1|23(u, v, w) =Prob[Pt ≤ u |Pt−1 = v, Pt−2 = w]

=
∂2C123

∂v∂w

/
∂2C23

∂v∂w

=
∂C13

∂F3|2
(F1|2(u, v), F3|2(v, w))

(D3a)

F4|23(v, w, y) =Prob[Pt−3 ≤ y |Pt−1 = v, Pt−2 = w]

=
∂2C123

∂u∂v

/
∂2C12

∂u∂v

=
∂C24

∂F2|3
(F2|3(v, w), F4|3(w, y))

(D3b)

Where C12 ≡ C23 ≡ C34 and C123 ≡ C234.

If the dependence between F1|23 and F4|23, measured with Kendall’s τk or Spearman’s

ρs, is significant, there is a significant degree of dependence between Pt and Pt−3 that is

not explained by C123, and copula C1234 is built, which defines the fourth-order Markov

process

C1234(u, v, w, y)

= Prob[Pt ≤ u, Pt+1 ≤ v, Pt+2 ≤ w,Pt+3 ≤ y]

=

∫ w

−∞

∫ v

−∞
C14(F1|23(u, x1, x2), F4|23(x1, x2, y))

C23(dx1, dx2) (D4)

Where copula C14 is fit, based on the sample of variables F1|23 and F4|23.

The distribution of Pt conditioned to Pt−1 = v, Pt−2 = w and Pt−3 = y is then obtained

by deriving (D4)
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C1|234(u, v, w, y)

= Prob[Pt ≤ u |Pt−1 = v, Pt−2 = w,Pt−3 = y]

=
∂3C1234

∂v∂w∂y

/
∂3C234

∂v∂w∂y

=
∂C14

∂F4|23
(F1|23(u, v, w), F4|23(v, w, y)) (D5)

Appendix E: Copulas families

The Gumbel-Hougaard family is the same as the logistic family used in the multivariate

theory of extremes (see e.g. Coles , 2001, chap. 8 or Salvadori et al., 2007, app. C). This

study used an asymmetric version of this family [see e.g.: Ribatet et al., 2009].

C12(u, v) = Prob[x ≤ u, y ≤ v] = exp {−V (u, v)} (E1)

with

V (u, v) = (1− θ1)û+ (1− θ2)v̂ +
[
(θ1û)

θ + (θ2v̂)
θ
]1/θ

(E2)

where û = − log(u) and v̂ = − log(v), θ ≥ 1, 0 ≤ θ1, θ2 ≤ 1.

The conditioned distributions are given by

C1|2(u, v) =Prob[x ≤ u | y = v] =
∂C

∂v
(u, v)

=
C(u, v)

v

[
1− θ2 + θ2

(
1 +

(θ1û)
θ

(θ2v̂)θ

) 1
θ
−1
]

(E3)

C2|1(u, v) =Prob[y ≤ v | x = u] =
∂C

∂u
(u, v)

=
C(u, v)

u

[
1− θ1 + θ1

(
1 +

(θ2v̂)
θ

(θ1û)θ

) 1
θ
−1
]

(E4)

D R A F T June 22, 2011, 2:58pm D R A F T



X - 32 SOLARI & LOSADA: NON-STATIONARY WAVE HEIGHT SIMULATION

whereas the density is

c12(u, v) = Prob[x = u, y = v] =
∂2C12

∂u∂v
(u, v)

=
C(u, v)

uv

{[
C1|2(u, v)

] [
C2|1(u, v)

]
+

θ1θ2(θ − 1)
(
(θ1û)

θ + (θ2v̂)
θ
) 1

θ
−2

(θ1θ2ûv̂)
θ−1

} (E5)

The parameters of this copula are estimated by means of maximum likelihood using

(E5).

The Fréchet copula family is given by

C12(u, v) = αM2(u, v) + (1− α− β)Π2(u, v) + βW2(u, v) (E6)

where M2(u, v) = min(u, v)is the Fréchet-Hoeffding upper bound; Π2(u, v) = uv is the

independent copula; andW2(u, v) = max(u+v−1, 0) is the Fréchet-Hoeffding lower bound.

The following relations are used to fit the parameters of the Fréchet family [Salvadori et al.,

2007]

τK(α, β) =
(α− β)(α+ β + 2)

3
(E7)

ρS(α, β) = α− β (E8)

Appendix F: Simulation procedure of the third-order Markov process

For the third-order Markov process., the simulation procedure is:

(i) At t = 1, u1 ∼ U(0, 1) is simulated, and P1 = u1 is taken.
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(ii) For t = 2, u2 ∼ U(0, 1) is simulated, and P2 is calculated conditioned to P1, solving

the following equation

u2 = C2|1(P1, P2) (F1)

(iii) For t = 3, u3 ∼ U(0, 1) is simulated, and P3 is calculated conditioned to P1 and P2,

solving the following equation

u3 = C3|1

(
C1|2(P1, P2), C3|2(P2, P3)

)
(F2)

(iv) for t ≥ 4, ut ∼ U(0, 1) is simulated, and Pt is calculated conditioned to Pt−1, Pt−2

and Pt−3, solving the following equation

ut =C4|1

(
C1|23

(
C1|2(Pt−3, Pt−2), C3|2(Pt−2, Pt−1)

)
,

C4|23

(
C2|3(Pt−2, Pt−1), C4|3(Pt−1, Pt)

)) (F3)

(v) Once the series {Pt}is simulated, the series {Ht} is constructed, using the inverse

of the NS-LN-GPD (6).

In steps (ii) to (iv), the expressions of the conditioned copulas are analytically resolved,

whereas equations (F1), (F2) and (F3) are numerically solved with the bisection method.

Appendix G: List of abbreviations

Table 6 lists the abbreviations used throughout the article.
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Figure 1. Physical phenomena evolving in different time scales, and statistical models

for the appropriate modelling of the sea-state variables.

Figure 2. Minimum Bayesian Information Criterion obtained for different numbers of

parameters in the NS-LN-GPD model, with maximum approximation of the fourth order

(⃝), 6th order (△) and 9th order (�).

Figure 3. Time evolution of µLN , σLN and ξ2 for the NS-LN-GPD [4,2,2] model.

Figure 4. Iso-probability quantiles for non-exceeding probability P [x|t] equal to 0.01,

0.1, 0.25 0.5, 0.75, 0.9 and 0.99; empirical (grey continuous line), NS-LN model (red

dashed line) and NS-LN-GPD model (black continuous line).

Figure 5. Accumulated probability on log-normal paper (top graph) and probability

density (bottom graph). Empirical (dots), data from the NS-LN normal model (dashed

line), and data from the NS-LN-GPD model (continuous line).
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Figure 6. Left: Q-Q graph of the non-stationary log normal model (a) and the non-

stationary model (b). Right: P-P graph of the non-stationary log normal model (a) and

the non-stationary model (b).

Figure 7. Ninety-day Moving Average of Hs and the µLN(t) parameter of interannual

model.

Figure 8. Mean and standard deviation of Pt, estimated on an annual scale for each

state, and their moving average smooth curves.

Figure 9. Empirical copula C(Pt, Pt−1) (thick line) and asymmetric Gumbel-Hougaard

copula (thin line).

Figure 10. Five years of measured significant wave heights (top) and simulated signif-

icant wave heights (bottom).

Figure 11. Accumulated probability on log-normal paper (top graph) and probability

density (bottom graph). Original (dots) and simulated (green line) data series.

Figure 12. Autocorrelation function (ACF) for the four dependence models used and

for a simulation run using an ARMA(3,3) model.
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Figure 13. Persistence over thresholds 0.5, 1, 1.5, 2, 2.5 and 3m.

Figure 14. Annual maxima Hs: empirical data (dots), data from the copula models

(green lines) and data from the ARMA models (blue lines).

Figure 15. Storm occurrence: empirical data with 90% confidence intervals (black lines

with dots), data from the copula models (green lines), and data from the ARMA models

(blue lines).

Figure 16. Persistence of the storms above 3.58m in days: empirical data (dots), data

from the copula models (green lines) and data from the ARMA models (blue lines).

Figure 17. POT regime for Hs: empirical data (dots), annual GPD with confidence

intervals (grey line), data from the copula models (green lines) and data from the ARMA

models (blue lines).
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Table 1. Outline of the relationships of dependence.

Connection with NO YES
Other Univariate Multivariate

variables
Same Without auto- With auto-

variable correlation correlation
Time Stationary Non-stationary

Table 2. NS-LN parameters.

µ σ
Ord. (k) θak θbk θak θbk

0 -0.116 — 0.561 —
1 0.318 0.203 0.100 -0.016
2 -0.024 -0.070 0.021 -0.019
3 0.010 -0.009 -0.004 -0.008
4 0.051 0.001 0.008 0.014

Table 3. NS-LN-GPD parameters.

µLN σLN ξ2
Ord. (k) θak θbk θak θbk θak θbk

0 -0.094 — 0.520 — -0.006 —
1 0.322 0.199 0.097 -0.019 -0.014 0.076
2 -0.019 -0.073 0.023 -0.012 -0.063 -0.037
3 0.004 -0.011 - - - -
4 0.045 0.004 - - - -

Z1 Z2

-0.734 (23%) 1.078 (86%)

Table 4. Copulas parameters fitted using Pt series obtained with the NS-LN-GPD [4 2 2] (SM)

and NS-LN-GPD [4 2 2 2] (IM) models.

C12 C13 C14

G-H Asim. Fréchet Fréchet
θ θ1 θ2 α β α β

SM 5.697 0.995 0.971 0 0.194 0.005 0
IM 5.462 0.994 0.969 0 0.192 – –

Table 5. Statistics obtained from the first four central moments.

Data SM-C IM-C SM-A IM-A
Mean 1.088 1.077 1.086 1.090 1.093
Variance 0.548 0.521 0.538 0.539 0.556
Skewness 2.127 2.106 2.275 2.159 2.410
Kurtosis 10.006 10.468 12.290 10.846 14.326
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Table 6. List of abbreviations.

Abbreviation Description
BIC Bayesian Information Criterion
GPD Generalised Pareto distribution
IM NS-LN-GPD model fitted to the data allowing

the parameters to have interannual variations
IM-A Combination of IM model for marginal distribution and

ARMA model for time dependency
IM-C Combination of IM model for marginal distribution and

copulas-based model for time dependency
LLF Log-likelihood function
LN Log-normal distribution
NLLF Negative log-likelihood function
NS-LN Non-stationary log-normal distribution
NS-LN-GPD Non-stationary mixture model composed by a log-normal

distribution for the main-mass regime and two
generalised Pareto distributions for the tails regimes

SM NS-LN-GPD model fitted to the data without allowing
for interannual variations of the parameters

SM-A Combination of SM model for marginal distribution and
ARMA model for time dependency

SM-C Combination of SM model for marginal distribution and
copulas-based model for time dependency
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